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Abstract

This paper proposes a new algorithm for the efficient, automatic detection
and localization of multiple anatomical structures within three-dimensional
computed tomography (CT) scans. Applications include selective retrieval of
patients images from PACS systems, semantic visual navigation and tracking
radiation dose over time.

The main contribution of this work is a new, continuous parametriza-
tion of the anatomy localization problem, which allows it to be addressed
effectively by multi-class random regression forests. Regression forests are
similar to the more popular classification forests, but trained to predict con-
tinuous, multi-variate outputs, where the training focuses on maximizing the
confidence of output predictions. A single pass of our probabilistic algorithm
enables the direct mapping from voxels to organ location and size.

Quantitative validation is performed on a database of 400 highly variable
CT scans. We show that the proposed method is more accurate and robust
than techniques based on efficient multi-atlas registration and template-based
nearest-neighbour detection. Due to the simplicity of the regressor’s context-
rich visual features and the algorithm’s parallelism, these results are achieved
in typical run-times of only∼4 seconds on a conventional single-core machine.

1. Introduction

This paper proposes a new, parallel algorithm for the efficient detection
and localization of anatomical structures (‘organs’) in 3D computed tomog-
raphy studies. Localizing anatomical structures is an important step for
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many subsequent image analysis tasks (possibly organ-specific) such as seg-
mentation, registration and classification. It is also crucial for managing
database systems and creating intelligent navigation and visualization tools.
For instance, one application is the efficient retrieval of selected portions of
patients’ scans from PACS databases. When a physician wishes to inspect a
particular organ, the ability to determine its position and extent automati-
cally means that it is not necessary to retrieve the entire scan (which could
comprise hundreds of MB of data) but a smaller region of interest. Thus it
is possible to achieve faster user interaction while making economical use of
the limited bandwidth. The proposed organ localizer could potentially be
used also for tracking the amount of radiaton absorbed by each organ over
time. However, in its current form, the approximate representation of organs
would produce indicative dose estimations.

The main contribution of this work is a new parametrization of the
anatomy localization task as a multivariate, continuous parameter estimation
problem. This is addressed effectively via tree-based, non-linear regression.
Unlike the popular classification forests (often referred to simply as “random
forests”), regression forests (Breiman et al., 1984) have not yet been used in
medical image analysis. Our approach is fully probabilistic and, unlike pre-
vious techniques, e.g. (Zhou et al., 2007; Fenchel et al., 2008), is trained to
maximize the confidence of output predictions. As a by-product, our method
produces salient anatomical landmarks; i.e. automatically selected “anchor”
regions that help localize organs of interest with high confidence. Our al-
gorithm can localize both macroscopic anatomical regions1 (e.g. abdomen,
thorax, trunk, etc.) and smaller scale structures (e.g. heart, l. adrenal gland,
femoral neck, etc.) using a single, efficient model, c.f. (Feulner et al., 2009).

Motivated mostly by the semantic navigation use-case scenario, our focus
in this paper is on both accuracy of prediction and speed of execution. Our
goal is to achieve accurate anatomy localization in seconds on a conventional
machine.

1.1. Literature review

Regression approaches. Regression algorithms (Hardle, 1990) estimate func-
tions which map input variables to continuous outputs2. The regression

1This is useful because the existing anatomical region DICOM tag is often inaccurate
(Gueld et al., 2002).

2as opposed to classification where the predicted variables are discrete, categorical.
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paradigm fits the anatomy localization task well. In fact, its goal is to learn
the non-linear mapping from voxels directly to organ position and size.

The first work to use regression for anatomy localization in images is
Zhou et al. (2005). There, the authors need to define the non-linear mapping
as an analytical function whose exact form is learned via regularized boost-
ing. They also present a thorough overview of different regression techniques
and discuss the superiority of boosted regression. In their later work (Zhou
et al., 2007), their boosted regression technique was improved by incorporat-
ing high degree-of-freedom weak learners. The main difference between that
approach and the one presented here is in the non-linear mapping. Defining
a regression function analytically as done in Zhou et al. (2005, 2007) has two
major drawbacks: 1) the definition of the function requires critical modeling
assumptions for the type of the weak learner and the regularization term,
and 2) obtaining a confidence measure for the regression output is non triv-
ial. In contrast, our approach does not assume an analytical form for the
mapping. This results in a simpler formulation with fewer modeling choices.
In addition, the probabilistic nature of our method yields a natural way of as-
sociating confidence with the predicted output. In fact, the training phase of
our algorithm directly maximizes the confidence of the predicted probability
distribution.

A comparison between boosting, forests and cascades is found in Yin
et al. (2007). To our knowledge, so far only two papers have used regres-
sion forests in imaging (Montillo and Ling, 2009; Gall and Lempitsky, 2009),
neither with application to medical image analysis. For instance, Gall and
Lempitsky (2009) address the problem of detecting pedestrians vs. back-
ground. For the readers who might not be familiar with regression forests
we provide a short explanation in the appendix. Also, a detailed descrip-
tion of general decision forests and their applications may be found in Cri-
minisi and Shotton (2013), with free research code and demos available at
http://research.microsoft.com/projects/decisionforests.

Classification-based approaches. In Zhan et al. (2008) organ detection is
achieved via a confidence maximizing sequential scheduling of multiple, organ-
specific classifiers. In contrast, our single, tree-based regressor allows us to
deal naturally with multiple anatomical structures simultaneously. As shown
in the machine learning literature (Torralba et al., 2007) this encourages fea-
ture sharing and, in turn better generalization. In Seifert et al. (2009) a se-
quence of probabilistic boosting tree (PBT) classifiers (first for salient slices,
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then for landmarks) are used. In constrast, our single regressor maps directly
from voxels to organ poses; latent, salient landmark regions are extracted as
a by-product. In Criminisi et al. (2009) the authors achieve localization
of organ centres but fail to estimate the organ extent (similar to Gall and
Lempitsky (2009)). Here we present a more direct, continuous model which
estimates the position of the walls of the bounding box containing each organ;
thus achieving simultaneous organ localization and extent estimation.

Marginal Space Learning. One of the most popular approaches for object
localization in medical images is Marginal Space Learning (MSL) proposed
in Zheng et al. (2007, 2009a). MSL has been demonstrated to be very useful
in practice (Zheng et al., 2009b; Barbu et al., 2012). However, that algorithm
has three limitations. Firstly, MSL is designed to detect a single object at
a time and extending it to the joint-localization of multiple objects (e.g.
more than 20) is not immediate. For example, existing extensions rely on
applying the algorithm iteratively, one run for each object of interest. The
order of detection is either determined through combinatorial optimization
or driven by the confidence values each object attains during the detection
phase (Liu et al., 2010). In contrast, our method achieves joint-localization of
any number of structures without modification and without worrying about
complex ordering strategies.

Secondly, MSL builds upon multiple classification stages. For instance,
to detect the position of the heart we may need: 1) a classifier trained to
estimate overall translation, 2) a classifier trained on translation and rotation,
and 3) yet another classifier trained on translation, rotation and scale. All
three classifiers need be applied for each organ in a sequence. For e.g. 20
organs we would need to train 20 × 3 = 60 different classifiers, with clear
scalability issues. In contrast, we propose using a single forest regressor (with
e.g. only ∼4 trees) to deal with multiple organs (here tested on 26 anatomical
structures).

Thirdly, we argue that solving a localization problem via classification is
not optimal. In MSL, binary classifiers are run in a sliding-window fashion.
For each point the classifier produces a positive answer (point is “close” to
the structure) or a negative one (point is “far” from the structure). But
reducing real-valued distances to binary decisions introduces a loss. Also,
defining positive and negative examples is an ambiguous task. Instead, our
regression forest directly estimates the 3D displacement of each voxel from
the target regions. On the flip side, it is also true that in practice learning
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good classifiers seems to be easier than learning good regressors. This may
be due to the fact that as a community we have had much more exposure
to classification tasks than regression ones. This paper shows that for the
application of anatomical bounding box localization using a regression forest
can be more accurate than using a classification approach.

Registration-based approaches. Although atlas-based methods have enjoyed
much popularity (Fenchel et al., 2008; Shimizu et al., 2006; Yao et al., 2006),
their conceptual simplicity belies the technical difficulty inherent in achiev-
ing robust, inter-subject registration. Robustness may be improved by using
multi-atlas techniques (Isgum et al., 2009) but only at the expense of multiple
registrations and hence increased computation time. Our algorithm incorpo-
rates atlas information within a compact tree-based model. As shown in the
results section, such model is more efficient than keeping around multiple at-
lases and achieves anatomy localization in only a few seconds. Comparisons
with global affine atlas registration methods (similar to ours in computa-
tional cost) show that our algorithm produces lower errors and more stable
predictions. Next we describe details of our approach.

2. Multivariate regression forests for organ localization

This section presents mathematical notation, problem parametrization
and other details of our multi-organ regression forest with application to
anatomy localization in CT images.

Mathematical notation. Vectors are represented in boldface (e.g. v), matrices
as teletype capitals (e.g. Λ), and sets in calligraphic style (e.g. S). The
position of a voxel in a CT volume is denoted v = (vx, vy, vz).

The labelled database. The 26 anatomical structures we wish to recognize are
C ={ abdomen, l. adrenal gland, r. adrenal gland, l. clavicle, r. clavicle,
l. femoral neck, r. femoral neck, gall bladder, head of l. femur, head

of r. femur, heart, l. atrium of heart, r. atrium of heart, l. ventricle

of heart, r. ventricle of heart, l. kidney, r. kidney, liver, l. lung,
r. lung, l. scapula, r. scapula, spleen, stomach, thorax, thyroid gland}.
We are given a database of 400 scans which have been manually annotated
with 3D bounding boxes tightly drawn around the structures of interest (see
fig. 2a). The bounding box for the organ c ∈ C is parametrized as a 6-
vector bc = (bLc , b

R
c , b

A
c , b

P
c , b

H
c , b

F
c) where each element represents the position
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Figure 1: Variability in our labelled database. (a, b, c) Variability in appearance
due to presence of contrast agent, or noise. (d) Difference in image geometry due to
acquisition parameters and possible anomalies. (e) Volumetric renderings of liver and
spine to illustrate large changes in their relative position and in the liver shape. (f,g)
Mid-coronal views of liver and spleen across different scans in our database to illustrate
their variability. All views are metrically and photometrically calibrated.

(in mm) of one axis-aligned face3. The database comprises patients with a
wide variety of medical conditions and body shapes and the scans exhibit
large differences in image cropping, resolution, scanner type, and use of con-
trast agents (fig. 1). Voxel sizes are ∼ 0.5 − 1.0 mm along x and y, and
∼ 1.0 − 5.0 mm along z. The images have not been pre-registered or nor-
malized in any way. The goal is to localize organs of interest accurately and
automatically, despite such large variability. The following sections describe
how this is achieved.

2.1. Problem parametrization and regression forest learning

Key to our algorithm is the idea that all voxels in a test CT volume
contribute with varying confidence to estimating the position of all organs’

3Superscripts follow standard radiological orientation convention: L = left, R = right,
A = anterior, P = posterior, H = head, F = foot.
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Figure 2: Problem parametrization. (a) A coronal view of a left kidney and the
associated ground-truth bounding box (in orange). (b, c) Every voxel vi in the volume
votes for the position of the six walls of each organ’s 3D bounding box via 6 relative, offset
displacements dk(vi) in the three canonical directions x, y and z.

bounding boxes (see fig. 2b,c). Intuitively, some distinct voxel clusters (e.g.
ribs or vertebrae) may predict the position of an organ (e.g. the heart) with
high confidence. Thus, at detection time those clusters should be used as
landmarks for the localization of those organs. Our aim is to learn to cluster
voxels based on their appearance, their spatial context and, above all, their
confidence in predicting the position and size of all organs of interest. We
tackle this simultaneous feature selection and parameter regression task with
a multi-class random regression forest (fig. 3); i.e. an ensemble of regression
trees trained to predict the location and size of all desired organs simultane-
ously. The desired output is one six-dimensional vector bc per organ, a total
of 6|C| continuous parameters.

Note that this is very different from the task of assigning a categori-
cal label to each voxel (i.e. the classification approach in Criminisi et al.
(2009)). Here we wish to produce confident predictions of a small number of
continuous localization parameters. The latent voxel clusters are discovered
automatically without ground-truth cluster labels.

2.1.1. Forest training

The training process constructs each regression tree and decides at each
node how to best split the incoming voxels. We are given a subset of all la-
belled CT volumes (the training set), and the associated ground-truth organ
bounding box positions (fig. 2a). A subset of voxels in the training volumes
is used for forest training. These training voxels are sampled on a regular
grid within ±10 cm of the centre of each axial slice in the training volume.
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Figure 3: A regression forest is an ensemble of different regression trees. Each leaf con-
tains a distribution for the continuous output variable/s. Leaves have associated different
degrees of confidence (illustrated by the “peakiness” of distributions).

The size of the forest T is fixed and all trees are trained in parallel.
Each training voxel is pushed through each of the trees starting at the

root. Each split node applies the following binary test ξj > f(v;θj) > τj
and based on the result sends the voxel to the left or right child node. f(.)
denotes the feature response computed for the voxel v. The parameters
θj describe the visual feature that is computed at the jth node. Our vi-
sual features are similar to those in Gall and Lempitsky (2009); Crimin-
isi et al. (2009); Shotton et al. (2009), i.e. mean intensities over displaced,
asymmetric cuboidal regions of the volume. These features are efficient to
compute and capture spatial context. The feature response is f(v;θj) =
|F1|−1

∑
q∈F1

I(q) − |F2|−1
∑

q∈F2
I(q); with Fi indicating 3D box regions

and I the intensity. F2 can be the empty set for unary features. Randomness
is injected at training time by making available at each node only a random
sample of all possible features. This technique has been shown to increase
the generalization of tree-based predictors (Ho, 1998). Next we discuss how
to select the splitting function associated with each internal node.

Node optimization. Each voxel v in each training volume is associated with
an offset with respect to the bounding box bc for each class c ∈ C (see
fig. 2b,c). Such offset is a function of both v and c as follows d(v; c) =
v̂ − bc(v), with v̂ = (vx, vx, vy, vy, vz, vz). Therefore d(v; c) ∈ R6.

As with the training of classification trees, node optimization is driven by
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maximizing an information gain measure, defined in general terms as: H(S)−∑
i={L,R} ωiH(Si) where H denotes entropy, S is the set of training points

reaching a node and L, R denote its left and right children. In classification
problems the entropy is defined over distributions of discrete class labels. In
the context of regression, however, we measure the purity of the probability
density of the real-valued predictions instead.

For a given class c we model the continuous conditional distribution of
the vector d(v; c) at each node as a multivariate Gaussian; i.e.

p(d|c;S) =
1

(2π)
N
2 |Λc(S)|

e−
1
2
(d−dc)>Λc(S)−1(d−dc),

with N = 6 and
∫
R6 p(d|c;S) dd = 1. The vector dc indicates the mean

displacement and the matrix Λc the covariance of d for all points in S.
For the set S we also know the discrete class prior p(c;S) = nc(S)/Z,

where nc(S) is the number of training voxels in the set S for which it is
possible to compute the displacement d(v; c); i.e. the training points in the
set that come from training volumes for which the organ c is present. Z is a
normalization constant such that

∑
c p(c;S) = 1.

Thus we know the joint distribution p(d, c;S) = p(d|c;S)p(c;S). For a
generic Gaussian-distributed random variable x ∈ RN with covariance Λ the
differential entropy can be shown to be H(x) = 1

2
log
(
(2πe)N |Λ|

)
. This leads

(after algebraic manipulation) to the following joint entropy for the node:

H(d, c;S) = H(c;S) +
∑
c

p(c;S)

(
1

2
log
(
(2πe)N |Λc(S)|

))
(1)

The joint information gain is IG = H(d, c;S) −
∑

i∈{L,R} ωiH(d, c;Si)
which after some manipulation can be rewritten as

IG = IGd + IGc (2)

where

IGd =
1

2

∑
c

p(c;S) log |Λc(S)| −
∑

i∈{L,R}

ωi

∑
c

p(c;Si) log |Λc(Si)|

 (3)

and
IGc = H(c;S)−

∑
i∈{L,R}

ωiH(c;Si) (4)
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with ωi = |Si|/|S| the ratio of the number of points reaching the ith child.
Maximizing (2) implies minimizing the determinants of the 6× 6 covari-

ance matrices associated with the |C| organs; where each organ’s contribution
is weighted by the associated prior probability. This decreases the uncertainty
in the probabilistic vote cast by each cluster of voxels on each organ pose.
In our experiments we found that this prior-driven organ weighting produces
more balanced trees and has a noticeable effect on the accuracy of the results.

Branching stops when the number of points reaching the node is fewer
than a threshold nmin or a maximum tree depth D has been reached (here
nmin = 25 and D = 12). After training, the jth decision node remains
associated with the feature θj and thresholds ξj, τj. At each leaf node we
store the learned means dc and covariance matrices Λc, and the class priors
p(c), (fig. 3b).

This framework may be reformulated using non-parametric distributions,
with pros and cons in terms of regularization and storage. We have found
our parametric assumption not to be restrictive since the multi-modality of
the input space is captured by our hierarchical piece-wise Gaussian model.
However, under the simplifying assumption that bounding box face positions
are uncorrelated (i.e. diagonal Λc), it is convenient to store at each leaf node
learned 1D histograms over face offsets p(d|c;S).

Discussion. Equation (2) is an information-theoretical way of maximizing
the confidence of the desired continuous output for all organs, without going
through intermediate voxel classification (as in Criminisi et al. (2009) where
difficult to define positive and negative examples of organ centres are needed).
Furthermore, this gain formulation enables testing different context models;
e.g. imposing a full covariance Λc would allow correlations between all walls
in each organs. One could also think of enabling correlations between dif-
ferent organs. Taken to the extreme, this could have undesired over-fitting
consequences. On the other hand, assuming diagonal Λc matrices leads to un-
correlated output predictions. Interesting models live in the middle ground,
where some but not all correlations are enabled to capture e.g. class hierar-
chies or other forms of spatial context. For a more detailed description of
forests training and associated code see Criminisi and Shotton (2013) and
http://research.microsoft.com/projects/decisionforests.
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2.1.2. Forest testing

Given a previously unseen CT volume V , test voxels are sampled in the
same manner as at training time. Each test voxel v ∈ V is pushed through
each tree starting at the root and the corresponding sequence of tests applied.
The voxel stops when it reaches its leaf node l(v), with l indexing leaves
across the whole forest. The stored distribution p(dc|l) for class c also defines
the posterior for the absolute bounding box position: p(bc|l) since bc(v) =
v̂ − dc(v). The posterior probability for bc is now given by

p(bc) =
T∑
t=0

∑
l∈L̃t

p(bc|l)p(l). (5)

L̃t is a subset of the leaves of tree t. We select L̃t as the set of leaves which
have the smallest uncertainty (for each class c) and contain 75% of all test
voxels. Finally p(l) is simply the proportion of samples arriving at leaf l.

Organ localization. The final prediction b̃c for the absolute position of the
cth organ is given by:

b̃c = arg max
bc

p(bc). (6)

Under the assumption of uncorrelated output predictions for bounding box
faces, it is convenient to represent the posterior probability p(bc) as six 1D
histograms, one per face. We aggregate evidence into these histograms from
the leaf distributions p(bc|l). Then b̃c is determined by finding the histogram
maxima. Furthermore, we can derive a measure of the confidence of this
prediction by fitting a 6D Gaussian with diagonal covariance matrix Λ̃ to the
histograms in the vicinity of b̃c. A useful measure of the confidence of the
prediction is then given by |Λ̃|−1/2.

Organ detection. The organ c is declared present in the scan if the predic-
tion confidence is greater than β. The parameter β is tuned to achieve the
desired trade-off between the relative proportions of false positive and the
false negative detections, and it is application dependent.

3. Results, comparisons and validation

This section assesses the proposed algorithm in terms of accuracy, runtime
speed, and memory efficiency; and compares it to alternative techniques.
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3.1. A simple 2D application

We begin with a 2D example which enables us to visualize intermediate
results and helps our understanding of the algorithm. We have a database
of 186 coronal images from different CT scans. The images are metrically
and photometrically calibrated and for each the ground truth bounding box
for the right kidney has been manually marked. The database has been split
randomly into 50% training and 50% testing and a regression forest trained
on the training set. Fig. 4 shows the results of applying the learned forest to
previously unseen test images. The estimated kidney bounding box (in red) is
close to the ground truth one (in blue). The forest also associates uncertainty
(shown as a shaded red band) with the estimated output. Visualizing the
learned trees (fig. 4a) confirms that as one goes down from the root towards
the leaves the associated confidence for the predicted location of the walls
increases. Finally, this 2D example enables us to visualize the computed
landmark regions. In the figure we plot the test pixels which end up in
the leaves with smallest variance for each box wall. As hoped we find that
distinct anatomical regions such as the top of the lungs or the spine are
automatically selected to predict the vertical and horizontal position of the
kidney, respectively. A mix of many landmark locations are used with the
relative weights automatically estimated. The presence of a large anomaly
such as a collapsed lung does affect the accuracy of the localization though
the final results is still acceptable (fig. 4f). Box wall localization errors are:

L R H F
error 5.64mm 5.96mm 3.84mm 6.88mm

Next we assess our actual organ localization algorithm on 3D CT images.

3.2. Accuracy in 3D anatomy localization

A regression forest was trained using 318 CT volumes selected randomly
from our 400-volume dataset. Organ localization accuracy was measured
using the remaining 82 volumes, which contained a total of 1504 annotated
organs of which 907 were entirely contained by their volume’s bounding box.
Only organs that are entirely present in the volumes are used for training and
test. Training and test volumes were downsampled using nearest neighbour
interpolation. Integer downsampling factors were chosen so that the resulting
voxel pitch was as near as possible to 3 mm per voxel in the x, y, and z
directions. Downsampling to this resolution reduces memory usage without
reduction in accuracy.
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Figure 4: Localizing the right kidney in 2D coronal images. (a) One of the many
regression trees in the forest. Different colours (red, yellow, green, blue) show the most
confidently predicted box wall at each node; brighter colours indicate larger prediction
confidence. (b,c,d,e,f) Kidney localization results in different test images. Blue is the
ground-truth bounding box. The detected one is in red. Note the large anomaly in (f),
a collapsed lung. (d’,e’,f ’) Selected landmark regions for images in (d,e,f). Red denotes
landmarks which predict well the kidney position in the horizontal direction. Those are
often localized along the spine, the aorta or the sides of the body. Green denotes landmark
regions selected to predict the kidney’s vertical position. They are localized at the top or
bottom of the lungs and pelvic bones.

Quantitative evaluation. To validate the algorithm, precision-recall curves
are plotted in fig. 5. In this context precision refers to the proportion of
organs that were correctly detected, and recall to the proportion of reported
detections that were correct. Precision-recall curves ares a useful means
of evaluating the accuracy of detection algorithms, especially when dealing
with techniques which detect different proportions of ground truth organs.
Plotting how precision and recall vary as a function of a detection confidence
parameter allows us to compare algorithms’ accuracy at consistent recall
values.

Here, a correct detection is considered to be one for which the centroid of
the predicted organ bounding box is contained by the ground truth bounding
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recall level
0% 25% 50% 75%

precision (Our regression method) 98%% 90% 88% 70%
precision (NCC) 90% 68% 78% 45%
precision (SSD) 83% 59% 45% 34%

Table 1: Precision-recall results for regression forest vs. template matching
algorithms. Average precision for several recall values for our regression forest method
compared with template matching (using both SSD and NCC). Our method gives much
higher precision at all recall levels.

box4. The plot shows how precision and recall vary as the detection confi-
dence β is varied. The plot also shows a comparison with respect to template
matching as described in detail later.

In fig. 5 (first row) the average precision remains high until recall reaches
approximately 80%. Accuracy is best for larger organs; those with smaller
size or greater positional variablity are more challenging. Selected preci-
sion/recall values are also summarized in table 1.

Table 2 shows mean localization errors for our technique, i.e. the absolute
difference between predicted and ground truth bounding box face positions.
Errors are averaged over all box faces. Despite the large variability in our
test data we obtain a mean error of only 13.5 mm, easily sufficient for our in-
tended navigation and selective retrieval applications. Errors in the axial (z)
direction are approximately the same as those in x and y despite significant
crop variability in this direction. Consistently good results are obtained for
different choices of training set and different training runs. Notice that for
partially present organs (e.g. cropped by the image frame) our technique still
manages to find the visible box walls with decent (though sometimes slightly
degraded) accuracy.

Qualitative evaluation. One application of our organ localization system is
to facilitate the use of software for viewing 3D medical images by allowing
the user to navigate quickly (e.g. with a single mouse click) to a partic-
ular anatomical structure and to have the appropriate camera parameters

4This definition is appropriate in light of our intended data retrieval and semantic
navigation applications because the bounding box centroid would typically be used to
select which coronal, axial, and sagital slices to display to the user. If the ground truth
bounding box contains the centroid of the predicted bounding box, then the selected slices
will intersect the organ of interest.

14



(a)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
re

ci
si

o
n

 (
O

u
r 

m
e

th
o

d
) 

Recall 

average
l. kidney
r. lung
l. adrenal gland
spleen
r. head of femur
l. femoral neck

(b)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
re

ci
si

o
n

 (
N

C
C

) 

Recall 

average
l. kidney
r. lung
l. adrenal gland
spleen
r. head of femur
l. femoral neck

(c)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
re

ci
si

o
n

 (
SS

D
) 

Recall 

average
l. kidney
r. lung
l. adrenal gland
spleen
r. head of femur
l. femoral neck

Figure 5: Precision-recall curves for regression forests vs. template matching
algorithms. The curves show how precision and recall change as the detection confidence
threshold is varied, both for a representative set of individual organ classes (some are
omitted to avoid clutter) and averaged over all organ classes (solid curve). We compare
results obtained using (a) our random regression forests technique, (b) template matching
with the NCC distance metric, and (c) template matching with the SSD distance metric.
In (a) the mean curve is much higher and the spread between different organs much less,
indicating higher robustness.
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Figure 6: Qualitative results showing the use of our automatic anatomy localizer for
semantic visual navigation within 3D renderings of large CT studies. Automatically com-
puted bounding boxes are rendered for (a) a pelvic bone, (b) a diseased kidney, (c) a
liver showing hemangiomas, and (d) a spleen. 3D camera position, cropping, and colour
transfer function have been chosen automatically.

and colour transfer function selected automatically. Qualitative localization
results obtained by applying the organ localization algorithm to previously
unseen CT scans are shown in fig. 6.

Computational efficiency. With our C# software running in a single thread,
organ detection for a typical 30× 30× 60 cm volume requires approximately
4 s of CPU time for a typical four-tree forest. Most of the time is spent ag-
gregating offset distributions (represented by histograms) over salient leaves.
However significant speed-up could be achieved with trivial code optimiza-
tions, e.g. by using several cores in parallel for tree evaluation and histogram
aggregation.

Comparison with template matching. We compare our method with the sim-
ple but powerful template matching algorithm. The underlying principle is
to use a few selected images (templates) as exemplars for each anatomical
structure. Then, given a location in a test image its classification happens
via exhaustive comparison with all training exemplars for all organs (i.e.
nearest-neighbour classification).

In order to try and capture typical CT variations we use multiple training
exemplars for each organ. We manually selected five template images for
each structure, from different training CT volumes so as to capture diverse
appearances, sizes and shapes for the structures of interest. We obtained
templates by dilating ground truth bounding boxes by 30% (this value gave
the best results out of several that we tried). Now, given a test image and
a specific organ class, we run a sliding-window detector approach and for
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Our method Elastix Simplex
organ mean std mean std mean std

abdomen 14.4 13.4 34.6 74.2 27.6 36.5
l. adrenal gland 11.7 9.6 20.5 42.4 15.5 20.9
r. adrenal gland 12.1 9.9 22.2 45.0 18.2 29.6

l. clavicle 19.1 17.4 34.3 20.5 31.1 16.3
r. clavicle 14.9 11.6 39.0 44.3 24.1 13.9

l. femoral neck 9.7 7.5 38.3 78.5 16.1 15.4
r. femoral neck 10.8 8.3 38.4 82.3 17.3 17.7

gall bladder 18.0 15.0 28.1 54.5 23.2 26.6
l. head of femur 10.6 14.4 38.8 80.8 19.4 26.6
r. head of femur 11.0 15.7 39.6 84.9 19.1 28.4

heart 13.4 10.5 34.4 52.0 16.9 15.8
l. heart atrium 11.5 9.2 30.7 50.5 15.4 15.4
r. heart atrium 12.6 10.0 33.0 51.9 15.2 15.5

l. heart ventricle 14.1 12.3 35.9 51.7 18.1 16.7
r. heart ventricle 14.9 12.1 35.4 52.8 17.2 16.8

l. kidney 13.6 12.5 22.1 46.1 18.7 25.6
r. kidney 16.1 15.5 25.3 49.8 21.1 27.0

liver 15.7 14.5 26.9 53.3 23.2 30.4
l. lung 12.9 12.0 24.5 29.2 16.9 23.4
r. lung 10.1 10.1 25.0 27.2 16.0 21.7

l. scapula 16.7 15.7 50.9 54.1 33.1 20.1
r. scapula 15.7 12.0 44.4 41.2 22.7 12.4

spleen 15.5 14.7 29.0 46.6 23.0 22.8
stomach 18.6 15.8 27.6 48.9 22.8 23.4
thorax 12.5 11.5 36.5 37.4 25.3 35.1

thyroid gland 11.6 8.4 13.3 10.3 12.9 10.2

all organs 13.5 13.0 28.9 52.4 19.4 24.7

Table 2: Results for forest vs. multi-atlas algorithms. Bounding box localization
errors in mm and associated standard deviations. The table compares results for our
method with those for the multi-atlas Elastix- and Simplex-based registration methods.
Lowest errors for each class of organ are shown in bold – our method gives lower errors
for all organ classes.

each position we measure a similarity score with respect to all exemplars.
The returned location is that for which the best similarity score is achieved.
As similarity functions here we use both normalized cross-correlation (NCC)
and sum of squared distances (SSD).

Comparative results are shown in fig. 5b,c and table 1. Note that to plot
precision-recall curves, we need some measure of detection confidence. This
stems out naturally from our probabilistic regression forest. For template
matching, we use the inverse of the optimal matching cost as a proxy for
detection confidence. This score is not a probability (and thus it is not
comparable between organ classes). However, it does at least provide an
approximately monotonic ranking, which is sufficient to plot precision-recall.
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In all cases the regression forest approach produces much higher precision
at all recall levels. Furthermore, the spread between the curves associated
with different organs is smaller in the forest case, indicating higher robust-
ness. Template matching works very well for a few visually distinct organs
such as the lungs, but much worse for structures with a higher variability in
shape or appearance (e.g. the spleen). Normalized cross correlation performs
slightly better than SSD in this regard, but both approaches give significantly
lower precision than our algorithm at all recall levels. One of the main reasons
seems to be that despite the use of multiple exemplars template matching
is not robust enough to deal with the high variability (in appearance, lo-
cation, size and shape) observed in our dataset. Using a larger number of
templates should help improve the accuracy, but at a higher computational
cost. This suggests better generalization behavior for forests compared to
template matching.

Further discussion on regression vs. detection. In Zhou et al. (2007) the
authors report a comparison between boosted regression and an anatomy
detector.5 They show superiority of regression in terms of efficiency but no
significant improvement in terms of precision.

Figure 5 has already demonstrated how our regression forest produces
higher localization accuracy than a carefully constructed template-based
anatomy detector. Additionally, we have compared our bounding-box lo-
calization results with those obtained by the voxel-wise classification forest
in Criminisi et al. (2009) and have found that regression forests achieve errors
which are less than half of those obtained with classification.6 In addition,
our regression-based parametrization gives an indication of organ extent as
well as its position.

Finally, the classification approach in Liu et al. (2010) is very different
from ours and not directly comparable. In Liu et al. (2010) the authors
train a supervised classifier to be able to localize landmark points. To do so
they need labelled training landmarks. In contrast, in our work a supervised
regressor is trained on ground-truth bounding boxes. In our case the goal is
to optimize the organ (and not the landmark) localization. Discriminative,
intermediate landmark regions are also obtained, but as a by-product and

5In Zhou et al. (2007) a probabilistic boosting tree-based detector is employed.
6Comparative experiments were run on exactly the same randomly selected training

and test data.
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without supervision; i.e. we do not need labelled training landmark points.

Comparison with affine, atlas-based registration. Yet another popular strat-
egy for anatomy localization is to align the input volume with a suitable at-
las, i.e. a reference scan for which organ bounding box positions are known.
Bounding box positions are then determined by using the estimated geomet-
ric transform to map box locations from the atlas into the input image.

Non-linear atlas registration (via non-rigid registration algorithms) can,
in theory, provide accurate localization results. In practice however, this
approach is sensitive to bad initialization and requires significantly greater
computation times than our regression approach. Since speed is an important
aspect of our work, here we chose to compare our results with those from
a comparably fast atlas-based algorithm based on global affine registration.
This is a rather approximate approach because accuracy is limited by inter-
and intra-subject variability in organ location and size. However, it is robust
and its computation times are closer to those of our method.

A multi-atlas approach is used here to try and capture data variability
(Isgum et al., 2009). From the training set, five scans were selected to be
used as atlases. The selected scans included three abdominal-thorax scans
(one female, one male and one slightly overweight male), one thorax scan,
and one whole body scan. This selection was representative of the overall
distribution of image types in the database. All five atlases were registered
to all the scans in the test set. For each test scan, the atlas that yielded
the smallest registration cost was selected as the best one to represent that
particular test scan. Registration was achieved using two different global
affine registration algorithms. The first algorithm (‘Elastix’) is that imple-
mented by the popular Elastix toolbox (Klein et al., 2010) and works by max-
imizing mutual information using stochastic gradient descent. The second
algorithm (‘Simplex’) is our own implementation and works by maximizing
correlation-coefficient between the aligned images using the simplex method
as the optimizer (Nelder and Mead, 1965).

Resulting errors (computed on the same test set) are reported in table 2.
The atlas registration techniques give larger mean errors and error standard
deviation (nearly double in the case of Elastix) compared to our approach.
Furthermore, atlas registration requires between 90 s and 180 s per scan (cf.
our algorithm runtime is ∼ 4 s for T = 4 trees).

Figure 7 further illustrates the difference in accuracy between the ap-
proaches. For the atlas registration algorithms, the error distribution’s larger
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Figure 7: Prediction errors for forest vs. multi-atlas algorithms. Distributions
of bounding box localization errors for our algorithm (‘Forest’) and two atlas-based tech-
niques (‘Elastix’ and ‘Simplex’). Error distributions are shown separately for (a) left and
right, (b) anterior and posterior, and (c) head and foot faces of the detected bounding
boxes, and (d) averaged over all bounding box faces for each organ. The error distribu-
tions for the atlas techniques (particularly in plots (c) and (d)), have more probability
mass in the tails, which is reflected by larger mean errors and error standard deviations.

tails suggest a less robust behavior7. This is reflected in larger values of the
error mean and standard deviation and is consistent with our visual inspec-
tion of the registrations. In fact, in about 30% of cases the registration
process got trapped in local minima and produced grossly inaccurate align-
ment. In those cases, results tend not to be improved by using a non-linear
registration step (which tends not to help the registration algorithm to escape
bad local minima, whilst increasing the runtime considerably).

7Because larger errors are produced more often than in our algorithm.
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Figure 8: Mean error in mm (a) with fixed tree depth D = 12 and varying forest size T
and (b) with varying maximum tree depth D and fixed forest size T = 4. Errors (averaged
over six bounding box faces) were computed on previously unseen test scans. To ensure
error statistics remain comparable as parameters T and D vary, the detection confidence
threshold β was tuned for each parameter setting to give recall of (a) 0.8 and (b) 0.5.

Computational and memory efficiency. A regression forest with 4 trees and
12 decision levels requires∼ 10MB of memory, which compares very favourably
with the roughly 100MB required for each atlas. Furthermore, the problems
of model size and runtime performance are exacerbated by the use of more
accurate and costly multi-atlas techniques (Isgum et al., 2009). In our al-
gorithm increasing the size of the training set usually decreases the test er-
ror without significantly affecting the test runtime, whereas with multi-atlas
techniques increasing the number of atlases linearly increases the runtime.

Accuracy as a function of forest parameters. Fig. 8 shows the effect of tree
depth and forest size on the accuracy of bounding box predictions. Accuracy
improves with tree depth up to around 12 levels. As expected increasing the
forest size T produces monotonic improvement without significant overfitting.
Good performance is obtained with as few as two or three trees.

Automatic landmark detection. Fig 9 shows how we can visualise the anatom-
ical landmark regions that were selected automatically for organ localization
during regression tree training. Given a trained regression tree and an input
volume, we select one or two leaf nodes with high prediction confidence for
a chosen organ class (e.g. l. kidney). Then, for each sample arriving at
the selected leaf nodes, we shade in green the cuboidal regions of the input
volume that were used during evaluation of the parent nodes’ feature tests.
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Figure 9: Automatic discovery of salient anatomical landmark regions. (a) A
test volume and (b) a 3D volume rendering of the left kidney’s bounding box, as detected
by our algorithm. (c) The highlighted green regions correspond to regions of the volume
that were automatically selected as salient predictors of the position of the kidneys.

Thus, the green regions represent some of the anatomical locations that were
used to estimate the location of the chosen organ. In this example, the bot-
tom of the left lung and the top of the left pelvis are used to predict the
position of the left kidney. Similarly, the bottom of the right lung is used
to localize the right kidney. Such regions correspond to meaningful, visu-
ally distinct, anatomical landmarks that have been computed without any
manual tagging.

Finally, notice that voxels within the organ itself do not contribute much
to its localization. This is in accordance with other landmark-based ap-
proaches; but here informative landmarks have been selected completely au-
tomatically.

Robustness with respect to field of view. Our training database contains many,
very diverse scans. In particular they are very different from one another in
their field of view, with some presenting very cropped views of e.g. the ab-
domen and the organs within. When tested using partially visible organs we
found that our system still worked correctly. However, in those cases only
visible landmarks contribute to the organ localization. As a consequence, the
localization of cropped organs tends to be associated with a lower confidence
in the output posterior, as expected.

4. Conclusion

Anatomy localization has been cast here as a non-linear regression prob-
lem where all voxel samples vote for the position of all anatomical structures.
Location estimates are obtained by a multivariate regression forest algorithm
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that is shown to be more accurate and efficient than competing registration-
based and template-matching techniques.

At the core of the algorithm is a new information-theoretic metric for
regression tree learning which works by maximizing the confidence of the
predictions over the position of all organs of interest, simultaneously. Such
strategy produces accurate predictions as well as meaningful anatomical land-
mark regions.

Accuracy and efficiency have been assessed on a database of 400 diverse
CT studies. The usefulness of our algorithm has already been demonstrated
in the context of systems for efficient visual navigation of 3D CT studies
(Pathak et al., 2011) and robust linear registration (Konukoglu et al., 2011).
Future work will include extension to imaging modalities other than CT and
the exploration of different context models.

Appendix – Background on regression forests

Regression trees (Breiman et al., 1984) are an efficient way of mapping
a complex input space to continuous output parameters. Highly non-linear
mappings are handled by splitting the original problem into a set of smaller
problems which can be addressed with simple predictors.

Figure 10 shows illustrative 1D examples where the goal is to learn an
analytical function to predict the real-valued output y (e.g. house prices)
given the input x (e.g. air pollution). Learning is supervised as we are given
a set of training pairs (x, y). Each node in the tree is designed to split
the data so as to form clusters where accurate prediction can be performed
with simpler models (e.g. linear in this example). More formally, each node
performs the test ξ > f(x) > τ , with ξ, τ scalars. Based on the result each
data point is sent to the left or right child.

During training, each node test (e.g. its parameters ξ, τ) is optimized
so as to obtain the best split; i.e. the split that produces the maximum
reduction in geometric error. The error reduction r is defined here as: r =
e(S) −

∑
i∈L,R ωie(Si) where S indicates the set of points reaching a node,

and L and R denote the left and right children (for binary trees). For a set S
of points the error of geometric fit is: e(S) =

∑
j∈S [yj − y(xj;ηS)]2, with ηS

the two line parameters computed from all points in S (e.g. via least squares
or RANSAC). Each leaf stores the continuous parameters ηS characterizing
each linear regressor. More tree levels yield smaller clusters and smaller fit
errors, but at the risk of overfitting (Criminisi and Shotton, 2013).

23



Figure 10: Regression forest: explanatory 1D examples. (panel A) (d) Training data
points. (e) A single linear function fits the data badly. (f, g) Using more tree levels yields
more accurate fit of the regressed model. Complex non-linear mappings are modeled
via a hierarchical combination of many, simple linear regressors. (h) The corresponding
regression tree. (panel B, C) Further examples. Training points are shown with grey
squares. Each regression tree fits a piece-wise linear model to the data. At each leaf,
each line has an associated uncertainty. Testing the forest (bottom row) corresponds to
computing the distribution p(y|x) at each x value. The conditional mean E[y|x] (in green)
smoothly interpolates the training points in large gaps. Away from training points the
uncertainty increases, as expected.
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