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ABSTRACT
In this paper, we discuss the problem of distributing stream-
ing media content, both live and on-demand, to a large num-
ber of hosts in a scalable way. Our work is set in the context of
the traditional client-server framework. Specifically, we con-
sider the problem that arises when the server is overwhelmed
by the volume of requests from its clients. As a solution,
we propose Cooperative Networking (CoopNet), where clients
cooperate to distribute content, thereby alleviating the load
on the server. We discuss the proposed solution in some de-
tail, pointing out the interesting research issues that arise,
and present a preliminary evaluation using traces gathered
at a busy news site during the flash crowd that occurred on
September 11, 2001.

Categories and Subject Descriptors
C.2 [Computer-Communication Networks]: Distributed
Systems—Distributed Applications

General Terms
Design, Performance, Measurement

Keywords
Streaming media, content distribution networks, peer-to-peer
networks, multiple description coding

1. INTRODUCTION
There has been much work in recent years on the topic of

content distribution. This work has largely fallen into two cat-
egories: (a) infrastructure-based content distribution, and (b)
peer-to-peer content distribution. An infrastructure-based
content distribution network (CDN) (e.g., Akamai) comple-
ments the server in the traditional client-server framework. It
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employs a dedicated set of machines to store and distribute
content to clients on behalf of the server. The dedicated in-
frastructure, including machines and networks links, is en-
gineered to provide a high level of performance guarantees.
On the other hand, peer-to-peer content distribution relies
on clients to host content and distribute it to other clients.
The P2P model replaces rather than complements the client-
server framework. Typically, there is no central server that
holds content. Examples of P2P content distribution systems
include Napster and Gnutella.

In this paper, we discuss Cooperative Networking (Coop-
Net), an approach to content distribution that combines as-
pects of infrastructure-based and peer-to-peer content distri-
bution. Our focus is on distributing streaming media content,
both live and on-demand. Like infrastructure-based content
distribution, we seek to complement rather than replace the
traditional client-server framework. Specifically, we consider
the problem that arises when the server is overwhelmed by the
volume of requests from its clients. For instance, a news site
may be overwhelmed because of a large “flash crowd” caused
by an event of widespread interest, such as a sports event or an
earthquake. A home computer that is webcasting a birthday
party live to friends and family might be overwhelmed even
by a small number of clients because of its limited network
bandwidth. In fact, the large volume of data and the rela-
tively high bandwidth requirement associated with stream-
ing media content increases the likelihood of the server being
overwhelmed in general. Server overload can cause significant
degradation in the quality of the streaming media content
received by clients.

CoopNet addresses this problem by having clients cooperate
with each other to distribute content, thereby alleviating the
load on the server. In the case of on-demand content, clients
cache audio/video clips that they viewed in the recent past.
During a period of overload, the server redirects new clients to
other clients that had downloaded the content previously. In
the case of live streaming, the clients form a distribution tree
rooted at the server. Clients that receive streaming content
from the server in turn stream it out to one or more of their
peers.

The key distinction between CoopNet and pure P2P sys-
tems like Gnutella is that CoopNet complements rather than
replaces the client-server framework of the Web. There is still
a server that hosts content and (directly) serves it to clients.
CoopNet is only invoked when the server is unable to handle
the load imposed by clients. The presence of a central server
simplifies the task of locating content. In contrast, search-
ing for content in a pure P2P system entails an often more



expensive distributed search [17, 18, 20].
Individual clients may only participate in CoopNet for a

short period of time, say just a few minutes, which is in con-
trast to the much longer participation times reported for sys-
tems such as Napster and Gnutella [19]. For instance, in the
case of live streaming, a client may tune in for a few minutes
during which time it may be willing to help distribute the con-
tent. Once the client tunes out, it may no longer be willing to
participate in CoopNet. This calls for a content distribution
mechanism that is robust against interruptions caused by the
frequent joining and leaving of individual peers.

To address this problem, CoopNet employs multiple de-
scription coding (MDC). The streaming media content, whether
live or on-demand, is divided into multiple sub-streams using
MDC and each sub-stream is delivered to the requesting client
via a different peer. This improves robustness and also helps
balance load amongst peers.

The rest of this paper is organized as follows. In Section 2,
we discuss related work. In Section 3, we discuss the operation
of CoopNet for live and on-demand content, and present an
outline of multiple description coding. In Section 4, we use
traces from the flash crowd that occurred on September 11,
2001 to evaluate how well CoopNet would have performed for
live and on-demand content. We present our conclusions in
Section 5.

2. RELATED WORK
As noted in Section 1, two areas of related work are infrastru-

cture-based CDNs and peer-to-peer systems. Infrastructure-
based CDNs such as Akamai employ a dedicated network of
thousands of machines in distributed locations, often with
leased links inter-connecting them, to serve content on behalf
of servers. When a client request arrives (be it for streaming
media or other content), the CDN redirects the client to a
nearby replica server. The main limitation of infrastructure-
based CDNs is that their cost and scale is only appropriate for
large commercial sites such as CNN and MSNBC. A second
issue is that it is unclear how such a CDN would fare in the
face of a large flash crowd that causes a simultaneous spike
in traffic at many or all of the sites hosted by the CDN.

Peer-to-peer systems such as Napster and Gnutella depend
on little or no dedicated infrastructure1. There is, however,
the implicit assumption that the individual peers participate
for a significant length of time (for instance, [19] reports a
median session duration of about an hour both for Napster
and for Gnutella). In contrast, CoopNet seeks to operate in
a highly dynamic situation such as a flash crowd where an
individual client may only participate for a few minutes. The
disruption that this might cause is especially challenging for
streaming media compared to static file downloads, which is
the primary focus of Napster and Gnutella. The short life-
time of the individual nodes poses a challenge to distributed
search schemes such as CAN [17], Chord [20], Pastry [18], and
Tapestry [22].

Work on application-level multicast (e.g., ALMI [14], End
System Multicast [3], Scattercast [2]) is directly relevant to
the live streaming aspect of CoopNet. CoopNet could benefit
from the efficient tree construction algorithms developed in
previous work. Our focus here, however, is on using real traces
to evaluate the efficacy of CoopNet. Thus we view our work as

1Napster has central servers, but these only hold indices, not
content.

complementing existing work on application-level multicast.
We also consider the on-demand streaming case, which does
not quite fit in the application-level multicast framework.

Existing work on distributed streaming (e.g., [9]) is also di-
rectly relevant to CoopNet. A key distinction of our work
is that we focus on the distruption and packet loss caused
by node arrivals and departures, which is likely to be signifi-
cant in a highly dynamic environment. Using traces from the
September 11 flash crowd, we are able to evaluate this issue
in a realistic setting.

Systems such as SpreadIt [5], Allcast [23] and vTrails [24]
are perhaps closest in spirit to our work. Like CoopNet, they
attempt to deliver streaming content using a peer-to-peer ap-
proach. SpreadIt differs from CoopNet is a couple of ways.
First, it uses only a single distribution tree and hence is vul-
nerable to disruptions due to node departures. Second, the
tree management algorithm is such that the nodes orphaned
by the departure of their parent might be bounced around
between multiple potential parents before settling on a new
parent. In contrast, CoopNet uses a centralized protocol (Sec-
tion 3.3), which enables much quicker repairs.

It is hard for us to do a specific comparison with Allcast
and vTrails, in the absence of published information.

3. COOPERATIVE NETWORKING (COOPNET)
In this section, we present the details of CoopNet as it

applies to the distribution of streaming media content. We
first consider the live streaming case, where we discuss and
analyze multiple description coding (MDC) and distribution
tree management. We then turn to the on-demand streaming
case.

3.1 Live Streaming
Live streaming refers to the synchronized distribution of

streaming media content to one or more clients. (The content
itself may either be truly live or pre-recorded.) Therefore
multicast is a natural paradigm for distributing such content.
Since IP multicast is not widely deployed, especially at the
inter-domain level, CoopNet uses application-level multicast
instead.

A distribution tree rooted at the server is formed, with
clients as its members. Each node in the tree transmits the
received stream to each of its children using unicast. The out-
degree of each node is constrained by the available outgoing
bandwidth at the node. In general, the degree of the root
node (i.e., the server) is likely to be much larger than that of
the other nodes because the server is likely to have a much
higher bandwidth than the individual client nodes.

One issue is that the peers in CoopNet are far from being
dedicated servers. Their ability and willingness to participate
in CoopNet may fluctuate with time. For instance, a client’s
participation may terminate when the user tunes out of the
live stream. In fact, even while the user is tuned in to the live
stream, CoopNet-related activity on his/her machine may be
scaled down or stopped immediately when the user initiates
other, unrelated network communication. Machines can also
crash or become disconnected from the network.

With a single distribution tree, the departure or reduced
availability of a node has a severe impact on its descendants.
The descendants may receive no stream at all until the tree
has been repaired. This is especially problematic because
node arrivals and departures may be quite frequent in flash
crowd situations. To reduce the disruption caused by node
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Figure 1: Priority encoded packetization of a group
of frames (GOF). Any m out of M packets can recover
the initial Rm bits of the bit stream for the GOF.

departures, we advocate having multiple distribution trees
spanning a given set of nodes and transmitting a different
MDC description down each tree. This would diminish the
chances of a node losing the entire stream (even temporarily)
because of the departure of another node. We discuss this
further in Section 3.2.

The distribution trees need to be constantly maintained as
new clients join and existing ones leave. In Section 3.3, we
advocate a centralized approach to tree management, which
exploits the availability of a resourceful server node, coupled
with client cooperation, to greatly simplify the problem.

3.2 Multiple Description Coding (MDC)
Multiple description coding is a method of encoding the

audio and/or video signal into M > 1 separate streams, or
descriptions, such that any subset of these descriptions can
be received and decoded into a signal with distortion (with
respect to the original signal) commensurate with the num-
ber of descriptions received; that is, the more descriptions re-
ceived, the lower the distortion (i.e., the higher the quality) of
the reconstructed signal. This differs from layered coding2 in
that in MDC every subset of descriptions must be decodable,
whereas in layered coding only a nested sequence of subsets
must be decodable. For this extra flexibility, MDC incurs a
modest performance penalty relative to layered coding, which
in turn incurs a slight performance penalty relative to single
description coding.

Several multiple description coding schemes have been in-
vestigated over the years. For an overview see [6]. A particu-
larly efficient and practical system is based on layered audio
or video coding [15, 7], Reed-Solomon coding [21], priority en-
coded transmission [1], and optimized bit allocation [4, 16, 8].
In such a system the audio and/or video signal is partitioned
into groups of frames (GOFs), each group having duration
T = 1 second or so. Each GOF is then independently en-
coded, error protected, and packetized into M packets, as
shown in Figure 1.

If any m ≤ M packets are received, then the initial Rm

2Layered coding is also known as embedded, progressive, or
scalable coding.

bits of the bit stream for the GOF can be recovered, result-
ing in distortion D(Rm), where 0 = R0 ≤ R1 ≤ · · · ≤ RM

and consequently D(R0) ≥ D(R1) ≥ · · · ≥ D(RM ). Thus
all M packets are equally important; only the number of re-
ceived packets determines the reconstruction quality of the
GOF. Further, the expected distortion is

PM
m=0 p(m)D(Rm),

where p(m) is the probability that m out of M packets are re-
ceived. Given p(m) and the operational distortion-rate func-
tion D(R), this expected distortion can be minimized using
a simple procedure that adjusts the rate points R1, . . . , RM

subject to a constraint on the packet length [4, 16, 8]. By
sending the mth packet in each GOF to the mth description,
the entire audio and/or video signal is represented by M de-
scriptions, where each description is a sequence of packets
transmitted at rate 1 packet per GOF.

It is a very simple matter to generate these optimized M
descriptions on the fly, assuming that the signal is already
coded with a layered codec.

3.2.1 CoopNet Analysis: Quality During Multiple Failures
Let us consider how multiple description coding achieves

robustness in CoopNet. Suppose that the server encodes its
AV signal into M descriptions as described above, and trans-
mits the descriptions down M different distribution trees,
each rooted at the server. Each of the distribution trees con-
veys its description to all N destination hosts. Ordinarily, all
N destination hosts receive all M descriptions. However, if
any of the destination hosts fail (or leave the session), then
all of the hosts that are descendents of the failed hosts in
the mth distribution tree will not receive the mth descrip-
tion. The number of descriptions that a particular host will
receive depends on its location in each tree relative to the
failed hosts. Specifically, a host n will receive the mth de-
scription if none of its ancestors in the mth tree fail. This
happens with probability (1− ε)An , where An is the number
of the host’s ancestors and ε is the probability that a host fails
(assuming independent failures). If hosts are placed at ran-
dom sites in each tree, then the unconditional probability that
any given host will receive its mth description is the average
θN = (1/N)

PN
n=1(1− ε)An across all hosts in the tree. Thus

the number of descriptions that a particular host will receive is
randomly distributed according to a Binomial(M, θN ) distri-
bution, i.e., p(m) =

�
M
m

�
θm

N (1− θN )M−m. Hence for large M ,
the fraction of descriptions received is approximately Gaus-
sian with mean θN and variance θN (1−θN ). This can be seen
in Figure 2, which shows (in bars) the distribution p(m) for
various values of M = 2, 4, 8, 16 and N = 10, 1000, 100000. In
the figure, to compute θN we assumed balanced binary trees
with N nodes and probability of host failure ε = 1%. Note
that as N grows large, performance slowly degrades, because
the depth of the tree (and hence 1− θN ) grows like log2 N .

The distribution p(m) can be used to optimize the multiple
description code by choosing the rate points R0, R1, . . . , RM

to minimize the expected distortion
PM

m=0 p(m)D(Rm) sub-
ject to a packet length constraint. Figure 2 shows (in lines),
the quality associated with each p(m), measured as SNR in
dB, i.e., 10 log10(σ

2/D(Rm)), as a function of the number
of received descriptions, m = 0, 1, . . . , M . In the figure, to
compute the rate points R0, R1, . . . , RM we assumed an op-
erational distortion-rate function D(R) = σ22−2R, which is
asymptotically typical for any source with variance σ2, where
R is expressed in bits per symbol, and we assumed a packet
length constraint given as R = 8.
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Figure 2: SNR in dB (line) and probabililty distri-
bution (bars) as a function of the number of descrip-
tions received, when the probability of host failure is
ε = 1%.

3.2.2 CoopNet Analysis: Quality During Single Failure
The time it takes to repair the trees is called the repair

time. If ε of the hosts fail during each repair time, then the
average length of time that a host participates in the ses-
sion is 1/ε repair times. When the number of hosts is small
compared to 1/ε, then many repair times may pass between
single failures. In this case, most of the time all hosts receive
all descriptions, and quality is excellent. Degradation occurs
only when a single host fails. Thus, it may be preferable
to optimize the MDC system by minimizing the distortion
expected during the repair interval in which the single host
fails, rather than minimizing the expected distortion over all
time. To analyze this case, suppose that a single host fails
randomly. A remaining host n will not receive the mth de-
scription if the failed host is an ancestor of host n in the
mth tree. This happens with probability An/(N − 1), where
An is the number of ancestors of host n. Since hosts are
place at random sites in each tree, the unconditional proba-
bility that any given host will receive its mth description is
the average θN = (1/N)

PN
n=1(1 − An/(N − 1)). Thus the

number of descriptions that a particular host will receive is
randomly distributed according to a Binomial(M, θN ) distri-
bution. Equivalently, the expected number of hosts that re-
ceive m descriptions during the failure is (N − 1)p(m), where
p(m) =

�
M
m

�
θm

N (1−θN )M−m. This distribution can be used to
optimize the multiple description code for the failure of a sin-
gle host. Figure 3 illustrates this distribution and the corre-
sponding optimized quality as a function of the number of de-
scriptions received, for M = 2, 4, 8, 16 and N = 10, 100, 1000.
Note that as M increases, for fixed N , the distribution again
becomes Gaussian. One implication of this is that the ex-
pected number of hosts that receive 100% of the descriptions
decreases. However it is also the case that the expected num-
ber of hosts that receive fewer than 50% of the descriptions
decreases, resulting in an increase in quality on average. Fur-
ther, as N increases, for fixed M , performance becomes nearly
perfect, since θN ≥ 1− log2 N/N , which goes to 1. However,
for large N , it becomes increasingly difficult to repair the trees
before a second failure occurs.

3.2.3 Further Analyses
These same analyses can be extended to d-ary trees. It

is not difficult to see that for d ≥ 2, a d-ary trees with
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Figure 3: SNR in dB (line) and probabililty distribu-
tion (bars) as a function of the number of descriptions
received during the failure of a single host.

N log2 d ≥ N nodes has the same height, and hence the same
performance, as a binary tree with only N nodes. Thus when
each node has a large out-degree, i.e., when each host has a
large uplink bandwidth, much larger populations can be han-
dled. Interestingly, the analysis also applies when d = 1. So,
if each host can devote only as much uplink bandwidth as
its downlink video bandwidth (which is typically the case for
modem users), then the descriptions can still be distributed
peer-to-peer by arranging the hosts in a chain, like a bucket
brigade. It can be shown that when the order of the hosts
in the chain is random and independent for each description,
then for a single failure the number of hosts receiving m out
of M descriptions is binomially distributed with parameters
M and θN , where θN = (N + 1)/2N . Although this holds
for any N , it is most suitable for smaller N . For larger N , it
may not be possible to repair the chains before other failures
occur. In fact, as N goes to infinity, the probability that any
host receives any descriptions goes to zero.

In this section we have proposed optimizing the MDC sys-
tem to the unconditional distribution p(m) derived by aver-
aging over trees and hosts. Given any set of trees, however,
the distribution of the number of received descriptions varies
widely across the set of hosts as a function of their upstream
connectivity. By optimizing the MDC system to the uncondi-
tional distribution p(m), we are not minimizing the expected
distortion for any given host, but rather minimizing the sum
of the expected distortions across all hosts, or equivalently,
minimizing the expected sum of the distortions over all hosts.

3.3 Tree Management
We now discuss the problem of constructing and maintain-

ing the distribution trees in the face of frequent node arrivals
and departures. There are many (sometimes conflicting) goals
for the tree management algorithm:

1. Short and wide tree: The trees should be as short
as possible so as to minimize the latency of the path
from the root to the deepest leaf node and to minimize
the probability of disruption due to the departure of an
ancestor node. For it to be short, the tree should be
balanced and as wide as possible, i.e., the out-degree
of each node should be as much as its bandwidth will
allow. However, making the out-degree large may leave
little bandwidth for non-CoopNet (and higher priority)
traffic emanating from the node. Interference due to



such traffic could cause a high packet loss rate for the
CoopNet streams.

2. Efficiency versus tree diversity: The distribution
trees should be efficient in that their structure should
closely reflect the underlying network topology. So, for
instance, if we wish to connect three nodes, one each
located in New York (NY), San Francisco (SF), and
Los Angeles (LA), the structure NY→SF→LA would
likely be far more efficient than SF→NY→LA (→ de-
notes a parent-child relationship). However, striving for
efficiency may interfere with the equally important goal
of having diverse distribution trees. The effectiveness
of MDC-based distribution scheme described in Section
3.2 depends critically on the diversity of the distribution
trees.

3. Quick join and leave: The processing of node joins
and leaves should be quick. This would ensure that the
interested nodes would receive the streaming content
as quickly as possible (in the case of a join) and with
minimal interruption (in the case of a leave). However,
the quick processing of joins and leaves may interfere
with the efficiency and balanced tree goals listed above.

4. Scalability: The tree management algorithm should
scale to a large number of nodes, with a correspondingly
high rate of node arrivals and departures. For instance,
in the extreme case of the flash crowd at MSNBC on
September 11, the average rate of node arrivals and de-
parturtes was 180 per second while the peak rate was
about 1000 per second.

With these requirements in mind, we now describe our ap-
proach to tree construction and management. We first de-
scribe the basic protocol and then discuss optimizations.

3.3.1 Basic Protocol
We exploit the presence of a resourceful server node to

build a simple and efficient protocol to process node joins and
leaves. While it is centralized, we argue that this protocol can
scale to work well in the face of extreme flash crowd situations
such as the one that occurred on September 11. Despite the
flash crowd, the server is not overloaded since the burden of
distributing content is shared by all peers. Centralization also
simplifies the protocol greatly, and consequently makes joins
and leaves quick. In general, a criticism of centralization is
that it introduces a single point of failure. However, in the
context of CoopNet, the point of centralization is the server,
which is also the source of data. If the source (server) fails, it
may not really matter that the tree management also breaks
down. Also, recall from Section 1 that the goal of CoopNet is
to complement, not replace, the client-server system.

The server has full knowledge of the topology of all of the
distribution trees. When a new node wishes to join the sys-
tem, it first contacts the server. The new node also informs
the server of its available network bandwidth to serve furture
downstream nodes. The server responds with a list of desig-
nated parent nodes, one per distribution tree. The designated
parent node in each tree is chosen as follows. Starting at the
server, we work our way down the tree until we get to a level
where there are one or more nodes that have the necessary
spare capacity (primarily network bandwidth) to serve as the
parent of the new node. (The server could itself be the new

parent if it has sufficient spare capacity, which it is likely to
have during the early stages of tree construction.) The server
then picks one such node at random to be the designated par-
ent of the new node. This top-down procedure ensures a short
and largely balanced tree. The randomization helps make the
trees diverse. Upon receiving the server’s message, the new
node sends (concurrent) messages to the designated parent
nodes to get linked up as a child in each distribution tree. In
terms of messaging costs, the server receives one message and
sends one. Each designated parent receives one message and
sends one (an acknowledgement). The new node sends and
receives M + 1 messages, where M is the number of MDC
descriptions (and hence distribution trees) used.

Node departures are of two kinds: graceful departures and
node failures. In the former case, the departing node informs
the server of its intention to leave. For each distribution tree,
the server identifies the children of the departing node and
executes a join operation on each child (and implicitly the
subtree rooted at the child) using the top-down procedure
described above. The messaging cost for the server would at
most be

P
i di sends and

P
i di receives, where di is the num-

ber of children of the departing node in the ith distribution
tree. (Note that the cost would be somewhat lower in general
because a few of the children may be in common across mul-
tiple trees.) Each child sends and receives M + 1 messages.
To reduce its messaging load, the server could make the de-
termination of the designated parent for each child in each
tree and then leave it to another node (such as the departing
node, if it is still available) to convey the information to each
child. In this case, the server would have to send and receive
just one message.

A node failure corresponds to the case where the departing
node leaves suddenly and is unable to notify either the server
or any other node of its departure. This may happen because
of a computer crashing, being turned off, or becoming discon-
nected from the network. We present a general approach for
dealing with quality degradation due to packet loss; node fail-
ure is a special case where the packet loss rate experienced by
the descendants of the failed node is 100%. Each node moni-
tors the packet loss rate it is experiencing in each distribution
tree. When the packet loss rate reaches an unacceptable level
(a threshold that needs to be fine-tuned based on further re-
search), a node contacts its parent to check if the parent is
experiencing the same problem. If so, the source of the prob-
lem (network congestion, node failure, etc.) is upstream of the
parent and the node leaves it to the parent to deal with it.
(The node also sets a sufficiently long timer to take action on
its own in case its parent has not resolved the problem within
a reasonable period of time.) If the parent is not experiencing
a problem or it does not respond, the affected node will con-
tact the server and execute a fresh join operation for it (and
its subtree) to be moved to a new location in the distribution
tree.

3.3.2 Optimizations
We now discuss how to make the distribution trees efficient,

as discussed above. The basic idea here is to preferentially
attach a new node as the child of an existing node that is
“nearby” in terms of network distance (i.e., latency). The
definition of “nearby” needs to be broad enough to accomo-
date significant tree diversity. When trying to insert a new
node, the server first identifies a (sufficiently large) subset of
nodes that are close to the new node. Then using the random-



ized top-down procedure discussed in Section 3.3.1, it tries to
find a parent for the new node (in each tree) among the set
of nearby nodes. Using this procedure, it is quite likely that
many of the parents of the new node (on the the various dis-
tribution trees) will be in the same vicinity, which is beneficial
from an efficiency viewpoint. We argue that this also provides
sufficient diversity since the primary failure mode we are con-
cerned with is node departures and node failures. So it does
not matter much that all of the parents may be located in the
same vicinity (e.g., same metropolitan area).

To determine the network distance between two nodes, we
use a technique previously proposed in [12], [17], and [10].
Each node determines its network “coodinates” by measuring
the network latency to a set of landmark hosts. The server
keeps track of the coordinates of all nodes currently in the
system and determines whether two nodes are proximate by
comparing their coordinates.

3.3.3 Feasibility of the Centralized Protocol
The main question regarding the feasibility of the central-

ized tree management protocol is whether the server can keep
up. To answer this question, we consider the September 11
flash crowd at MSNBC, arguably an extreme flash crowd sit-
uation. At its peak, there were 18,000 nodes in the system
and the rate of node arrivals and departures was 1000 per
second.3 (The average numbers were 10000 nodes and 180
arrivals and departures per second.) In our calculations here,
we assume that the number of distribution trees (i.e., the
number of MDC descriptions) is 16 and that on average a
node has 4 children in a tree. We consider various resources
that could become a bottleneck at the server (we only focus
on the impact of tree management on the server):

• Memory: To store the entire topology of one tree in
memory, the server would need to store as many point-
ers as nodes in the system. Assuming a pointer size of
8 bytes (i.e., a 64-bit machine) and auxiliary data of 24
bytes per node, the memory requirement would be about
576 KB. Since there are 16 trees, the memory require-
ment for all trees would be 9.2 MB. In addition, for each
node the server needs to store its network coordinates.
Assuming this is a 10-dimensional vector of delay val-
ues (2 bytes each), the additional memory requirement
would be 360 KB. So the total memory requirement at
the server would be under 10 MB, which is a trivial
amount for any modern machine.

• Network bandwidth: Node departures are more ex-
pensive than node arrivals, so we focus on departures.
The server needs to designate a new parent in each dis-
tribution tree for each child of the departing node. As-
suming that nodes are identified by their IP addresses
(16 bytes assuming IPv6) and that there are 4 children
per tree on average, the total amount of data that the
server would need to send out is 1 KB. If there are
1000 departures per second, the bandwidth requirement
would be 8 Mbps. This is likely to be a small fraction
of the network bandwidth at a large server site such as
MSNBC.

3One reason for the high rate of churn may be that users were
discouraged by the degradation in audio/video quality caused
by the flash crowd, and so did not stay for long. However, we
are not in a position to confirm that this was the case.

• CPU: Node departure involves finding a new set of par-
ents for each child of the departing node. So the CPU
cost is roughly equal to the number of children of the de-
parting node times the cost of node insertion. To insert
a node, the server has to scan the tree levels starting
with the root until it reaches a level containing one or
more nodes with the spare capacity to support a new
child. The server picks one such node at random to be
the new parent. Using a simple array data structure to
keep track of the nodes in each level of the tree that have
free capacity, the cost of picking a parent at random can
be made (a small) constant. Since the number of levels
in the tree is about log(N), where N is the number of
nodes in the system, the node insertion cost (per tree)
is O(log(N)). (With N = 18, 000 and an average of 4
children per node, the depth of the tree will be about
9.)

A departure rate of 1000 per second would result in
64,000 insertions per second (1000 departures times 4
children per departing node times 16 trees). Given that
memory speed by far lags CPU speed, we only focus
on how many memory lookups we can do per insertion.
Assuming a 40 ns memory cycle, we are allowed about
390 memory accesses per insertion, which is likely to be
more than sufficient.

In general, the centralized approach can be scaled up (at
least in terms of CPU and memory resources) by having a
cluster of servers and partitioning the set of clients across the
set of server nodes.

We are in the process of benchmarking our implementation
to confirm the rough calculations made above.

3.4 On-demand Streaming
We now turn to on-demand streaming, which refers to the

distribution of pre-recorded streaming media content on de-
mand (e.g., when a user clicks on the corresponding link). As
such, the streams corresponding to different users are not syn-
chronized. When the server receives such a request, it starts
streaming data in response if its current load condition per-
mits. However, if the server is overloaded, say because of a
flash crowd, it instead sends back a response including a short
list of IP addresses of clients (peers) who have downloaded
(part or all of) the requested stream and have expressed a
willingness to participate in CoopNet. The requesting client
then turns to one or more of these peers to download the
desired content. Given the large volume of streaming media
content, the burden on the server (in terms of CPU, disk, and
network bandwidth) of doing this redirection is quite mini-
mal compared to that of actually serving the content. So we
believe that this redirection procedure will help reduce server
load by several orders of magnitude.

While the procedure described above is similar to one that
might apply to static file content, there are a couple of im-
portant differences arising from the streaming nature of the
content. First, a peer may only have a part of the requested
content because, for instance, the user may have stopped the
stream halfway or skipped over portions. So in its initial
handshake with a peer, a client finds out which part of the re-
quested content is available at the peer and accordingly plans
to make requests to other peers for the missing content, if any.

A second issue is that, as with the live streaming case, peers
may fail, depart, or scale back their participation in CoopNet



at any time. In contrast with file download, the time-sensitive
nature of streaming media content makes it especially suscep-
tible to such disruptions. As a solution, we propose the use of
distributed streaming where a stream is divided into a num-
ber of substreams, each of which may be served by a different
peer. Each substream corresponds to a description created
using MDC (Section 3.2). Distributed streaming improves
robustness to disruptions caused by the untimely departure
of peer nodes and/or network connectivity problems with re-
spect to one or more peers. It also helps distribute load more
evenly among peers.

4. PERFORMANCE EVALUATION
We now present a performance evaluation of CoopNet based

on simulations driven by traces of live and on-demand content
served by MSNBC on September 11, 2001.

4.1 Live Streaming
We evaluate the MDC-based live streaming design using

traces of a 100kbps live stream. The trace started at 18:25
GMT (14:25 EST) and lasted for more than one hour (4000
seconds).

4.1.1 Trace Characteristics
Figure 4 shows the time series of the number of clients si-

multaneously tuned in to the live stream. The peak number
of simultaneous clients exceeds 17,000. On average, there are
84 clients departing every second. (We are unable to defi-
nitely explain the dip around the 1000-seond mark, but it is
possibly due to a glitch in the logging process.) Over 70% of
the clients remain tuned in to the live stream for less than a
minute. We suspect that the short lifetimes could be because
users were frustrated by the poor quality the video stream
during the flash crowd. If the quality were improved (say us-
ing CoopNet to relieve the server), client lifetimes may well
become longer. This, in turn, would increase the effectiveness
of CoopNet.

Node Arrivals and Departures
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Figure 4: Number of clients and departures.

4.1.2 Effectiveness of MDC
We evaluate the impact of MDC-based distribution (Sec-

tion 3.2) on the quality of the stream received by clients in
the face of client departures. When there are no departures,
all clients receive all of the MDC descriptions and hence per-
ceive the full quality of the live stream.

We have conducted two simulation experiments. In the
first experiment, we construct completely random distribu-

M 100% [87.5,100) [75,87.5) [50,75) [25,50) 0

1 98.1 0 0 0 0 1.90
2 94.80 0 0 5.05 0 0.16
4 89.54 0 9.24 1.13 0.09 0.005
8 82.07 14.02 3.19 0.70 0.016 0
16 71.26 25.11 3.26 0.37 0.002 0

Table 1: Random Tree Experiment: probability dis-
tribution of descriptions received vs. number of dis-
tribution trees

tion trees at the end of the repair interval following a client
departure. We then analyze the stream quality received by
the remaining clients. The random trees are likely to be di-
verse (i.e., uncorrelated), which improves the effectiveness of
MDC-based distribution. In the second experiment, we simu-
late the tree management algorithm described in Section 3.3.
Thus the distribution trees are evolved based on the node ar-
rivals and departures recorded in the trace. We compare the
results of these two experiments at the end of the section.

In more detail, we conducted the random tree experiment
as follows. For each repair interval, we construct M distribu-
tion trees (corresponding to the M descriptions of the MDC
coder) spanning the N nodes in the system at the beginning
of the interval. Based on the number of departing clients, d,
recorded through the end of the repair interval, we randomly
remove d nodes from the tree, and compute the number of
descriptions received by the remaining nodes. The perceived
quality of the stream at a client is determined by the fraction
of descriptions received by that client. The set of distribu-
tion trees is characterized by three parameters: the number
of trees (or, equivalently, descriptions), the maximum out-
degree of nodes in each tree, and the out-degree of the root
(i.e., the live streaming server). The out-degree of a node is
typically a function of its bandwidth capacity. So the root
(i.e., the server) tends to have a much larger out-degree than
bandwidth-constrained clients. In our random tree construc-
tion, each client is assigned a random degree subject to a
maximum. We varied the degree of the root and the number
of descriptions to study their impact on received stream qual-
ity. We set the repair time to 1 second; we investigate the
impact of repair time in Section 4.1.3.

Table 1 shows how the number of distribution trees, M , af-
fects the fraction of descriptions received (expressed as a per-
centage, P ). We compute the distribution of P by averaged
across all client departures. We set the maximum out-degree
of a client to 4 and the root degree to 100. We vary the
number of descriptions among 1, 2, 4, 8, or 16. Each column
represents a range of values of P . For each pair of the range
and number of descriptions, we list the average percentage
of clients that receive at that level of quality. For example,
the first table entry indicates that when using 2 descriptions,
94.80% of clients receive 100% of the descriptions (i.e., both
the descriptions).

As the number of descriptions increases, the percentage of
clients that receive the all of the descriptions (i.e., P = 100%)
decreases. Nonetheless, the percentage of clients correspond-
ing to small values of P decreases dramatically. With 8 de-
scriptions, 96% (82.07% + 14.02%) of clients receive more
than 87.5% of the descriptions. For both 8 and 16 descrip-
tions, all clients receive at least one description. Figure 5
shows the corresponding SNR. Figure 6 compares the SNR
over time for the 16-description case and the single descrip-
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Figure 6: Random Tree Experiment: The SNR over
time for the MDC and SDC cases. At each time in-
stant, we compute the average SNR over all clients.

tion (SDC) case. MDC demonstrates a clear advantage over
SDC.

In our second experiment, we evolved the distribution trees
by simulating the tree management algorithm from Section
3.3. We set the root (i.e., server) out-degree to 100. The
maximum out-degree of a client is set to 4. Table 2 shows
the probability distribution of the descriptions received upon
client departures. Figure 7 shows the corresponding SNR.
The results are comparable to those of the random tree ex-
periment. This suggests that our tree management algorithm
is able to preserve significant tree diversity even over a long
period of time (more than an hour in this case).

4.1.3 Impact of Repair Time
Finally, we evaluate the impact of the time it takes to repair

the tree following a node departure. Clearly, the longer the
repair time, the greater is the impact on the affected nodes.
Also, a longer repair time increase the chances of other nodes
departing before the repair is completed, thereby causing fur-
ther disruption.

We divide time into non-overlapping repair intervals and as-
sume that all leaves happen at the beginning of each interval.
We then compute fraction of descriptions received averaged
over all nodes (this is the quantity θN discussed in Section
3.2). As in Section 3.2, assume a balanced binary tree at all
times.

M 100% [87.5,100) [75,87.5) [50,75) [25,50) 0

1 98.34 0 0 0 0 1.66
2 96.5 0 0 3.42 0 0.08
4 93.3 0 6.31 0.36 0.03 0
8 87.14 11.34 1.29 0.20 0.02 0
16 77.26 21.62 0.99 0.11 0.01 0

Table 2: Evolving Tree Experiment: probability dis-
tribution of descriptions received vs. number of dis-
tribution trees
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Figure 7: Evolving Tree Experiment: SNR in dB
(line) and probabililty distribution (bars) as a func-
tion of the number of descriptions received
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Figure 8: The average fraction of descriptions re-
ceived for various repair times.

Figure 8 shows the average number of descriptions received
as a function of time for four different settings of repair time:
1, 3, 6, and 10 seconds. With a repair time of 1 second, clients
would receive 90% of the descriptions on average. With a 10
second repair time, the fraction drops to 30%. We believe that
these results are encouraging since in practice tree repair can
be done very quickly, especially given that our tree manage-
ment algorithm is centralized (Section 3.1). Even a 1-second
repair interval would permit multiple round-trips between the
server and the nodes affected by the repair (e.g., the children
of the departed node).

4.2 On-Demand Streaming
We now evaluate the potential of CoopNet in the case of

on-demand streaming. The goals of our evaluation are to
study the effects of client cooperation on load reduction at
the server and additional load incurred by cooperating peers.

The cooperation protocol used in our simulations is based
on server redirection as in [11]. The server maintains a fixed-
size list of IP addresses (per URL) of CoopNet clients that
have recently contacted it. To get content, a client initially
sends a request to the server. If the client is willing to co-
operate, the server redirects the request by returning a short
list of IP addresses of other CoopNet clients who have re-
cently requested the same file. In turn, the client contacts
these other CoopNet peers and arranges to retrieve the con-
tent directly from them. Each peer may have a different por-
tion of the file, so it may be necessary to contact multiple
peers for content. In order to select a peer (or a set of peers
when using distributed streaming) to download content from,
peers run a greedy algorithm that picks out the peer(s) with
the longest portion of the file from the list returned by the
server. If a client cannot retrieve content through any peer,
it retrieves the entire content from the server. Note that the
server only provides the means for discovering other CoopNet
peers. Peers independently decide who they cooperate with.
The server maintains a list of 100 IP addresses per URL, and
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Figure 9: Performance of CoopNet for on-demand
streaming.

returns a list of 10 IP addresses in the redirection messages
in our simulations.

We use traces collected at MSNBC during the flash crowd
of Sep 11, 2001 for our evaluation. The flash crowd started
at around 1:00 pm GMT (9:00 am EDT) and persisted for
the rest of the day. The peak request rate was three orders
of magnitudes more than the average. We report simulation
results for the beginning of the flash crowd, between 1:00 pm
to 3:00 pm GMT. There were over 300,000 requests during
the 2-hour period. However, only 6% or 18,000 requests were
successfully served at an average rate of 20 Mbps with a mean
session duration of 20 minutes. Unsuccessful requests were
not used in the analysis because of the lack of content byte-
range and session duration information.

4.2.1 Bandwidth Load
In our evaluation, load is measured as bandwidth usage.

We do not model available bandwidth between peers. We
assume that peers can support the full bit rate (56 kbps, 100

kbps) of each encoded stream. We also do not place a bound
on the number of concurrent connections at each peer. In
practice, finding peers with sufficient available bandwidth and
not overloading any one peer are important considerations,
and we are investigating these issues in ongoing work.

Figure 9(a) depicts the bandwidth usage during the 2-hour
period for two systems: the traditional client-server system,
and the CoopNet system. The vertical axis is average band-
width and the horizontal axis is time. There are two peaks
at around 1:40 pm and 2:10 pm, when two new streams were
added to the server. In the client-server system, the server
was distributing content at an average of 20 Mbps. However,
client cooperation can reduce that bandwidth by orders of
magnitude to an average of 300 kbps. As a result, the server
is available to serve more client requests. The average band-
width contribution that CoopNet clients need to make to the
system is 45 kbps. Although the average bandwidth contribu-
tion is reasonably small, peers are not actively serving content
all the time. We find that typically less than 10% of peers are
active at any second. The average bandwidth contribution
that active CoopNet peers need to make to the system is as
high as 465 kbps, where average bandwidth of active peers is
computed as the total number of bits served over the total
length of peers’ active periods.

To further reduce load at individual CoopNet clients, dis-
joint portions of the content can be retrieved in parallel from
multiple peers using distributed streaming (Section 3.4). (The
bandwidth requirement placed on each peer is correspond-
ingly reduced.) Figure 9(b) depicts the average bandwidth
contributed versus the degree of parallelism. The degree of
parallelism is an upper-bound on the number of peers that can
be used in parallel. For example, clients can retrieve content
from up to 5 peers in parallel in a simulation with a degree of
parallelism of 5. The actual number of peers used in parallel
may be less than 5 depending on how many peers can pro-
vide content in the byte-range needed by the client. The load
at each active peer is reduced as the degree of parallelism in-
creases. When the degree of parallelism is 5, peers are serving
content at only 35 kbps. However, the bandwidth of active
peers (not depicted in this figure) is only slightly reduced to
400 kbps. This is because the large amount of bandwidth re-
quired to serve content during the two surges at 1:40 pm and
2:10 pm influence the average bandwidth.

The cumulative distribution of bandwidth contributed by
active CoopNet peers, depicted in Figure 9(c), illustrates the
impact of distributed streaming on bandwidth utilization. Each
solid line represents the amount of bandwidth peers contribute
when using 1, 5, and 10 degrees of parallelism. The median
bandwidth requirement is 39 kbps when content is streamed
from one peer, and only 66 bps for 10 degrees of parallelism.
The bandwidth requirement imposed on each peer is reduced
as the degree of parallelism increases. Although this reduc-
tion is significant, a small portion of peers still contribute
more than 1 Mbps even when using 10 degrees of parallelism.
We believe that the combination of the following two factors
contribute to the wide range in bandwidth usage: the greedy
algorithm a client uses to select peers and the algorithm the
server uses to select a set of IP addresses to give to clients.

For better load distribution, the server can run a load-aware
algorithm that redirects clients to recently seen peers that are
the least loaded (in terms of network bandwidth usage). In
order to implement this algorithm, the server needs to know
the load at individual peers. Therefore, peers constantly re-



port their current load status to the server. We use a report
interval of once every second in our simulations. Because
the server caches a fixed-size list of IP addresses, only those
peers currently in the server’s list need to send status up-
dates. Given this information, the server then selects the
10 least loaded peers that have recently accessed the same
URL as the requesting client to return in its redirection mes-
sage. This algorithm replaces the one described earlier in this
section where the server redirects clients to peers that were
recently seen. Clients, however, use the same greedy algo-
rithm to select peers. We find that using this new algorithm,
active clients serve content at 385 kbps. The dashed line in
Figure 9(c) depicts the cumulative distribution of bandwidth
contributed by CoopNet clients when the load-aware algo-
rithm is used at the server. In this simulation, clients stream
content from at most one other peer (degree of parallelism of
1). For the most part, the distribution is similar to the one
observed when the server redirects the request to recently seen
peers. The difference lies in the tail end of the distribution.
About 6% of peers contributed more than 500 kbps of band-
width when the server runs the original algorithm, compared
to only 2% when the server runs the load-aware algorithm.
In addition, the total number of active peers in the system
doubles when the load-aware algorithm is used.

We find that client cooperation significantly reduces server
load, freeing up bandwidth to support more client connec-
tions. In addition, the combination of distributed streaming
and a load-aware algorithm used by the server further reduces
the load on individual peers.

5. CONCLUSIONS
In this paper, we have presented CoopNet, a peer-to-peer

content distribution scheme that helps servers tide over cri-
sis situations such as flash crowds. We have focussed on the
application of CoopNet to the distribution of streaming me-
dian content, both live and on-demand. One challenge is that
clients may not participate in CoopNet for an extended length
of time. CoopNet employs distributed streaming and multi-
ple description coding to improve the robustness of the dis-
tributed streaming content in face of client departures.

We have evaluated the feasibility and potential performance
of CoopNet using traces gathered at MSNBC during the flash
crowd that occurred on September 11, 2001. This was an
extreme event even by flash crowd standards, so using these
traces helps us stress test the CoopNet design. Our results
suggest that CoopNet is able to reduce server load signif-
icantly without placing an unreasonable burden on clients.
For live streams, using multiple independent distribution trees
coupled with MDC improves robustness significantly.

We are currently building a prototype implementation of
CoopNet for streaming media distribution. We are also in-
vestigating distributed algorithms for tree management.
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