
PandA: Pairings and Arithmetic

Chitchanok Chuengsatiansup1, Michael Naehrig2, Pance Ribarski3, and Peter Schwabe4 ?

1 Department of Mathematics and Computer Science
Technische Universiteit Eindhoven

P.O. Box 513, 5600 MB Eindhoven, the Netherlands
c.chuengsatiansup@tue.nl

2 Microsoft Research
One Microsoft Way, Redmond, WA 98052, USA

michael@cryptosith.org
3 Faculty of Computer Science and Engineering

Ss. Cyril and Methodius University in Skopje
P.O. Box 393, 1000 Skopje, Republic of Macedonia

pance.ribarski@finki.ukim.mk
4 Digital Security Group

Radboud University Nijmegen,
P.O. Box 9010, 6500 GL Nijmegen, the Netherlands

peter@cryptojedi.org

Abstract. This paper introduces PandA, a software framework for Pairings and Arithmetic.
It is designed to bring together advances in the efficient computation of cryptographic pairings
and the development and implementation of pairing-based protocols. The intention behind the
PandA framework is to give protocol designers and implementors easy access to a toolbox of
all functions needed for implementing pairing-based cryptographic protocols, while making it
possible to use state-of-the-art algorithms for pairing computation and group arithmetic. PandA
offers an API in the C programming language and all arithmetic operations run in constant time
to protect against timing attacks. The framework also makes it easy to consistently test and
benchmark the lower level functions used in pairing-based protocols.

As an example of how easy it is to implement pairing-based protocols with PandA, we use Boneh-
Lynn-Shacham (BLS) signatures. Our PandA-based implementation of BLS needs only 434640
cycles for signature generation and 5832584 cycles for signature verification on one core of an
Intel i5-3210M CPU. This includes full protection against timing attacks and compression of
public keys and signatures.
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1 Introduction

Since the late 1990s and early 2000s, when Ohgishi, Sakai, Kasahara [46,51,52] and Joux [39,40]
presented the first constructive uses of cryptographic pairings, many pairing-based crypto-
graphic protocols have been proposed. Early work such as the identity-based encryption
scheme by Boneh and Franklin [18] and the short signature scheme by Boneh, Lynn and
Shacham [19], were followed by a flood of papers presenting more and more pairing-based
schemes with exciting, new cryptographic functionalities. Examples include schemes for hi-
erarchical identity-based encryption [38,29], attribute-based encryption [50], systems for non-
interactive zero-knowledge proofs [35,34], and randomizable proofs and anonymous creden-
tials [10].

In a highly related—but often somewhat independent—line of research, the performance
of pairing computation was drastically improved. Milestones in this line of research were the
construction of various families of pairing-friendly curves (for an overview, see [28]), many op-
timizations for the pairing algorithm including denominator elimination in the Miller loop [7],
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faster algorithms to compute the final exponentiation [56], and the introduction of loop-
shortening techniques [36], that lead to the notion of optimal pairings [61]. Recently, several
papers presented high-speed software that computes 128-bit secure pairings for various Intel
and AMD processors [45,17,5,43], and for ARM processors with NEON support [53]. These
efforts reduced the time required to compute a pairing at the 128-bit security level on current
processors to below 0.5 ms.

Unfortunately, these advances in pairing performance do not immediately speed up pairing-
based protocols. The reason is that protocols need much more than just fast pairings. They
need fast arithmetic in all involved groups, fast hashing into elliptic-curve groups, fast multi-
scalar multiplication (and multi-exponentiation), or specific optimizations for computing prod-
ucts of pairings. This means that, even if authors of speed-record papers for pairing compu-
tation make their software available, this software is typically not “complete” from a protocol
designer’s point of view, and does not necessarily include these other operations; and it is
often not easy to use when it comes to prototyping a new pairing-based protocol to evaluate
its practical performance. Also, once a protocol implementation has settled for one pairing
library, it typically requires a significant effort to switch to another software or library.

Furthermore, as Scott points out in [54], which optimizations to the pairing computation
or other arithmetic operations are most useful, strongly depends on the pairing-based protocol
that is being implemented. Pairings are used in such protocols in different flavors, where in
some scenarios pairing computation is the dominant cost in the overall protocol and in others
the large number of non-pairing operations may be the bottleneck (see, for example, [48]). If
the protocol contains many more group exponentiations than it has pairing computations,
in some cases it might even make sense to choose different pairing-friendly curves to allow
faster group operations at the cost of a slightly more expensive pairing (see the ratios of
group exponentiation and pairing costs in [20]). In an implementation that has been tailored
for high-speed pairings only, it is often difficult to account for such trade-offs.

This paper introduces PandA, a software framework that intends to address the above
concerns by making improvements in pairing (and more generally group-arithmetic) perfor-
mance easily usable for protocol designers. The project is inspired by the eBACS benchmark-
ing project [14] that defines APIs for various typical cryptographic primitives and protocols
(such as hash functions, stream ciphers, public-key encryption, and cryptographic signatures).
PandA can be seen as a generalization of eBACS to lower-level functions in the elliptic-curve
and pairing setting. We are currently discussing a possible inclusion of PandA into eBACS
with the editors of the eBACS project.

We encourage submissions of implementations of all the underlying functions to extend
the implementation portfolio and to obtain consistent benchmarking as shown in the eBACS
project. In particular, we hope that implementors of pairings will be motivated to submit
more complete libraries that allow the implementation of full pairing-based protocols. We will
make all software described in this paper available at http://panda.cryptojedi.org and
place it in the public domain to maximize reusability of our results.

Type-1, Type-2 and Type-3 pairings. Currently our reference implementation of the
PandA API only implements a particular set of parameters for Type-3 pairings, but the API
is designed to support arbitrary pairing-friendly curves. However, Section 2 explains how
the API supports also Type-1 pairings. Until recently the standard approach to implement-
ing high-security (e.g., 128-bit secure) Type-1 pairings was using supersingular curves over
binary or ternary fields. However, advances on solving discrete-logarithm problems in multi-
plicative groups of small-characteristic fields by Joux in [41], by Göloğlu, Granger, McGuire,
and Zumbrägel in [31], by Barbulescu, Gaudry, Joux, and Thomé in [6], and by Adj, Menezes,
Oliveira, and Rodŕıguez-Henŕıquez in [1] have raised serious concerns about the security of
such constructions. Granger commented that he does not “think the coffin has been firmly
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nailed shut just yet!” 5, and it is indeed not clear that all small-characteristic pairings are bro-
ken, but there is a strong consensus that pairings on curves over small-characteristic fields are
not recommended anymore. We are therefore planning to include a reference implementation
of Type-1 pairings that uses an approach similar to the ones described in [59] and [63].

We follow Chatterjee and Menezes stating in [24] that “Type 2 pairings are merely ineffi-
cient implementations of Type 3 pairings, and appear to offer no benefit for protocols based
on asymmetric pairings from the point of view of functionality, security, and performance”.
Thus, we do not explicitly support Type-2 pairings, but it would be straight-forward to include
Type-2 pairings in PandA (the only difference from an API perspective is missing hashing
into the second group of pairing arguments).

The Type-3 pairing setting in this paper is as follows. The pairing is a non-degenerate,
bilinear function e : G1 ×G2 → G3, where G1 and G2 are groups of prime order r consisting
of rational points on an ordinary, pairing-friendly elliptic curve E defined over a finite field Fp

of prime characteristic p. The elliptic curve E has a small embedding degree k, which means
that the group G3 is the group of r-th roots of unity in the multiplicative group F∗

pk
, i.e. all

three groups have prime order r.

Arithmetic in non-pairing groups. PandA also has an API for arithmetic in groups that
do not support efficient computation of pairings (like non-pairing-friendly elliptic curves).
If protocols do not need efficient pairing computation they can choose from a much larger
pool of groups in which the DLP is hard. When choosing from this larger pool one can
typically pick groups with more efficient arithmetic. The group API supports all functions
that are also supported for each of the three groups in the pairing setting. Our reference
implementation of this API uses the group of the twisted Edwards curve that is also used
for Ed25519 signatures [12,13]. However, this paper focuses on the description of the pairing
setting in PandA.

The importance of constant-time algorithms. Aside from attacks against the hard prob-
lems that the security of modern cryptography is based on, major threats to cryptographic
software are side-channel attacks. In particular timing attacks (that can even be carried out
remotely in many cases) prove to be a very powerful attack tool. See [47,60], [22], [26], [62]
for some examples of timing attacks against cryptographic software.

One could argue that a framework which is designed to evaluate the performance of cryp-
tographic protocols should not pay attention to these issues, but rather keep the API simple,
and add suitable timing-attack protection only for “real-world” software. We disagree for two
reasons. First, once some pieces of unprotected cryptographic software have been written and
publicized, it is almost impossible to ensure that it does not end up in some real-world soft-
ware. Second, and more importantly, protecting software against timing-attacks does not add
a constant overhead; the cost highly depends on protocol design, and algorithm and parameter
choices made on a high level. For example, the completeness of the group law on Edwards
curves [15,11] makes it easy to protect group addition against timing attacks. It is possible to
protect Weierstrass-curve point addition against timing attacks (see Section 3) but it involves
a significant overhead.

Optimizing performance of unprotected implementations of cryptographic protocols may
thus lead to wrong decisions that are very hard to correct later. PandA acknowledges this fact
by offering timing-attack protected (constant-time) versions of all arithmetic operations. For
operations that do not involve any secret data (such as signature verification) there are pos-
sibly faster non-constant-time versions of all group-arithmetic operations. These unprotected
versions of functions have to be chosen explicitly; the default is the constant-time versions.

5 see http://ellipticnews.wordpress.com/2013/05/22/joux-kills-pairings-in-characteristic-2/
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Related work. There exist various cryptographic libraries that expose low-level functionality
such as group arithmetic and pairings through their API. However, the API that gives access
to this low-level functionality is typically tailored to suit the specific needs of the higher-level
primitives of the library. It is usually not designed for efficient implementation of arbitrary
new protocols. Some libraries that use group arithmetic even decide to not expose the low-
level functionality through the API, because this functionality was never written to be used
outside the specific needs of the higher-level protocols. See, for example, the high-level API of
NaCl [16]. Two notable examples of cryptographic libraries with a convenient API for pairings
and group arithmetic are RELIC [4] and Miracl [23].

A library which has been explicitly designed for the use in arbitrary pairing-based protocols
is the PBC library [42]. This careful design is the reason that it is still the preferred library
for the implementation of various protocols; despite the fact that it does not offer state-of-
the-art performance and (by default) no high-security curves. The PandA API is designed
with the same usage profile as PBC in mind. However, the reference implementation of the
PandA API presented in this paper offers state-of-the art performance with a curve choice
that offers 128 bits of security. Furthermore, PandA is designed as a framework that supports
(and encourages!) submissions by various designers to keep reflecting the state-of-the-art in
group-arithmetic and pairing performance.

Another framework for easy implementation of cryptographic protocols is Charm [3]. Charm
offers a high-level Python API and uses multiple cryptographic libraries to achieve good
performance. For pairing-based cryptography it uses the PBC library. Charm is a higher-
level framework than PandA; we see PandA not in competition to Charm but rather hope
that Charm will eventually include some of PandA’s high-performance pairing and group-
arithmetic implementations to speed up protocols implemented in its high-level API.

Organization of the paper. Section 2 explains the PandA API. Section 3 gives details
of our reference implementation of this API and reports benchmark results of all arithmetic
operations. Section 4 considers an example that shows how easy it is to implement pairing-
based protocols that achieve state-of-the-art performance using the PandA API.

2 PandA API and functionality

The API of PandA is inspired by the API of eBACS, which means in particular that the
API is also for the C programming language. There are various advantages of using C. It
is the language most commonly used for speed-record-setting cryptographic software (often
combined with assembly), so a C API makes it easy to integrate fast software in PandA.
Furthermore, protocols that need group arithmetic, pairings, and, for example, a hash function
or a stream cipher, can easily combine software from PandA with software that is tested and
benchmarked in eBACS.

In the eBACS API all functions are within the crypto namespace, i.e. all function names
begin with crypto . Similarly, all functions and data types related to arithmetic in groups
that support efficient bilinear-pairing computation are in the bgroup namespace (for “bilinear
group”); the API for group arithmetic without pairings uses the group namespace.

2.1 PandA data types

The functionality that is tested and benchmarked in PandA is on a lower level in the design of
cryptographic protocols. In the eBACS project, complete cryptographic primitives and proto-
cols are benchmarked, while PandA benchmarks arithmetic operations that are meant to be
used to implement cryptographic protocols. This has consequences for the data type of inputs
and outputs. In eBACS, all functions receive inputs as byte arrays (C data type unsigned
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char), the length of these arrays is specified in arguments of type unsigned long long. Out-
puts are again written to byte arrays. A typical implementation of a cryptographic protocol in
eBACS first converts the input byte arrays to an internal representation for fast computation
that depends on the architecture, then performs all computations in this representation, and
then transforms the output to a unique representation as a byte array. These transformations
typically contribute only little overhead to the cost of a cryptographic protocol if they are
done only at the beginning and the end of the protocol. Protocols implemented using the
PandA API typically need a sequence of functions from the PandA API and we clearly want
to avoid transformations at the beginning and the end of each function. Implementations of
the PandA API therefore define 4 data types—for elements of the three groups G1, G2 and G3

and for scalars (modulo the group order)—in a file called api.h. These data types (struct in
C) are called bgroup g1e, bgroup g2e, bgroup g3e, and bgroup scalar. The API provides
two functions, one is used to convert an element of G1, G2, G3, or a scalar to a unique byte
array of fixed length (pack), the other one converts such a byte array back to a group element
or scalar (unpack). Implementations of the PandA API furthermore specify the size of packed
elements in api.h:

#define BGROUP_G1E_PACKEDBYTES 32
#define BGROUP_G2E_PACKEDBYTES 64
#define BGROUP_G3E_PACKEDBYTES 384
#define BGROUP_SCALAR_PACKEDBYTES 32

indicating that packed elements of G1 need 32 bytes, packed elements of G2 need 64 bytes, etc.
From this file, PandA automatically generates the header file panda bgroup.h that defines
all functions of the API. Implementations of Type-1 pairings omit the implementation of G2

and instead include a line

#define BGROUP_TYPE1

in the file api.h. For the group G1, the unpack and pack functions are

int bgroup_g1e_unpack(
bgroup_g1e *r,
const unsigned char b[BGROUP_G1E_PACKEDBYTES]);

void bgroup_g1e_pack(
unsigned char r[BGROUP_G1E_PACKEDBYTES],
const bgroup_g1e *b);

Following eBACS convention, the unpack function returns an integer value, which is zero
whenever a valid byte array is received that can be unpacked to a group element. On input
of an invalid byte array that does not correspond to a packed group element, the function
returns a non-zero integer. In the following, we mostly describe the API for arithmetic in G1

as an example. Equivalent functions exist for G2 and G3.

2.2 PandA constants

For each of the three groups, a PandA implementation has to define two constants: a gen-
erator and the neutral element. For the group G1 these are called bgroup g1e base and
bgroup g1e neutral. Each implementation needs to ensure that the pairing evaluated at
bgroup g1e base and bgroup g2e base gives bgroup g3e base as result. Furthermore, each
PandA implementation has to define two constants of type bgroup scalar for the element
zero and the element one in the ring of integers modulo the order r of the groups G1, G2, and
G3. These constants are called bgroup scalar zero and bgroup scalar one.
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2.3 Comparing group elements

One way to compare two group elements for equality is obviously to use the bgroup g1e pack

function on both of them and compare the resulting byte arrays for equality. This is typically
not the most efficient way to compare equality (except if packing of elements is required
anyway). For example, consider two elliptic-curve points in projective coordinates. Conversion
to a unique byte array requires transformation to affine coordinates, i.e., two inversions and
several multiplications. Comparison for equality only needs a few multiplications. The API
therefore has a comparison function

int bgroup_g1e_equals(const bgroup_g1e *a, const bgroup_g1e *b);

which returns 1 if the two elements are equal and 0 if they are not.
As explained in the introduction, this function must be guaranteed to not leak timing

information about the two arguments. For cases where none of the two inputs is secret, there
is a function

int bgroup_g1e_equals_publicinputs(const bgroup_g1e *a, const bgroup_g1e *b);

which behaves the same way but is not guaranteed to not leak timing information and may
be faster than the constant-time version.

2.4 Addition and doubling

In concrete implementations of pairings, the groups G1 and G2 are typically additive groups,
while the group G3 is a multiplicative group. Hence, the core operations for group arithmetic
are additions and doublings in G1 and G2 and multiplications and squarings in G3. It makes
sense to treat all three groups as abstract abelian groups and therefore use a common notation
for the group operation in all of them. Many papers that treat a pairing as a black box use
multiplicative notation for G1, G2, and G3. Instead, the PandA API uses additive notation
following the crypto scalarmult API of the SUPERCOP benchmarking framework used in
eBACS.

Addition of two elements, doubling, and negation (computing the inverse of an element)
are done through the functions:

void bgroup_g1e_add(bgroup_g1e *r, const bgroup_g1e *a, const bgroup_g1e *b);
void bgroup_g1e_double(bgroup_g1e *r, const bgroup_g1e *a);
void bgroup_g1e_negate(bgroup_g1e *r, const bgroup_g1e *a);

Note that the return value is always written to the first argument pointer (as in the eBACS
API and also, for example, in the GMP API [30]). Note also that the implementation needs to
ensure that the addition and doubling functions work for all elements of the group as inputs
and that no timing information leaks about these inputs or the output. As before, there are
also potentially faster non-constant-time versions of these functions:

void bgroup_g1e_add_publicinputs(bgroup_g1e *r, const bgroup_g1e *a, const bgroup_g1e *b);
void bgroup_g1e_double_publicinputs(bgroup_g1e *r, const bgroup_g1e *a);
void bgroup_g1e_negate_publicinputs(bgroup_g1e *r, const bgroup_g1e *a);

2.5 Scalar multiplication

The default function for performing a scalar multiplication is simply

void bgroup_g1e_scalarmult(bgroup_g1e *r, const bgroup_g1e *a, const bgroup_scalar *s);

This function can be made much faster when multiplying a fixed base point that is known at
compile time. This potentially faster version is supported for the generator bgroup g1e base

through
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void bgroup_g1e_scalarmult_base(bgroup_g1e *r, const bgroup_scalar *s);

Another improvement can be implemented for multi-scalar multiplication, i.e. whenever a
sum

∑m−1
i=0 siPi of several scalar multiples needs to be computed for m scalars s0, . . . , sm−1

and m group elements P0, . . . , Pm−1. Such computations are supported through the below
function, in which the last (unsigned long long) argument specifies the number m of scalar
multiplications to be performed in the sum.

void bgroup_g1e_multiscalarmult(
bgroup_g1e *r, const bgroup_g1e *a,
const bgroup_scalar *s, unsigned long long alen);

Again, all group elements have to be supported as inputs, constant-time behavior has to be
ensured by implementations, and the API also supports non-constant-time (publicinputs)
versions of the functions. The input alen is considered public also for the constant-time
version.

2.6 Hashing to G1 and G2

Many protocols require hashing of arbitrary bit strings to group elements in G1 and G2, which
is also supported by the PandA API. The corresponding function for hashing into G1 is:

void bgroup_g1e_hashfromstr(bgroup_g1e *r, const unsigned char *a, unsigned long long alen);

As for the previous functions, there is also a non-constant-time (publicinputs) version of
this function. Due to the different ways in which the constant-time and non-constant-time
functions are computed, it can be the case that the hashed values obtained by evaluating each
version on the same input bit string are different. It is not necessary to insist that both versions
compute the same result, because we expect that throughout a protocol, the same input string
to a hash function is always either public or private. Therefore, one can consistently select the
right version of the function and thus take advantage of faster non-constant-time algorithms.

2.7 Arithmetic on scalars

Various functions are supported for arithmetic on scalars modulo the group order, which are
required in various protocols (for example for ECDSA signatures). Specifically these functions
are the following:

void bgroup_scalar_setrandom(bgroup_scalar *r);
void bgroup_scalar_add(bgroup_scalar *r, const bgroup_scalar *s, const bgroup_scalar *t);
void bgroup_scalar_sub(bgroup_scalar *r, const bgroup_scalar *s, const bgroup_scalar *t);
void bgroup_scalar_negate(bgroup_scalar *r, const bgroup_scalar *s);
void bgroup_scalar_mul(bgroup_scalar *r, const bgroup_scalar *s, const bgroup_scalar *t);
void bgroup_scalar_square(bgroup_scalar *r, const bgroup_scalar *s);
void bgroup_scalar_invert(bgroup_scalar *r, const bgroup_scalar *s);
int bgroup_scalar_equals(const bgroup_scalar *s, const bgroup_scalar *t);

Arithmetic on scalars is typically not the performance bottleneck in pairing-based protocols;
furthermore we do not expect significant speedups for non-constant-time versions of scalar
arithmetic. Therefore, the API does not include publicinputs versions of functions for arith-
metic on scalars.

2.8 Pairings and products of pairings

Finally, the API function for computing a pairing is

void bgroup_pairing(bgroup_g3e *r, const bgroup_g1e *a, const bgroup_g2e *b);
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Some protocols need—or can make use of—the product of several pairings (for an example
see BLS signatures in Section 4). Computing the product of two pairings can be significantly
faster than computing two independent pairings and then multiplying the results. One reason
is that the final exponentiation has do be done only once, another reason is that squarings
inside the Miller loop can be shared between the two pairings. To support these important
speedups, the PandA API includes a function

void bgroup_pairing_product(
bgroup_g3e *r, const bgroup_g1e *a, const bgroup_g2e *b,
unsigned long long alen);

3 PandA reference implementation

This section describes our reference implementation of the API functions from Section 2. The
implementation provides a 128-bit secure, Type-3 pairing framework.

3.1 Choice of parameters

At the 128-bit security level, the most suitable choice of pairing-friendly curve is a Barreto-
Naehrig curve [8] over a prime field of size roughly 256 bits. We use the 254-bit curve E =
E2,254 that has been proposed in [49] and has also been used in [5]. The curve parameter
u = −(262 + 255 + 1) yields 254-bit primes p = p(u) = 36u4 + 36u3 + 24u2 + 6u + 1 and
r = r(u) = 36u4 + 36u3 + 18u2 + 6u + 1, and E : y2 = x3 + 2 over Fp. Since the embedding
degree is k = 12, the implementation needs to provide the field extension Fp12 . This extension
is implemented in the standard way as a tower Fp ⊂ Fp2 ⊂ Fp6 ⊂ Fp12 .

As usual, the elliptic-curve groups are G1 = E(Fp) and G2 is the p-eigenspace of the
p-power Frobenius in the r-torsion group E(Fp12)[r], which is represented by an isomorphic
group G′2 = E′(Fp2)[r] on a sextic twist E′ of E over Fp12 . Whenever we work with elements
in G2, we make use of their representation as elements in G′2, i.e. they are curve points with
coefficients in Fp2 and arithmetic is actually arithmetic on E′ over Fp2 .

3.2 Algorithms

Packing and unpacking. To pack elements of the groups G1 and G2, we use the usual way
of point compression on elliptic curves. For elliptic-curve arithmetic, points are in Jacobian
coordinates. To pack a point, it is first transformed to affine coordinates. The packed repre-
sentation is the 32-byte array containing the point’s 254-bit affine x-coordinate together with
the least significant bit of its y-coordinate in one of the remaining two free bits. The other
free bit is used to represent the point at infinity.

Given such a byte array, the unpacking algorithm recovers the x-coordinate and solves
the curve equation for the y-coordinate, choosing the right square root according to the least
significant bit given in the array. The core of this operation is a square root computation, for
which we use different algorithms in G1 and G2. Since p ≡ 3 mod 4, in G1, we use a(p+1)/4

to compute the square root of a ∈ Fp. The unpack algorithm in G2 uses [2, Algorithm 9] to
compute the square root. After obtaining a point on the curve, it needs to be checked whether
it has order r, i.e. whether it is in the correct subgroup.

The elements of G3 are kept as elements of F∗p12 . The packing algorithm constructs a
unique byte array composed of the twelve Fp-coefficients of the unique Fp12-element in G3.
The unpack algorithm simply converts the byte array back to an Fp12-element and checks that
the order of the element is r. At the time of writing this paper, the implementation does not
compress pairing values. However, this will be changed. Pairing values can be compressed to
one third the length of an Fp12-element by using the techniques described in [55,32,44,5].
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Comparison. To compare elements of the groups G1 and G2, we need to compare points
that are represented in (projective) Jacobian coordinates. The standard way of comparing
these redundant representations is to multiply through by the respective powers of the Z-
coordinate. This does not need inversions, in contrast to a conversion to affine coordinates.
Comparison in the group G3 can directly compare Fp12-elements or the respective compressed
representations.

Hashing to G1 and G2. The standard non-constant-time algorithm to hash an arbitrary
string to a point on an elliptic curve is the “try-and-increment” method introduced in [19].
The message is concatenated with a counter and hashed by a cryptographic hash function to
an element of the underlying finite field. If this element is a valid x-coordinate, compute one
of the corresponding y coordinates; otherwise increase the counter and repeat the procedure.
We use this method for non-constant-time hashing to G1 and G2.

For constant-time hashing to G1 and G2 we use the algorithm described in [27] which is
based on the algorithm by Shallue and van der Woestijne described in [57]. The conditional
branches in the algorithm (in particular choosing between one out of three possible solutions)
are implemented through constant-time conditional-copy operations.

We do not yet include the indistinguishable hashing described in [27]. This would require
carrying out two independent hashing operations to the curve (e.g., by using two different
cryptographic hash functions) and then adding the results.

Group addition. We represent elements of G1 and G2 in Jacobian coordinates. For non-
constant-time addition we use the addition formulas by Bernstein and Lange that take 11
multiplications and 5 squarings6. If the inputs happen to be one of the special cases that
are not handled by the formulas we use conditional branches to switch to doubling or to
returning the point at infinity. Doubling uses the formulas by Lange that take 5 squarings
and 2 multiplications7.

Constant-time complete addition on a Weierstrass curve is not easy to do efficiently. There
exist no complete formulas [21, Theorem 1]. The unified formulas proposed in [37, 5.5.2] can
handle doublings but they achieve this by moving the special cases to other points (specifically,
addition of points of the form (x1, y1) and (x2,−y1) with x1 6= x2). Here, we evaluate two
sets of formulas and use constant-time conditional copies to choose between the two outputs.
We do that with the addition and doubling formulas described above. Note that protocols
are typically not bottlenecked by additions but rather by scalar multiplications. Constant-
time scalar-multiplication can use much faster dedicated addition as long as we can be sure
that scalars are smaller than the group order. This is also compatible with the GLV/GLS
decomposition described in the next paragraph.

Scalar multiplication. For the scalar multiplication algorithms implemented in PandA for
each of the three groups, we distinguish between constant-time algorithms and their more
efficient counterparts public inputs. For each case, there are three algorithms: general scalar
multiplication, scalar multiplication of a fixed base point, and multi-scalar multiplication.

Scalar multiplication of a fixed base point that is known at compile time is done by
precomputing 512 multiples of that point in a table and then using these to compute the scalar
multiple. The method we use is described in detail by Bernstein et al. [12,13, Section 4]. Since
we do not expect a significant speed-up by moving from the constant-time to a variable-time
version, we also use the constant-time algorithm in the function on public inputs.

The standard case of scalar multiplication uses efficient endomorphisms on the BN curve
by splitting the scalars via 2-dimensional GLV in G1 and 4-dimensional GLS decomposition
in G2 and G3. See the work by Bos, Costello, and Naehrig [20] for details. In G1, we slightly

6 http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl
7 http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l

http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl
http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l
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differ from the method in [20]. After the scalar decomposition in the constant-time function,
we save a few additions by using a fixed signed window of size 5 and two additions per lookup,
instead of the table with window size 2 and one addition. The function on public inputs uses
a signed sliding window of size 5. The constant-time algorithms in G2 and G3 are as described
in [20], the variable-time algorithms use signed sliding windows of size 4.

The variable-time algorithm for multi-scalar multiplication first applies the GLV/GLS
scalar decomposition. For small batch sizes it then uses joint-signed-sliding-window scalar
multiplication; for larger batch sizes (> 16 for G1 and > 8 for G2 and G3) we use Bos-
Coster scalar multiplication (described in [25, Section 4]). For the constant-time version, due
to the slow complete addition routine, the function currently simply carries out each scalar
multiplication separately and adds them together at the end. For the group G3, it seems
worthwhile to implement exponentiations of compressed values using the methods of Stam
and Lenstra [58]. We are planning to consider this optimization.

Pairing computation. The pairing algorithm computes the optimal ate pairing on the same
BN curve as [5]. Unlike [5] we do not use standard projective coordinates but Jacobian coor-
dinates as in [45]. We use lazy reduction for arithmetic in the extension fields as described
in [5]. The final exponentiation implements the same approach as [17], we use the cyclotomic
squarings from [33, Section 3.1], but we do not use the compressed squarings described in [5,
Section 5.2].

We are planning to continue optimizing pairing computation by experimenting with stan-
dard projective coordinates, a final exponentiation with compressed squarings [5], and faster
low-level arithmetic.

Low-level arithmetic. The low-level arithmetic in Fp and arithmetic on scalars are imple-
mented in AMD64 assembly. We use Montgomery representation for elements in Fp; scalars are
represented in “standard” form because in scalar multiplication we need access to the binary
representation. Modular reduction of scalars uses Barrett reduction [9].

We have not yet implemented inlined arithmetic in Fp2 in assembly. We are planning
to include this optimization and expect significant performance improvements for pairing
computation and for arithmetic in G2 and G3.

We also have a compatible implementation of the field arithmetic entirely written in C to
support other platforms. We will continue to optimize the software with assembly implemen-
tations for other platforms, in particular ARM processors with NEON support.

3.3 Performance

We benchmarked our software (with Fp arithmetic implemented in assembly) on one core of
an Intel Core i5-3210M processor with Turbo Boost and Hyperthreading disabled. For each
function we carried out 100 computations on random inputs. The median and quartiles of the
cycle counts measured in these experiments are reported in Tables 1, 2, 3, and 4.

4 Implementing protocols with PandA

In this section we consider BLS signatures [19] as a small example of a pairing-based protocol
implemented in PandA. We choose this example, because it illustrates the use of most API
functions of PandA and because cryptographic signatures (unlike more complex cryptographic
protocols) are supported by the eBACS benchmarking project [14]. The software presented in
this section implements the eBACS API for cryptographic signatures and we will submit our
software to eBACS for public benchmarking.
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API function 25% quartile median 75% quartile

bgroup g1e unpack 39140 39184 39212

bgroup g1e pack 39512 39548 39568

bgroup g1e hashfromstr (59 bytes) 198780 198908 198964

bgroup g1e add 6052 6080 6100

bgroup g1e double 1204 1216 1224

bgroup g1e negate 36 36 40

bgroup g1e scalarmult 346852 347024 347180

bgroup g1e scalarmult base 128468 128596 128696

bgroup g1e multiscalarmult

(n = 2) 705564 705820 706056
(n = 3) 1058308 1058644 1059128
(n = 4) 1411188 1411644 1411944
(n = 8) 2822252 2823148 2826864
(n = 32) 11294736 11296364 11298420
(n = 128) 45181816 45186732 45193356

bgroup g1e equals 1124 1132 1140

bgroup g1e hashfromstr publicinputs (59 bytes) 41752 83168 83696

bgroup g1e add publicinputs 2456 2468 2476

bgroup g1e double publicinputs 1180 1192 1200

bgroup g1e negate publicinputs 36 36 40

bgroup g1e scalarmult publicinputs 284228 288240 290788

bgroup g1e scalarmult base publicinputs 102184 104024 105772

bgroup g1e multiscalarmult publicinputs

(n = 2) 415076 419860 423440
(n = 3) 551124 556792 560712
(n = 4) 710416 715396 722000
(n = 8) 1229100 1238660 1246568
(n = 32) 4727808 4741472 4752772
(n = 128) 14590168 14605364 14635184

bgroup g1e equals publicinputs 576 580 588

Table 1. Cycle counts for arithmetic operations in G1 on Intel Core i5-3210M.

4.1 The BLS signature scheme

We briefly describe the three algorithms — key generation, signing, and verification — of the
BLS scheme for an asymmetric, Type-3 pairing. Let Q ∈ G2 be a system-wide fixed base point
for G2.

Key generation. Pick a random scalar s ∈ Z∗r . Compute the scalar multiple R ← [s]Q.
Return R as the public key and s as the private key.

Signing. Hash the message m to an element M in G1. Use the private key s to compute
S = [s]M . Return the x-coordinate of the result S as the signature σ.

Verification. Upon receiving a signature σ, a message m, and the public key R, find an
element S ∈ G1 such that its x-coordinate corresponds to σ and it has order r. If no such
point exists, reject the signature. Then calculate t1 ← e(S,Q). Compute the hash M ∈ G1 of
the message m, and compute t2 ← e(M,R). The signature is accepted if t1 = t2 or t1 = −t2
and rejected otherwise. Note that we use additive notation in G3.

This scheme requires one scalar multiplication for key generation, one scalar multiplication for
signature generation, and the comparison of two pairing values for signature verification. In our
case the signature is the packed value of the elliptic-curve point, which includes the information
on the sign of the correct y-coordinate. We therefore compute the unique point S corresponding
to the signature σ, and to verify we only need to check whether e(−S,Q) · e(M,R) = 1.
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API function 25% quartile median 75% quartile

bgroup g2e unpack 1864580 1864884 1865396

bgroup g2e pack 42080 42124 42160

bgroup g2e hashfromstr (59 bytes) 2435116 2435564 2439536

bgroup g2e add 16048 16072 16096

bgroup g2e double 2924 2940 2948

bgroup g2e negate 60 60 64

bgroup g2e scalarmult 764628 764808 765088

bgroup g2e scalarmult base 336788 336916 337060

bgroup g2e multiscalarmult

(n = 2) 1563312 1563668 1564040
(n = 3) 2344964 2345496 2346704
(n = 4) 3126720 3127116 3131192
(n = 8) 6253984 6257528 6258700
(n = 32) 25024136 25027200 25031036
(n = 128) 100103176 100117420 100157284

bgroup g2e equals 3100 3112 3124

bgroup g2e hashfromstr publicinputs (59 bytes) 298524 299884 894696

bgroup g2e add publicinputs 6572 6596 6608

bgroup g2e double publicinputs 2960 2972 2992

bgroup g2e negate publicinputs 60 60 64

bgroup g2e scalarmult publicinputs 612012 625636 635656

bgroup g2e scalarmult base publicinputs 273468 278372 283056

bgroup g2e multiscalarmult publicinputs

(n = 2) 1031736 1043332 1060796
(n = 3) 1477392 1492796 1510148
(n = 4) 1889684 1912744 1928124
(n = 8) 3443640 3467764 3489032
(n = 32) 10293932 10329088 10366420
(n = 128) 32941972 32991824 33061804

bgroup g2e equals publicinputs 3104 3116 3120

Table 2. Cycle counts for arithmetic operations in G2 on Intel Core i5-3210M.

4.2 Implementation with PandA

Our example implementation follows the eBATS API which consists of three functions, namely,
crypto sign keypair, crypto sign, and crypto sign open. The details of each function are
as follows.

The function crypto sign keypair generates the public and private key pair. It requires
one fixed-basepoint scalar multiplication in G2. The complete code for keypair generation
is given in Listing 1. The macro CRYPTO BYTES is required by the eBACS API and is set to
BGROUP G1E PACKEDBYTES in a file called api.h.

The function crypto sign computes the signature upon receiving the message. This
function also requires hashing to G1 (we assume that the message is public and use the
publicinputs version) and one scalar multiplication in G1. The complete code for signing is
given in Listing 2.

The function crypto sign open verifies whether the signature belongs to the message.
As described in the previous subsection, a naive method to compare whether two pairing
values are equal is to first compute those two pairings, then compare the results. It is obvious
that one can avoid the computation of two pairings. Instead, one computes a product of two
pairings and checks whether it is equal to one. In this way, verification needs hashing to G1

and one pairing-product computation. The code for signature verification is given in Listing 3.
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API function 25% quartile median 75% quartile

bgroup g3e unpack 1832068 1832404 1833044

bgroup g3e pack 424 424 428

bgroup g3e add 8020 8032 8048

bgroup g3e double 5548 5560 5572

bgroup g3e negate 172 176 180

bgroup g3e scalarmult 1120300 1120552 1120936

bgroup g3e scalarmult base 608964 609148 609320

bgroup g3e multiscalarmult

(n = 2) 2255028 2255624 2258896
(n = 3) 3382628 3383284 3387392
(n = 4) 4510336 4511420 4515516
(n = 8) 9024924 9025736 9026820
(n = 32) 36100180 36103240 36109596
(n = 128) 144408660 144446076 144467856

bgroup g3e equals 8304 8324 8336

bgroup g3e add publicinputs 8024 8044 8056

bgroup g3e double publicinputs 5548 5556 5568

bgroup g3e negate publicinputs 176 176 180

bgroup g3e scalarmult publicinputs 852272 864136 877804

bgroup g3e scalarmult base publicinputs 609004 609188 609352

bgroup g3e multiscalarmult publicinputs

(n = 2) 2255104 2255424 2258836
(n = 3) 3382688 3383368 3387800
(n = 4) 4510680 4512684 4515652
(n = 8) 4272080 4297668 4330036
(n = 32) 12768868 12803832 12843124
(n = 128) 40764052 40825956 40876608

bgroup g3e equals publicinputs 8304 8320 8332

Table 3. Cycle counts for arithmetic operations in G3 on Intel Core i5-3210M.

4.3 Performance

We benchmarked the BLS implementation on the same Core i5-3210M running at 2.5 GHz
that we also used for the detailed benchmarks of our reference implementation of the API.
We will also submit the software to eBACS for public benchmarking. Key generation takes
378848 cycles. Signing (of a 59-byte message) takes 434640 cycles (this is a median of 10000
measurements, the quartiles are 428616 and 511764). Verification of a signature on a 59-byte
message takes 5832584 cycles (again, this is a median, the quartiles are 5797640 and 5874292).
To our knowledge these are the fastest reported speeds of a BLS signature implementation at
the 128-bit security level. We would like to compare performance with the BLS implementation
by Scott included in SUPERCOP. However, it seems that the software fails to build on 64-bit
platforms; consequently eBACS does not contain benchmark results of the “bls” software on
such platforms.

We ran the benchmark included in the RELIC framework (version 0.3.5) on the same
machine that we used for benchmarking. The times reported by this RELIC benchmark are
609966 nanoseconds for BLS key generation, 510775 nanoseconds for signing and 6910615
nanoseconds for verification. At a clock speed of 2.5 GHz this corresponds to 1524915 cycles
for key generation, 1276937 cycles for signing, and 17276537 cyles for verification; about three
times slower than our implementation.
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API function 25% quartile median 75% quartile

bgroup pairing 2566580 2567116 2572096

bgroup pairing product

(n = 2) 3831724 3832644 3837688
(n = 3) 5089192 5093724 5094728
(n = 4) 6347328 6351260 6352588
(n = 8) 11380604 11381384 11383420
(n = 32) 41565448 41569424 41588976
(n = 128) 162321836 162364916 162387468

Table 4. Cycle counts for pairing computation on Intel Core i5-3210M.

Listing 1 Public and private key generation

int crypto_sign_keypair(
unsigned char *pk,
unsigned char *sk

)
{

// private key //
bgroup_scalar x;
bgroup_scalar_setrandom(&x);
bgroup_scalar_pack(sk, &x);

// public key //
bgroup_g2e r;
bgroup_g2_scalarmult_base(&r, &x);
bgroup_g2_pack(pk, &r);

return 0;
}

Listing 2 Signature generation

int crypto_sign(
unsigned char *sm,
unsigned long long *smlen,
const unsigned char *m,
unsigned long long mlen,
const unsigned char *sk)

{

bgroup_g1e p, p1;
bgroup_scalar x;
int i,r;

bgroup_g1e_hashfromstr_publicinputs(&p, m, mlen);
r = bgroup_scalar_unpack(&x, sk);
bgroup_g1e_scalarmult(&p1, &p, &x);
bgroup_g1e_pack(sm, &p1);

for (i = 0; i < mlen; i++)
sm[i + CRYPTO_BYTES] = m[i];
*smlen = mlen + CRYPTO_BYTES;

return -r;
}
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Listing 3 Signature verification

int crypto_sign_open(
unsigned char *m,
unsigned long long *mlen,
const unsigned char *sm,
unsigned long long smlen,
const unsigned char *pk)

{

bgroup_g1e p[2];
bgroup_g2e q[2];
bgroup_g3e r;
unsigned long long i;
int ok;

ok = !bgroup_g1e_unpack(p, sm);
bgroup_g1e_negate_publicinputs(p, p);
q[0] = bgroup_g2e_base;
bgroup_g1e_hashfromstr_publicinputs(p+1, sm + CRYPTO_BYTES, smlen - CRYPTO_BYTES);
ok &= !bgroup_g2e_unpack(q+1, pk);
bgroup_pairing_product(&r, p, q, 2);

ok &= bgroup_g3e_equals(&r, &bgroup_g3e_neutral);

if (ok)
{
for (i = 0; i < smlen - CRYPTO_BYTES; i++)

m[i] = sm[i + CRYPTO_BYTES];
*mlen = smlen - CRYPTO_BYTES;
return 0;

}
else
{
for (i = 0; i < smlen - CRYPTO_BYTES; i++)

m[i] = 0;
*mlen = (unsigned long long) (-1);
return -1;

}
}
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37. Hüseyin Hışıl. Elliptic Curves, Group Law, and Efficient Computation. PhD thesis, Queensland University
of Technology, 2010. http://eprints.qut.edu.au/33233/. 9

38. Jeremy Horwitz and Ben Lynn. Toward hierarchical identity-based encryption. In Lars R. Knudsen, editor,
Advances in Cryptology – EUROCRYPT 2002, volume 2332 of Lecture Notes in Computer Science, pages
466–481. Springer, 2002. http://theory.stanford.edu/~horwitz/pubs/hibe.pdf. 1

39. Antoine Joux. A one round protocol for tripartite Diffie-Hellman. In Wieb Bosma, editor, Algorithmic
Number Theory, volume 1838 of Lecture Notes in Computer Science, pages 385–393. Springer, 2000. cgi.

di.uoa.gr/~aggelos/crypto/page4/assets/joux-tripartite.pdf. 1
40. Antoine Joux. A one round protocol for tripartite Diffie-Hellman. Journal of Cryptology, 17(4):263–276,

2004. 1
41. Antoine Joux. A new index calculus algorithm with complexity L(1/4+o(1)) in very small characteristic. In

Tanja Lange, Kristin Lauter, and Petr Lisonek, editors, Selected Areas in Cryptography, volume to appear of
Lecture Notes in Computer Science. Springer, 2013. invited paper, http://eprint.iacr.org/2013/095/.
2

42. Ben Lynn. PBC library – the pairing-based cryptography library. http://crypto.stanford.edu/pbc/. 4
43. Shigeo MITSUNARI. A fast implementation of the optimal ate pairing over BN curve on Intel Haswell

processor. Cryptology ePrint Archive, Report 2013/362, 2013. http://eprint.iacr.org/2013/362/. 2
44. Michael Naehrig, Paulo S.L.M. Barreto, and Peter Schwabe. On compressible pairings and their computa-

tion. In Serge Vaudenay, editor, Progress in Cryptology - AFRICACRYPT 2008, volume 5023 of Lecture
Notes in Computer Science, pages 371–388. Springer, 2008. http://eprint.iacr.org/2007/429/. 8

45. Michael Naehrig, Ruben Niederhagen, and Peter Schwabe. New software speed records for cryptographic
pairings. In Michel Abdalla and Paulo S.L.M. Barreto, editors, Progress in Cryptology – LATINCRYPT

http://www.math.ru.nl/~bosma/pubs/JNT1995.pdf
http://eprint.iacr.org/2011/232/
http://www.certivox.com/miracl
http://eprint.iacr.org/2009/480/
http://eprint.iacr.org/2009/480/
www.isg.rhul.ac.uk/tls/TLStiming.pdf
www.di.ens.fr/~fouque/pub/latincrypt12.pdf
http://eprint.iacr.org/2006/372/
http://www.cs.ucdavis.edu/~franklin/ecs228/pubs/extra_pubs/hibe.pdf
http://gmplib.org/
http://eprint.iacr.org/2013/306
http://eprint.iacr.org/2013/306
http://eprint.iacr.org/2004/132
http://www.cs.ucl.ac.uk/staff/J.Groth/ShortNIZK.pdf
http://www0.cs.ucl.ac.uk/staff/J.Groth/WImoduleFull.pdf
http://eprint.iacr.org/2006/110
http://eprints.qut.edu.au/33233/
http://theory.stanford.edu/~horwitz/pubs/hibe.pdf
cgi.di.uoa.gr/~aggelos/crypto/page4/assets/joux-tripartite.pdf
cgi.di.uoa.gr/~aggelos/crypto/page4/assets/joux-tripartite.pdf
http://eprint.iacr.org/2013/095/
http://crypto.stanford.edu/pbc/
http://eprint.iacr.org/2013/362/
http://eprint.iacr.org/2007/429/


18 C. Chuengsatiansup, M. Naehrig, P. Ribarski, P. Schwabe

2010, volume 6212 of Lecture Notes in Computer Science, pages 109–123. Springer, 2010. updated version:
http://cryptojedi.org/users/peter/#dclxvi. 2, 10

46. Kiyoshi Ohgishi, Ryuichi Sakai, and Masao Kasahara. Notes on ID-based key sharing systems over elliptic
curve (in Japanese). Technical Report ISEC99-57, IEICE, 1999. 1

47. Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and countermeasures: the case of AES.
In David Pointcheval, editor, Topics in Cryptology – CT-RSA 2006, volume 3860 of Lecture Notes in
Computer Science, pages 1–20. Springer, 2006. http://eprint.iacr.org/2005/271/. 3

48. Bryan Parno, Craig Gentry, Jon Howell, and Mariana Raykova. Pinocchio: Nearly practical verifiable
computation. In IEEE, editor, Proceedings of the IEEE Symposium on Security and Privacy, 2013. http:
//eprint.iacr.org/2013/279. 2
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