
Adaptive Parallelism for Web Search

Myeongjae Jeon†, Yuxiong He∗, Sameh Elnikety∗, Alan L. Cox†, Scott Rixner†
∗Microsoft Research †Rice University
Redmond, WA, USA Houston, TX, USA

Abstract
A web search query made to Microsoft Bing is currently par-
allelized by distributing the query processing across many
servers. Within each of these servers, the query is, however,
processed sequentially. Although each server may be pro-
cessing multiple queries concurrently, with modern multi-
core servers, parallelizing the processing of an individual
query within the server may nonetheless improve the user’s
experience by reducing the response time. In this paper, we
describe the issues that make the parallelization of an in-
dividual query within a server challenging, and we present
a parallelization approach that effectively addresses these
challenges. Since each server may be processing multiple
queries concurrently, we also present a adaptive resource
management algorithm that chooses the degree of paral-
lelism at run-time for each query, taking into account system
load and parallelization efficiency. As a result, the servers
now execute queries with a high degree of parallelism at low
loads, gracefully reduce the degree of parallelism with in-
creased load, and choose sequential execution under high
load. We have implemented our parallelization approach and
adaptive resource management algorithm in Bing servers
and evaluated them experimentally with production work-
loads. The experimental results show that the mean and 95th-
percentile response times for queries are reduced by more
than 50% under light or moderate load. Moreover, under
high load where parallelization adversely degrades the sys-
tem performance, the response times are kept the same as
when queries are executed sequentially. In all cases, we ob-
serve no degradation in the relevance of the search results.

Categories and Subject Descriptors D.4.1 [Operating Sys-
tems]: Process Management—Threads; H.3.3 [Information
Storage and Retrieval]: Information Search and Retrieval—
Search process

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
EuroSys’13 April 15-17, 2013, Prague, Czech Republic
Copyright c⃝ 2013 ACM 978-1-4503-1994-2/13/04. . . $15.00

General Terms Algorithms, Design, Performance

Keywords web search, parallelism, response time

1. Introduction
We have become dependent on web search in our everyday
lives. Moreover, we have come to expect that the search re-
sults will be returned quickly to us and will be highly rel-
evant to our search query. More formally, web search op-
erates under an SLA requiring short response times (e.g.,
300 ms) and high result relevance. In order to meet this
SLA, web search engines maintain massive indices of docu-
ments, which are partitioned across hundreds or thousands
of servers. Quickly finding relevant documents in such a
massive index relies on the use of large-scale parallelism.
Nonetheless, in practice, achieving both high responsiveness
and high quality is still challenging because these two re-
quirements are often at odds with each other.

Today, web search engines commonly achieve large-scale
parallelism in two complementary ways. They process mul-
tiple search queries concurrently, and they distribute the pro-
cessing of each query over hundreds or thousands of servers.
In this paper, we explore a third complementary way of
achieving parallelism. We study intra-query parallelization
of index searching within a multi-core server. Specifically,
we focus on how to parallelize a single query within one
server that hosts a fragment of the web index, such that mul-
tiple processor cores cooperate to service the query. This is
motivated by having processors with more cores rather than
faster clock speeds, making intra-query parallelization an ef-
fective technique to reduce query response time.

At the query level, web search is embarrassingly parallel.
Each server searches its fragment of the index. This fragment
is effectively a sorted list of documents in order of decreas-
ing “importance”. Documents that are more important are
given a higher static priority. When performing a web search,
these documents are searched first for relevant results. The
relevance of a result is a combination of the static priority,
indicating document importance, and the dynamic priority,
indicating relevance to the search terms. A web search can
terminate early if it discovers that the static priority of the re-
maining pages is such that further work is unlikely to yield
any better results for the current query. Therefore, a sequen-

tial search of the ordered index almost never scans the entire
index. In fact, about 30% of queries need only search 10%
of the index.

Unfortunately, this early termination of web searches
makes intra-query parallelization challenging. It is not obvi-
ous how to partition tasks within a single query in order to ef-
fectively search the index without performing large amounts
of unnecessary work. Since a sequential search can termi-
nate the search early, a parallel search will almost always
scan more of the index. Documents with a higher static pri-
ority are being scanned concurrently with documents with a
lower static priority. So, the time spent looking at the lower
priority documents is wasted if enough relevant results are
found in the higher priority documents.

To reduce such wasted work, this paper introduces a dy-
namic fine-grain sharing technique that parallelizes each in-
dividual request while preserving the sequential order of
execution. This technique limits wasted work and achieves
good load balancing.

In addition, any intra-query parallelization strategy has
to be sensitive to both system load and parallelization over-
head. Blindly using high degrees of parallelism pays off un-
der low load, dramatically reducing response latency. How-
ever, under high load, the unnecessary work delays waiting
queries.

To address these additional problems, this paper intro-
duces an adaptive parallelization strategy that dynamically
selects the degree of parallelism on a query-by-query basis.
The selection is made based upon the current load and the
estimated cost of parallelizing the query. The cost amounts
to a combination of the estimated benefits to the paral-
lelized query and the estimated delays on subsequent waiting
queries.

We show that the adaptive strategy outperforms the base-
line sequential execution that is performed today on produc-
tion servers. The delay is decreased or at least the same and
the relevance of the results is always the same or slightly
better.

When system load is light, using fixed degrees of paral-
lelism for all queries results in latency reductions of up to
50%, when compared to sequential execution. However, as
load increases, the system becomes saturated and latency in-
creases rapidly. This motivates both the need for parallelism
to reduce latency and the need for adaptation to prevent
system saturation, depending on the system load. However,
existing adaptive techniques [26] decide the request paral-
lelism degree using only system load without considering re-
quest parallelization efficiency. This results in improvements
over using a fixed degree of parallelism. However, it is hard
to decide how to decrease the degree of parallelism with in-
creased load without considering the efficiency with which
an individual request can be parallelized. Either the scheme
will be too conservative and not reduce latency as much as

possible, or the scheme will be too aggressive and latency
will increase beyond sequential at higher loads.

Our adaptive parallelization strategy achieves the best
of both worlds. It dynamically adjusts the parallelism on a
query-by-query basis considering both system load and par-
allelization efficiency. Finally, it selects sequential execution
automatically under high load, preventing saturation and ele-
vated latencies. We implement and evaluate these techniques
in the context of a commercial search engine, Microsoft
Bing. Our experimental results using workloads from a pro-
duction environment show a reduction in both the mean and
95th-percentile response time by more than 50% under light
or moderate load at which web search servers would typi-
cally operate. Moreover, the results show no increase in the
response times under very high load. In all cases, no degra-
dation in the relevance of the search results is observed.

The contributions of our work are the following:

• We develop a dynamic fine-grain sharing technique that
partitions the indices and parallelizes query processing
with little wasted work and good load balancing.

• We develop an adaptive algorithm that decides the degree
of parallelism for each request at run-time using system
load and parallelization efficiency.

• We implement our parallelization techniques in a produc-
tion environment, Microsoft Bing, and evaluate it with
production workloads.

This paper is organized as follows. We first present back-
ground on web search in Section 2. Then, we introduce op-
portunities and challenges of query parallelization in Section
3. Section 4 and 5 address two challenges respectively: (1)
how to partition and process index data, and (2) how to de-
termine request parallelism at runtime. Section 6 presents
our experimental results. Finally, Section 7 discusses related
work and Section 8 concludes the paper.

2. Web Search Engines
We focus our discussion here on the index serving part of
the web search engine that processes user search queries
(interactive processing), rather than on the web crawler and
indexer (batch processing). In this section, we present the
architecture of the index serving system in the Bing search
engine, its data layout and query processing.

2.1 Requirements
Response time. Achieving consistently low response times
is a primary design requirement for web search engines. A
web search service is required to respond to a user query
within a bounded amount of time. Since users are highly
sensitive to the server’s response time, a small increase in
query response time can significantly degrade user satisfac-
tion and reduce revenue [16, 28]. Therefore, it is important
for service providers to lower the mean and high-percentile
response times for their services.

����������

�	
 �	
 �	
 �	

�������

�������

(a) Partition-aggregate structure

���������	

��������

������ ������ ������������
(b) Query processing in ISN

Figure 1. Search engine architecture.

Relevance. A web search engine must provide results that
are relevant to the search keywords. Relevance is a complex
metric to which many factors contribute. In general, the rel-
evance of results improves with a larger web index contain-
ing more documents, with more features extracted from the
documents, and with more sophisticated ranking functions.
However, all of these factors contribute to greater resource
demands and longer query processing times.

2.2 Search Architecture
The index serving system is a distributed service consisting
of aggregators (also known as brokers) and index serving
nodes (ISNs). An entire web index, consisting of billions
of web documents, is partitioned and stored in hundreds
of ISNs. When the result of a request is not cached, the
index serving system processes and answers it. Aggregators
propagate the query to all ISNs hosting the web index, ISNs
find matching documents for the query in their part, and
aggregators collect the results.

Figure 1(a) illustrates the partition-aggregate architec-
ture, consisting of an aggregator and its ISNs. When a query
arrives, an aggregator broadcasts it to its ISNs. Each ISN
searches a disjoint partition of the web index and returns the
most relevant results (currently 4). Each ISN returns these
results to the aggregator within a time bound (e.g., 200 ms).
Late responses are dropped by the aggregator. After aggre-
gating and sorting the results, the aggregator returns the top
N documents to the user. Due to the large number of ISNs,
several levels of aggregators may be used.

ISNs are the workhorse of the index serving system. They
constitute over 90% of the total hardware resources. More-
over, they are along the critical path for query processing
and account for more than two-thirds of the total processing
time. Any ISN that fails to meet the time bound cannot con-
tribute to the final response, resulting in degraded response
quality and wasted resources.

2.3 Query Processing in the ISN
Workflow. Figure 1(b) shows the workflow for query pro-
cessing in an ISN. Currently, each query is processed se-
quentially by the ISNs, but each ISN processes multiple

�����

������ ������

	��
��������������������� ����
������
�

����� ����� �����
����

�	�

����

�	�
�

����

�	�
�

����

���

������
� �������������

Figure 2. Sorted web documents and inverted index.

queries concurrently. Newly arrived requests join the wait-
ing queue. When the waiting queue becomes full, new re-
quests will be dropped. An ISN manages a number of worker
threads. Each worker processes a single request at a time.
When a worker completes a request, it gets a new query from
the head of the waiting queue and starts to process it.

The number of workers is at least equal to the number
of cores in the system. Typically, there are twice as many
workers as cores, to account for workers who block on I/O.
However, blocking on I/O is rare because the indices are
partitioned, which promotes locality at the ISNs. Moreover,
most of the remaining I/O can be performed asynchronously.

Data layout and query processing. When an ISN worker
thread processes a query, it searches its web index to produce
a list of documents matching the keywords in the query. It
then ranks the matching documents. This is the most time
consuming part of the ISN’s work because the ranking func-
tion extracts and computes many features of the documents.

The ISN uses an inverted index (also called posting list)
to store information about documents. Figure 2 shows an ex-
ample of the data layout of the inverted index, where the
documents are sorted based on their static rank. The static
rank of a document depends only on its own features such
as its popularity; it does not depend on the query. When
a worker matches and ranks the documents by following
the inverted indices, it processes the documents with higher
static ranking first as they are more likely to contribute to
the top matching results of the query. During the ranking
process, each match is also “dynamically” scored to com-
pute a relevance score. The relevance score of a document
depends on its static rank as well as on many other features,
including for example, where and how many times the query
keywords appear in the document, the distance among mul-
tiple keywords, user location and context, etc.

When the search query has multiple keywords, the ISN
finds matches with all/many keywords appearing in the same
document. As queries are normally processed in the conjunc-
tive mode, this is done by intersecting inverted indices for
all keywords. The inverted indices are sorted based on doc-
ument static rank, so this is a simple merge-join process on
sorted data. The following explains a common algorithm for
performing the intersection. For each element in the shortest
index, a search method (e.g., binary or interpolation search)
is performed in the other indices. A matching document is
found if the element belongs to all/many indices. Other-
wise, the searching immediately stops, ignoring remaining

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000 10000

C
D

F

Execution Time (ms)

Figure 3. Semi-log CDF of query execution time.

indices, and moves to the next element in the shortest index.
After iterating over all elements in the shortest index, the
intersection terminates.

The inverted index is not implemented as a conventional
array. Its implementation is similar to that of a skip list. The
seek cost from one chunk to another is not constant but log-
arithmic on the size of the inverted index for a particular
keyword. Moreover, the inverted indices are compressed, ex-
ploiting more advanced data structures that trade-off among
space, decompression cost, and sequential and random ac-
cess efficiency.

Query termination. Once an ISN finds results for a query
that are good enough, it terminates the search and returns the
results. This is called early termination [1, 7, 24, 29]. The
ISN predicts how likely the results will improve from scor-
ing the remaining documents and terminates the execution
when the probability is low. Early termination is effective
because the inverted indices are sorted based on the static
rank of the web pages, which lists important and popular
web pages first. Web pages processed earlier are more likely
to rank higher and contribute to the top results of the query.
The ISN has an algorithm that takes the current top docu-
ments and the static ranking of the later documents as inputs,
and it decides if the termination condition is satisfied. The
specific details of this algorithm are beyond the scope of this
paper. With early termination, there is a small, but non-zero,
probability that more relevant results might be missed.

3. Opportunities and Challenges on
Parallelization

We introduce intra-query parallelism into the ISN. In this
section, we discuss important workload characteristics of
web search that create both opportunities and challenges for
such query parallelization. The methods for collecting the
data are the same as described in Section 6. For brevity, we
henceforth use the term query parallelization to mean intra-
query parallelization, unless specified otherwise.

3.1 Opportunities
Long requests require parallelization. Search requests
have varying computational demands. Figure 3 shows the
cumulative distribution of request service demands from
Bing; where the X-axis is in log scale. We observe a large

Figure 4. CDF of the fraction of index data processed.

gap between short and long requests1. In particular, the 95th-
percentile service demand is 3.68 times the average. The gap
between the median and the 95th-percentile is even larger at
12.37 times. These results show that there are a large number
of short requests but long requests dominate the total work:
the longest 25% of the requests represent more than 81% of
the total work. These long requests greatly affect the user
experience: users can hardly tell if a query takes 20 ms or
80 ms to complete, but the difference between 200 ms and
800 ms matters a lot, as 200–300 ms is a critical threshold
for query processing latency in many online services [28].

Two factors are typically responsible for these long
queries. First, these queries tend to have more documents
to match and score. This requires frequent invocations of
ranking inference engines which usually consume a signif-
icant number of processor cycles for scoring each match.
Second, these queries involve the intersection of a larger
number of inverted indices. It is known that the average
latency of queries with ten keywords is approximately an or-
der of magnitude greater than that of queries with only two
keywords [31].

Computationally intensive workload allows parallelization.
The ISN performs complex calculations, such as computing
the relevance of matches. Furthermore, the indices are par-
titioned across nodes so as to create locality and reduce I/O
accesses. These factors make the ISNs computationally in-
tensive. In fact, web search exhibits higher instructions per
cycle (IPC) than traditional enterprise workloads [17]. This
also means that processor cache misses are relatively infre-
quent. Therefore, we would expect queries running in par-
allel on an enterprise-class server to exhibit little slowdown
due to memory contention.

This is, in fact, the case. At 10 queries per second (QPS),
only one core is active on average, and the total CPU uti-
lization across 12 cores is 7%. At 70 QPS, only 6 cores out
of 12 are active on average, and the total CPU utilization
is 50%. The difference in average response latency between
these two cases is only 5%, confirming that the interference
among concurrently running queries is negligible.

1 In this paper, we use “long” or “slow” to indicate queries with high
computational cost and long processing time. The term “short” or “fast”
thus has the opposite meaning.

�����

������ ������

	��
��������������������� ����
������
�

����� ����� �����
����

�	�

����

�	�
�

����

�	�
�

����

���

������
�

����������

������
�

����������

Figure 5. An example of static coarse-grain processing with
2 threads. Both web documents and inverted index are ac-
cordingly bipartite.

3.2 Challenges
Parallelization based on static data partitioning and in-
dex processing is ineffective at achieving early termina-
tion. As a result of early termination, it is common that
documents with low importance are rarely visited during se-
quential execution. Figure 4 shows the cumulative distribu-
tion of the fraction of inverted indices visited by Bing ISNs.
The measurements indicate that about 30% of the queries
use only 10% of the documents. Moreover, more than 38%
of the queries never need to score matches on the second
half of the documents. This poses challenges to query paral-
lelization. We present two basic approaches and discuss their
performance limitations.

One possible approach, static coarse-grain processing,
partitions the data into the same number of chunks as there
are threads assigned to the query. This approach may, how-
ever, introduce a large amount of speculative execution be-
cause all matching documents will be processed. Consider a
simple example: we partition the inverted index of a query
into two chunks and process each chunk with a different
thread, as shown in Figure 5. Much of the work performed
by the second thread is likely to be useless, since 38% of the
queries (Figure 4) are unlikely to yield any relevant results
from the second half of the index.

Another approach, static fine-grain alternating, partitions
the data into many, smaller chunks, and assigns these chunks
to the threads in an alternating fashion. For example, we
label the partitioned chunks of the inverted index based on
their static order so we have chunks 1 to N . When we
use two threads, one thread processes odd chunks while
the other thread processes even chunks, and each thread
processes their chunks based on their static order so more
important chunks are processed first. While processing the
chunks, the threads communicate with each other to merge
the top results they have found so far. Thus, a thread can
terminate early without processing all assigned chunks once
the current top results are good enough. When concurrent
threads of a query advance at a similar rate, static fine-
grain alternating behaves similarly to the sequential order
of execution and it helps to reduce the amount of speculative
execution.

The static fine-grain alternating approach still has two
issues: (1) The amount of computation per chunk and per

thread may be uneven, resulting in unbalanced load among
threads. (2) Multiple threads of a query may not always be
co-scheduled since there are more threads than processor
cores. This can lead to different completion times for the
threads. Moreover, when one thread is delayed and does
not process its most important chunks, other threads may
perform a larger amount of speculative work because early
termination does not occur promptly.

Therefore, to parallelize web search, our first challenge is
to partition and process the index data efficiently to reduce
additional work.

Fixed parallelism is inefficient. Load on search servers
varies over time [23], so does the availability of idle re-
sources. Having fixed parallelism for queries cannot produce
low response times under all loads. We need a robust adap-
tive parallelization scheme that decides the degree of paral-
lelism at run-time based on system load and request charac-
teristics. This is our second challenge.

We address these two challenges in Sections 4 and 5.

4. Query Parallelization
This section presents how to partition and process the in-
dex data in parallel to reduce wasted, speculative work given
a fixed parallelization degree. We propose a parallelization
technique — dynamic fine-grain sharing — that mimics
the sequential order of execution with small synchroniza-
tion overhead and good load balancing among threads. This
keeps the overhead of parallelization low while producing
results with comparable quality to sequential execution. In
this section, we first describe how we partition and process
the index data using concurrent threads. Then, we discuss
the communication among threads and how to reduce the
overhead. Finally, we show the speedup results of using our
parallelization technique.

4.1 Index Data Partitioning and Processing
Dynamic fine-grain sharing partitions the index into small
chunks. When a thread becomes idle, it grabs the most im-
portant unprocessed data chunk. To implement this tech-
nique, we need only use a counter representing the ID of
the next most important unprocessed chunk. An idle thread
uses an atomic fetch-and-increment operation to claim this
chunk and update the counter to reference the next most im-
portant chunk. The threads communicate with each other to
merge the top results they have found so far. When a thread
finds that the current top results are good enough and the
later chunks are unlikely to produce better results, the thread
stops processing the query, reducing computation overhead.

Compared to the static fine-grain alternating approach in
Section 3, dynamic sharing more closely mimics the sequen-
tial order of execution regardless of thread scheduling. It also
achieves better load balancing. Even when threads of a query
are not co-scheduled, the active threads of the query still pro-
cess the chunks based on their sequential order. Moreover,

(a) Mean response time (b) 95th-percentile response time

Figure 6. Comparison between dynamic fine-grain sharing and static fine-grain alternating using degree-3 parallelism.

as the dynamic sharing is similar to having a shared global
queue of tasks, good load balancing is attained. Nonetheless,
the synchronization overhead is quite small, because obtain-
ing a task only requires a single atomic fetch-and-increment
operation.

Figure 6 compares the performance between the static al-
ternating and dynamic sharing techniques. The experimen-
tal setup is the same as that in Section 6. The figure shows
that dynamic sharing always outperforms static alternating
with lower mean and 95th-percentile response time. Under
light load from 10 to 50 QPS, the performance gap between
the static and dynamic approaches is smaller: the static ap-
proach takes 3% to 12% longer than dynamic sharing for
both the mean and the 95th-percentile response time. The
inefficiency of static alternating is mostly caused by the un-
even work distribution among chunks. Under heavy loads,
however, both thread scheduling and uneven work distribu-
tion among chunks affect response time. Specifically, due
to the imbalance of OS thread scheduling, when a delayed
thread did not get a chance to process its most important
chunks, other threads may incur a larger amount of wasted,
speculative work. These threads evaluate lower static-rank
documents that are unlikely to be the top results, increas-
ing response time. As shown in the figure, under 70 QPS,
the mean and 95th-percentile response times for static alter-
nating are 75% and 78% higher respectively than dynamic
sharing.

4.2 Thread Communication
Threads must communicate to determine when to terminate
the search. There are different approaches for threads to
communicate and share information. A simple way is for
all threads to maintain one global data structure and update
this data structure whenever a thread finds new results. The
problem with this simple approach is the potential for con-
tention among threads. Processing of a query often evaluates
thousands of matches, and thus synchronizing for every new
match is expensive.

Our approach uses batched updates. We maintain a global
heap for each query and a local heap for each thread execut-

ing the query. A thread periodically synchronizes the infor-
mation in its local heap with the global heap, not directly
with other threads. Specifically, we synchronize the global
heap and a thread’s local heap only when a thread completes
its computation for a chunk. Batch updates allow threads to
see the results of other threads soon enough to facilitate ef-
fective early termination without introducing much synchro-
nization overhead. The chunk size is tunable to tradeoff be-
tween the synchronization overhead and the amount of spec-
ulative execution, but data compression limits the smallest
chunk size. We determine the appropriate chunk size empir-
ically.

4.3 Speedup with Query Parallelization
Figure 7(a) shows that for the 5% of the queries that run
longest, we achieve more than 4 times speedup by using 6
cores. This reduces their mean response time from 856 ms
to 212 ms. This is an important improvement: to provide a
pleasing user experience, the service’s response to a user re-
quest must occur typically within a couple hundred millisec-
onds, around the limits of human perception.

Long requests achieve good speedup for two reasons.
First, the dynamic data partitioning and processing scheme
effectively controls the amount of speculative execution. As
compared to a sequential execution, a parallel execution
with degree p is unlikely to visit more than p − 1 extra
chunks. Since sequential executions of the long requests
visit a few hundred chunks on average, the additional p −
1 chunks constitute a small percentage of the overhead.
Second, our parallelization focuses on the matching and
ranking of the inverted indices to find the top documents of
a query, however, there are parts of the query processing that
are not parallelized, e.g., query parsing and rescoring of the
top results. For the longest queries, the non-parallelized part
constitutes a very small part of the total execution time.

Figure 7(b) shows the execution time reduction for all
queries. Using 6 threads, we achieve about 2.5 times speedup.
Short queries benefit less from parallelization for two rea-
sons. First, the non-parallelized part of a short query is a
larger fraction of the total response time, reducing the ben-

(a) Top 5% longest queries (b) All queries

Figure 7. Breakdown of execution time and speedup in parallelization. The execution time is divided into non-parallel and
parallel parts. There is more than 4 times speedup when using 6 threads for parallelizing long queries.

efits of parallelization. Second, the time spent speculatively
processing the additional chunks constitutes a larger fraction
of the total response time.

Although reducing the chunk size can reduce the amount
of speculative work, it may add to other overheads. For ex-
ample, reducing the chunk size will increase the frequency of
moving between non-adjacent chunks. This has a non-trivial
cost because the inverted index cannot be accessed like an
array. Also, it will increase the synchronization overhead.

5. Adaptive Parallelism
A fixed degree of parallelism cannot reduce response times
for all loads. For example, with only one query in the system,
it is better to use as many cores as possible to process the
query, rather than leaving the cores idle. In contrast at heavy
load, high degrees of parallelism may introduce substantial
overhead: as there are little spare resources, the paralleliza-
tion overhead of a request takes resources away from waiting
requests. We propose an adaptive parallelization algorithm
that decides the query parallelization degree at runtime on a
per query basis to reduce the response time of requests over
different loads. We first elaborate on the factors that affect
the desired degree of parallelism for a request; then we de-
scribe the adaptive parallelism algorithm.

5.1 Factors Impacting Parallelism Degree
The adaptive parallelization algorithm considers two factors:
system load and parallelization efficiency.

System load. Our algorithm uses the number of waiting
jobs (i.e., queries) in the queue to model the instantaneous
system load. Compared to query arrival rate, queue length
captures fine-grain changes on system load. For example,
even at the same average query arrival rate, we directly
observe the change of queue length due to transient overload
or underload, where different parallelism degrees may be
used for better performance.

Figure 8. Request execution time profile.

Parallelization efficiency. Our algorithm uses a request
execution time profile to model request parallelization effi-
ciency, capturing parallelization overhead. The request ex-
ecution time profile maps the degree of parallelism to an
expected execution time. As the exact execution time of a
query is not known in advance, we use the average execution
time as measured across all requests as an estimate. Figure
8 presents the measured average execution time profile of
Bing requests, executed one at a time, using production in-
dex and query log based on our parallel implementation. For
reference, Figure 8 also presents the execution time profile
assuming ideal speedup or no speedup.

The parallelization efficiency directly impacts the desired
degree of parallelism. Requests whose response time de-
creases linearly with increased parallelism should utilize as
many cores as possible. In contrast, requests whose response
time would not decrease with increased parallelism should
run sequentially. However, in reality, most requests fit nei-
ther of these extremes. So, requests fall along a continuum
of desired parallelism.

More generally, the type and service demand of a request
can also influence parallel execution time. However, in Bing,
requests have the same type, and the scheduler has no prior

knowledge of the computational cost of a request. Therefore,
we do not use these factors to improve the decision.

5.2 Determining Parallelism Degree
We admit a request from the waiting queue to the processor
when the total number of active threads in an ISN is less than
2P where P is the total number of cores. Before executing
a request, we decide its degree of parallelism using Algo-
rithm 1. The algorithm takes system load and the request
execution time profile as inputs and returns the parallelism
degree for the current job. The algorithm uses a greedy ap-
proach to choose the parallelism degree that increases the
total response time the least. More specifically, the argmin
operator at Line 5 searches for the parallelism degree from
1 to P that minimizes the estimated increase on the total
response time and returns that parallelism degree.2 The al-
gorithm is computationally efficient with complexity O(P),
where P is the total number of cores in the server.

The expression (in Line 5) estimates the increase in to-
tal response time from executing a job J with parallelism
degree i. The expression consists of two parts: (1) self-
increase: the execution time of the job J , and (2) peer-
increase: the additional time that other jobs in the system
have to wait because of the execution of job J . As the precise
execution time of J is unknown in advance, we estimate the
self-increase of J using average job execution time Ti when
using parallelism degree i.

We estimate the amount of peer-increase as the product
on the amount of time that J delayed other jobs and the
number of jobs that J delayed. The amount of delayed time
is Ti. We estimate the number of jobs J delayed as (K−1)×
i/P where K is the total number of jobs waiting in the queue
(including job J). Here the number of jobs affected by J is
proportional to how many other jobs waiting in the queue,
which is K − 1. When J uses i cores, it only delays the jobs
using these i cores, which we estimate as an i/P proportion
of the total jobs. So the expected number of jobs J delays is
(K−1)×i/P , which gives peer-increase Ti×(K−1)×i/P .
The expression in Line 5 adds the self-increase and peer-
increase of J , producing the increase on total response time.

Impact of load. The following examples illustrate how the
algorithm works in response to system loads. First, at very
light load with only job J in the system, the self-increase of
J dominates its increase on total response time, so small Ti

is better. As larger parallelism degree often reduces execu-
tion time, our algorithm chooses a high parallelism degree
at light load. Second, at heavy load, the peer increases dom-
inates due to large K. To minimize total response time in-
crease, we need to minimize the value of Ti× i, which is the
total amount of work job J incurs. Sequential execution of-

2 The operator argmin f(i) returns parameter i that minimizes function
f(i). Here the argument i denotes the parallelism degree and f(i) =
Ti + (K − 1)× Ti × i/P represents the estimated response time increase
using parallelism degree i.

Algorithm 1 Deciding the parallelism degree of a job
Input:
1: P : total number of cores in the server
2: Instantaneous system load K: the total number of jobs in the waiting

queue
3: Request execution time profile {Ti|i = 1...P}: Ti is the average job

execution time with parallelism degree i

4: procedure ADAPTIVE
5: return argmin

i=1...P
(Ti + (K − 1)× Ti × i/P)

6: end procedure

ten gives the minimum because of parallelization overhead.
Therefore, our algorithm chooses a low parallelism degree
at heavy load.

Impact of parallelization efficiency. We first consider two
extreme cases. (1) For a job with perfect linear speedup, the
values of Ti × i are the same for any parallelism degree i ≤
P . To minimize the total increase on response time, peer-
increase does not change with i value, thus the algorithm
chooses the i value minimizing the self-increase, i.e., a fully
parallelized execution with i = P . (2) For a job without any
speedup, the values of the execution time Ti are the same
for any i ≤ P . To minimize the total increase on response
time, self-increase does not change with i value, thus the
algorithm chooses the i value minimizing the peer-increase,
i.e., a sequential execution with i = 1.

More generally, when a request has high parallelization
efficiency and low overhead, the adaptive algorithm is more
aggressive at using higher degrees of parallelism: higher de-
grees reduce the self-increase significantly while increasing
the peer-increase slightly. On the other hand, when a re-
quest has low parallelization efficiency, our decision is more
conservative: higher degrees significantly increase the peer-
increase as the total work of the parallel execution is much
larger than sequential.

6. Evaluation
6.1 Experimental Setup
Machine setup and workload. The index serving node
(ISN) for our evaluation has two 6-core Intel 64-bit Xeon
processors (2.27 GHz) and 32 GB of main memory and runs
Windows Server 2012. We use 22 GB of memory to cache
recently accessed web index data. The ISN manages a 90 GB
web index, which is stored on an SSD to enable fast index
data fetching and to avoid performance degradation from
interleaved I/O accesses. The number of worker threads is
set to twice the number of cores, as workers sometimes block
on I/O accesses. The OS scheduler assigns the threads of a
query to the available cores.

Our evaluation includes an ISN that answers queries and
a client that replays queries from a production trace of Bing
user queries. The trace contains 100K queries and was ob-
tained in June 2012. We run the system by issuing queries

(a) Mean response time (b) 95th-percentile response time

Figure 9. Response time of sequential execution, fixed parallelism, and adaptive parallelism. The adaptive parallelism
performs better than any of fixed parallelism configurations. It also achieves significant reductions in both mean and 95th-
percentile latencies than sequential execution.

following a Poisson distribution in an open-loop system. We
vary system load by changing the arrival rate expressed in
QPS (queries per second). The ISN searches its local index
and returns the top 4 matching results to the client with rele-
vance scores. This is a standard configuration at Bing. How-
ever, with more results returned from each ISN, the process-
ing time of queries may increase. Our parallelism techniques
work in all cases.

Index chunk size. We empirically explore various chunk
sizes and use the one resulting in the smallest average query
execution time. In our experiments, the index space in the
ISN is partitioned into 200 chunks. A query processes 117
chunks on average as some queries terminate early. We ob-
serve that the performance is good overall and stable if the
average number of chunks processed per query is between
100 and 200. With larger chunk sizes, the overhead due to
speculative execution is too high and the load among the
threads is not balanced. These are no longer a problem with
smaller chunk sizes, but the benefits are offset by the syn-
chronization cost and the seek cost across chunks.

Performance metrics. We compare adaptive parallelism to
both sequential execution and fixed parallelism. We use the
following metrics:

• Response time. We measure query latency at the ISN
from the time that it receives the query to the time that it
responds to the client. Both mean response time (Mean)
and 95th-percentile response time (95th-Percentile) are
presented. Our measurements show that the improve-
ment in 99th-percentile response time is similar to 95th-
Percentile.

• Response quality. To evaluate the quality of a response
to a search query under adaptive parallelism, we com-
pare the relevance scores in the response to the relevance

scores in sequential execution. We will explain the details
of this methodology next.

• Cost of parallelism. We report average CPU utilization of
the ISN and the I/O and network bandwidth overheads.

We collect the performance metrics after the ISN index
cache is warmed to obtain steady state measurements.

Response quality metric. The quality of the response is an
important measure for search engines and we want adaptive
parallelism to provide very similar response quality to se-
quential execution. The quality metric we use is a relative
comparison of the quality of the results from a baseline run
(sequential) to a test run (parallelized).

To compare the quality of search results from two differ-
ent runs, we do the following. First, we perform a pairwise
comparison between relevance scores on the sorted results
from the two runs. So, the “best” result from the baseline run
will be compared to the “best” result from the test run, and
so on. Then, for each pairwise comparison, the quality met-
ric is incremented, decremented, or unchanged by the given
weight (explained below) based on whether the test run has
higher, lower, or the same relevance. This will produce a fi-
nal “relative quality” metric that tells us how much better (or
worse) the results from the test run are.

In the evaluation, the weights for the increment or decre-
ment are assigned in two ways. We use proportional weights,
which gives each of the top N = 4 documents the same
weight. We also use another quality metric, exponential
weights, to assign higher weights to higher ranking docu-
ments, as higher ranking documents are more important so
they are more likely selected by the top-level aggregator to
return to the user. We assign 8/15, 4/15, 2/15, and 1/15 for
the highest to lowest results.

Figure 10. Distribution of selected degree in adaptive par-
allelism at 60 QPS.

6.2 Adaptive Parallelism
6.2.1 Response Time
Figure 9 shows the Mean and 95th-Percentile response time
for all competing policies. For fixed parallelism, we evaluate
5 different degrees of parallelism (from Degree-2 to Degree-
6). We limit parallelism degree to 6 (number of cores on
1 CPU) because higher degrees do not perform better than
degree 6 — we have already observed diminishing returns
from degree 5 to 6 in Figure 7(b). Note that sequential
execution (Sequential) is based on unmodified production
code.

Figure 9 shows comparisons in two dimensions. First, it
presents the performance of fixed parallelism over a vari-
ety of query arrival rates. The figure clearly shows that there
is no fixed degree of parallelism that performs best across
all the arrival rates. Second, the figure shows that our adap-
tive algorithm (Adaptive) performs the same or better than
all other policies under all the arrival rates. In particular, for
the arrival rates less than 90 QPS, adaptive parallelism out-
performs all fixed parallelism solutions. For high arrival rate,
90 QPS and above, adaptive parallelism does not achieve any
benefits, but it also does not incur any penalty.

As the figure shows, our adaptive approach dynamically
selects the best degree of parallelism given the current arrival
rate. As the arrival rate increases, the degree of parallelism
for each query is reduced appropriately until the system is
saturated at 90 QPS. This allows the adaptive strategy to
achieve lower mean and 95th-percentile latencies under all
arrival rates. For example, at 60 QPS, sequential execution
has mean and 95th-percentile latencies of 86 ms and 316 ms,
respectively. The best fixed parallelization strategy (Degree-
3) lowers the mean and 95th-percentile latencies to 55 ms
and 186 ms, whereas adaptive parallelism further reduces
these latencies to 49 ms and 160 ms.

Note that Adaptive even outperforms the best fixed strat-
egy at each arrival rate. That is because even then, there are
queries being satisfied with different degrees of parallelism,
more effectively utilizing the system. Figure 10 shows the
distribution of the selected degree in the adaptive strategy
at 60 QPS. The figure illustrates that 1) unlike fixed par-

(a) Proportional weights (b) Exponential weights

Figure 11. Response quality of adaptive parallelism over
sequential execution. Non-negative quality values indicate
Adaptive achieves slightly better or equivalent qualities
compared with Sequential.

allelism, Adaptive is able to select any degree among all
possible options, and 2) these degrees are utilized unevenly
to produce better performance. Adaptive parallelizes queries
using a degree of 3 or 4 in most cases, with an average de-
gree of 3.44. This behavior cannot be achieved by any fixed
parallelism degree, and it enables Adaptive to perform better
than any of the fixed parallelism configurations.

Many commercial data centers have server utilization less
than 50% for certain production workloads [2, 5, 14], where
intra-query parallelism yields significant latency reductions.
For example, Bing search servers operate at between 30%
and 50% of the maximum level for most of the time. Search
engines have low CPU utilization by design, to avoid queue-
ing and to provide consistently high quality responses; the
servers are also over-provisioned for the events like a failure
of a cluster or an entire data center. At the same time, if load
spikes, Adaptive runs all queries sequentially so that aver-
age latency is no worse than the sequential case and system
throughput is not compromised.

6.2.2 Response Quality
Figure 11 presents the response quality of adaptive paral-
lelism (Adaptive) against sequential execution (Sequential)
over varying arrival rates. For each QPS, Sequential be-
comes a baseline run to compute the response quality of
Adaptive (which is the test run). Therefore, if Adaptive re-
turns better relevance scores of search query responses than
Sequential under a QPS, the figure will report a positive
value at that QPS.

We see in Figure 11 that Adaptive produces better or
equivalent response quality than Sequential over all arrival
rates tested. Adaptive returns positive qualities for many
cases (10 – 80 QPS), meaning that its relevance scores for
search queries are overall higher. This is because parallel ex-
ecution may cover a (slightly) longer prefix of the inverted
indices due to speculative execution, having more docu-
ments scored for a search query than when it is executed se-
quentially. In 90 or 100 QPS, Adaptive executes each query
sequentially and thus achieves an equivalent quality to Se-
quential.

Policy 10 QPS 30 QPS 50 QPS 70 QPS 90 QPS
Sequential 7% 22% 33% 50% 63%
Degree-2 8% 23% 38% 57% 77%
Degree-3 9% 26% 44% 69% 87%
Degree-4 9% 29% 50% 76% 95%
Degree-5 9% 30% 55% 85% ≈100%
Degree-6 10% 36% 62% 91% ≈100%
Adaptive 10% 31% 51% 65% 62%

Table 1. Comparison of CPU utilization. A policy & QPS
with a bold value indicates worse response times than Se-
quential.

6.2.3 Cost of Parallelism
Table 1 compares the CPU utilization of the different poli-
cies. CPU utilization is periodically sampled using the per-
formance counters in Windows. The fixed parallelization
strategies incur increasing CPU utilization as more threads
per query are used. This is expected, due to increasing par-
allelization overheads and additional speculative work. We
observe that on the test system, response times increase at
high rate when CPU utilization goes above 70%. The signif-
icant CPU contention that results under high arrival rates for
these fixed parallelization strategies therefore increases both
queue waiting time and query response time.

While the adaptive strategy (the last row) also consumes
additional CPU cycles when it parallelizes queries, CPU
utilization is always below 70% across a wide range of
arrival rates. Therefore, we see that the adaptive strategy
is able to balance CPU utilization and query response time
effectively.

The adaptive strategy also incurs minimal overheads
in terms of I/O and network bandwidth. While using the
adaptive strategy, I/O bandwidth increases from 9 MB/s to
14 MB/s at 60 QPS. The increased I/O bandwidth is due to
the increase in speculation placing additional pressure on the
cache of the index. This increase, however, is marginal con-
sidering the bandwidth supported by SSDs and thus is not a
limiting factor in the ISN. There is no observable network
overhead; this is expected, as the network is primarily used
to simply transfer the top matching results.

6.3 Dynamic Changes in Query Arrival Rates
We so far have presented results when the arrival rate is
fixed. Here, we vary the arrival rate over time to show that
the adaptive strategy can react to such changes. For this
experiment, we begin with a query arrival rate of 30 QPS,
increase it to 60 QPS, and then reduce it back to 30 QPS.
Figure 12 shows the moving average of the response time
against time in this experiment.

Figure 12 shows that the adaptive strategy is responsive
to run-time query arrival rate changes with response times
consistent with what we observed in Figure 9. Specifically, at
30 QPS, the adaptive strategy executes queries mainly using
5 or 6 threads per query to aggressively make use of idle
cores. When the arrival rate goes up to 60 QPS, however,

0

20

40

60

80

100

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30M
ea

n
 R

es
p

o
n

se
 T

im
e

(m
s)

Time (in minutes)

Adaptive Sequential

30 QPS 60 QPS 30 QPS

Figure 12. Mean response time with changing arrival
rates between adaptive parallelism and sequential execution.
Moving average of 30 sec is used to compute mean.

it more conservatively uses 3 or 4 threads per query. As a
result, the response times observed under these arrival rates
are consistent to those in Figure 9. The sequential response
times remain relatively constant because the machine is not
saturated at these arrival rates.

6.4 Comparison to Other Algorithms
There are other possible adaptive parallelization strategies
that could be used to parallelize queries. Here, we consider
two schemes: binary and linear [26]. These schemes con-
sider only instantaneous system load, which is the number
of queries waiting in the queue as discussed in Section 5.

The binary scheme selects either no parallelism (sequen-
tial execution) or maximum parallelism (degree 6). It begins
with sequential execution. If the system load remains below
a threshold T for N consecutive queries, it starts paralleliz-
ing queries with degree 6. If the system load then remains
above the threshold T for N consecutive queries, it returns to
sequential execution. In all experiments, we set N to 50 and
T to be the average load observed in Sequential at 50 QPS.

The linear scheme utilizes all degrees of parallelization
between 1 and 6. If the system load goes above some maxi-
mum, T , then queries are not parallelized. Below T , queries
are parallelized inversely proportional to the system load.
The degree of parallelism is computed using the formula
max(1, 6 × (T − K) ÷ T), where K is the instantaneous
system load. The result is rounded to yield an integral degree
of parallelism. Small values of T result in a more conserva-
tive approach where lower degrees of parallelism are used
for even moderate system loads. Higher values of T result
in a more aggressive approach that selects higher degrees of
parallelism.

Figure 13 compares these schemes with various values
of T . For comparison, we repeat the results of Sequential
(sequential execution), Degree-6 (the highest degree of fixed
parallelism), and Adaptive (our algorithm) in the figure.

Given the limited choices available to the binary strat-
egy, one would expect it to vary in performance between
sequential and Degree-6. As the figure shows, this is ex-
actly what happens. As the threshold T is reached (around
50 QPS given the parameters we used), it transitions from

(a) Mean response time (b) 95th-percentile response time

Figure 13. Response time comparison with other schemes, Binary and Linear, from prior work [26]. Adaptive performs better
than both of them.

being close to the Degree-6 performance to the sequential
performance. While the transition point can be tuned, this
strategy fundamentally follows these two curves.

The linear strategy provides more freedom to utilize the
system and balance performance. If the value of T is set
to be too low (i.e., T = 1), then the strategy will be too
conservative and will largely track sequential performance.
As Figure 13 shows, however, Linear-1 is still able to achieve
gains over Sequential at low arrival rates. If the value of T
is set to be too high (i.e., T = 20), then the strategy will be
too aggressive and will blow up. As the figure shows, it still
outperforms a fixed degree of 6, but has simply moved the
saturation point where response times increase dramatically
from around 50 QPS to 70 QPS.

With moderate values of T , such as 5 or 10, performance
is more balanced. Figure 13 shows that Linear-5 and Linear-
10 perform well across the spectrum of arrival rates. How-
ever, even Linear-10 is too aggressive under high arrival rate,
which results in significantly increased response times over
sequential for 100 QPS. Our application has fairly high par-
allelization overheads as shown in Figure 8. Consequently,
the more conservative linear approach (T = 5) is better than
linear with other T parameters.

Adaptive performs better than linear because Adaptive
exploits both parallelization efficiency and system load
when selecting the degree of parallelism. For example, in
95th-percentile latencies, Adaptive performs 8.5%, 17.5%,
11.5%, and 14.6% better than Linear-5 under 50, 60, 70,
and 80 QPS, respectively. The performance gap is wider for
higher-percentile values; in 99th-percentile latencies, Adap-
tive performs 21%, 27.5%, 27.2%, 23% better than Linear-5
under the same arrival rates.

The parallelization efficiency is a good indicator on how
aggressively the parallelism degree should decrease with
increased load. In contrast, linear uses only system load, and
therefore it may be either too conservative or too aggressive.

Also, as its performance is sensitive to the selection of the
threshold value, if workload changes, one should make it
clear how to change the threshold value, which is not a robust
way.

7. Related Work
Adaptive parallelism. Many interfaces and associated run-
time systems have been proposed that adapt parallel pro-
gram execution to run-time variability and hardware charac-
teristics [6, 9, 19–21, 25, 30, 35]. They focus on improving
the execution of a single job with respect to various perfor-
mance goals, such as reducing job execution time and im-
proving job energy-efficiency. However, they do not con-
sider a server system running concurrent jobs. Simply apply-
ing parallelism to minimize the execution time of every sin-
gle job will not minimize the mean response time across all
jobs. Our work focuses on such an environment with many
jobs where the parallelization of one job may affect others.
We decide the degree of parallelism for a job based on the
impact both on the job itself and on the other jobs.

Sharing resources adaptively among parallel jobs, which
is often referred to as adaptive job scheduling, has been stud-
ied both empirically [11, 22] and theoretically [4, 15]. How-
ever, they focus on a multiprogrammed environment instead
of an interactive server with latency constraints. In a mul-
tiprogrammed environment, it is common for jobs to have
different characteristics that the scheduler does not know a
priori. Thus, work in this area uses non-clairvoyant schedul-
ing wherein nothing is assumed or known about the job be-
fore executing it. The scheduler learns the job’s characteris-
tics and adjusts the degree of parallelism as the job executes.
In contrast, in the web search server that we study, requests
share a lot of similarities because they process user queries
using the same procedure. So the scheduler can exploit more
information, such as the average execution profile for the re-
quests, to improve scheduling decisions. Moreover, as inter-

active requests often complete quickly, there is limited time
for the scheduler to learn and adapt to the characteristics of
an individual request. Instead, we use a predictive model that
makes the decision before executing a job using the available
job information.

Adaptive resource allocation for server systems has been
explored; most of this work, however, focus on dynamically
allocating resources to different components of the server
while the individual requests still execute sequentially [33,
36]. In contrast, Raman et al. have proposed the Degree of
Parallelism Executive (DoPE), an API and run-time system
for adaptive parallelism [26]. The API allows developers to
express parallelism options and goals such as maximizing
throughput and minimizing mean response time. The run-
time has mechanisms to dynamically decide the degree of
parallelism to meet the goals. Like this paper, one goal of
parallelization in their work is to minimize response time
of requests in a server system. They present two algorithms
for deciding the degree of parallelism. We implement both
algorithms, called binary and linear in Section 6, and we
compare experimentally them to our adaptive algorithm.

Reducing response time in web search. To reduce the la-
tency of semantic web search queries, Frachtenberg applies
multithreading to achieve intra-query parallelism [12]. To
parallelize a query, the ISN partitions the data into equal-
sized subsets of document IDs and each thread works on
one subset. This is identical to the static coarse-grained pro-
cessing approach that is discussed in Section 3. A key as-
sumption of that work [12] is the following: Matching doc-
uments of the query in web index are evenly distributed and
thus load balancing among threads is not of great concern.
However, this is not always the case because matching doc-
uments of a query may not be evenly distributed along the
index space. Techniques that address load imbalance among
threads when intra-query parallelism is exploited have been
proposed in [31, 32].

Tsirogiannis et al. explore efficient algorithms that par-
tition the inverted indices of a search query to balance the
load among threads within a guaranteed error bound [29].
The algorithms further exploit good probing orders on the
partitioned indices to reduce the intersection overhead. Their
techniques can be combined with ours to enhance the load
balancing.

Tatikonda et al. propose a fine-grained intra-query paral-
lelism approach in web search [31], which has some similar-
ities to our query parallelization technique. Both approaches
partition the indices into a number of fine-grained tasks,
which enables good load balancing among threads. More-
over, both maintain a shared data structure among all threads
of a query to store the top ranked results. The two approaches
have several fundamental differences. First, while they pro-
pose to use a producer-consumer model to generate and
assign tasks, we employ a decentralized method in which
threads coordinate and acquire its next index partition using

a single atomic fetch-and-increment operation and the top
results are kept in each thread’s context. This enables each
thread to promptly invoke early termination to reduce the
overhead of speculative execution with small synchroniza-
tion overhead. Moreover, another key focus of our work is to
decide the parallelism of a query adaptively based on query
execution profile and system load, which is not studied in
the prior work [31]. Lastly, we implement our approach and
evaluate it using more recent data sets.

Graphics processors (GPU) [10] and SIMD instructions
[27] have been used to parallelize the processing of an indi-
vidual search query. Also, there are studies on reducing the
response time for web search queries across different system
components, for example, optimizing caching [3, 13] and
prefetching [18] to mitigate I/O costs and improving network
protocols between ISNs and aggregators [34, 37]. Moreover,
response quality can be traded off to reduce response time,
especially under heavy load or other exceptional situations in
which the servers could not process queries fast enough [8].
These studies are complementary to our work.

8. Conclusions
The quality of results of modern web search needs to keep
improving without increasing latency, in order to increase
user satisfaction and revenue. However, this is challenging
because the servers must search a massive number of web
documents to produce high quality search results.

This paper explores effective techniques to parallelize the
query execution in web search servers to reduce their mean
and high-percentile response time while providing the same
response quality as in sequential execution. This paper intro-
duces two techniques: (1) a dynamic fine-grain sharing tech-
nique that mimics the sequential order of execution to paral-
lelize each individual request with small speculative execu-
tion and good load balancing; and (2) an adaptive algorithm
that decides the parallelism degree of each request at runtime
using system load and parallelization efficiency. The pro-
posed schemes are prototyped in Microsoft Bing and eval-
uated experimentally with production workloads. The ex-
perimental results show that the mean and 95th-percentile
response times for queries are reduced by 50% or more un-
der moderate or low system load, with no degradation in the
relevance of the search results.

Adaptive parallelism is a promising approach to reduce
response time of various interactive workloads besides web
search. Future work will be to apply the adaptive parallelism
algorithm to different workloads and resource bottlenecks.

Acknowledgments
We thank our shepherd, Flavio Junqueira, and the anony-
mous reviewers for their valuable comments and sugges-
tions. We also thank Ashot Geodakov, Chenyu Yan, Daniel
Yuan, Fang Liu, Jun Zhao, and Junhua Wang from Microsoft
Bing for their great help and support, and we thank James

Larus, Kathryn McKinley and Yi-Min Wang from Microsoft
Research for the insightful discussions and feedback.

References
[1] V. N. Anh, O. de Kretser, and A. Moffat. Vector-space ranking

with effective early termination. In SIGIR, 2001.

[2] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz,
A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and
M. Zaharia. A view of cloud computing. Commun. ACM, 53
(4):50–58, Apr. 2010.

[3] R. Baeza-Yates, A. Gionis, F. Junqueira, V. Murdock, V. Pla-
chouras, and F. Silvestri. The impact of caching on search
engines. In SIGIR, 2007.

[4] N. Bansal, K. Dhamdhere, and A. Sinha. Non-clairvoyant
scheduling for minimizing mean slowdown. Algorithmica, 40
(4):305–318, Sept. 2004.

[5] L. A. Barroso and U. Hölzle. The case for energy-proportional
computing. Computer, 40(12):33–37, Dec. 2007.

[6] F. Blagojevic, D. S. Nikolopoulos, A. Stamatakis, C. D.
Antonopoulos, and M. Curtis-Maury. Runtime scheduling of
dynamic parallelism on accelerator-based multi-core systems.
Parallel Comput., 33(10-11):700–719, Nov. 2007.

[7] C. Buckley and A. F. Lewit. Optimization of inverted vector
searches. In SIGIR, 1985.

[8] B. B. Cambazoglu, F. P. Junqueira, V. Plachouras, S. Bana-
chowski, B. Cui, S. Lim, and B. Bridge. A refreshing per-
spective of search engine caching. In WWW, 2010.

[9] M. Curtis-Maury, J. Dzierwa, C. D. Antonopoulos, and D. S.
Nikolopoulos. Online power-performance adaptation of mul-
tithreaded programs using hardware event-based prediction.
In ICS, 2006.

[10] S. Ding, J. He, H. Yan, and T. Suel. Using graphics processors
for high performance ir query processing. In WWW, 2009.

[11] D. Feitelson. A Survey of Scheduling in Multiprogrammed
Parallel Systems. Research report. IBM T.J. Watson Research
Center, 1994.

[12] E. Frachtenberg. Reducing query latencies in web search
using fine-grained parallelism. In WWW, 2009.

[13] Q. Gan and T. Suel. Improved techniques for result caching
in web search engines. In WWW, 2009.

[14] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel. The
cost of a cloud: research problems in data center networks.
SIGCOMM Comput. Commun. Rev., 39(1):68–73, Dec. 2008.

[15] Y. He, W.-J. Hsu, and C. E. Leiserson. Provably efficient on-
line nonclairvoyant adaptive scheduling. IEEE Trans. Parallel
Distrib. Syst., 19(9):1263–1279, Sept. 2008.

[16] T. Hoff. Latency Is Everywhere And It Costs You Sales -
How To Crush It, 2009. http://highscalability.com/latency-
everywhere-and-it-costs-you-sales-how-crush-it.

[17] V. Janapa Reddi, B. C. Lee, T. Chilimbi, and K. Vaid. Web
search using mobile cores: quantifying and mitigating the
price of efficiency. In ISCA, 2010.

[18] S. Jonassen, B. B. Cambazoglu, and F. Silvestri. Prefetching
query results and its impact on search engines. In SIGIR,
2012.

[19] C. Jung, D. Lim, J. Lee, and S. Han. Adaptive execution
techniques for smt multiprocessor architectures. In PPoPP,
2005.

[20] W. Ko, M. N. Yankelevsky, D. S. Nikolopoulos, and C. D.
Polychronopoulos. Effective cross-platform, multilevel paral-
lelism via dynamic adaptive execution. In IPDPS, 2002.

[21] J. Lee, H. Wu, M. Ravichandran, and N. Clark. Thread tailor:
dynamically weaving threads together for efficient, adaptive
parallel applications. In ISCA, 2010.

[22] C. McCann, R. Vaswani, and J. Zahorjan. A dynamic pro-
cessor allocation policy for multiprogrammed shared-memory
multiprocessors. ACM Trans. Comput. Syst., 11(2):146–178,
May 1993.

[23] D. Meisner, C. M. Sadler, L. A. Barroso, W.-D. Weber, and
T. F. Wenisch. Power management of online data-intensive
services. In ISCA, 2011.

[24] M. Persin, J. Zobel, and R. Sacks-Davis. Filtered document
retrieval with frequency-sorted indexes. J. Am. Soc. Inf. Sci.,
47(10):749–764, Sept. 1996.

[25] K. K. Pusukuri, R. Gupta, and L. N. Bhuyan. Thread re-
inforcer: Dynamically determining number of threads via os
level monitoring. In IISWC, 2011.

[26] A. Raman, H. Kim, T. Oh, J. W. Lee, and D. I. August.
Parallelism orchestration using dope: the degree of parallelism
executive. In PLDI, 2011.

[27] B. Schlegel, T. Willhalm, and W. Lehner. Fast sorted-set
intersection using simd instructions. In ADMS, 2011.

[28] E. Schurman and J. Brutlag. The user and business impact
of server delays, additional bytes, and http chunking in web
search. 2009.

[29] T. Strohman, H. Turtle, and W. B. Croft. Optimization strate-
gies for complex queries. In SIGIR, 2005.

[30] M. A. Suleman, M. K. Qureshi, and Y. N. Patt. Feedback-
driven threading: power-efficient and high-performance exe-
cution of multi-threaded workloads on cmps. In ASPLOS,
2008.

[31] S. Tatikonda, B. B. Cambazoglu, and F. P. Junqueira. Posting
list intersection on multicore architectures. In SIGIR, 2011.

[32] D. Tsirogiannis, S. Guha, and N. Koudas. Improving the
performance of list intersection. Proc. VLDB Endow., 2(1):
838–849, Aug. 2009.

[33] G. Upadhyaya, V. S. Pai, and S. P. Midkiff. Expressing and
exploiting concurrency in networked applications with aspen.
In PPoPP, 2007.

[34] B. Vamanan, J. Hasan, and T. Vijaykumar. Deadline-aware
datacenter tcp (d2tcp). In SIGCOMM, 2012.

[35] Z. Wang and M. F. O’Boyle. Mapping parallelism to multi-
cores: a machine learning based approach. In PPoPP, 2009.

[36] M. Welsh, D. Culler, and E. Brewer. Seda: an architecture for
well-conditioned, scalable internet services. In SOSP, 2001.

[37] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowtron. Better
never than late: meeting deadlines in datacenter networks. In
SIGCOMM, 2011.

