
This is a version after the camera-ready version in the IEEE S&P’09 proceedings, but before the conference presentation. In this version, we add Apple’s response

regarding Safari, and update the progress by other browser vendors.

1

Pretty-Bad-Proxy: An Overlooked Adversary in Browsers’

 HTTPS Deployments

Shuo Chen

Microsoft Research

Redmond, WA, USA

shuochen@microsoft.com

Ziqing Mao

Purdue University

West Lafayette, IN, USA

zmao@cs.purdue.edu

Yi-Min Wang

Microsoft Research

Redmond, WA, USA

ymwang@microsoft.com

Ming Zhang

Microsoft Research

Redmond, WA, USA

mzh@microsoft.com

Abstract – HTTPS is designed to provide secure web

communications over insecure networks. The protocol itself

has been rigorously designed and evaluated by assuming the

network as an adversary. This paper is motivated by our

curiosity about whether such an adversary has been carefully

examined when HTTPS is integrated into the browser/web

systems. We focus on a specific adversary named “Pretty-Bad-

Proxy” (PBP). PBP is a malicious proxy targeting browsers’

rendering modules above the HTTP/HTTPS layer. It attempts

to break the end-to-end security guarantees of HTTPS without

breaking any cryptographic scheme. We discovered a set of

vulnerabilities exploitable by a PBP: in many realistic network

environments where attackers can sniff the browser traffic,

they can steal sensitive data from an HTTPS server, fake an

HTTPS page and impersonate an authenticated user to access

an HTTPS server. These vulnerabilities reflect the neglects in

the design of modern browsers – they affect all major

browsers and a large number of websites. We believe that the

PBP adversary has not been rigorously examined in the

browser/web industry. The vendors of the affected browsers

have all confirmed the vulnerabilities reported in this paper.

Most of them have patched or planned on patching their

browsers. We believe the attack scenarios described in this

paper may only be a subset of the vulnerabilities under PBP.

Thus further (and more rigorous) evaluations of the HTTPS

deployments in browsers appear to be necessary.

Keywords: pretty-bad-proxy, HTTPS deployment, browser

security

I. INTRODUCTION

 HTTPS is an end-to-end cryptographic protocol for

securing web traffic over insecure networks. Authenticity

and confidentiality are the basic promises of HTTPS. When

a client communicates with a web server using HTTPS, we

expect that: i) no HTTPS payload data can be obtained by a

malicious host on the network; ii) the server indeed bears

the identity shown in the certificate; and iii) no malicious

host in the network can impersonate an authenticated user

to access the server. These properties should hold as long as

the end systems, i.e. the browser and the server, are trusted.

In other words, the adversary model of HTTPS is

simple and clear: the network is completely owned by the

adversary, meaning that no network device on the network

is assumed trustworthy. The protocol is rigorously designed,

implemented and validated using this adversary model. If

HTTPS is not robust against this adversary, it is broken by

definition.

This paper is motivated by our curiosity about whether

the same adversary that is carefully considered in the design

of HTTPS is also rigorously examined when HTTPS is

integrated into the browser. In particular, we focus on an

adversary called “Pretty-Bad-Proxy” (PBP), which is a

man-in-the-middle attacker that specifically targets the

browser’s rendering modules above the HTTP/HTTPS layer

in order to break the end-to-end security of HTTPS. Figure

1 illustrates this adversary: PBP can access the raw traffic

of the browser (encrypted and unencrypted), but it is unable

to decrypt the encrypted data on the network. Instead, the

PBP’s strategy is to send malicious contents through the

unencrypted channel into the rendering modules, attempting

to access/forge sensitive data (which flow in the encrypted

channel on the network) above the cryptography of HTTPS.

Figure 1. PBP attacks the encrypted data after they are decrypted above the

HTTPS layer

With a focused examination of the PBP adversary

against various browser behaviors, we realize that PBP is

indeed a threat to the effectiveness of HTTPS deployments.

We have discovered a set of PBP-exploitable

vulnerabilities
1
 in IE, Firefox, Opera, Chrome browsers and

many websites. They are due to a number of subtle

behaviors of the HTML engine, the scripting engine, the

HTTP proxying, and the cookie management. By exploiting

the vulnerabilities, a PBP can obtain the sensitive data from

the HTTPS server. It can also certify malicious web pages

and impersonate authenticated users to access the HTTPS

server. Although all attacks fool the HTTP/HTTPS layer

and above, the manifestations of the vulnerabilities are

diversified: some require the scripting capability of the

browser while others use static HTML contents entirely;

1 All vulnerabilities exploitable by the PBP exist on or above the

HTTP/HTTPS layer. Technically speaking, some of the

vulnerabilities can also be exploited by a router or a switch as well,

although the IP layer and the link layer are not the culprits.

This is a version after the camera-ready version in the IEEE S&P’09 proceedings, but before the conference presentation. In this version, we add Apple’s response regarding Safari,

and update the progress by other browser vendors.

2

some require the HTTP-proxy mechanism enabled in the

browser while others do not need this requirement. The

existence of the vulnerabilities clearly undermines the end-

to-end security guarantees of HTTPS.

People who are less familiar with HTTPS sometimes

argue that the HTTPS security inherently depended on the

trust on the proxy, and thus the assumption about a

malicious proxy was inappropriate. This argument is

conceptually incorrect since HTTPS’ goal is to achieve the

end-to-end security. Also, we show that in practice the trust

on the proxy is too brittle for HTTPS to depend on. We

constructed two versions of attack programs to show two

levels of threats: (1) the first level, which is already serious,

is due to the wide use of proxies for web access. The

integrity of proxies is generally difficult to ensure. For

instance, malware and attackers may take over legitimate

proxies in hotels and Internet cafes, because they are not

well managed. Many free third-party open proxies are also

essentially unaccountable, etc; (2) the second level, which

is more severe, is due to the fact that browsers’ proxy-

configuration mechanisms and browsers’ communications

with proxies are often unencrypted in many network

environments. This makes a user vulnerable even when

he/she is not knowingly connected to an untrusted proxy, as

long as an attacker has the MAC layer access to the victim’s

network. In our Ethernet and WiFi experiments, the attacker

simply needs to connect to the same Ethernet local area

network (LAN) or wireless access point (AP) to launch the

attacks. The damages of such attacks are the same as those

caused by physically taking over a legitimate proxy. With

the PBP vulnerabilities in browsers, the end-to-end security

guarantees promised by HTTPS are lost because users

basically need to trust the network in order to trust HTTPS.

We have reported the discovered vulnerabilities to

browser vendors. They have acknowledged the attack

scenarios. The status of vendor responses is given later in

the paper in Table III. Most of the vendors have patched or

planned on patching their browsers.

A note about this paper: This work was finished in

July 2007, except for the paper writing and the vulnerability

testing on the Google Chrome browser released in beta in

Sept. 2008. The paper submission has been withheld until

this conference. To present this work in a necessary context,

we will describe how our effort is related to some of the

efforts from other researchers in this time frame.

The rest of the paper is organized as follows. Section II

introduces the basic concepts about the browser security

model and the HTTPS protocol. Section III and Section IV

describe various PBP attacks. In section V, we demonstrate

the feasibility of exploiting these vulnerabilities and study

their security implications in real-world settings. Section VI

discusses possible fixes and mitigations. Section VII covers

related work and Section VIII concludes.

II. SAME-ORIGIN-POLICY AND HTTPS

A. Same-Origin Policy

Browsers support the functionality of downloading

contents and executing scripts from different websites at the

same time. Given some websites may contain malicious

contents, it is crucial that browsers isolate the contents and

scripts of different websites in order to prevent cross-

domain interference. In addition, browser should allow

scripts to access the contents of the same websites in order

to perform normal web functionalities. This access-control

policy is referred to as the same-origin policy.

Scripts and static contents are rendered and composed

into webpages. The same-origin policy is enforced by

isolating webpages according to their own security contexts

derived from their URLs. A typical URL is represented in

the format of “protocol://serverName:port

/path?query” and the corresponding security context is

a three-tuple <protocol,serverName,port>. As an

example, the protocol can be HTTP or HTTPS, the

serverName can be www.ebay.com, and the port can be

80, 443, or 8080, etc.

Each webpage is hosted in a frame or an inline frame.

A browser window is a top level frame, which hosts the

webpage downloaded from the URL shown in the address

bar. A webpage can create multiple frames and inline

frames to host webpages from different URLs. The access

control mechanism between these webpages conforms to

the same-origin policy described above. For example,

suppose frame w1 loads a webpage from https://bank.com

and frame w2 loads a webpage from http://bank.com or

https://evil.com. If the script running in w2 attempts to

access an HTML object inside w1, the access will be denied

by the browser’s security mechanism because of the same-

origin policy. Without the same-origin policy, the document

content of https://bank.com would be accessible to a script

embedded in the webpage from http://bank.com (which

could be faked by proxies and routers because it is not

encrypted) or from https://evil.com, which would defeat the

purpose of HTTPS.

Similar to frame, other objects, such as XML and

XMLHTTPRequest, rely on the same-origin policy to

protect their documents as well. Also, webpages can be

attached with a type of plain-text data called cookies.

Cookies have a slightly different same-origin policy, which

will be described in Section IV.B.

B. Basics of HTTPS and Tunneling

HTTPS is the protocol for HTTP communications over
Secure Sockets Layer (SSL) or Transport Layer Security
(TLS) [6]. For simplicity, in the rest of the paper, we use
“SSL” to refer to both SSL and TLS. HTTPS is widely used

to protect sensitive communications, such as online banking
and online trading, from eavesdropping and man-in-the-

This is a version after the camera-ready version in the IEEE S&P’09 proceedings, but before the conference presentation. In this version, we add Apple’s response regarding Safari,

and update the progress by other browser vendors.

3

middle attacks. At the beginning of an HTTPS connection,
the browser and the web server go through an SSL
handshake phase to ensure that: 1) the browser receives a

legitimate certificate of the website issued by a trusted
Certificate Authority (CA); and 2) the browser and the
server agree on various cryptographic parameters, such as
the cipher suite and the master key, in order to secure their
connection. Once the handshake succeeds, encrypted data
flow between the browser and the server. A malicious

proxy or router may disrupt the communication by dropping
packets, but it should not be able to eavesdrop or forge data.

All major browsers support HTTPS communications
through HTTP proxy. The mechanism is referred to as
“tunneling”. Before starting the SSL handshake, the
browser sends an HTTP CONNECT request to the proxy,

indicating the server name and port number. The proxy then
maintains two TCP connections, with the browser and with
the server, and serves as a forwarder of encrypted data. To
tunnel the HTTPS packets between the two TCP
connections, the proxy needs to set different values in the IP
and TCP headers, such as IP addresses and port numbers.

But it is not able to manipulate the encrypted payload
besides copying it byte-by-byte. Therefore, the proxy does
not have any additional information about HTTPS traffic
beyond the IP and TCP headers. Normally an adversary
must break the cryptographic schemes used by HTTPS in
order to access the actual HTTPS contents. Note that a

proxy is not a trusted entity in HTTPS communications. By
design, confidentiality and authenticity of HTTPS should be
guaranteed when the traffic is tunneled through an untrusted
proxy; in reality, as we will show in Section V, proxies are
widely used in many network environments where proxies
are not expected to be trustworthy. Being merely an

interconnecting host on the network, the proxy is not a
trusted entity that the HTTPS security relies on.

In the next two sections, we describe PBP attack
scenarios. The versions of the browsers in our discussion
are IE 7, IE 8, Firefox 2, Firefox 3, Safari 3, Opera 9,
Chrome Beta and Chrome 1.

III. SCRIPT-BASED PBP EXPLOITS

Scripting is a critical capability of modern browsers.
However, they impose more risks than static HTML
contents if the scripting mechanism is not carefully
designed and evaluated against different types of
adversaries. Cross-site scripting [13] and browser cross-

domain attacks [4] are the representative examples of
vulnerabilities exposed by scripting. While these attacks
have provoked many discussions in the web security
community, so far there has been less attention on the
possibility of script-based attacks against HTTPS when the
proxy is assumed the adversary.

In this section, we will describe several script-based
attacks, some of which are because of executing regular
HTTP scripts in the HTTPS context while others are

because of executing scripts from unintended HTTPS
websites in the context of target HTTPS websites. These
attacks raise a concern that browsers’ scripting mechanisms

have not been thoroughly examined under the PBP
adversary.

A. Embedding Scripts in Error Responses

We explained earlier that the browser sends an HTTP

CONNECT request to the proxy when it tries to access an

HTTPS server through the proxy. Sometimes the proxy

may fail in connecting to the target server, in which case the

proxy should send an HTTP error message back to the

browser. For instance, when the browser requests

https://NonExistentServer.com, the proxy will return an

HTTP 502 Proxy Error message to the browser because the

proxy cannot find a valid IP address associated with the

server name NonExistentServer.com. Note that the

communication between the browser and the proxy still

uses plain-text up to this point. Interestingly enough, the

browser renders the error response in the context of

https://NonExistentDomain.com, although the server does

not exist. We observed this behavior on all browsers that we

studied. In addition to HTTP 502, other HTTP 4xx and 5xx

messages are treated in a similar way.

Figure 2. Embedding scripts in 4xx/5xx error messages

Since the browser completely relies on the proxy for

the tunneling, the proxy can arbitrarily lie to the browser,

which leads to the compromise of HTTPS confidentiality

and authenticity. We now use an example to illustrate how a

PBP adversary can steal the sensitive data from the browser

when it is visiting an HTTPS server. Suppose the browser is

accessing https://myBank.com, upon receiving the HTTP

CONNECT request from the browser, the proxy may

pretend that the server did not exist by returning an HTTP

502 error message. The error message also includes an

iframe (inline frame) and a script. When the browser

This is a version after the camera-ready version in the IEEE S&P’09 proceedings, but before the conference presentation. In this version, we add Apple’s response regarding Safari,

and update the progress by other browser vendors.

4

renders the error message, the iframe will cause the browser

to send another CONNECT request for https://myBank.com.

The proxy will behave normally this time by tunneling the

communication to the server. Thereafter, user’s banking

data will be loaded into the iframe (abbreviated as ifr).

However, the script embedded in the original error message

has been running in the context of https://myBank.com. This

allows the script to reference ifr.document and send

the user’s banking data (e.g., body.innerHTML) to a

third party machine, circumventing the same-origin policy

of the browser. Besides peeking the user’s banking data, the

attacker can also transfer money from the bank on behalf of

the user.

The attack does not depend on which authentication

mechanism is used between the victim and the server. For

instance, if the server uses password authentication, the

proxy can behave benignly until the victim successfully

logs on, and then launch the attack. The situation is much

worse if the server uses Kerberos authentication (similarly,

NTLM authentication), in which case the authentication

happens automatically without asking the user for the

password. The attack can be launched even when the victim

does not intend to visit the HTTPS server: whenever the

victim visits a website http://foo.com, e.g., a popular search

engine, the proxy may insert the following invisible iframe

into the webpage of foo.com to initiate the same attack.

<iframe src=”https://SiteUsingKerberos.com”

style=”display:none”></iframe>

Kerberos is typically used in enterprise networks. This

vulnerability allows the proxy to steal all sensitive

information of the victim user stored on all HTTPS servers

in the enterprise network, once the user visits an HTTP

website.

B. Redirecting Script Requests to Malicious HTTPS

Websites

After describing the PBP attacks based on the

mishandling of HTTP 4xx and 5xx error messages in

browsers, we now turn to another security flaw that can be

exploited when browsers are dealing with HTTP 3xx

redirection messages.

A benign redirection scenario is: when the user makes

a request to https://a.com, the proxy can return a response,

such as “302 Moved temporarily. Location: https://b.com”,

to redirect the browser to https://b.com. Similar to the

previous scenario, the redirection message is in plain-text.

The redirection is explicitly processed by the browser, so

there is no confusion about the security context of the page

– the page of the redirection target will be rendered in the

context of https://b.com. In other words, a request

redirected to https://b.com is equivalent to a direct request

to https://b.com. There seems no security issue here.

However, the ability for a proxy to redirect HTTPS

requests can be harmful when we consider the following

scenario: many webpages import scripts from different

servers. For instance, a page of https://myBank.com may

include a script https://scriptDepot.myBank.com/foo.js or a

third-party script https://x.akamai.net/foo.js. According to

the HTML specification, a script element does not have its

own security context but instead runs in the context of the

frame that imports it. To launch an attack, a proxy may

simply use a 3xx message to redirect an HTTP CONNECT

request for https://scriptDepot.myBank.com or https://x.

akamai.net to https://EvilServer.com. This will cause the

script https://EvilServer.com/foo.js to be imported and run

in the context of https://myBank.com. Once the script runs,

it can compromise the confidentiality and authenticity of

the communication in a similar manner as described

previously.

Figure 3. The attack using 3xx redirection message

This attack affects Firefox, Safari and Opera. IE and

Chrome are immune because they only process HTTP 3xx

messages after the SSL handshake succeeds. In other words,

3xx messages from the proxy are ignored by the browser

for HTTPS requests.

C. Importing Scripts into HTTPS Contexts through

“HPIHSL” Pages

Many web servers provide services of HTTP and

HTTPS simultaneously. Normally, sensitive webpages,

such as user login, personal identification information, and

official announcement, are accessible only via HTTPS to

prevent information leak and forgery. Less critical

webpages are accessible via HTTP for reduced processing

overhead. Webpages often need to import additional

resources, such as images, scripts, and cascade style sheets.

When a page is intended for HTTP, the resources are

usually fetched using HTTP as well, because the page is not

intended to be secure against the malicious network anyway.

However, the reality is that although less-sensitive

webpages are intended to be accessed via HTTP, most of

them actually can also be accessed via HTTPS. We refer to

these pages as HTTP-Intended-but-HTTPS-Loadable pages,

or “HPIHSL pages”. When a HPIHSL page loaded in the

HTTPS context imports resources using HTTP, browsers

display different visual warnings: 1) IE pops up a yes/no

This is a version after the camera-ready version in the IEEE S&P’09 proceedings, but before the conference presentation. In this version, we add Apple’s response regarding Safari,

and update the progress by other browser vendors.

5

dialog window. If user clicks no, the resources retrieved via

HTTP will not be rendered and the lock icon will stay in the

address bar. Otherwise, the resources will be rendered but

the lock icon is removed; 2) Firefox pops up a warning

window with an OK button. After user clicks it, the HTTP

resources are rendered and a broken lock icon is displayed

on the address bar. 3) Opera and Chrome automatically

remove the lock icon (or or replace it with an exclamation

mark) to indicate that HTTP resources have been imported.

We found that the code logic for detecting HTTP

contents in HTTPS pages is triggered only when the

browser needs to determine whether to invalidate/remove

the lock icon on the address bar, which is only

correspondent to the top-level frame of the browser.

Therefore, when the top-level frame is an HTTP page, the

detection is bypassed even when this HTTP page contains

an HTTPS iframe that loads an HPIHSL page.

This turns out to be a fatal vulnerability for many real

websites. For example, a PBP can steal the user’s login

information from the HTTPS checkout page of j-Store.com

(the first row of Table I): when the user visits an HTTP

merchandise page on j-Store.com, the proxy can insert the

following invisible iframe into the page:

<iframe src=”https://www.j-Store.com/men-

shoes.html” style=”display:none”> </iframe>

Without users’ awareness, the invisible iframe loads

the HPIHSL page men-shoes.html via HTTPS. Because this

page requests a script from http://switch.atdmt.com/jaction/

via HTTP, the proxy can provide a malicious script to serve

the request. Since the script is in the inserted iframe, it will

run in the context of https://www.j-Store.com. The PBP also

overwrites the “checkout” button on the HTTP merchandise

page so that when the user clicks on it, the HTTPS checkout

page opens in a separate tab. The personal data entered by

the user therefore can be easily obtained by the proxy’s

script in the invisible iframe. In addition, the proxy can

impersonate the logon user to place arbitrary orders. We

believe that this is a significant browser weakness: as long

as any HPIHSL imports scripts or style-sheets (usually via

HTTP as explained), the HTTPS domain is compromised.

To get a sense about the pervasiveness of vulnerable

websites, one of the authors of this paper used HTTPS to

visit HPIHSL pages for a few hours. Table I shows twelve

websites that we confirmed vulnerable (the exact names of

the websites are obfuscated). Each row also shows the

problematic HPIHSL page and the domain of the imported

script. The vulnerable websites covered a wide range of

services such as online shopping, banking, credit card, open

source projects management, academic information, and

certificate issuance. In particular, even the homepage

domain of a leading certificate authority was affected. It is a

reasonable concern that many websites simultaneously

opening HTTP and HTTPS ports are vulnerable.

We will discuss in Section VII how our finding is

related to a paper by Jackson and Barth [7].

IV. STATIC-HTML-BASED PBP EXPLOITS

We just described a number of script-based attacks that

violate the same-origin policy. By running malicious scripts

in the context of victim HTTPS domains, these attacks can

access or alter sensitive data that are supposed to be

protected by HTTPS.

Compromised HTTPS domain

(the domain names are obfuscated)

The HPIHSL page that imports scripts

or CSS

Domain and path of the HTTP script or

CSS imported by the HPIHSL page

https://www.j-store.com
The checkout service is in this domain

The “men’s shoes” page in
www.j-store.com

http://switch.atdmt.com/jaction/

https://www.OnlineServiceX.com

The checkout service is in this domain

The account help page at

www.OnlineServiceX.com/support/account

http://www.OnlineServiceX.com/support/

accounts/ bin/resource/

https://www.s-store.com
The checkout service is in this domain

The “Appliances” page in
www.s-store .com

http://content.s-store.com/js/

https://www.CertificateAuthorityX.com

A leading certificate authority

The “repository” page in www.

CertificateAuthorityX.com imports a CSS

http://www.CertificateAuthorityX.com /css/

https://www.eCommerceX.com

The checkout and user profiles are in this domain

The homepage of www. eCommerceX.com http://images.eCommerceX .com/media/

https://www.sb-store.com

The checkout service is in this domain

The “Furniture” page in www.sb-store.com http://graphics.sb-store.com/images/

https://www.CreditCardX.com

A credit card company

The homepage of www.CreditCardX.com http://switch.atdmt.com/jaction/COF_Homep

age/v3/

https://www.b-bank.com
A bank in the Midwest

The page www.b-bank.com/ford.asp http://www.google-analytics.com/

https://CodeRepositoryX.net, Open source projects

management system. User logins are in this domain.

The homepage of

 CodeRepositoryX.net

http://pagead2.googlesyndication.com/

https://uboc.MortgageCompanyX.com
A California mortgage company

The homepage of
uboc.MortgageCompanyX .com

http://uboc.MortgageCompanyX.com/Include
/Utilities/ClientSide/

https://cs.University1.edu, the department’s login

system is in this domain

The homepage of cs.University1.edu http://tags.University1.edu/

https://www.eecs.University2.edu

A student’s homepage www.eecs.
University2.edu/~axxxxxx

http://codice.shinystat.com/cgi-bin/

Table I. HTTPS domains that are compromised because HPIHSL pages import HTTP scripts or style-sheets

This is a version after the camera-ready version in the IEEE S&P’09 proceedings, but before the conference presentation. In this version, we add Apple’s response regarding Safari,

and update the progress by other browser vendors.

6

Nevertheless, in order to better understand the potential

threat of PBP, thinking beyond script-based attacks is very

important. Typically, for script-based security issues, the

defense solutions are along the line of disabling, filtering, or

guarding scripts. When a class of security problems is not

always script-related, defense solutions should be explored

more broadly.

In this section, we show two attacks that can be

accomplished entirely by static HTML contents. They

target the authentication mechanisms in browsers. In the

first attack, the proxy’s own page can be certified with the

trusted certificate of the HTTPS server that the browser

intends to communicate. In the second attack, the proxy can

authenticate to the HTTPS server as a logon user.

A. Certifying a Proxy Page with a Real Certificate

In Section III.A, we have seen that the PBP proxy can

supply a script in an error-response. The script will run in

the HTTPS context of the victim server and compromise the

confidentiality. When we reported this issue to a browser

vendor, one of the vendor’s proposed fixes was to disable

scripts in any 4xx/5xx error-response pages, and only

render static HTML contents. The proposal was based on

the consideration that benign proxy error messages are

valuable for troubleshooting network problems, but there is

no compelling reason to allow scripts in error messages.

This fix would not block the attack that we describe

below, which does not involve any script. Figure 4

illustrates how a proxy certifies a fake login page by taking

advantage of a cached certificate of https://www.

paypal.com from a previous SSL handshake. (Note that it is

a browser bug. PayPal represents an arbitrary website.) IE,

Opera and Chrome, but not Firefox, are vulnerable to this

attack. (Note that Safari always displays the lock icon when

the address bar has an HTTPS URL, even without a cached

certificate, so Safari is a trivial target of the spoofing attack.)

The attack works as follows: when a browser issues a

request for https://www.paypal.com (step 1), the proxy

returns an HTTP 502 message (or any other 4xx/5xx

message) that contains a meta element and an img

element (step 2). The meta element will redirect the

browser to https://www.paypal.com after one second. But

before the redirection, the following steps happen

subsequently: the img element requests an image from

https://www.paypal.com/a.jpg (step 3). In order to get a.jpg,

the browser initiates an SSL handshake with the HTTPS

server. The request is permitted by the proxy at this time.

After the browser receives a legitimate certificate from the

HTTPS server (step 4), it will try to retrieve a.jpg, which

may or may not exist on the server (not shown in the figure).

But its existence is not important here because the purpose

of the img element is to acquire a legitimate certificate,

which has been cached in the browser now. The certificate

cache is designed to enhance the performance of HTTPS by

avoiding repetitive re-validation for each SSL session.

When the one-second timer is expired, the browser will

be redirected to https://www.paypal.com (step 5). This time,

the proxy returns another HTTP 502 message (or any other

4xx/5xx message) that contains a fake login page (step 6).

When the browser renders this page, it picks up the cached

certificate of PayPal and displays it on the address bar as if

the fake page was retrieved from the real

https://www.paypal.com.

Figure 4. PBP certifies a faked login page as https://www.paypal.com

While the attack described here and the one described

in Section III.A both take advantage of the fact that

browsers render proxy’s error messages in the context of

HTTPS servers, these two attacks are distinguishable – In

terms of the technique, this is a perfect GUI spoofing attack.

Even when the user starts a fresh browser and uses a

bookmark to access the HTTPS URL, he/she still gets the

certified faked page. The attack is conducted in only one

window and does not execute any script, therefore bypasses

the pop-up blockers in today’s browsers that will otherwise

thwart the spoofing attack. No other attack that we describe

can achieve the same result. In terms of the root cause, the

proxy-page-context problem in Section III.A alone does not

necessarily enable this attack, e.g., we have confirmed that

Firefox is not vulnerable to the attack although it has the

problem in Section III.A. A key enabler of the GUI

spoofing attack is the interaction between the graphic

interface and the certificate cache: for IE, Opera and

Chrome, the certificate is displayed as long as it is available

in the cache.

B. Stealing Authentication Cookies of HTTPS Websites by

Faking HTTP Requests

The attack in Section IV.A is to impersonate a

legitimate HTTPS website. We now describe an attack that

allows the PBP to impersonate victim users to access

HTTPS servers by stealing their cookies.

This is a version after the camera-ready version in the IEEE S&P’09 proceedings, but before the conference presentation. In this version, we add Apple’s response regarding Safari,

and update the progress by other browser vendors.

7

Cookies are pieces of text that browsers receive from

web servers and store locally. They are used to maintain the

states of HTTP transactions, such as items in consumer’s

shopping carts and personalized settings of user webpages.

In addition, they are used as an important mechanism for

web servers to authenticate individual users. After a user

successfully logs on a server, the server sends some cookies

to be stored in the user’s browser, which uniquely identify

the session between the server and the user. Next time when

the user accesses the server, these cookies are presented to

the server as a proof of the identity of the user.

Browsers use the same-origin policy to determine

whether cookies can be attached to requests or accessed by

scripts. The policy specifies that: 1) Cookies of a domain

can only be attached to the requests to the same domain; 2)

Cookies of a domain are only accessible to scripts that run

in the context of the same domain. However, unlike the

same-origin policy of script and DOM, the same-origin

policy of cookies does not make a distinction between

HTTP and HTTPS by default. In the default scenario,

cookies of http://a.com may be accessed by pages or scripts

of https://a.com, and vice versa. Optionally, a SECURE

attribute [5] can be set to ensure that cookies can only be

read by pages in the HTTPS context and be attached to the

HTTPS requests (of course, after the SSL handshake).

We found that many websites do not set the SECURE

attribute for cookies that identify HTTPS sessions
2
. As an

example, an author of the paper investigated about 30

websites in which he owns an account. About one-third of

the websites used cookies for authentication but did not set

the SECURE attribute for them. Every website was verified

individually to show that the stolen cookie was sufficient to

allow the attacker to get into the logon session from an

arbitrary machine and to perform arbitrary operations on

2
 We discovered this issue in June 2007, and reported it privately

in July 2007. Mike Perry independently discovered the Gmail

vulnerability due to this issue, and posted a description on

SecurityFocus.com on August 6th, 2007 [12]. According to our

private email communication with Nick Weaver, Nick also

conceived this attack scenario independently in the time frame.

behalf of the victim user. These nine websites are listed in

Table II, with their names and URLs obfuscated. They

cover a wide range of services such as stock broker, online

shopping, online banking, academic paper reviewing, email

service, mortgage payment, utility billing, government

service, and traveling. They affect many different aspects of

a person’s online security.

It is straightforward to launch the attack: the proxy

waits until the user logs into the server (usually after seeing

a few CONNECT requests), e.g., the stock trading website

https://trading.StockTrader.com. After that, once the browser

requests any HTTP page (including a page requested from

another browser tab or any tool bar), the proxy embeds an

iframe of http://trading.StockTrader.com in the HTTP

response. When the browser renders the iframe, it makes an

HTTP request for http://trading.StockTrader.com, exposing

the authentication cookie in plain text to the proxy.

Given that a significant fraction (one-third) of the

HTTPS websites that we examined have this problem and

many of them are reputable, we believe this vulnerability

exists in many other HTTPS websites as well. Although it

is possible that inexperienced developers do not have

knowledge about the SECURE attribute of cookies, the fact

that reputable websites also make this mistake suggests that

the concept of the SECURE attribute is commonly

misconceived. The SECURE attribute is often vaguely

defined as a mechanism to prevent malicious HTTP pages.

It is never made clear that when the network is assumed

untrusted, the SECURE attribute should be considered as a

mechanism to prevent malicious proxies and routers.

Without this clear interpretation, a developer might have a

misconception: my HTTP pages are very secure (or “my

website does not run HTTP at all”). Why bother to prevent

my own HTTP pages from stealing cookies of the HTTPS

sessions on my website?

V. FEASIBILITY OF EXPLOITATIONS IN REAL-WORLD

NETWORK ENVIRONMENTS

By definition, the security of communications over

HTTPS should not rely on the integrity of any intermediate

node in network path, such as proxies and routers. As

Website (names are obfuscated) URL (obfuscated) Description

StockTrader https://trading.StockTrader.com A leading stock brokerage company

eCommerceX https://www.eCommerceX .com A leading online store

V-Bank https:// online.vbank.com Online banking

ManuscriptManager https://mc.ManuscriptManager.com The submission and review system of an

academic/engineering society

TravelCompany https://www.TravelCompany.com/Secure/SignIn A leading Internet travel company

GMail (not obfuscated as it is

publicly known. See footnote 2)

https://mail.google.com Google’s email service

MortgageCompanyY https://MortgageCompanyY.com Mortgage lender

UtilityCompanyX https://www.UtilityCompanyX.com A utility company in the west coast of the

United States.

GovermentServiceX https://egov.GovermentServiceX.gov A web service for U.S. immigration cases

Table II. Insecure HTTPS websites due to the improper cookie protection

https://mail.google.com/

This is a version after the camera-ready version in the IEEE S&P’09 proceedings, but before the conference presentation. In this version, we add Apple’s response regarding Safari,

and update the progress by other browser vendors.

8

described in the previous sections, however, the guarantees

of HTTPS can be subverted when a malicious or

compromised proxy is being used. There are many

circumstances where proxies are commonly used and

therefore the PBP vulnerabilities can be easily exploited: (1)

Mobile environments such as conference rooms, airports,

hotels and hospitals [22]; (2) Corporate and university

networks, e.g., Microsoft’s corporate network and the

campus networks in Berkeley and UCSD [23]; (3) Free

third-party proxies on the Internet [24]. In these cases,

proxies may be used for various legitimate reasons, such as

billing, traffic regulation, and traffic anonymization.

However, if they are infected by viruses, hijacked by

attackers, or configured by malicious insiders, the PBP

attacks can be launched.

In this section, we will show that in real-world network

environments, the PBP vulnerabilities can be exploited

more easily than hacking into the proxy machine. An

attacker can exploit the vulnerabilities even when the victim

is not knowingly using an untrusted proxy. The attacker

only needs the capability of sniffing users’ traffic and

sending fake packets back to browsers. An attacker can

easily do this by sitting in the vicinity of victim users in a

wireless environment or connecting to the same local area

network (LAN) of victim users in a wired environment.

Note that the attack scenarios to be described do not show

any additional vulnerability, but demonstrate that the PBP

vulnerabilities described earlier result in serious

consequences for people’s online security.

The tactic of our attacks is to impersonate a legitimate

proxy or insert an unwanted proxy into the communication

path without the user’s awareness. We will discuss a few

basic elements in this tactic: (1) TCP hijacking – It is a

known fact that anyone who can sniff IP packets can hijack

the TCP connections, and thus impersonate clients and

servers; (2) Proxy-Auto-Config (PAC) mechanism [20] –

Alternative to manual configuration, browsers use the PAC

mechanism to obtain a script from a server and configure

proxy settings by the script; (3) Web-Proxy-Auto-Discovery

protocol (WPAD) [21] – All browsers support WPAD.

WPAD makes the proxy configuration completely under the

hood: it attempts to discover a proxy, and automatically

falls back to the “no-proxy” setting if the attempt fails.

Using WPAD, the same browser machine can access the

web at office, hotel and home without changing any setting.

Since TCP, PAC and WPAD are not cryptographic

protocols, they are not expected to be resilient against an

attacker who can access the network traffic. However,

combining these facts with PBP vulnerabilities, HTTPS’

properties become very easy to break in reality.

We have built Ethernet and wireless testbeds to show

various attack scenarios. The details are provided in the

following subsections.

A. A Short Tutorial of TCP Hijacking

It is well known that an attacker who can sniff TCP

traffic can impersonate the sender or the receiver of a TCP

connection. This technique is referred to as TCP hijacking

and is shown in Figure 5. The attacker is at a location where

he can sniff the TCP packets between the browser machine

and the server. To simplify description, we assume that the

attacker connects to the same Ethernet hub as the user

machine. When the browser tries to establish a TCP

connection with the server, the attacker does nothing but

wait for the completion of TCP three-way handshake. When

the attacker receives the packet which contains an HTTP

request sent by the browser, it parses the packet to extract

the IP addresses, the port numbers, and the current sequence

numbers of both the browser and the server. It then uses this

information to fake a server response packet with

appropriate IP and TCP headers and payload data. The fake

packet is immediately sent back to the browser.

Figure 5. A typical TCP hijacking

Since the attacker can only sniff but not intercept

packets, the server will still return a legitimate response

packet to the browser. Given that the distance between the

attacker and the browser is equal or shorter than the

distance between the browser and the server, the fake

response packet generated by the attacker almost always

arrives before the legitimate response packet from the

server. Although this is a race between the attacker and the

server, because the attacker has already prepared most of

the faked response and only waits to fill in a few header

fields, it is easy to win the race. The browser will accept the

fake packet and discard the legitimate packet as a duplicate,

because both packets have the same TCP sequence number.

B. PBP Exploits by a Sniffing Machine

As we stated earlier, connecting to a proxy is

necessary in many circumstances, such as corporate

networks, hotels, and conferences, for the purpose of billing

or auditing [22][23][24]. Browsers’ proxy settings can be

configured manually, or by specifying the URL of the PAC

script, or by WPAD. The attacker has several options

accordingly. Figure 6 shows the user interface of proxy

settings for IE and Chrome. Other browsers’ user interfaces

are almost functionally identical.

This is a version after the camera-ready version in the IEEE S&P’09 proceedings, but before the conference presentation. In this version, we add Apple’s response regarding Safari,

and update the progress by other browser vendors.

9

WPAD: just check the box,
no need for configuration

PAC: the user specifies
the URL of the PAC script

Manual: the user specifies the
address and the port number

Figure 6. Proxy setting options for IE and Chrome

Browsers with manual proxy-settings. Manual

configuration requires the (advanced) user to enter the

hostname/IP address and the port number of the specific

proxy server. The attacker needs to hijack the TCP

connection between the browser and the proxy to

impersonate the proxy.

Browsers configured by PAC scripts [20]. A browser

can fetch a PAC (Proxy Auto-Config) script from a server

by specifying the URL, such as http://config.myOrg.org

/proxy.pac. The script contains a special function

FindProxyForURL(url,host), which returns a

string containing one or more proxy specifications given a

URL and a hostname. In practice, proxy settings are

normally cached for better performance. To attack this

browser, the attacker can hijack the TCP connection to

impersonate the PAC server config.myOrg.org. The

following PAC script is served to the browser. The browser

will use “proxy.evil.com:80” as its proxy.

function FindProxyForURL(url,host)

 {return “PROXY proxy.evil.com:80”;}

The advantage of impersonating the PAC server,

compared to impersonating the proxy server, is that the

hijacking only needs to be done once and the browser’s

proxy setting will be changed permanently.

Browsers enabling WPAD [21]. WPAD (Web Proxy

Auto Discovery) is the only option for users to browse the

web from different networks without changing the

configuration. When WPAD is enabled, the browser does

not initially know the URL of the PAC script, but asks the

DHCP server for it. If DHCP server does not have the

information or does not respond, the browser asks the DNS

servers. Once the URL of the PAC script is obtained, the

browser fetches the script and configures its proxy settings.

If the browser cannot find any proxy configuration script, it

automatically falls back to the “no-proxy” state, in which

the browser does not access the web through any proxy.

Our attack program sniffs browser packets. When there is a

WPAD query for DHCP or DNS server, the program replies

immediately with the URL of a malicious PAC script on the

attacker machine.

Home networks typically have no HTTP proxy

servers, so it may be an expectation that online banking at

home is secure. It is worth noting that whether there is a

proxy in a home network does not affect the security. The

security is only affected by whether the browser has any

one of the proxy settings enabled. For example, if a laptop

sets the WPAD capability in the office hours in a corporate

network, it will be insecure to do online banking at home in

the evening with the proxy setting unchanged, because the

attacker can fake a WPAD response to convince the

browser that there is a proxy.

Browsers with proxy settings disabled. If a user does

disable proxy service in browsers, the vulnerabilities

described in Section III.A, III.B and IV.A are no longer

exploitable because the browser will directly establish

HTTPS connections with servers instead of tunneling the

connections through proxies, evading the code paths that

trigger the vulnerabilities. However, the remaining two

vulnerabilities described in Section III.C and IV.B can be

exploited as they only require attackers to sniff HTTP

requests and forge HTTP responses.

The default proxy settings of the browsers. If a user

has never modified any proxy settings since the installation

of the browser, the default settings vary in different

browsers: (1) Firefox does not enable any proxy setting by

default; (2) IE enables and uses WPAD in its very first run

after the installation. If this first use is successful, the

WPAD setting is checked, otherwise it is unchecked.

Chrome always uses IE’s setting; (3) After the installation,

Opera’s initial setting is the same as IE’s setting.

Therefore, even in a fresh IE, Opera or Chrome at

home, the proxy setting will be enabled if the attacker

responds to all WPAD requests that he/she receives.

C. Attack Implementations

We implemented all attack scenarios in both the

Ethernet and wireless environment. In the Ethernet, we used

WinPcap [18] to sniff and inject packets in Windows

platform. WinPcap is a network monitoring library; it

provides a set of APIs which allow us to capture all raw

packets received by network interface card (NIC) and send

raw packets through NIC. These raw packets include link

layer headers, IP headers, TCP headers, and full payload

data. While a NIC normally discards packets whose

physical (MAC) addresses do not match that of the NIC,

WinPcap can set the NIC in the promiscuous mode such

that all packets received by the NIC will be passed up.

Wireless environments are more dangerous. Given the

nature of wireless networks, attackers can sniff wireless

packets in the air when they are in the vicinity of the

wireless access points which victims are using (unless per-

user encryption schemes WPA and WPA2 are deployed,

which will be discussed in Section VI.B). Conceptually, the

attacks in a wireless network are the same as that in an

Ethernet LAN. However, we need to resolve a number of

implementation issues to enable the attacks, which are

described below.

This is a version after the camera-ready version in the IEEE S&P’09 proceedings, but before the conference presentation. In this version, we add Apple’s response regarding Safari,

and update the progress by other browser vendors.

10

Although WinPcap works well on most Ethernet NICs,

it is not properly supported by many wireless NICs. First,

many wireless NICs do not support the promiscuous mode

for power conservation. Second, WinPcap device driver

assumes Ethernet as its default link layer, which is

incompatible with most wireless NICs. However, we do

find that certain wireless NICs (e.g. Dell TrueMobile 1300

WLAN Mini-PCI Card) work with WinPcap and support

the promiscuous mode. On these NICs, WinPcap emulates

an Ethernet layer by automatically creating fake Ethernet

frames from WiFi frames. In addition, we have developed a

specific packet sniffer/injector that works with D-Link AG-

132 Wireless USB Adapter in Windows platform.

VI. MITIGATIONS AND FIXES

In this section, we describe how browsers vendors

fixed or planned to fix the vulnerabilities reported in this

paper. We also discuss possible ways to mitigate the impact

of the class of PBP vulnerabilities before they are

discovered and patched.

A. Fixes of the Vulnerabilities

We have reported these vulnerabilities (except the

authentication cookie vulnerability) to the affected browser

vendors: Microsoft’s IE team, Mozilla’s Firefox team,

Opera Software and Google’s Chrome team. Since the

authentication cookie vulnerability in Section VI.B is due to

improper setting of cookie attribute by individual websites,

we have to inform the websites instead of the browser

vendors. Table III shows the browser vendors’ responses to

each of these vulnerabilities. The vendors have

acknowledged the vulnerabilities reported by us. The

vulnerabilities described in Section III.A and III.B have

been addressed by all vendors: Microsoft has fixed them in

IE8. Firefox, Opera, Safari and Chrome have also fixed

them in their latest versions.

IE8, Firefox, Safari, Opera and Chrome fixed the

vulnerability in Section III.A by displaying a local error

page when receiving a 4xx/5xx response before the SSL

handshake succeeds. Opera and Safari fixed the

vulnerability in Section III.B by ignoring the proxy’s 3xx

redirections. As a proposal for the vulnerability in Section

III.C, Mozilla plans to fix it by blocking any script/CSS

resources imported by HTTP into HTTPS context, or

reliably display a warning. Microsoft and Opera are

considering a “defense-in-depth” patch, of which the details

have not been confirmed.

Browser vendors are not in the best position to fix the

authentication cookie vulnerability described in Section

IV.B, because currently there is no mechanism to for the

browsers to know if a cookie value is for the authentication

purpose or meant to be shared with the corresponding

HTTP domain. The cookie’s secure attribute largely depend

on the application semantics.

B. Mitigations by Securing the Network

Because HTTPS is designed fundamentally for secure

communications over an insecure network, it is of course an

unconvincing “solution” that we secure the network in

order to secure HTTPS. However, in practice, network-

based mitigation approaches are still valuable to consider

because it is not safe to assume every machine will be fully

patched. More importantly, we believe there will be future

vulnerabilities similar to what we have discovered. Good

mitigations that are effective against known attacks may

mitigate future/unknown attacks.

At the high level, users should be cautious about

plugging their machines into untrusted network ports,

connecting to unknown wireless access points (APs), or

using arbitrary network proxies. In cases when users must

go through them to access the network, they should avoid

using the network for critical transactions, such as online

banking. In enterprise networks where Kerberos

authentication is being used, network administrators should

prevent any unauthorized sniffing of user traffic.

Since the PBP attacks are so easy to launch if the

attacker has the ability to intercept or sniff traffic content, a

straightforward mitigation approach is to encrypt the

content transmitted on the network. Fortunately, there have

already existing techniques that are applicable in different

scenarios:

 Almost all wireless APs support encryption, which

make it difficult for adversaries to sniff traffic in the air.

Among the commonly available encryption schemes,

WPA and WPA2 are more secure, because they

maintain per-user keys. WEP uses a static shared key

 Microsoft (IE) Mozilla (Firefox) Apple (Safari) Opera Google (Chrome)

Vulnerability in

Section III.A

Fixed in IE8 Fixed in version 3.0.10 Fixed before version 3.2.2 Fixed in Dec.2007 Fixed in version

1.0.154.53

Vulnerability in

Section III.B

N/A Fixed in version 3.0.10 Fixed before version 3.2.2 Fixed in Dec. 2007 N/A

Vulnerability in

Section III.C

Suggest fix for the

next version

Vulnerability acknowledged,

Fix proposed

Vulnerability

acknowledged

Vulnerability

acknowledged

Fix planned

Vulnerability in

Section IV.A

Fixed in IE8 N/A Fixed before version 3.2.2 N/A Fixed in version

1.0.154.53

Vulnerability in

Section IV.B

Not reported

(Non-browser issue)

Not reported

(Non-browser issue)

Not reported

(Non-browser issue)

Not reported

(Non-browser issue)

Not reported

(Non-browser issue)

Table III. Vulnerability reporting and browser vendors' responses

This is a version after the camera-ready version in the IEEE S&P’09 proceedings, but before the conference presentation. In this version, we add Apple’s response regarding Safari,

and update the progress by other browser vendors.

11

among all the users who connect to the same AP. It is

widely known that WEP is easy to break [1].

 Sometimes, users must rely on untrusted networks to

access the Internet, e.g., in hotels, airports, conferences,

and coffee shops. They may secure their traffic by

using secure Virtual Private Network (VPN) if such

option is available. Secure VPN allows a client to

establish a secure connection with a VPN server, in

which case all the traffic between them is encrypted.

Once the connection is established, all requests and

replies will be tunneled through the VPN server.

Conceptually the users’ machines are connected to the

enterprise network of the VPN server.

 Enterprise networks should deploy IPSec to encrypt

traffic at the IP-layer. Today, IPSec coexists with

regular IP in enterprise networks. There are lots of

opportunities for PBP attackers to intercept or sniff

users’ traffic in enterprise networks. For example, large

enterprise networks typically have thousands of

network ports. Attackers can easily plug in their own

wireless APs to a network port without being detected

for a long time. These APs are often referred to as

Rogue APs and allow attackers to gain unauthorized

access to enterprise network (e.g., sniffing users’

traffic). Another example is Network Load Balancing

(NLB) where servers in the same load balancing group

share a broadcast address [10]. This facilitates packet

sniffing. To resolve these issues, it is important that all

hosts involved in the communication must use IPSec to

protect users from PBP attacks. To understand its

importance, let us assume that IPSec is only used by all

the proxy servers but not the PAC servers. Adversaries

may still intercept/sniff the requests to PAC servers and

feed malicious PAC scripts to browsers as we

described earlier. Similarly, IPSec must be deployed on

other types of servers that provide basic network

services, such as DHCP servers and DNS servers.

VII. RELATED WORK

Violations of the same-origin policy are one of the

most significant classes of security vulnerabilities on the

web. Classic examples include cross-site scripting (aka,

XSS) and browser’s domain-isolation bugs: (1) XSS is

commonly considered as a web application bug. Vulnerable

web applications fail to perform sanity checks for user input

data, but erroneously interpret the data as scripts in the web

application’s own security. Many researchers have

proposed techniques to address XSS bugs. A compiler

technique is proposed by Livshits and Lam to find XSS

bugs in Java applications [9]. Based on the observation that

XSS attacks require user-input data be executed at runtime,

Xu et al proposed using taint tracking to detect the attacks

[19]. There are many other research efforts in the area of

XSS that we cannot cite due to space constraints. (2)

Historically all browser products had bugs in their domain-

isolation mechanisms, which allow a frame tagged as

evil.com to access the document in another frame tagged as

victim.com on the browsers. Security vulnerability

databases, including SecurityFocus.com, have posted many

bugs against IE, Firefox, Opera, etc. These vulnerabilities

are discussed in [4].

The contribution of this paper is not to show that

HTTPS is breakable. In fact, people already understand that

HTTPS security is contingent upon the security of clients,

servers and certificate authorities. Binary-executable-level

threats, such as buffer overruns, virus infections and

incautious installations of unsigned software from the

Internet, allow malicious binary code to jump out of the

browser sandbox. In particular, when a malicious proxy or

router is on the communication path, the binary-level

vulnerabilities can be exploited even when the browser

visits legitimate websites. Unsurprisingly, once the

browser’s executable is contaminated, HTTPS becomes

ineffective. In addition to the binary-level vulnerabilities,

XSS bugs and browser’s domain-isolation failures may

compromise HTTPS. Furthermore, some certificate

authorities use questionable practices in certificate issuance,

undermining the effectiveness of HTTPS. For example,

despite the know weaknesses of MD5, some certificate

authorities have not completely discontinued the issuance of

MD5-based certificates. Sotirov, Stevens, et al have

recently shown the practical threat of the MD5 collision by

creating a rogue certificate authority certificate [15]. In

contrast to these known weaknesses, the contribution of our

work is to emphasize that the high-level browser modules,

such as the HTML engine and the scripting engine, is not

thoroughly examined against the PBP adversary, and PBP

indeed has its uniqueness in attacking the end-to-end

security.

HTTPS has usability problems because of its

unfriendliness to average users. Usability studies have

shown that most average users do not check the lock icon

when they access HTTPS websites [14]. They are willing to

ignore any security warning dialog, including the warning

of certificate errors. Logic bugs in browsers’ GUI

implementations can also affect HTTPS effectiveness. In

[3], we show a number of logic bugs that allow an arbitrary

page to appear with a spoofed address and an SSL

certificate on the address bar.

The HPIHSL vulnerability described in Section III.C is

related to the “mixed content” vulnerability in [7] by

Jackson and Barth. Jackson/Barth and we exchanged the

early drafts of [7] and this paper in October 2007 to

understand the findings made by both parties, which are

distinguishable in the following aspects: (1) the scenario in

[7] is that the developer of an HTTPS page accidentally

embeds a script, an SWF movie or a Java applet using

HTTP, while our main perspective is about loading an

HTTP-intended page through HTTPS; (2) we discover that

This is a version after the camera-ready version in the IEEE S&P’09 proceedings, but before the conference presentation. In this version, we add Apple’s response regarding Safari,

and update the progress by other browser vendors.

12

the warning message about an HTTP script in an HTTPS

frame can be suppressed by placing the HTTPS frame in a

HTTP top-level window, while [7] argues that such a

warning is often ignored by users; (3) we found twelve

concrete e-commerce and e-service sites that we sampled

where the vulnerability based on HPIHSL pages exists.

This suggests that this vulnerability may currently be

pervasive. In [7], there is no argument about the

pervasiveness of the accidental HTTP-embedding mistakes

made by developers.

Karlof, Shankar, et al envision an attack called

“dynamic pharming” to attack HTTPS sessions by a third-

party website. The attack is based on the assumption that

the victim user accepts a faked certificate [8]. Because

HTTPS security crucially relies on valid certificates,

accepting a faked certificate is a sufficient condition to void

HTTPS guarantees. To address dynamic pharming, the

authors propose locked same-origin-policies to enhance the

current same-origin-policy. These policies do not cover

PBP attacks discussed in Sections III.B, III.C, IV.A and

IV.B. For the attack in Section III.A, if developers

understand that 4xx/5xx pages from the proxy cannot bear

the context of the target server, then the current same-

origin-policy is already secure; if they overlook this, as all

browser vendors did, it is unlikely that the mistake can be

avoided in the implementations of the locked same-origin-

policies.

Researchers have found vulnerabilities in DNS and

WPAD protocol implementations. Kaminsky showed the

practicality of the DNS cache poisoning attack, which can

effectively redirect the victim machine’s traffic to an IP

address specified by the attacker [17]. This attack can be

used to fool the user to connect to a malicious proxy.

Researchers also found security issues about WPAD, e.g.,

registering a hostname “wpad” in various levels of the DNS

hierarchies can result in the retrievals of PAC scripts from

problematic or insecure PAC servers [2][16]. Unlike these

findings, our work does not attempt to show any

vulnerability in WPAD. It is unsurprising that the

communication over an unencrypted channel is insecure

when the attacker can sniff and send packets on the network

– several possibilities of maliciously configuring the

browser’s proxy settings were documented in [11]. We

discuss PAC, WPAD and the manual proxy setting only as

a feasibility argument of the PBP vulnerabilities.

VIII. CONCLUSIONS AND FUTURE WORK

The PBP adversary is a malicious proxy targeting

browsers’ rendering modules above the HTTP/HTTPS layer

(e.g., the HTML engine) in order to void the HTTPS’ end-

to-end security properties. The specific attack strategy of

the PBP is to feed malicious contents into the rendering

modules through the unencrypted channel, then access

secret data (or forge authentic data) above the cryptography

of HTTPS. We emphasize that this adversary must be

carefully examined so that the security guarantees ensured

by HTTPS are preserved in the whole system. The

vulnerabilities discussed in the paper exist across all major

browsers and a wide range of websites, indicating that they

are not simply due to accidental mistakes in

implementations, but due to the unawareness of the threat

of the PBP adversary in the industry.

We evaluated the feasibility and the consequences of

the discovered vulnerabilities in realistic network settings.

While the PBP attacks can be launched against users who

rely on untrusted proxy to access the Internet, it is certainly

not the only circumstance where users become vulnerable.

We conducted experiments in both wired and wireless

testbeds to demonstrate that the PBP attacks can be

launched in many real-world scenarios, such as public

wireless hotspots, Internet access in hotels, enterprise

networks, and sometimes even home networks. Specifically,

for a browser that has its proxy capability enabled, an

attacker who can sniff the browser’s raw traffic can

accomplish all the attacks.

We consider our findings as an initial step towards a

comprehensive understanding of secure deployments of

HTTPS on the web. Because of the existing complexity and

the rapid development of web technologies, we believe that

the security community needs bigger efforts to investigate

in this new problem space. What we discovered so far by no

means cover all possibilities of PBP attacks. We provided a

set of network measures to help mitigate PBP attacks.

Beyond HTTPS, it is also necessary to use holistic

thinking and evaluation to ensure secure deployments of

other cryptographic protocols, such as IPSec and Kerberos.

By definition, IPSec provides IP layer authentication and/or

encryption, and Kerberos enables domain-user

authentications over an untrusted network. Many websites

on enterprise networks run HTTP over IPSec, using the

Kerberos authentication. What does this architecture mean

in terms of security, if browsers’ proxy configuration traffic

is unencrypted? We believe the research in this general area

will have significant practical relevance – cryptographic

protocols are rigorously-designed foundations for secure

communications, which can effectively protect users only if

the protocol deployments in real systems are secure against

the same adversary that the protocols try to defeat.

ACKNOWLEDGEMENTS

We thank Dan Simon, Eric Lawrence and David Ross for
offering their insightful discussions about cryptography,
proxy and browser security topics. Our communications
with Adam Barth and Collin Jackson helped improve the
paper. Kieron Shorrock, Mike Reavey and Andrew
Cushman of Microsoft Security Response Center spent
significant efforts helping us resolve various issues around
this research. We thank anonymous reviewers and our
shepherd Bill Aiello for helpful and actionable comments.

This is a version after the camera-ready version in the IEEE S&P’09 proceedings, but before the conference presentation. In this version, we add Apple’s response regarding Safari,

and update the progress by other browser vendors.

13

REFERENCES

[1] Andrea Bittau, Mark Handley, Joshua Lackey, "The Final Nail in
WEP's Coffin," the 2006 IEEE Symposium on Security and Privacy,

Oakland, CA

[2] Grant Bugher. "WPAD: Internet Explorer’s Worst Feature,"
http://perimetergrid.com/wp/2008/01/11/wpad-internet-explorers-

worst-feature/

[3] Shuo Chen, Jose Meseguer, Ralf Sasse, Helen J. Wang, Yi-Min
Wang, “A Systematic Approach to Uncover Security Flaws in GUI

Logic,” in IEEE Symposium on Security and Privacy, Oakland,

California, May 2007.

[4] Shuo Chen, David Ross, Yi-Min Wang, “An Analysis of Browser

Domain-Isolation Bugs and A Light-Weight Transparent Defense

Mechanism,” in ACM Conference on Computer and

Communications Security, Alexandria, VA, Oct-Nov 2007.

[5] Cookie Property. MSDN. http://msdn2.microsoft.com /en-

us/library/ms533693.aspx

[6] T. Dierks and E. Rescorla. RFC5246: The Transport Layer Security

(TLS) Protocol. http://tools.ietf.org /html/rfc5246

[7] Collin Jackson and Adam Barth, “ForceHTTPS: Protecting High-
Security Web Sites from Network Attacks,” in Proceedings of the

17th International World Wide Web Conference (WWW2008)

[8] Chris Karlof, Umesh Shankar, J.D. Tygar, and David Wagner,
"Dynamic Pharming Attacks and Locked Same-origin Policies for

Web Browsers," the Fourteenth ACM Conference on Computer and

Communications Security (CCS 2007), November 2007.

[9] Benjamin Livshits and Monica S. Lam. "Finding Security

Vulnerabilities in Java Applications with Static Analysis," in Proc.

Usenix Security Symposium, Baltimore, Maryland, August 2005

[10] Network Load Balancing: Frequently Asked Questions for Windows

2000 and Windows Server 2003.

http://technet2.microsoft.com/windowsserver/en/library/884c727d-
6083-4265-ac1d-b5e66b68281a1033.mspx? mfr=true

[11] Andreas Pashalidis. "A Cautionary Note on Automatic Proxy

Configuration," Proceedings of the IASTED International
Conference on Communication, Network, and Information Security

(CNIS 2003).

[12] Mike Perry. “Active Gmail "Sidejacking" - https is NOT ENOUGH,”
http://www.securityfocus.com/archive/1/475658/30/0/threaded

[13] Jason Rafail, "Cross-site scripting vulnerabilities,"
www.cert.org/archive/pdf/cross_site_scripting.pdf

[14] Stuart E. Schechter, Rachna Dhamija, Andy Ozment, and Ian Fischer,

"The Emperor's New Security Indicators: An evaluation of website
authentication and the effect of role playing on usability studies," in

2007 IEEE Symposium on Security and Privacy, Oakland, CA. May

20-23, 2007.

[15] Alexander Sotirov, Marc Stevens, Jacob Appelbaum, Arjen Lenstra,

David Molnar, Dag Arne Osvik, Benne de Weger. "MD5 considered

harmful today -- Creating a rogue CA certificate,"
http://www.win.tue.nl/hashclash/rogue-ca/#sec71

[16] Niels Teusink. "Hacking random clients using WPAD,"

http://blog.teusink.net/2008/11/about-two-weeks-ago-i-registered-
wpad.html

[17] US-CERT. "Multiple DNS implementations vulnerable to cache

poisoning," http://www.kb.cert.org/vuls/id/800113

[18] WinPcap: The Windows Packet Capture Library.

http://www.winpcap.org/

[19] Wei Xu, Sandeep Bhatkar and R. Sekar. "Taint-Enhanced Policy

Enforcement: A Practical Approach to Defeat a Wide Range of

Attacks," in Proc. the 15th USENIX Security Symposium,

Vancouver, BC, Canada, July 2006.

[20] MSDN Online. Using Automatic Configuration, Automatic Proxy,

and Automatic Detection. http://www.microsoft.com/technet
/prodtechnol/ie/reskit/6/part6/c26ie6rk.mspx?mfr=true

[21] MSDN Online. WinHTTP AutoProxy Support.

http://msdn.microsoft.com/en-us/library/aa384240.aspx

[22] Internet access configuration instructions for some conferences,

hotels, hospitals and airports that require proxies.

http://homepage.eircom.net/~acsi/encs08.htm
http://www.hw.ac.uk/uics/Help_FAQs/WiFi_FAQs.html

http://homepage.eircom.net/~acsi/encs08.htm

http://www.ucd.ie/mcri/resources/IP_logistics_students.pdf
http://www.vistagate.com/Demo/Administration/Help.htm

http://www.grh.org/patWireless.html

[23] Internet access configuration instructions for some university
departments and libraries that require proxies.

http://groups.haas.berkeley.edu/hcs/howdoi/AirBearsXP.pdf

http://www.lib.berkeley.edu/Help/proxy_setup_ie5-7_dialup.html
http://meded.ucsd.edu/edcom/tech_support/remote_access/web_prox

y/internet_explorer/

http://physics.ucsd.edu/~sps/html/resources/articles/sciamsetup.html
http://www.lib.ucdavis.edu/ul/services/connect/proxy/step1/iewindo

wslong.php

[24] Anonymizer: free web proxy, CGI proxy list, free anonymizers and
the list of web anonymizers list.

http://www.freeproxy.ru/en/free_proxy/cgi-proxy.htm

