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ABSTRACT
Web search engines are optimized to reduce the high-percentile
response time to consistently provide fast responses to al-
most all user queries. This is a challenging task because
the query workload exhibits large variability, consisting of
many short-running queries and a few long-running queries
that significantly impact the high-percentile response time.
With modern multicore servers, parallelizing the processing
of an individual query is a promising solution to reduce query
execution time, but it gives limited benefits compared to se-
quential execution since most queries see little or no speedup
when parallelized. The root of this problem is that short-
running queries, which dominate the workload, do not ben-
efit from parallelization. They incur a large parallelization
overhead, taking scarce resources from long-running queries.
On the other hand, parallelization substantially reduces the
execution time of long-running queries with low overhead
and high parallelization efficiency. Motivated by these obser-
vations, we propose a predictive parallelization framework
with two parts: (1) predicting long-running queries, and (2)
selectively parallelizing them.

For the first part, prediction should be accurate and ef-
ficient. For accuracy, we study a comprehensive feature
set covering both term features (reflecting dynamic prun-
ing efficiency) and query features (reflecting query complex-
ity). For efficiency, to keep overhead low, we avoid ex-
pensive features that have excessive requirements such as
large memory footprints. For the second part, we use the
predicted query execution time to parallelize long-running
queries and process short-running queries sequentially. We
implement and evaluate the predictive parallelization frame-
work in Microsoft Bing search. Our measurements show
that under moderate to heavy load, the predictive strat-
egy reduces the 99th-percentile response time by 50% (from
200 ms to 100 ms) compared with prior approaches that
parallelize all queries.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Search process; D.4.1 [Operating
Systems]: Process Management—Threads
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Figure 1: Histogram of the sequential query execu-
tion time of 70K queries at Bing search. The x-axis
is in 5 ms bins, and the y-axis is in log scale. Mea-
surement setups are provided in Section 5.
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1. INTRODUCTION
Achieving consistently low response times is a primary

design objective for web search engines. Long query re-
sponse times directly degrade user satisfaction and reduce
revenues [22]. To provide timely responses to user queries, a
web search engine operates under a service level agreement
(SLA), e.g., 100 ms for 99th-percentile response time. In
particular, search engines are optimized to reduce the high-
percentile response time, which is more important than the
mean response time [9].

Reducing the high-percentile response time (also called
the tail latency) is challenging because the search engine
workload exhibits high variability as shown in Figure 1.
Most queries are short-running, with more than 85% tak-
ing less than 15 ms. However, few queries are very long-
running taking up to 200 ms. In particular, the average of
the execution time is 13.47 ms while 99th-percentile execu-
tion time is 200 ms, which is 15 times the average. The gap
between the median and the 99th-percentile is even larger
at 56 times. Therefore, to reduce high-percentile response
time, it is important to speed up the long-running queries.

Parallelizing the processing of each query is a promising
solution to reduce query execution time [24, 14]. This is
motivated by current hardware trends. A modern server
has several cores, and with parallelization, multiple threads
execute a query concurrently using the available cores to
reduce execution time. When servers are lightly loaded and
there are sufficient number of available cores, parallelizing
the execution of all queries reduces their execution time,
thereby reducing the response time.



However, parallelizing all queries is ineffective under mod-
erate and high load because it comes with an overhead that
varies among queries. Our measurements show that long-
running queries achieve better speedup with lower overhead
and higher parallelization efficiency. In contrast, paralleliz-
ing short-running queries is ineffective, giving no perfor-
mance benefit while consuming additional resources. As
the load increases, spare processor resources become limited
and we can no longer afford to parallelize all queries. We
thus propose a method to selectively parallelize long-running
queries for reducing the high-percentile response time, and
to execute short-running queries sequentially avoiding their
parallelization overhead.

In this paper, we argue that (1) accurate and efficient
prediction of query execution times is essential for (2) im-
plementing an effective selective parallelization scheme.

For prediction, we first identify the requirements of the
predictor in terms of accuracy and efficiency in order to sup-
port selective parallelization to reduce tail latency. We find
that the state-of-the-art predictor for query response time
[16] is not accurate enough and uses expensive features that
consume large memory space. We improve the predictor
from three aspects. (1) While the prior work focuses mainly
on term features, we exploit a comprehensive list of term and
query features to achieve higher accuracy. (2) Our predictor
incorporates query rewriting, which is common in modern
search engine, to improve accuracy further. (3) To reduce
the prediction cost, we introduce a memory-efficient feature
set, which, compared with using all features, achieves com-
parable prediction accuracy while saving more than 90% of
the memory space needed for caching the features. These
techniques improve precision (from 0.62 to 0.83) and recall
(from 0.49 to 0.78) of prediction compared with the prior
work, while reducing prediction overhead in terms of both
memory and CPU usage.

For parallelization, we use the predicted query execution
time to selectively parallelize the long-running queries and
to execute the short-running queries sequentially. Our im-
plementation results on production servers of Bing search
show that under moderate to heavy load, predictive paral-
lelization reduces the 99th-percentile response time by 50%
(from 200 ms to 100 ms) compared with prior approaches
that parallelize all queries. It also significantly outperforms
a recent adaptive parallelism policy [14].

The contribution of the paper is the design and evaluation
of the predictive parallelism framework:

• Improved prediction: We systematically explore the
design space of prediction features and learning algo-
rithms to construct a predictor that incorporates query
rewriting and uses a memory-efficient feature set that
achieves high accuracy. Our proposed framework is
the first satisfying dual requirements of accuracy and
efficiency to enable predictive parallelization. The pre-
dictor is trained and evaluated using real user query
logs and production web index, reflecting many impor-
tant aspects that have been neglected in the previous
studies.

• Selective parallelization: We use the predicted query
execution time to parallelize only long-running queries.
We evaluate this predictive parallelization framework
in a production environment of a major commercial
search engine. The results show that the proposed so-
lution significantly reduces the 99th-percentile latency
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Figure 2: Index serving system architecture.

compared with sequential execution and two state-of-
the-art parallelization policies. It is currently deployed
and used to serve millions of user queries daily.

The remainder of this paper is organized as follows. Sec-
tion 2 provides the background on the search engine environ-
ment. Section 3 discusses query parallelization. Section 4
develops the prediction framework. We evaluate the pro-
posed predictive parallelization framework experimentally in
Section 5. We contrast our contributions to related work in
Section 6 and draw conclusions in Section 7.

2. SEARCH ENGINE ENVIRONMENT

2.1 System Architecture
Figure 2 illustrates a common architecture of an index

serving system consisting of index serving nodes (ISNs) and
a single or multiple levels of aggregators (also known as bro-
kers) [8, 14]. An entire web index, containing information
on billions of Web documents, is document-sharded [3] and
distributed among a large number of ISNs. When a user
sends a query and its results are not cached, the aggregator
propagates the query to all ISNs hosting the web index to
process and answer it. Each ISN searches its fragment of the
web index to retrieve the top-k (currently k = 4) matching
Web documents to the aggregator.1 The aggregator receives
the results from the ISNs, and merges them to compute the
response for the user query. ISNs are the workhorse of the
index serving system. They constitute over 90% of the total
hardware resources. Moreover, they are on the critical path
for query processing and account for more than two-thirds
of the total query processing time. We use Microsoft Bing,
a commercial search engine, to evaluate our techniques.

2.2 ISN Query Processing
The ISN is a multi-threaded server, capable of processing

several queries concurrently for higher efficiency. Newly ar-
rived queries first join the waiting queue of the ISN. When a
thread is idle, it gets a new query from the head of the wait-
ing queue and starts to process it. As there are a fixed num-
ber of threads in the ISN, some queries may be delayed in
the waiting queue (i.e., queueing time), in addition to their
processing time (i.e., execution time) — query response time
is the sum of its queueing and execution time.

1Though k can be varied to trade search quality (effective-
ness) for query execution time (efficiency) [25], we fix k and
focus on optimizing efficiency without a quality compromise.
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(a) Short-running queries (0–30 ms)

1 2 3 4 5 6
0

10

20

30

40

50

E
xe

cu
tio

n 
tim

e 
(m

s)

Parallelism degree

 

 

1 2 3 4 5 6
0

1

2

3

4

5

6

S
pe

ed
up

Execution time
Speedup

(b) medium-running queries (30–
80 ms)
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(c) long-running queries (>80 ms)

Figure 3: Average execution time and speedup in parallelization for queries classified by their execution time.

A thread in the ISN searches its web index shard to return
the matching documents of a query. The documents inside
the index shard are sorted based on static scores (such as
PageRank [4]) reflecting the popularity and importance of
the document. When an ISN determines that a Web docu-
ment matches the user query, it computes the relevance score
using a ranking function that combines many factors includ-
ing the document static score, term features (such as term
frequency in the document [18]) and other features (such as
proximity to user location or history). The query processing
operates in conjunctive mode [14] and follows “document-
at-a-time (DAAT)” [5]. That is, for a multi-term query, all
posting lists are intersected and the score of a document is
fully computed before moving to the next document. The
ISN employs dynamic pruning to early terminate a query
and avoid the scoring of postings for documents that cannot
make the top-k retrieved set [26].

3. QUERY PARALLELIZATION

3.1 Parallelization Design
A basic approach to parallelizing a single keyword query

is to partition the entire posting list into the same number of
chunks (or groups) of documents as the number of threads
allocated to the query, and assign each chunk to a thread.
This approach incurs a very large overhead as it processes
the entire posting list — documents with low static score
are rarely visited during sequential execution as a result of
dynamic pruning.

To support dynamic pruning during parallel processing,
we use an approach that partitions the posting list into many
small chunks and assigns them to threads in the order con-
firming the static score. We follow the thread pool model,
where the chunks constitute a list of work items ordered by
static scores of documents. An idle thread requests the first
unprocessed chunk from the head of the list to process doc-
uments with higher static scores first. This results in an
execution that is similar to sequential processing, allowing
dynamic pruning while minimizing unnecessary processing
of the posting list. Prior work [14] studies a similar ap-
proach, and therefore we do not discuss its details further.

3.2 Speedup Characteristics
We characterize the ISN query processing workload to

show how and when parallelization can reduce the query
response time. The results in this section are based on the
same experimental setup as discussed in Section 5.

Queries have varying execution times as we discussed for
the results in Figure 1: the majority (over 85%) is short-
running requiring less than 15 ms, and a few queries are
long-running. Moreover, the 99th-percentile execution time
is 56 times the median, showing a large variability.

Parallelization is effective only for long-running queries.
We classify the queries into three classes based on their exe-
cution times and show the speedup, which is the sequential
execution time divided by the parallel execution time, with
different parallelism degrees in Figure 3. The queries that
run longer than 80 ms achieve more than 4 times speedup
by using 6 threads. This reduces their mean execution time
from 167 ms to 41 ms. In contrast, using 6 threads, the
queries that complete within 30 ms achieve just about 1.15
speedups because their execution time is dominated by the
sequential part of query processing (i.e., non-parallelized
part such as parsing and rescoring of the top results). In
addition, for medium-running queries, which run between
30 and 80 ms, the speedup is modest, less than 2 for paral-
lelism degree 6.

We derive two important conclusions from Figure 3. First,
it is important to parallelize long-running queries to reduce
response time. Without parallelization they are more likely
to have a response time over 100 ms, violating the SLA. In
addition, they benefit the most from parallelization, show-
ing high speedups. Second, we should execute short-running
queries sequentially. Parallelizing short-running queries is a
bad strategy because they do not benefit from paralleliza-
tion. More importantly, they compete for the computational
resources, making those limited resources unavailable for
parallelizing long-running queries.

In summary, although parallelization holds the promise
of reducing query execution times significantly, it has to be
applied carefully on a per-query basis. There are enormous
benefits for “selectively” parallelizing long-running queries.
Parallelizing every query may result in much higher resource
utilization than sequential execution and fail to reduce the
response time. This work employs the pre-retrieval pre-
diction of query execution time (i.e., before executing the
query), and applies it to long-running query parallelization
— we call this approach predictive parallelization.

4. PREDICTION FRAMEWORK
This section explores the design of the learning framework

to support predictive parallelization. Specifically, we discuss
the following questions:

• What are the requirements of prediction?



• What is the space of features for prediction and which
features should we use?

• What is the space of algorithms for prediction and
which algorithm should we use?

4.1 Requirements
Predictive parallelization imposes four requirements on

the prediction framework: tail latency, misprediction cost,
prediction overhead, and flexibility. We use the standard
metrics of prediction accuracy, namely precision and recall:

precision =
|A ∩ P |
|P | , recall =

|A ∩ P |
|A| ,

where A is a set of true long-running queries, and P is a set
of predicted long-running queries.

1-Tail latency. To reduce the tail latency, we must cor-
rectly identify a majority of long-running queries and reduce
their execution time through parallelization. For example,
for our workload, to meet the 99th-percentile response time
target, the prediction should achieve a recall of 0.75 or higher
(i.e., correctly identifying 75% or more of true long-running
queries). To illustrate, the Bing workload shows that the
queries running longer than 80 ms are about 4% of the to-
tal number of queries. As long as at least 75% of the true
long-running queries can be identified, the remaining true
long-running queries, which are wrongly predicted as short-
running, contribute to less than 4%× (1−0.75) = 1% of the
total queries. This small portion, 1% or less, does not affect
the 99th-percentile response time. Therefore, the predictor
should have a recall of 0.75 or higher.

2-Misprediction cost. The misprediction cost comes
from the prediction error in which short-running queries
are predicted as long-running. This overhead is directly re-
lated to the precision achieved. When such misprediction
happens, the processor resources are wasted to parallelize
short-running queries with almost no benefit. Prediction
with higher precision incurs lower misprediction cost, which
matters little at light load but has a significant impact at
heavy load. We elaborate the importance and show which
precision values are required in Section 5.

3-Prediction overhead. The overhead involved in per-
forming prediction must be small to keep the interactive
nature of web search. Prediction itself adds additional work
to query execution, increasing query response time. There-
fore, prediction should return the predicted execution time
for a query quickly. Since the average query execution time
is about 15 ms, adding 5% of it for prediction is an accept-
able cost for the potential benefits. Here, we set the goal of
less than 0.75 ms to predict query execution time.

4-Flexibility. The ability to adjust the threshold of defin-
ing long-running queries allows the predictor to adapt to
varying load and to achieve better performance (Section 5).
We thus abstract prediction as a regression problem (of esti-
mating the execution time) rather than a classification prob-
lem (of deciding whether the query is long-running or not).
We empirically show that this flexibility comes without loss
in prediction accuracy (Section 4.3).

4.2 Features
In this section, we describe the features that can be used

for prediction and analyze the importance of the features.

Category Feature Description

AMeanScore Arithmetic mean scores
GMeanScore Geometric mean scores
HMeanScore Harmonic mean scores

MaxScore Maximum of scores
EMaxScore Estimated maximum scores [15]
VarScore Variance of scores

term feature NumPostings # postings
NumMaxima # local maxima
GAvgMaxima # maxima greater than average

MaxNumPostings # postings with maximum score
In5%Max # postings in 5% of maximum score

IDF inverse document frequency
NumThres # postings in 5% of the kth score

ProK # docs ever promoted to the top-k
English Query in English or not (binary)

NumAugTerm # augmented requirements
Complexity Degree of query complexity

query feature RelaxCount Relax count applied or not (binary)
NumBefore # terms in the original query
NumAfter # terms after query rewriting

Table 1: Space of the features.

4.2.1 Space of Features
We investigate features that meaningfully correlate with

the execution time, which we categorize into term and query
features. Table 1 lists 14 term features and 6 query features.

Term features. Term features capture the “efficiency” of
queries by estimating the effects of dynamic pruning. Ta-
ble 1 presents 14 term features, studied to be good predic-
tors [16].

Most features in the table are self-explanatory, and we
explain three features in more details:

• NumMaxima: the number of times that the gradient of
the score curve across all postings is 0, i.e., the number
of times there is a local maxima in the postings curve.

• GAvgMaxima: the number of documents with the max-
ima score greater than average. The low score also
indicates higher pruning effect.

• IDF: the inverse document frequency of the term. This
accounts for the number of documents in the corpus
that contain the term [23].

Since a query may contain multiple terms, scores of a term
feature across the query terms need to be combined into a
single score using an aggregation function. For example, for
the query “Gold Coast”, scores of a term feature for “Gold”
and “Coast” are aggregated by each of four functions: maxi-
mum, minimum, variance, and summation. In other words,
possible feature scores that can be computed from the ag-
gregation is 14 × 4 = 56, depending on which of the 14
term features or which of the 4 aggregation functions used.
Prior work proposed maximum, variance, and summation
as the aggregation functions [16]. In this work, we add the
minimum as an aggregation function because the minimum
matches the way a conjunctive query is processed.2

In general, we find that retrieving term features from a
term index is expensive. Although these features can be
precomputed and cached in the memory, this requires a
large memory footprint. As an example, consider a case

2This observation may not be consistent with existing pre-
diction framework [16] that builds on disjunctive WAND
queries.



where roughly one hundred million terms are stored within
a server. Caching the features requires 4.47 GB memory,
which is unacceptable for an index server which benefits
more from using this memory to store a larger subset of
the inverted web index partition. Moreover, the precom-
puted term feature information needs to be updated fre-
quently whenever new postings are added or existing post-
ings are deleted, incurring additional overhead. Given the
high caching and maintenance cost of term features, we in-
troduce a new type of features, called query features, which
improve prediction accuracy with much lower cost.

Query features. Query features capture the “complexity”
of a query, and this complexity affects the execution time.
For example, the number of terms in a query often positively
correlates with the execution time. Also, the language of
the query, which is related to the size of the corpus to be
searched, strongly correlates to the execution time.

We propose to exploit both term and query features, rather
than only term features used in the prior work [16], for the
following advantages. First, in a modern search engine, a
query is frequently rewritten to correct the errors or ambigu-
ity in the user input keywords [6]. For example, in our query
logs, we observe that nearly half the queries are rewritten.
This rewriting significantly increases the number of terms
and the query complexity, which is a dominant factor of
overall execution time. Second, query features are conve-
niently available at runtime with a low cost.

To elaborate how the query features reflect the query
rewriting process, consider a rewritten query due to spelling
correction. A mistyped query like“facebok” is automatically
rewritten into another query, such as“facebok OR facebook”
to retrieve more useful results for the user. Here, using term
features alone for the given term “facebok” inevitably leads
to inaccurate results. In contrast, query features, reflecting
the number of terms after such rewriting, more closely es-
timate the execution time for such queries. Query features
reflecting whether the given query requires such additional
processing enable more accurate prediction.

Table 1 lists six query features, and we describe three
features in more details here:

• NumAugTerm: the number of augmented requirements
for the given query. These are used in general for the
personalization [19] of search, and the number posi-
tively correlates with the execution time.

• Complexity: how complex it is to find a match with
query terms. To find matches a query is translated
into an execution plan which walks through posting
lists of the terms, and its complexity is subject to the
number of rewritten terms and the length of phrases.
The complexity is a numeric value.

• RelaxCount: whether queries are relaxed to generate
more meaningful subqueries. For example, query “Mi-
crosoft Office Windows” can be relaxed to “Microsoft
Windows”or“Microsoft Office” [21]. Having it enabled
correlates with higher execution time.

Cheap features. We develop a memory-efficient feature
set (called “cheap features”), which contains all query fea-
tures and IDF from term features combined using four ag-
gregation functions (i.e., minimum, maximum, summation,
and variance). We later show that (1) our predictor using

Feature Importance

Max-IDF 1
Sum-AMeanScore 0.34823

Min-MaxScore 0.33350
Min-MaxNumPostings 0.28197

Sum-HMeanScore 0.27014
English 0.26460

RelaxCount 0.21890
Min-IDF 0.19128

Max-GMeanScore 0.18497
NumAugTerm 0.18442
Sum-VarScore 0.17083

Var-HMeanScore 0.16660
Var-MaxNumPostings 0.16227

Var-MaxScore 0.15709
Complexity 0.13965

Table 2: Top-15 features ranked by the importance
obtained from boosted regression tree. Cheap fea-
tures are shown in bold.

only the cheap features meets the accuracy requirements of
predictive parallelism (Section 4.3), (2) the cheap features
are practical since they do not require a large memory foot-
print (Section 4.3), and (3) the cheap features work well for
parallelization (Section 5).

4.2.2 Feature Analysis
This section studies which feature is a good predictor of

query execution time. As a metric, we first use per-feature
gain from boosted regression tree, where the importance of
a feature is proportional to the total error reduction per
split in the tree. Table 2 shows the top-15 most important
features, with each importance normalized to the highest
value. We observe that four out of the top-15 features are
query features that do not require accesses to term index
or need large memory footprint. More importantly, most of
the cheap features (shown in bold) are ranked high, which
indicate that they are good predictors while incurring low
prediction cost.

To further support this argument, we assume that all fea-
tures were available at runtime and we study the overall
prediction accuracy changes when a subset of features is se-
lected by the order presented in Table 2. Figure 4 presents
both precision and recall with a threshold of 50 ms for iden-
tifying long-running queries. The figure shows, when the
top-10 most important features in Table 2 are used (the red
curve), both precision and recall converge to the case of us-
ing all term and query features (the blue curve). In addition,
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Figure 4: Precision and recall with features added in
the order of importance for boosted regression tree.
This shows the performance difference between our
order (the red curve) and the order suggested in the
prior work [16] (the black curve).



Threshold Metric Algorithm term features + query features cheap features Prior work [16]

50 ms

Precision
Linear regression 0.6062 ±0.0027 0.6216 ±0.0045 0.6200 ±0.015

Gaussian process regression 0.6897 ±0.0051 0.6852 ±0.0098 0.6089 ±0.011
Boosted regression tree 0.8306 ±0.013 0.7927 ±0.013 0.6942 ±0.015

Recall
Linear regression 0.6838 ±0.002 0.2997 ±0.0022 0.4912 ±0.0050

Gaussian process regression 0.7884 ±0.0071 0.6655 ±0.0282 0.5906 ±0.0203
Boosted regression tree 0.8007 ±0.0057 0.7723 ±0.0078 0.6280 ±0.0098

80 ms

Precision
Linear regression 0.6717 ±0.0029 0.7074 ±0.0014 0.6716 ±0.0047

Gaussian process regression 0.8123 ±0.0050 0.7712 ±0.0503 0.7028 ±0.0102
Boosted regression tree 0.8894 ±0.0100 0.8567 ±0.0102 0.7643 ±0.0143

Recall
Linear regression 0.6627 ±0.0010 0.1929 ±0.0290 0.2817 ±0.0012

Gaussian process regression 0.7568 ±0.0114 0.4940 ±0.1344 0.5329 ±0.0066
Boosted regression tree 0.8370 ±0.0084 0.7961 ±0.0063 0.6354 ±0.0153

Table 3: Prediction accuracy of linear regression, Gaussian process regression, and boosted regression tree
for two threshold values 50 ms and 80 ms. The accuracy is presented with 95% confidence interval.

Algorithm Training time Prediction overhead

Boosted regression tree 1.805 (sec) < 0.75 (ms)
Linear regression 0.006 (sec) < 0.75 (ms)
Gaussian process 539.326 (sec) < 0.75 (ms)

Table 4: Training time and prediction overhead
comparisons for the three algorithms.

to put these results in context, we compare to related work.
We select a set of features according to the order proposed in
the prior work [16], and observe that convergence does not
happen even when all features are used (the black curve).

An analysis with the ranked features suggests that the
per-feature gain used in this work is a reliable metric for
feature selection, making it possible to build the prediction
with accuracy comparable to using all features, only with
10 features or less. Since our cheap features contain five out
of the top-10 features, we expect that the cheap features
should work well.

4.3 Empirical Evaluation
Evaluation of regression algorithms. We evaluate the
accuracy of three regression algorithms: linear regression,
boosted regression tree [12], and Gaussian process regres-
sion [20]. The boosted regression tree and Gaussian process
are nonlinear regression algorithms. We collect 22,000 user
queries from search engine, and perform 5-fold cross vali-
dation with 5 repetitions to avoid biased results. Table 3
presents the average of precision and recall with 95% confi-
dence intervals.

First, we compare the training time and the prediction
overhead of the algorithms in Table 4. Linear regression,
limited by its function form, is most efficient in terms of
the training time. The training time for boosted regression
tree is less than 2 seconds, and Gaussian process exhibits a
long training time compared to other two algorithms. All
approaches are comparable in the prediction overhead, meet-
ing the target goal of 0.75 ms or less.

In general, the nonlinear algorithms demonstrate signifi-
cantly superior prediction results. In particular, we observe
that boosted regression tree outperforms Gaussian process
regression, as we explain in Table 3. Note that even though
introducing more inducing variables may lead to improve-
ment in the accuracy of the Gaussian process regression
(with additional training overhead), we do not pursue this
direction as we find that boosted regression tree is suffi-
ciently accurate for predictive parallelization (as we show in
Section 5) and has lower training overhead.

Approach Query\term feature Query rewriting Memory usage

Prior work [16] - \All - 4.47 GB
All features Y \All Y 4.47 GB

Cheap features Y \IDF Y 0.37 GB

Table 5: Design comparison of existing approach
and our solutions. Memory usage is calculated based
on one hundred million terms stored in a server.

Comparison with prior work [16]. Table 3 shows the
precision and recall of regression algorithms using different
sets of features and different thresholds (50 and 80 ms) for
long-running query. We propose two prediction solutions,
one based on all features (i.e., term features + query fea-
tures) and the other based on cheap features (i.e., IDF +
query features). Table 5 shows how the proposed solutions
are compared to prior work [16] in terms of design consider-
ations and cost.

The first two columns in Table 3 implement the proposed
solutions that use all features and cheap features, respec-
tively. We compare these to the prior work [16] in the
third column that only uses term features from the given
query without term rewriting. The results show that our ap-
proaches consistently provide higher precision and recall for
the two thresholds. This is achieved by two factors. First,
query features are important as shown in the previous sec-
tion. Second, in computing term features, we account for
rewritten terms in extracting term features, and this im-
proves the accuracy in our solutions. For example, consider
a query with two terms, X and Y , and the query is rewritten
into (X or X ′) and (Y or Y ′). A naive way to extract term
features would be to treat the four terms independently and
extract the four feature values. However, this approach con-
siders unnecessary relation between X and Y ′ (and between
Y and X ′) which leads to poor estimation. In contrast, we
extract and combine the term features carefully. For exam-
ple, term features for (X or X ′) are computed by summing
up the values for each term.

Our approach has two key advantages when used for pre-
dictive parallelization: (1) We achieve high accuracy to effec-
tively reduce 99th-percentile response time, while the prior
work does not. As discussed in Section 4.1, our workload
requires us to correctly identify at least 75% of the long-
running queries (i.e., demanding a recall of 0.75 or higher),
while the predictor from the prior work [16] has a recall
of 0.6485 as shown in Table 3. In this case, more than
1% of the queries that are long-running but misidentified
as short-running will not be parallelized, causing high 99th-
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Figure 5: Comparisons of precision and recall be-
tween boosted classification and regression tree.

percentile latency. In comparison, our predictor improves
recall to 0.7975 with statistical significance, to effectively
reduce 99th-percentile response time; it also improves pre-
cision to reduce overhead due to false positives (i.e., short-
running queries misidentified as long-running ones and ex-
ecuted in parallel). (2) We achieve high accuracy using
only cheap features, saving more than 90% of memory space
needed for caching the features as shown in Table 5. More-
over, Table 3 also shows the precision of both our proposed
features and cheap features is higher than a 95% confidence
interval of [16]. These trends were consistent when using ei-
ther 50 ms or 80 ms as a threshold of long-running queries.

Regressor versus classifier. Lastly, we justify using
a regressor for prediction. Using a classifier is less flexi-
ble, requiring retraining when the threshold changes. We
compare the accuracy of a regressor to classifiers. Figure 5
shows that we can safely rule out classifiers, as the regressor
achieves our prediction requirements with the high flexibil-
ity in choosing the threshold. The accuracy of the regressor
is comparable to the classifiers. For example, in Figure 5(b),
the point representing the accuracy of regressor is 0.85 in F1
score, which is the maximum of the entire curve representing
classifier accuracy.

4.4 Summary
We derive the prediction requirements in terms of recall

and precision as well as computational overhead. We dis-
cuss using both term and query features, and we identify a
set of cheap features that are memory efficient and meet our
accuracy requirements, while accounting for query augmen-
tation and rewriting. We find that boosted regression tree
shows the highest accuracy in prediction while incurring ac-
ceptable prediction overhead. Based on these observations,
we employ cheap features and boosted regression tree
in our predictive parallelization framework.

5. EXPERIMENTAL EVALUATION
We implement the boosted regression tree algorithm us-

ing cheap features in a commercial search engine to predict
query execution time. Using the predicted query execution
time, we modify the index serving nodes (ISNs) to selectively
parallelize long-running queries only. Our results show that,
compared with prior approaches that parallelize all queries,
even under moderate-to-heavy load, predictive paralleliza-
tion reduces the 99th-percentile response time by 50% from
200 ms to 100 ms. This allows us to operate the servers at
high load while meeting the SLA, improving server capacity,

and to process the same query workload using fewer num-
ber of servers. This section describes the experimental setup
and results.

5.1 Experimental Setup
The ISN used in our evaluation has two 2.27 GHz 6-core

Intel 64-bit Xeon processors, 32 GB of main memory, and
runs production Bing code on Windows Server 2012. Each
core supports 2-way hyperthreading, so the server runs up
to 24 concurrent threads. The ISN manages a 160 GB web
index partition on an SSD.

Our setup includes an ISN that answers queries and a
client that plays queries from a trace of user queries. The
trace contains 100K queries. We run the system by issuing
queries following a Poisson distribution. We vary system
load by changing the average query arrival rate. The ISN
searches its local index and returns the top-4 matching re-
sults to the client with relevance scores. This is a standard
testing configuration for the Bing search engine.

Our evaluation compares our proposed predictive paral-
lelization strategy with other parallelization strategies that
do not predict query execution time to selectively parallelize
long-running queries. In particular, we compare with two
state-of-the-art parallelization strategies, fixed paralleliza-
tion and adaptive parallelization. Moreover, we also add
sequential execution as a reference. In summary, we imple-
ment and evaluate the following four strategies.

• Sequential execution is a baseline system, which does
not perform any query parallelization.

• Fixed parallelization parallelizes each query with 3 threads.
This was the production configuration before our pre-
diction framework has been deployed. Parallelism de-
gree 3 is selected to meet the desired 99th-percentile
response time of 100 ms.

• Adaptive parallelization is a recent approach on search
engine query parallelization [14]. It dynamically se-
lects the degree of parallelism on a query-by-query ba-
sis considering the current load and average parallelism
efficiency of queries. This approach does not predict
query execution time. Therefore, it cannot selectively
parallelize long-running queries only.

• Predictive parallelization parallelizes only those queries
that are predicted to be long-running using 3 threads
and runs the other queries sequentially. We apply our
proposed predictor using cheap features and boosted
regression tree. We do not use the predictor from prior
work [16] because its accuracy does not meet the se-
lective parallelization requirements as discussed in Sec-
tion 4.3. We consider a query as long-running if its pre-
dicted execution time is longer than a given threshold,
for example, 80 ms.

The fixed, adaptive, and predictive parallelization all apply
the same implementation to execute a query using multiple
threads, as described in Section 3.1.

Query response time is the key performance metric for
evaluating the parallelization policies. The response time,
including both execution and queueing time, is measured at
the ISN from the time that it receives the query to the time
that it responds to the client. Both mean response time
and 99th-percentile response time are reported. We do not
report response quality (i.e., relevance scores) because the
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Figure 6: Response times and CPU utilization of four different policies. We display the response time and
CPU utilization with one standard deviation.

parallelism decision does not affect the response quality [14].
No matter what parallelism degree is used, each query al-
ways performs a fixed amount of work for computing the
relevance scores, thus producing the same response quality.

5.2 Experimental Results
This section explains the impact of prediction on three

aspects of the ISN’s execution: (1) the prediction overhead,
(2) the response time reduction, and (3) the capacity im-
provement. Further, this section shows how to adapt the
threshold in predictive parallelization at runtime for better
resource utilization.

5.2.1 Prediction Overhead
As prediction itself adds additional work to query execu-

tion, it must be light-weight. Our measurements show that
the running time of the prediction is about 0.6 ms, which is
small at 4% of the average query execution time.

5.2.2 Response Time Reduction
Comparison to fixed parallelization. Figure 6 shows
both the 99th-percentile and mean response times as well as
the CPU utilization for the four strategies for different loads,
where the averaged response times and CPU utilization are
obtained by 5 repetition to remove any biased results. For
predictive parallelization, we use a threshold of 80 ms, so
the queries predicted to execute longer than 80 ms run with
3-way parallelism.

Figure 6(a) compares the 99th-percentile response time
for the competing policies. The x-axis represents the system
load expressed as the average query arrival rate in queries
per second (QPS). We study a wide range of load from very
low to very high values. The y-axis represents the 99th-
percentile response time of the queries. From the results
we make three observations. First, parallelization signifi-
cantly reduces the tail latency. Specifically, at light load
(up to 500 QPS), both parallelization policies reduce the
99th-percentile response time from 200 ms using sequential
execution to 100 ms. Second, at moderate to high load (500–
750 QPS), predictive parallelization still achieves the same
level of reduction, reducing the tail latency by 50% over se-
quential execution. In contrast, fixed parallelization fails to
do so. This clearly shows that predictive parallelization is
better than fixed parallelization in reducing the tail latency.
Third, at extremely high load (>800 QPS), sequential ex-
ecution has lower response time than fixed and predictive
parallelization as there is no free core available to run queries

in parallel. However, we do not operate our servers at such
very high load because all policies violate the desired SLA
of 100 ms on 99th-percentile response time.

Next we explain why predictive parallelization outper-
forms fixed parallelization at moderate to high load. Pre-
dictive parallelization enables judicious utilization of cores
to long-running queries. At light load, there are ample idle
cores and some waste due to parallelization overhead is tol-
erable. However, when the load increases, idle cores become
scarce so they must be dedicated to long-running queries.
More precisely, two factors contribute to the success of the
predictive strategy. (1) The predictive strategy incurs a
fairly small overhead because more than 99% of the short-
running queries that are most common are not parallelized
— recall that our prediction has high precision (>80%). Our
predictive approach rarely identifies a short-running query
as long-running and parallelizes it unnecessarily. It only
parallelizes 3.71% of the total queries, of which about 3.3%
are truly long-running queries. Figure 6(c) presents the av-
erage CPU utilization for the three policies under varying
load, where we see a significant overhead with fixed paral-
lelization. For example, at 400 QPS, this approach increases
CPU utilization by 30% (from 28% of sequential execution to
58%), whereas the predictive strategy increases it by 5% only
(from 28% to 33%). Using between 5% - 10% of additional
CPU is a worthwhile cost to achieve 99th-percentile response
time reduction by 50%. Such a small increase of CPU utiliza-
tion is often affordable because search engine is not designed
to operate at extremely high load [14] (in order to avoid
queueing delay and quality degradation). Thus, there ex-
ist spare resources that parallelization can exploit. (2) True
long-running queries, which are rare and show good par-
allelization speedup, are mostly identified and parallelized
by the predictive strategy — the prediction has high recall
(>80%). While 4% of all queries are long-running queries,
3.3% are identified and parallelized, successfully reducing
the 99th-percentile response time.

Although search engines are optimized to reduce the high-
percentile response time, we also present the mean response
time results. Figure 6(b) shows that the trends for mean
response time are similar to the 99th-percentile, except for
the fact that under low load, the predictive approach has a
slightly higher mean response time than fixed parallelization.
This is expected: At low loads, fixed parallelization executes
all incoming queries in parallel to aggressively make use of
many idle cores, so it achieves more response time reduc-
tion on average. However, when the arrival rate goes up to



450 QPS, the ISN should carefully select which queries to
parallelize. The predictive approach makes smart decisions,
parallelizing long-running queries only, and thus it outper-
forms fixed parallelization.

Comparison to adaptive parallelization. Adaptive par-
allelization is a recent approach on search engine query par-
allelization [14]. It dynamically selects the appropriate de-
gree of parallelism based on system load: it executes all
queries with a high degree of parallelism at low loads and
reduces the degree of parallelism with increased load. Specif-
ically, in Figure 6, at 50–100 QPS, the adaptive strategy par-
allelizes queries aggressively using 5 or 6 threads per query.
When the arrival rate increases to 150–250 QPS, it more con-
servatively uses 3 or 4 threads per query. Under even higher
load, it switches to sequential execution. Reducing the par-
allelism degree with increased load prevents overloading of
the system under moderate/high load.

Figure 6(a) compares the 99th-percentile response time
between adaptive and predictive parallelization, and it shows
the advantage of predictive parallelization. By not wasting
processor cores to parallelize short-running queries, the pre-
dictive strategy achieves the 99th-percentile response time
of 100 ms up to 750 QPS. In contrast, adaptive has 99th-
percentile response times exceeding 100 ms from 300 QPS,
violating the SLA at fairly light loads. This is because adap-
tive parallelization does not differentiate long-running and
short-running queries, which have different parallelization
efficiency and different impact to tail latency. The adaptive
strategy has to assign the available cores equally among all
types of queries. Thus, as load increases, it reduces paral-
lelism degree for all queries — long-running queries do not
get sufficient parallelism, causing the increase in tail latency,
while short-running queries waste resources on any paral-
lelism they get, causing the ineffective utilization of cores.

Although adaptive parallelization has its limitations, it is
still instructive to adapt query parallelization degree based
on system load, e.g., using sequential execution at extremely
heavy load. We discuss how to adapt our predictive ap-
proach with system load in Section 5.2.4.

5.2.3 Capacity Improvement
Figure 6(a) also shows that, while meeting the same re-

sponse time target, predictive parallelization also supports
higher throughput. Assuming a desired 99th-percentile re-
sponse time target of 100 ms, an ISN using the predictive
approach sustains arrival rates up to 750 QPS, while us-
ing fixed/adaptive parallelization can only support up to
500 QPS. In other words, the predictive approach increases
the server throughput by 50%. This indicates a 50% ca-
pacity improvement since we can use the same number of
servers to process 50% more query loads.

Another method to show the benefits of the capacity im-
provement is to compute the number of required servers for
a workload. Assume a total workload of X QPS that a
search engine needs to serve. Predictive parallelization re-
quires X/750 servers while fixed parallelization needs X/500
servers: the predictive approach potentially saves (X/500−
X/750)/(X/500) = 33% of the ISNs to serve the same work-
load. As major search engines use thousands of servers in
production, these savings are significant.
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Figure 7: Latency with different threshold values.

5.2.4 Adapting Threshold Values with Varying Load
To optimize high-percentile response time for all loads, a

good adaptation of our predictor is to monitor the system
loads and make the threshold a function of the load.

Figure 7 shows the benefits of applying different thresh-
old values at different loads. Under light load, a smaller
threshold value is preferred so more queries are parallelized;
parallelization overhead is less of a concern under light load.
As shown in Figure 7, at light load from 50 QPS to 450 QPS,
we shall choose to parallelize all requests, equivalently, using
a threshold of 0 ms. With increased load, a larger threshold
value is preferred so only the long-running queries are par-
allelized. As shown in Figure 7, from 450 QPS to 750 QPS,
the threshold value to optimize the 99th-percentile response
time increases to 80 ms. With the further load increase
from 750 QPS to 800 QPS, the best threshold value becomes
140 ms. At extremely heavy load (>800 QPS), sequential
execution, which is equivalent to applying a threshold of in-
finity, produces the minimum latency.

This result shows that we could adapt the threshold val-
ues based on the system load to optimize response time for
all loads. It also justifies why we choose to use a regres-
sion model instead of a classification model in the learning
framework, as the regression model offers the flexibility to
choose different threshold values.

6. RELATED WORK
Prediction on search queries. The primary focus of
prior work on predicting the execution time of web search
queries is on identifying the traversal of the posting lists
in the inverted index, which constitutes a large portion of
query processing. Moffat et al. [17] show that the execu-
tion time of a query is related to the posting list lengths
of its constituent query terms. However, under dynamic
pruning strategies, the execution time can vary widely even
for queries with the same number of postings because not
every posting is scored [2]. Macdonald et al. [16] incorpo-
rate this observation to predict the execution time under
dynamic pruning. In particular, various term-level statis-
tics are computed for each term offline. When a query ar-
rives, the term-level features are aggregated into query-level
statistics, which are used as inputs to a regression model.
These schemes, however, do not consider query rewriting
and query features that highly influence query execution.
Prior schemes do not investigate the cost of prediction when
deployed to real systems. This work addresses these aspects.

Prior research shows how to predict the response quality
of a query, and two approaches are proposed. First, pre-



retrieval predictors are calculated based on statistics from
the query, without resorting to inverted index access [13].
Second, post-retrieval predictors have more information, ex-
ploiting the scores or contents of retrieved documents [1, 7].
These approaches are complementary to our work.

Some of the prediction frameworks are proposed to sched-
ule queries in a replicated retrieval setting [16, 11] or to
selectively prune query processing dynamically [25]. No at-
tempt, however, has been made to use prediction combined
with parallel query execution to reduce the tail latency.

Search query parallelization. To reduce the response
time of some search queries, we focus on parallelization,
while index compression and index/result caching are alter-
native or complementary strategies; see a recent survey [27]
for an overview of these techniques. To parallelize a query,
Frachtenberg applies multithreading to achieve intra-query
parallelization [10], by partitioning data into “equal” sized
subsets of document IDs and letting each thread work on one
subset. However, the matching documents can be unevenly
distributed along the index space causing load imbalance.

The load imbalance problem has been addressed, for ex-
ample, by using fine-grained partitioning [24] and by using
decentralized communication [14]. The latter approach en-
ables early pruning of each thread and deciding the paral-
lelism degree dynamically. However, both approaches paral-
lelize all queries, wasting computational resources. In con-
trast, this work identifies long-running queries and paral-
lelizes them and runs short-running queries sequentially, lead-
ing to a more efficient utilization of the computational re-
sources and to significant reduction in tail latencies.

Frachtenberg [10] proposes a heuristic to predict which
queries to parallelize based on runtime information. A query
first runs sequentially for a subset of the index partition,
and the ratio of hits to documents is determined. If the
ratio is above a threshold, the query is assumed to have
good parallelization speedup and is theretofore parallelized;
otherwise, the query runs sequentially. Although the ratio
of hits to documents could correlate with query execution
time, it does not capture other important factors contribut-
ing to the query execution time such as query complexity,
pruning, etc. Moreover, compared with predictive strategy,
this approach postpones the parallelism decision by running
all queries sequentially at the beginning, and therefore long-
running queries do not get the resources to speed up their
execution at the earliest possible time.

7. CONCLUSIONS
This paper focuses on reducing the tail latencies for web

search queries. To achieve this, we propose predictive paral-
lelization, which is based on predicting query execution time.
Our contributions include an accurate and efficient predictor
for estimating query execution time and an effective par-
allelization strategy for reducing tail latency. To provide
better accuracy and efficiency, we (1) use both query and
term features, (2) propose cheap features, and (3) consider
query rewriting. We implement this framework and evalu-
ate its performance experimentally on a commercial search
engine as compared to two competing strategies, fixed par-
allelization and adaptive parallelization. Our results show
that predictive parallelization reduces the 99th-percentile re-
sponse time by 50% from 200 ms to 100 ms compared with
both approaches, which parallelize all queries. Moreover,
it reduces the parallelization overhead and increases system

capacity by more than 50%. This potentially saves one-third
of production servers, constituting a significant cost reduc-
tion in a large-scale system.
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