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We study the effect of thermal fluctuations on the topological stability of chiral p-wave supercon-
ductors. We consider two models of superconductors: spinless and spinful with a focus on topolog-
ical properties and Majorana zero-energy modes. We show that proliferation of vortex-antivortex
pairs above the Kosterlitz-Thouless temperature TKT drives the transition from a thermal Quantum
Hall insulator to a thermal metal/insulator, and dramatically modifies the ground-state degeneracy
splitting. Therefore, in order to utilize 2D chiral p-wave superconductors for topological quantum
computing, the temperature should be much smaller than TKT. Within the spinful chiral p-wave
model, we also investigate the interplay between half-quantum vortices carrying Majorana zero-
energy modes and full-quantum vortices having trivial topological charge, and discuss topological
properties of half-quantum vortices in the background of proliferating full-quantum vortices.

PACS numbers: 03.65.Vf, 72.15.Rn, 74.40.+k

Topological phases of matter have been subject of in-
tense physics research in the last decade [1]. In addition
to interest from the fundamental physics point of view,
these states of matter can also be used for topological
quantum computation [2], which is predicted to have an
exceptional fault-tolerance by virtue of encoding and ma-
nipulating information in non-local degrees of freedom
of topologically ordered systems [3]. Candidate physi-
cal systems include Fractional Quantum Hall states [4],
topological superconductors and superfluids [5, 6] and
certain spin systems [3]. The common underlying fea-
tures of all these systems is a ground-state degeneracy
as well as the presence of certain quasiparticle excita-
tions (non-Abelian anyons) whose manipulation allows
one to process quantum information. In all these candi-
date physical systems the low-energy topological degrees
of freedom coexist with some other (non-topological) de-
grees. It is important to understand their interplay since
these non-topological degrees of freedom often determine
the stability of the topological phase.

In this Letter we focus on 2D topological p-wave su-
perconductors and study their robustness against ther-
mal fluctuations. Specifically, we investigate topologi-
cal degeneracy in these superconducting systems in the
presence of thermally-generated topological defects (vor-
tices). Without vortices, the stability condition for the
topological superconducting phase is set by the quasi-
particle energy gap ∆, i.e., T � Tc ∼ ∆ [7]. We
show here that vortex-antivortex proliferation provides
a more stringent temperature requirement since TKT can
be much lower than the temperature scale defined by the
quasiparticle gap.

We model thermal fluctuations with a classical XY
model. As the temperature is increased above the
Kosterlitz-Thouless (KT) transition point but still well
below the scale of local quasiparticle gap (TKT < T �
Tc), vortices start to proliferate and eventually destroy

the topological phase by driving the system into a ther-
mal metal or non-topological insulator phase. The de-
generacy splitting in low temperature (T < TKT) and
high-temperature (T > TKT) phases is different, chang-
ing from exponentially to power-law scaling with the sys-
tem size.

A spinful model allows for two types of defects – half-
quantum (HQV) and full-quantum(FQV) vortices. Only
the former carry robust Majorana zero-energy modes.
Thus, one can consider the interesting situation where
the superconducting phase is disordered due to the pres-
ence of FQVs and study the degeneracy splitting due to
the presence of HQVs embedded in the system at dis-
tance R� ξ from each other. Naively, one might expect
that the splitting would not be affected by the prolifer-
ation of FQVs since the splitting energy is governed by
the local quasiparticle gap which is only weakly affected
by thermal fluctuations. However, we show that the situ-
ation is much more intricate and requires a much deeper
understanding of the interplay between topological and
non-topological degrees of freedom.

It is well-known that in superconductors in symme-
try class D [8], disorder can drive a transition from the
thermal Quantum Hall (TQH) phase to either a ther-
mal metal (TM) phase or a topologically trivial thermal
insulator (TTI) [5, 9–13]. These phases have been pri-
marily studied in the context of network models [11–13]
and very recently in certain microscopic models [14, 15].
We find that we can realize all these phases in our micro-
scopic model, where the disorder is generated by thermal
fluctuations. The TTI is an insulator in the sense of An-
derson localization albeit having a non-zero density of
states at E = 0. We demonstrate that this phase does
not realize the aforementioned scenario where the split-
ting is governed by the local quasiparticle gap even if
the phase is disordered. Instead, the presence of modes
at zero energy changes the splitting from exponential to
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FIG. 1. Schematic phase diagram of a spinful p-wave super-
conductor as a function of temperature and in-plane magnetic
field. The phase diagram of the spinless case is recovered for
By = 0. Above (By)c, the superconducting order parameter
vanishes in a self-consistent calculation.

power-law. We assume throughout the paper that the
system size is smaller than the localization length Lc.
Models and methods. We set up our numerical problem

in two steps. In the first step, we model thermal fluctua-
tions of the superconducting phase using a classical XY
Hamiltonian. We then make an adiabatic approximation
by assuming that the vortex dynamics is slow compared
to the quasiparticle one which appears to be quite reason-
able since Abrikosov vortices are macroscopic and have
much higher mass. Under these conditions, quasiparti-
cles are moving in a static background of different vor-
tex configurations. As a second step, we diagonalize the
Bogoliubov-de-Gennes Hamiltonian for each disorder re-
alization and compute the quasiparticle energy spectrum
as well as other physical quantities such as the density of
states (DoS) and the inverse participation ratio (IPR).

We consider a model for a p+ ip superconductor on a
torus of L× L sites, described by the Hamiltonian

H=
∑

〈i,j〉,σ,σ′

(
tσσ

′
c†iσcjσ′ +∆σσ′

ij c†iσc
†
jσ′ +h.c.

)
−µ

∑
iσ

c†iσciσ

(1)

We first study spinless p-wave superconductor model by
assuming that tσσ

′
= −tδσ,σ′ and choosing an order pa-

rameter ∆σσ′

ij to be decoupled in the spin sectors. This

corresponds to a d̂-vector characterizing spin-triplet pair-
ing to be aligned along x̂-axis [16], ∆σσ′

ij = δσσ′∆0χijθij ;
µ is chemical potential. Unless spin-mixing perturbations
are added, we can equivalently study a spin-polarized
system. χij is a chirality factor that implements p + ip
pairing: χij = ±1 for j = i ± x̂, and ±i for j = i ± ŷ.
θij is a phase variable to be discussed below, and ∆0 is
chosen to be a constant [17]. We solve the corresponding
BdG equation numerically to obtain eigenvalues En and

eigenstates (un, vn)T .

Vortices in the order parameter of a spinless p-wave
superconductor bind Majorana zero-energy modes, i.e.
modes with E = 0 for which u = v∗ [5]. These local-
ized quasiparticles are described by a self-conjugate op-
erator γ = γ†. The ground state degeneracy as well as
the presence of Majorana quasiparticles bound to vor-
tices ultimately leads to non-Abelian braiding statistics
in these many-particle systems [16, 18–20]. Depending
on parameters, vortices may carry a large number of lo-
calized states below the bulk gap. To reduce the required
computational effort, we typically use ∆ ∼ µ where no
midgap states except the zero-energy state are present.
The effect of such midgap states has been discussed in
Ref. [21].

The situation becomes more subtle when many vortices
are present and localized zero-energy modes hybridize
leading to a ground-state degeneracy splitting [22–25].
At large vortex separation R � ξ, Majorana modes ac-
quire an exponentially small energy splitting and the
ground-state degeneracy at small vortex density is pre-
served only up to exponentially small corrections. Specif-
ically, the splitting energy δE in p-wave superconductors
reads [22, 26]

δE12 ∼ (kR12)−1/2Y (kR12) exp (−R12/ξ) (2)

where Y (kR) is an oscillatory function, k =√
k2F −∆2

0/v
2
F with kF being Fermi momentum and

R12 � max(k−1, ξ) (for the full expression, see the
supplementary material [17]). Thus, the effective low-
energy model for multi-vortex configuration reads H =
i
∑
ij δEijγiγj , where γj is a self-conjugate (Majorana)

operator representing a zero-energy state in j-th vortex.
Given that in realistic systems kRij � 1, δEij is a rapidly
oscillating function.

We now study how this exponential ground-state de-
generacy is modified by vortex-antivortex proliferation
above the KT transition. We consider a situation where
thermal fluctuations affect only the phase of the order
parameter while the magnitude remains approximately
constant [17]. The fluctuations of the phase can be mod-
eled by a classical XY Hamiltonian for the bond phases
θij ,

H = −J
∑

cos(arg θij − arg θjk), (3)

where J represents superfluid stiffness. A key property
of this model is that below the KT temperature (TKT =
0.89J in the infinite system [27, 28]), vortices/anti-
vortices are bound in pairs by a logarithmic attraction.
Above the transition, they unbind and proliferate. The
Monte Carlo sampling is performed using a standard clus-
ter update method [27, 29]. To study the effect of thermal
fluctuations on the topological degeneracy, we introduce
a fixed vortex/antivortex pair in the system by adding a



3

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

E

10−6

10−5

10−4

10−3

10−2

10−1

100

D
(E

)

FIG. 2. Density of states D(E) in the low-temperature phase
(T = 0.1, 0.3, 0.5, 0.7, 0.9, from right to left) for L = 64.
Clearly, the density of states is strongly suppressed for suffi-
ciently low temperatures and only shows a peak close to zero
energy corresponding to a slightly renormalized value of the
energy of the T = 0 case, and an increase as the transition
is approached. Simulations were performed for ∆0 = t/2 and
µ = −t.

non-fluctuation phase factor to ∆ij (see the supplemen-
tary material [17]) and study the energy splitting in the
presence of the background defects.

Diagonalizing the BdG equation for each configuration
of θij , we compute the DoS

D(E) =
1

N

〈∑
n

δ(E − En)

〉
T

, (4)

where 〈·〉T indicates the Monte Carlo average at temper-
ature T , and N denotes the number of states. We gen-
erally average over 10,000 configurations; in some cases,
we average over up to 500,000 configurations. The error
bars shown have been obtained with a standard Jack-
knife analysis. As shown in Fig. 2, the density of states
at zero temperature shows a sharp peak at the energy
splitting set by the system size for the fixed vortices,
and a continuum of states above the bulk gap ∆0. At
low temperatures T � TKT, both features are broadened
but the energy splitting of the Majorana modes remains
exponential and that the density of states is suppressed
between this scale and the bulk gap.

To further elucidate the fate of the ground-state degen-
eracy, we study the energy splitting between fixed vor-
tices as a function of temperature by fitting it to (cf.
Eqn. (2))

δE =
c1√
R

exp

(
−x
ξ

)
(1 + c2 cos(c3x+ c4)) , (5)

where ξ, c1, c2, c3 and c4 are fit parameters. Good agree-
ment is obtained for low temperatures, as shown in the
inset of Fig. 3. Our results for the correlation length are
shown in the main panel of that figure. The correlation
length depends only weakly on temperature as long as
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FIG. 3. Scaling of the energy splitting with vortex distance
d in a system of size L = 64. The main panel shows the
dependence of the coherence length ξ on the temperature that
governs the phase fluctuations. A KT transition takes place
at T ∼ 0.9. The inset shows the dependence of the splitting
ε of Majorana vortices on the distance with a fit to Eqn. (5).
Simulations were performed for ∆0 = t/2 and µ = −t.

the system is well below the KT transition. At the tran-
sition, a sharp jump in the correlation length is observed
which indicates a fundamental change in the scaling be-
havior.

The sharp change of the localization function is re-
lated to the delocalization transition (i.e. appearance
of a disorder-driven thermal metal phase) characteristic
to class D superconductors [9, 12, 13, 15]. The TM is
characterized by delocalized states at E = 0 and a log-
arithmic divergence of the density of states for low en-
ergies [15, 30]. Furthermore, oscillatory behavior of the
density of states in the zero-dimensional limit is consis-
tent with the random matrix theory predictions for class
D [8]. In Fig. 4, the density of states for a spinless p-wave
superconductor well above the KT transition is shown
along with a fit to the random matrix theory result [8]

D(E) ∼ γ +
sin(2πγEL2)

2πEL2
(6)

for symmetry class D. Using a single-parameter fit, we
obtain an excellent agreement with our theoretical ex-
pectations for the thermal metal phase: i) At the lowest
energy scale, the density of states follows the prediction
of random matrix theory. ii) For higher energy scales
(but still well below the superconducting gap ∆), a char-
acteristic logarithmic divergence is observed. This clearly
establishes that our model realizes a thermal metal phase
above the KT transition, as shown along the By = 0 line
in Fig. 1.

The coefficient γ above is related to the effective band-
width in the Majorana fermion hopping problem defined
above and should, therefore, be related to δE (2). In-
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FIG. 4. Density of states D(E) in the high-temperature phase
(T = 1.5, ∆0 = t/2, µ = −t). Fits are to Eqn. (6). The data
has been rescaled such that D(0.03) = 1.

deed, we numerically confirm that γ ∼ ∆0 exp(−∆0/C)
for some constant C. The energy scale is largely inde-
pendent of temperature as long as the temperature is
sufficiently far away from the KT transition.

We now consider perturbations breaking SU(2) sym-
metry. HQVs correspond to a phase twist only in one spin
sector and so still carry Majorana zero-energy modes.
However, FQVs do not carry robust zero-energy modes.
When adding a perturbation corresponding to a Zee-
man splitting generated by an in-plane magnetic field

By
∑
i

(
ic†i↑ci↓ − ic

†
i↓ci↑

)
, the lowest excitation energy

supported by an FQV moves to non-zero E0 = By.

Indeed for each pair of wavefunctions of the spinless
model at energies ±E, there are four wavefunctions at
energies ±E ± By when the spin degeneracy is lifted
with this special choice of field direction. Thus, if the
system has a band of delocalized states near E = 0,
the system will remain in a thermal metal phase for
By smaller than the width of this band and will tran-
sition to an insulating phase once By is larger than the
width of this band. To determine this width, in Fig. 5
we show the DoS and the localization properties of the
states, which we characterize by the inverse participation
ratio (IPR) I(E) defined to be the average of the fourth
moment of a wavefunction of energy E. For extended
states, the IPR is expected to scale with a power law,
I(E) ∼ L2−ν , where ν is a non-universal correction to
the exponent [31] (there may also be logarithmic correc-
tions) while the IPR is expected to approach a constant
for localized states, limL→∞ I(E) > 0. An analysis of the
scaling of the IPR with L is shown in the bottom panel
Fig. 5. While Fig. 5 supports having delocalized states
only at energy E = By, analysis at higher temperatures
shows a band of delocalized states with non-zero width,
supporting the hypothesis of Fig. 1 of a thermal metal
up to non-zero By. For details, refer to the supplemen-
tal material [17]. We have checked the robustness of our
result against other perturbations, such as an additional
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FIG. 5. Top panel: Density of states for spinful fermions for
two different system sizes. With magnetic field, the density of
states has a constant value at E = 0, whereas without mag-
netic field it diverges due to the thermal metal. In the case
with magnetic field, a peak appears at E = By. Finite-size
scaling of the IPR to distinguish energy ranges with localized
and delocalized states. The figure shows the constant term
obtained from a fit to I ∼ a+Lb. Values of a→ 0 and a 6= 0
indicate extended and localized states, respectively.

magnetic field Bx
∑
i

(
c†i↑ci↓ + c†i↓ci↑

)
. At this point, it

remains an open question whether these states are truly
extended and how this can be connected to theoretical
work.

One can now ask about the fate of the Majorana zero-
energy modes carried by HQVs in the TTI phase. To
investigate this, we study the density of states with two
fixed HQVs in the background of thermally fluctuating
FQVs. As shown in the inset of Fig. 6, two HQVs give
rise to an additional contribution to the density of states
at low energies. By studying the energy splitting as a
function of the temperature, we find that the correla-
tion length ξ that governs the splitting energy in Eq. (2)
changes qualitatively at the KT transition, see Fig. 6.
Our small system sizes do not let us determine whether
the splitting is still exponential or becomes power law in
this regime. In any case, we find that the splitting en-
ergy for HQVs in chiral p-wave superconductors changes
dramatically above the KT transition. Thus, thermal
disordering of the superconducting phase by HQVs leads
to drastic change of the topological properties of chiral
p-wave superconductors which is a main result of this
paper.

We acknowledge useful discussions with Matthew
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displays a clear jump at the KT transition. Inset: DoS for
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work was initiated. Simulations were performed using
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SUPPLEMENTARY MATERIAL: EFFECT OF
THERMAL FLUCTUATIONS IN TOPOLOGICAL

p-WAVE SUPERCONDUCTORS

In the supplementary material, technical details of how
our model is set up will be discussed. In addition, we
discuss details of our calculation of the inverse partici-
pation ratio and an alternative approach of defining the
characteristic energy scale of HQVs in the trivial thermal
insulator phase.

Homogeneous solution In the homogeneous case θij =
1, the dispersion of the Hamiltonian is

ε(k) =− µ− 2t(cos(kx) + cos(ky)) (7)

E(k) =
√
ε(k)2 + ∆0(sin2(kx) + sin2(ky)). (8)

The dispersion has gapless points for µ = −4t, 0, 4t.
The full expression for the energy splitting of two vor-

tices at distance R� max(k−1, ξ) reads:

δE =

√
8

π

N 2
1

m

(
λ2

1 + λ2

)1/4
Y (kR)√
kR

exp

(
−R
ξ

)
(9)

Y (kR) = cos(kR+ α)− 2

λ
sin(kR+ α) (10)

+
2(1 + λ2)1/4

λ
,

with λ = kξ, 2α = arctanλ, k =
√

2mµ−∆2
0/v

2
F , the

Fermi velocity vF and superconducting coherence length
ξ.

Fixed vortices and gauge transformation We imple-
ment a fixed vortex-antivortex pair by introducing an
additional phase factor,

θij = exp (iφij) = exp
(
iφAij

)
exp

(
−iφBij

)
. (11)

Here φAij (φBij) are the polar angles that the bond ij
has with the vortex (antivortex) located at position A
(B). When applying this to a torus mapped to a lattice
with periodic boundary conditions, special care has to
be taken that the order parameter is smooth around the
boundary.

To obtain a simpler description on the torus, we per-
form a gauge transformation after which the vortices are
implemented only by a π phase shift in both hopping
terms across a particular line (branch cut) connecting
the two vortices. To this end, we introduce a gauge field
φi on the sites such that φij = (φi + φj)/2 and perform
the gauge transformation ci → ci exp (−iφi). For a single
vortex, the field φi would wind from 0 to π around the
vortex, whereas φij would wind from 0 to 2π; therefore
exp(iφij) is smooth, while exp(−iφi) has a jump from −1
to 1 at a branch cut. It follows that everywhere except
along this branch cut, exp(−iφi) exp(−iφj) exp(−iφij) =
1 and the phase is removed from the anomalous hopping;
along this branch cut, a phase π remains and hopping
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FIG. 7. Self-consistent calculation for ∆ for lattice of size
L = 16 and U = 5. The Kosterlitz-Thouless transition takes
place at T/J = 0.89 and leads to the first drop in the gap ∆,
which renormalizes it quantitatively while the system remains
in a superconducting phase. For even higher temperatures,
the gap vanishes and the superconductivity is destroyed.

terms with i and j on different sides of the branch cut
pick up a minus sign. For the situation of two vortices,
this can be generalized and one finds that the branch
cut turns into a line connecting the two vortices. Apply-
ing the gauge transformation in the normal hopping, one
finds that the same phase factor across the branch cut is
introduced.

Self-consistency Owing to the mean-field approxima-
tion, the BdG equations have to be augmented with self-
consistency conditions, which read

∆ij = U〈cicj〉 (12)

= U
∑
En>0

u∗n(i)vn(j) tanh

(
En
2T

)
(13)

∆0 = 〈|∆ij |〉 (spatial and MC average). (14)

We have performed self-consistent calculations for a
spinless p-wave superconductor without fixed vortices
and obtained the order parameter ∆ =

√
〈cicj〉2 as a

function of temperature. Our results are shown in Fig. 7
for different values of J , which controls the relative tem-
perature scales of the Kosterlitz-Thouless transition and
the mean-field transition where superconductivity is de-
stroyed. Our data show that for sufficiently small J , these
two transitions are well-separated and there is an inter-
mediate regime where the phase of the order parameter
is disordered, but its magnitude remains finite at a value
20-30 % below the zero-temperature result. Since we are
interested in qualitative results only, such a small quali-
tative change is irrelevant and we do not perform a self-
consistent calculation but fix a value of ∆0 independent
of temperature.
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FIG. 8. Fit of the IPR to I ∼ a + Lb for several parameters
sets. The top panel shows α = 0, T = 1.5; the center panel
shows By = 0, T = 3, and the bottom panel shows By = 0.25,
T = 1.5. At T = 1.5, there is clearly only a very narrow band
of delocalized states around E ∼ By. For T = 3, however,
the band is broadened such that states at almost all energies
appear delocalized for the system sizes we can access.

IPR The inverse participation ratio can be calculated
in our setup using

I(E) =

〈∑
n

〈un〉4 + 〈vn〉4

(〈un〉2 + 〈vn〉2)2
δ(E − En)

〉
T

. (15)

For finite systems, the IPR must be calculated by av-
eraging over states in a finite range of energies centered
around E. In the thermal metal phase, we expect I(E) to
scale with a power law at zero energy due to the presence
of extended states. At non-zero energies, it is expected
to approach a constant value for L→∞. In all cases, we
expect it to behave with a power law for energies higher
than the local gap ∆.

Figure 8 shows several fits for the IPR for two differ-
ent values of the magnetic field, By = 0 and By = 0.25,
and two different temperatures T = 1.5 and T = 3. The
constant terms extract from such fits for T = 1.5 are
shown in Fig. 5. The top panel (By = 0, T = 1.5) clearly
shows the saturation of the IPR for energies 0 < T < ∆,
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FIG. 9. Contribution of two fixed half-quantum vortices to
the density of states in the high-temperature phase of a spin-
ful superconductor with finite magnetic field. The main panel
shows the density of states (solid lines: with HQVs, dashed
lines: without HQVs). The scaling of the characteristic en-
ergy scale Ehqv, defined below Eqn. (16), is shown in the inset
on a log-log scale.

whereas for very small energies, such as E = 0.03, no
clear sign of saturation is observed for the accessible sys-
tem sizes. The middle panel shows the same situation
for a higher temperature, T = 3. In this case, the IPR
appears to follow a power law also for intermediate ener-
gies such as E = 0.09. This is indicative of a delocalized
band of finite width centered around E = 0, with the
bandwidth growing as T is increased. Finally, the bot-
tom panel shows the situation with finite magnetic field
and temperature close to the KT transition, where no
localization is observed around E = By.

HQVs As an alternative approach to quantify the en-
ergy scale below which half-quantum vortices contribute,
we study the integrated difference between the density
of states with, Dh(E), and without, D(E), half-quantum
vortices:

ρ(E) =

∫ E

0

dE′
(
Dh(E′)−D(E′)

)
(16)

and define Ehqv as the lowest energy such that
Nρ(Ehqv) = 1, where N = 2L2.

Fig. 9 shows the density of states with and without
half-quantum vortices (cf. inset of Fig. 6). In the inset,
the scaling of this quantity with system size is shown.
A power-law scaling is clearly observed. This is consis-
tent with the observation that the expectation value of
the lowest energy 〈E0〉T behaves like a power-law both
with and without HQVs. This shows that the topologi-
cal degeneracy is destroyed by the presence of zero-energy
states due to disorder, even though these states are lo-
calized.
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