
Line-Up: A Complete and Automatic Linearizability Checker

Sebastian Burckhardt
Microsoft Research

sburckha@microsoft.com

Chris Dern
Microsoft

chrisd@microsoft.com

Madanlal Musuvathi
Microsoft Research

madanm@microsoft.com

Roy Tan
Microsoft

roytan@microsoft.com

Abstract
Modular development of concurrent applications requires thread-
safe components that behave correctly when called concurrently by
multiple client threads. This paper focuses on linearizability, a spe-
cific formalization of thread safety, where all operations of a con-
current component appear to take effect instantaneously at some
point between their call and return. The key insight of this paper is
that if a component is intended to be deterministic, then it is possi-
ble to build an automatic linearizability checker by systematically
enumerating the sequential behaviors of the component and then
checking if each its concurrent behavior is equivalent to some se-
quential behavior.

We develop this insight into a tool called Line-Up, the first com-
plete and automatic checker for deterministic linearizability. It is
complete, because any reported violation proves that the implemen-
tation is not linearizable with respect to any sequential determinis-
tic specification. It is automatic, requiring no manual abstraction,
no manual specification of semantics or commit points, no manu-
ally written test suites, no access to source code.

We evaluate Line-Up by analyzing 13 classes with a total of 90
methods in two versions of the .NET Framework 4.0. The viola-
tions of deterministic linearizability reported by Line-Up exposed
seven errors in the implementation that were fixed by the develop-
ment team.

Categories and Subject Descriptors D [2]: 4

General Terms Algorithms, Reliability, Verification

Keywords Linearizability, Atomicity, Thread Safety

1. Introduction
Concurrent programming is becoming more prevalent as Moore’s
law pays fewer dividends for sequential applications. To achieve
modular development, programmers face the question of how to
build and test thread-safe components, that is, components that
function correctly in a concurrent environment without placing
undue synchronization burden on the caller.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLDI’10, June 5–10, 2010, Toronto, Ontario, Canada.
Copyright c© 2010 ACM 978-1-4503-0019/10/06. . . $10.00

The most well-known examples of thread-safe components are
concurrent data types such as queues or sets, which are provided
by many major concurrency libraries (java.util.concurrent, Intel
Threading Building Blocks, and Microsoft .NET 4.0). Such li-
braries can simplify the development of thread-safe code, but are
themselves difficult to develop and test. Also, because such li-
braries cannot cover all scenarios, we expect that a growing num-
ber of programmers will develop concurrent components that are
tailored to their applications.

Thread-safety is a vaguely defined term; more specific correct-
ness conditions include data-race-freedom [11, 17, 24], serializabil-
ity [23] (sometimes called atomicity [10, 12]), linearizability [15],
or sequential consistency [16]. Over the past two decades, research
on concurrent data types confirmed that fine-grained concurrency is
difficult to get right (by discovering bugs in published algorithms
[6, 18]) and researchers have focused on linearizability as a stan-
dard for correctness [14, 26].

A concurrent component is linearizable if its operations, when
called concurrently, appear to take effect instantaneously at some
point between their call and return. As a result, one can understand
the concurrent behavior of a linearizable component simply by un-
derstanding its sequential behavior. One way to design a lineariz-
able component is to protect all instructions in an operation by a
single lock in the component. For performance reasons, many con-
current components, in practice, use more sophisticated lock-free
synchronization to guarantee linearizability.

For such implementations, correctness is subtle enough to war-
rant manual proofs of linearizability. Unfortunately, such proofs are
labor-intensive, difficult to apply to detailed production code, and
require formal training. On the other hand, promising experiences
with model checking [2, 27] suggest that a focus on falsification
and precise counterexamples is a viable alternative, and may reach
a wider audience by virtue of better automation and a more produc-
tive user experience.

The key challenge for an automatic linearizability checker is
that the linearizability of a concurrent component is defined with
respect to a sequential specification. Asking the user to provide
such a specification would depart unacceptably from our goal of
automation. Not only are most users unfamiliar with formal spec-
ifications, but the act of writing a specification is labor-intensive
even for experts.

Our insight is that if the sequential specification is deterministic,
it is possible to automatically generate the specification by system-
atically enumerating all sequential behaviors of the component. We
use this insight to build a tool called Line-Up that can find viola-
tions of deterministic linearizability automatically, without requir-

ing knowledge of the implementation, source annotations, or even
source code.

Line-Up uses a stateless model checker that runs the same
implementation both sequentially and concurrently, and checks
the consistency of the observations. Line-Up is complete: Any
detected violation of deterministic linearizability is a conclusive
proof that the implementation is not linearizable with respect to
any deterministic specification. On the other hand, Line-Up (like
all dynamic checking tools) is sound only with respect to the inputs
and the executions tested.

As a second contribution, we tightened the original definition of
linearizability to additionally detect erroneous blocking of imple-
mentations. This improves the coverage of our method as it allows
us to find liveness errors in implementations. We also describe an
adaptation of our algorithm that uses random sampling to find bugs
more quickly.

We evaluate Line-Up on production code, specifically the con-
current data types that ship with Microsoft’s .NET Framework 4.0,
and that were made available in two prereleases (community tech-
nology preview, and beta release). In the course of our project,
we applied Line-Up to 13 classes with a total of 90 methods. We
found 12 root causes for violations of deterministic linearizabil-
ity. Of those, 7 were caused by real implementation errors. The
other 5 revealed behavior that was intentionally non-linearizable
or nondeterministic. Considering that we tested 90 methods, non-
determinism was rather rare (somewhat contrary to the prominent
use of nondeterministic specifications in the research literature). In
some cases the developers realized that a method is nondetermin-
istic only after the fact was detected by Line-Up, and updated the
documentation.

To test our choice of linearizability as the appropriate notion for
thread safety, we evaluated Line-Up with other correctness check-
ers such as data-race detection and conflict serializability. Our ex-
periments revealed that these were not well suited for this appli-
cation: data-race detection was ineffective because the code con-
tained only benign data races (due to a disciplined use of ’volatile’
qualifiers and interlocked operations), while conflict-serializability
checking produced a discouraging number of false alarms. The im-
plementations we studied contained a large variety of programming
patterns that violate conflict serializability, but are nevertheless cor-
rect.

1.1 Example
To illustrate how Line-Up operates, consider a situation where we
would like to test a concurrent queue using a black-box approach
(say, we do not have access to the source code). First, we specify
a set of method calls that we would like to test. For instance, after
inspecting the interface of the queue, we might consider testing
with two methods that add different values to the queue and one
method that removes a value:

{queue.Add(200), queue.Add(400), queue.TryTake()}.

This is the only manual step required when using Line-Up. Line-
Up then automatically enumerates concurrent and sequential com-
binations of these operations. If it finds a violation of determinis-
tic linearizability, it reports a small concurrent test scenario such
as shown in Fig. 1. In fact, this example was a violation of de-
terministic linearizability that exposed a real bug in the .NET 4.0
community technology preview [19]. A client of the queue imple-
mentation would expect a TryTake to fail only when the queue is
empty. However, the buggy behavior shown in Figure 1 was caused
by accidentally allowing a lock acquire in TryTake to time out.

Note that the problem in this example can be intuitively un-
derstood without referring to implementation details, and without
knowing the formal definition of linearizability. This is an impor-

Thread 1 Thread 2

queue.Add (200); queue.Add (400);
queue.TryTake()→ returns 200; queue.TryTake();→ FAILS

Figure 1. A buggy queue implementation that violates lineariz-
ability. In the intended behavior of a queue, both TryTake opera-
tions should succeed, even though they can return different values
depending on the interleaving of these operations. Line-Up is able
to automatically detect this violation in the example above.

tant advantage when trying to convince developers that their imple-
mentation has a bug.

1.2 Related Work
To achieve full verification of concurrent objects, researchers con-
struct linearizability proofs, using rely-guarantee reasoning [25,
26] or simulation relations (using both forward- and backward-
simulations) [4]. These proof methods are interactive, not auto-
matic, and require sequential specifications. In addition, many of
these techniques require the user to specify linearization points,
which are points in the implementation where the operations ap-
pear to instantaneously take effect. The location of these lineariza-
tion point may depend on conditions that are not statically known,
requiring nontrivial annotations [27]. Even worse, those conditions
may depend on future events, thus requiring the use of prophecy
variables [1] or backward simulation relations [4]. Line-Up avoids
these annotations and instead considers all possible linearization
points, following the original definition of linearizability [15].

Model checking is more automatic and has the advantage of
producing counterexamples, but usually verifies only bounded ex-
ecutions or finite-state models. We know of two efforts in this area,
but neither achieves the same automation as Line-Up or applies the
method to real production code: (1) CheckFence [2] uses a two-
phase check similar to ours, but does not check linearizability and
requires the user to write a test suite manually. (2) An experience
report with the model checker SPIN [27] briefly mentions an au-
tomatic procedure, but focuses mainly on manually annotated lin-
earization points; it also appears to operate on finite-state abstract
models rather than on full-featured code.

Prior work on runtime refinement checking [8, 9] is closely
related to linearizability checking, and does scale to production
code. However, it is less automatic than Line-Up as it requires
the user to annotate linearization points and to construct the test
scenarios.

Another similar approach [13] executes random tests to produce
logs, then checks those logs for linearizability using a greedy search
(thus avoiding linearization points annotations). The tests are not
driven systematically by a model checker, however, and the abstract
state is modelled manually.

1.3 Contributions
In the remainder of this paper, we elaborate on our contributions in
the following order:

1. We present both the original definition of linearizability as well
as a tightened version that can detect erroneous blocking of
implementations (Section 2).

2. We present an algorithm that can automatically check whether
an implementation is linearizable with respect to any determin-
istic sequential specification (Section 3).

3. We describe how we implemented our algorithm on top of
a stateless model checker, and how we incorporated random
sampling (Section 4).

4. We demonstrate how our tool found seven real bugs in produc-
tion code, and compare its effectiveness with dynamic race de-
tection and atomicity checking (Section 5).

Our results show that automatic checking of deterministic lineariz-
ability with Line-Up provides an effective way of catching concur-
rency bugs without producing large numbers of false alarms.

2. Formulation
In this section, we begin with a formal definition of linearizability,
closely following the original [15] with the exception of a few
minor adaptations1 (Section 2.1).

We then elaborate on how to compare implementations to speci-
fications using classic linearizability, and why the latter can not de-
tect erroneous blocking of the implementation (Section 2.2). Next,
we introduce a generalized definition of linearizability that can
check the blocking behaviors of the implementation against the
blocking behaviors of the specification (Section 2.3). Finally, we
formally define deterministic linearizability, the property that Line-
Up is checking (Section 2.4).

2.1 Linearizability
For the purposes of this paper, the system is modelled as a set T =
{A,B,C, . . . } of sequential threads and a set O = {o, p, q . . . }
of objects. Formally, these sets are static, but dynamic thread and
object creation can easily be modelled. Each object has a type that
defines a set of primitive operations, and these operations are the
only means of reading or modifying the state of the object. We
represent the operations on an object o ∈ O by two disjoint sets
Io and Ro, where Io is the set of invocations (which include the
operation name and arguments) and Ro is the set of responses
(which may include return values).

For example, consider a concurrent counter object c supporting
operations to increment, decrement, set, or get the current count. In
this case, we define the invocation and response sets as follows:

Ic = {inc, dec, get} ∪ {set(x) | x ∈ N}
Rc = {ok} ∪ {ok(x) | x ∈ N}

2.1.1 Histories
An execution of the system is represented as a history, which is
defined to be a finite sequence of events, where an event is defined
as a tuple 〈o a t〉 where o ∈ O is an object, a ∈ Io ∪ Ro is an
invocation or response, and t ∈ T is a thread. A subhistory of a
history H is a subsequence of the events of H . We call an event
〈o a t〉 a call or a return depending on whether a ∈ Io or a ∈ Ro.
A return 〈o a t〉 is said to match a call 〈o′ a′ t′〉 if o = o′ and
t = t′. Within a history H , a call is pending if it is not followed
by a matching return. A history H is complete if it contains no
pending calls. For a history H , we define complete(H) to be the
history obtained from H by deleting all pending calls. A single-
object history is a history all of whose events are associated with
the same object.

For a thread t, we define the thread subhistory H|t to be the
subhistory ofH consisting of all events associated with t. A history
H is serial if (1) the sequence (if not empty) starts with a call
event, (2) calls and returns alternate in the sequence, and (3) each
return matches the immediately preceding call. A historyH is well-
formed if the thread subhistory H|t is serial for each thread t. All
histories considered in this paper are assumed to be well-formed.
See Fig. 2 for an example.

1 We renamed “processes” as “threads”, renamed “sequential” histories to
“serial” histories, renamed “invocation” and “response” events to “call”
and “return” events, and decomposed the linearizability definition using the
notion of a serial witness.

H H|A H|B
〈c set(0) A〉 〈c set(0) A〉 〈c get B〉
〈c get B〉 〈c ok A〉 〈c ok(0) B〉
〈c ok A〉 〈c inc A〉 〈c get B〉
〈c inc A〉 〈c ok(1) B〉
〈c ok(0) B〉
〈c get B〉
〈c ok(1) B〉

Figure 2. An example of a well-formed single-object history H
(on the left) and two of its thread subhistories (on the right.)

0 1 2

inc() ok()

dec() ok()

inc() ok()

dec() ok() …

get() ok(0) get() ok(1) get() ok(2)

…

Figure 3. Specification automaton for the counter object.

2.1.2 Sequential Specifications
A set Y of histories is prefix-closed if, whenever H is in Y , every
prefix of H is also in Y . A sequential specification for an object is
a prefix-closed set of single-object serial histories for that object. It
can be convenient and illustrative to think of Y as the set of traces
generated by some suitably defined specification automaton, such
as shown in Fig. 3.

A sequential specification defines the intended semantics be-
cause it specifies (1) what values may returned by each operation,
and (2) what operations may proceed. For example, consider a se-
quential specification Y for the counter object c described above.

• Suppose that the initial value of the counter is zero. Then

〈c inc A〉〈c ok A〉〈c get B〉〈c ok(1) B〉 ∈ Y
〈c inc A〉〈c ok A〉〈c get B〉〈c ok(0) B〉 /∈ Y

• Suppose that the decrement operation blocks if the count is
already zero (like a semaphore would). Then Y does not contain
any history whose first event is 〈c dec A〉.

A sequential specification Y is nondeterministic if it contains
two distinct histories H 6= H ′ whose longest common prefix ends
in a call, and deterministic otherwise.

2.1.3 Operations
Within a historyH , we define an operation e to be a pair consisting
of an invocation inv(e) and the next matching response res(e)
(if present). We let ops(H) be the set of all operations in H .
We say that an operation e is pending if inv(e) is pending, and
complete otherwise. We define oe, ie, re, and te to be the object,
invocation, response, and thread of the operation e, respectively.
We sometimes write down an operation as a bracketed tuple, in the
form [oe ie/re te] (for complete operations) or [oe ie/. te] (for
pending operations).

We define the irreflexive partial order <H on operations of H
by requiring that e1 <H e2 if and only if res(e1) precedes inv(e2)
in H . We say two operations e1, e2 ∈ ops(H) are overlapping if
neither e1 <H e2 nor e2 <H e1.

2.1.4 Linearizability
The key idea behind linearizability is to compare concurrent his-
tories to serial histories. We call a history S a serial witness for a
history H if it satisfies

1. S is serial, and

2. H|t = S|t for all threads t, and

3. <H ⊆ <S .

Intuitively, a serial witness of H is simply a linear arrangement S
of all the operations in H (all but the last one of which must be
complete) such that the order of two operations is preserved if they
are performed by the same thread, or if they do not overlap.

The following definition is equivalent to the original definition
of linearizability, restricted to single-object histories which are the
sole focus of our attention in this paper:2

DEFINITION 1 (Linearizability). A single-object history H is lin-
earizable with respect to a sequential specification Y if H can be
extended, by appending zero or more return events, to a history H ′

such that Y contains a serial witness for complete(H ′).

2.2 Implementation vs. Specification
Linearizability allows us to specify the desired behavior of a con-
current data type in terms of a sequential specification. It thus gives
us the ability to decide whether a particular implementation be-
haves correctly. As it is well known that the implementation of
concurrent data types is difficult (in particular in the presence of
performance optimizations or ambitious guarantees such as lock- or
wait-freedom), a technique for detecting deviations from the spec-
ification is invaluable.

LetX be an implementation of some object. Then we define the
setH(X) to be the set of single-object histories exhibited byX , for
all possible concurrent programs that may make use of the object,
and according to the semantics of the programming platform used
by the implementation. We consider X to be linearizable with
respect to the specification Y if and only if all histories in H(X)
are linearizable with respect to Y .

2.2.1 Example : Buggy Counter 1
We now illustrate how mistakes in an implementation can manifest
as linearizability failures. If called concurrently, the buggy counter
implementation below (on the left) may exhibit the history H (on
the right), because the inc operation fails to acquire a lock:

class Counter1
{
int count = 0;
void inc() { count = count + 1; }
int get() { return count; }
...

}

〈c inc A〉
〈c inc B〉
〈c ok A〉
〈c ok B〉
〈c get A〉
〈c ok(1) A〉

This bug can be detected by a method that checks linearizability,
because the historyH is not linearizable with respect to the specifi-
cation in Fig. 3. To see why, consider Def. 1. Because H is already
complete, any extension H ′ as described in the definition must sat-
isfy H = H ′ = complete(H ′). Any serial witness S would have
to contain exactly the three operations

e1 =[c inc/ok A] e2 =[c inc/ok B] e3 =[c get/ok(1) A]

2 Theorem 1 [15] proves that linearizability of multi-object histories can be
soundly reduced to linearizability of single-object histories.

class Counter2
{
int count = 0;
Lock lock = new Lock();
void inc() {

lock.acquire();
count = count + 1;
lock.release();

}
void get() {

lock.acquire();
return count;

}
...

}

〈c inc A〉
〈c ok A〉
〈c get A〉
〈c ok(1) A〉
〈c inc B〉

#

Figure 4. Buggy counter implementation with a stuck history.

and would have to satisfy e1 <S e3 and e2 <S e3. However,
no such serial history is compatible with the specification: if both
increment operations precede the get operation, the latter has to
return the value 2.

2.2.2 Example : Buggy Counter 2
We now look at a second example of a faulty counter implemen-
tation in Figure 4; however, this time the standard linearizability
definition fails to detect the bug. If called concurrently, the follow-
ing buggy counter implementation (left) may exhibit the “stuck”
historyH (right) because the get operation fails to release the lock:

However, the history H on the right is perfectly linearizable
according to Def. 1: adding no return events, we have H ′ =
H , and the sequence 〈c inc A〉〈c ok A〉〈c get A〉〈c ok(1) A〉
is a serial witness for complete(H ′) (in fact, it is identical to
complete(H ′)).

All histories produced by this buggy implementation are lin-
earizable in the sense of Def. 1. This is because Def. 1 only con-
siders whether the values returned by the operations are consistent
with the sequential specification, but not whether the operations re-
turn in the first place.

Knowing the specification (Figure 3), we can clearly tell that
the implementation is never supposed to block inside the operation
inc: the only time we would expect it to block is during calls to
dec, and only if the current count is 0. We extend the definition of
linearizability below so that it can precisely compare the blocking
behaviors of the implementation and the specification.

2.3 Generalizing Linearizability
To be able to detect progress problems such as deadlocks in the
implementation, we introduce the notion of “stuck” histories. First,
we formally define stuck histories to be finite sequences of events
ending with the special symbol #. We use the same terminology
for stuck histories that we defined for histories (such as complete
versus incomplete histories, pending calls, matching returns, and
so on). Also, our definition of determinism extends easily to sets
of serial histories that contain both regular and stuck histories: a
set of serial histories is nondeterministic if it contains two histories
H 6= H ′ whose longest common prefix ends with a call.

For an implementation X , we define H(X) be the set of stuck
histories that the implementationX can exhibit, that is, all histories
H where (1) H has at least one pending operation, and (2) none of
the pending operations in H can complete due to some inability of
the implementation to make progress (such as deadlock, livelock,
or a diverging loop). Figure 4 shows an example of a stuck history.

For a stuck history H of X to be linearizable, we expect that
we can find a stuck serial witness for all incomplete operations of
H . This represents the insight that all of the pending operations in
the stuck history need to have a justification for being stuck. More
formally, for a stuck history H and a pending operation e of H , let
H[e] be the stuck history obtained fromH by removing all pending
calls except inv(e). Then we define:

DEFINITION 2 (Linearizability of Stuck Histories). A stuck single-
object history H is linearizable with respect to a set Z of stuck
serial histories if for each pending operation e of H , the set Z
contains a serial witness for H[e].

Given a sequential specification Y for object o, we define the
set Y to consist of all histories of the form H〈o i t〉# where
H ∈ Y is complete, i ∈ Io, t ∈ T , and such that there exists
no response event x satisfying H〈o i t〉x ∈ Y . For example, if Y
is the specification of the counter object from Section 2.1.2, then Y
contains (among others) the stuck history 〈c dec A〉#.

Finally, we combine the previous two definitions to obtain the
general definition of linearizability:

DEFINITION 3 (General Linearizability). An implementation X is
linearizable with respect to a sequential specification Y if all his-
tories in H(X) are linearizable with respect to Y and all stuck
histories in H(X) are linearizable with respect to Y .

2.4 Deterministic Linearizability
We are now ready to formally define the property that Line-Up is
checking.

DEFINITION 4 (Deterministic Linearizability). An implementa-
tion X is deterministically linearizable if there exists a determin-
istic sequential specification Y such that X is linearizable with
respect to Y .

Checking deterministic linearizability is useful for finding
concurrency-related errors in the implementation. We provide more
evidence for this claim in Section 5. Determining whether an
implementation is deterministically linearizable is undecidable in
general (we assume implementations use a Turing-complete pro-
gramming language), but useful partial algorithms are nevertheless
possible and sensible, as demonstrated in the remainder of this
paper.

3. Line-Up Algorithm
We now present our approach to automatically check the determin-
istic linearizability of an implementation X (for some object o,
which remains fixed throughout this section). For better readabil-
ity, we have moved the detailed proofs to the appendix, and include
only short proof descriptions here.

3.1 Tests
A finite test for object o is a finite collection of invocations orga-
nized by thread. More formally, define a finite test m to be a map
m : T → I ∗o from threads to invocation sequences, such that m(t)
is empty for all but finitely many threads t. We say a finite testm is
a prefix of a finite test m′ if m(t) is a prefix of m′(t) for all t ∈ T .
We sometimes think of finite tests as matrices, with each thread cor-
responding to a column, and use the corresponding notation, such
as

m =

[
inc get
inc set(0)

]
means

{
m(A) = inc inc
m(B) = get set(0)

For an object o, and a set of invocations I ⊆ Io, we define the
set MI

p×q to consist of all finite tests corresponding to matrices of
dimension p× q with entries in I .

1: procedure Check(X,m) begin
// Phase 1: enumerate serial executions of test m

2: A← M̂s(X,m) // all serial full histories
3: B ←M s(X,m) // all serial stuck histories
4: if A ∪B is nondeterministic then
5: return FAIL
6: end if

// Phase 2: check concurrent executions of test m
// check each full history

7: for all H ∈ M̂(X,m) do
8: if H not linearizable with respect to A then
9: return FAIL

10: end if
11: end for

// check each stuck history
12: for all H ∈M(X,m) do
13: if H not linearizable with respect to B then
14: return FAIL
15: end if
16: end for
17: return PASS
18: end

Figure 5. The function Check(X,m).

3.2 Stateless Model Checker
The significance of using a finite test is that we can employ a state-
less model checker to explore all thread schedules the implemen-
tation can exhibit for the given finite test. During this enumera-
tion, we instruction the model checker to record the call and return
events along with the values of the arguments and return values to
generate the history for each execution. We describe this in more
depth in Section 4.

For a given test m, we call a history full if it is complete and
contains all operations of m. For an implementation X and a finite
test m, we define M̂(X,m) to be the set of full histories of m
found by the model checker, and M(X,m) to be the set of stuck
histories found by the model checker.

We can also instruct the model checker to explore serial sched-
ules only, if so desired. We define M̂s(X,m) to be the set of full
serial histories found by the model checker, and M s(X,m) to be
the set of stuck serial histories found by the model checker.

3.3 The Two-Phase Check
At the core of our method is the function Check(X,m) (see Fig. 5).
This function checks for a given implementation X and finite test
m whether the executions of X for m are consistent with some
(unknown) sequential deterministic specification.

The check has two phases. Because we do not know the specifi-
cation, we synthesize it in phase 1, by recording all serial histories
of the finite testm. In phase 2, we check whether all concurrent ex-
ecutions are consistent with the specification recorded in phase 1.

The following two theorems describe precisely under what cir-
cumstances our test fails or succeeds. The detailed proofs are in-
cluded in the appendix.

THEOREM 5 (Completeness). LetX be an implementation and let
m be an arbitrary finite test. If Check(X,m) returns FAIL, then X
is not deterministically linearizable.

The theorem holds because if X is linearizable with respect to
some deterministic specification, phase 1 is guaranteed to synthe-
size exactly that specification with respect tom, so we can perform
a precise check in phase 2. The guarantee made by this theorem

1: procedure AutoCheck(X) begin
2: n← 1
3: loop
4: for all m ∈MIn

n×n do
5: if Check(X,m) returns FAIL then
6: return FAIL
7: end if
8: end for
9: n← n+ 1

10: end loop
11: end

Figure 6. The algorithm AutoCheck(X).

is very strong: it shows that a failing check never produces false
alarms, but truly refutes deterministic linearizability.

On the other hand, a return of PASS does not conclusively prove
that an implementation is deterministically linearizable, because
the chosen finite test may not expose the bug. However, this is the
only limitation, as the following theorem demonstrates:

THEOREM 6 (Restricted Soundness). LetX be an implementation
that is not deterministically linearizable. Then there exists a finite
test m such that Check(X,m) returns FAIL.

The theorem holds because if all testsm pass (note that there are
infinitely many), then we can construct a deterministic sequential
specification for the implementation from all the sets A,B.

In practice, our experience (which we discuss in more depth in
Section 5) shows that even this restricted soundness is quite power-
ful. The reason is that if there exists a finite test that finds the bug,
then there usually exists a relatively small one (an empirical obser-
vation called “the small scope hypothesis” by some researchers).

3.4 Automatic Algorithm
The checking function Check(X,m) still requires a test case m.
To achieve full automation, we can generatem automatically. First,
determine some enumeration Io = {i1, i2, . . . } of the invocations
of the object o under test. This can be automatically constructed by
enumerating the interface methods of the object and enumerating
possible values for each of the methods. For n ∈ N, define the
set In = {i1, . . . , in} containing the first n elements of Io. Then
we can apply the algorithm AutoCheck(X) as shown in Fig. 6 to
check linearizability automatically. Note that this algorithm does
not terminate on a correct implementation.3

Completeness (Thm. 5) holds for AutoCheck(X) just as for
Check(X,m). Soundness is more comprehensive:

THEOREM 7 (Soundness). LetX be an implementation that is not
deterministically linearizable. Then AutoCheck(X) returns FAIL.

This theorem holds because we know by Thm. 6 that there exists
a finite test m such that Check(X,m) returns FAIL. We can then
choose a sufficiently large n such that m is a prefix of some finite
test in MIn

n×n, and apply the following lemma:

LEMMA 8. If testm is a prefix of testm′ and Check(X,m) returns
FAIL, then Check(X,m′) returns FAIL also.

Intuitively, the proof works by observing that all full histories of m
appear as prefixes in some full or stuck history of m′, and all stuck
histories ofm appear as stuck histories ofm′. Note that condition 3
in the definition of a serial witness (Section 2.1.4) is essential for
this lemma to hold.

3 This is consistent with the fact that there cannot be an algorithm for an un-
decidable problem that is simultaneously sound, complete, and terminating.

4. Implementation
Line-Up is built on top of the stateless model checker CHESS [22],
which provides us with the capability of enumerating thread sched-
ules of C# code. We treat the algorithm used by CHESS (fair state-
less model checking [21]) and its optimizations and heuristics (e.g.
search prioritization [5]) essentially as a black box, thus our algo-
rithm could be used with other model checkers as well. However,
we rely on the ability to enumerate schedules exhaustively, so sim-
ple runtime monitoring is not sufficient. Also, support for fairness
is important because many of the concurrent data types use spin-
loops for synchronization.

4.1 Implementing Check
We implement the two phases of the function Check(X,m) (Fig.5)
as two separate invocations of CHESS. To perform phase 1, we
record all complete and all stuck serial histories. All these histories
can be enumerated without preempting threads inside operations,
so we instruct CHESS accordingly. The set of observed serial
histories Z is recorded in a file (called the observation file). To
perform phase 2, we run CHESS again, this time exploring the fine-
grained thread interleavings, and for each stuck or complete history,
we check whether the observation file contains the required serial
witness(es). If the check fails, we report the violating history to the
user.

4.2 Observation File Format
We chose an XML-based format for listing a set of observations.
This format groups all histories into sections, where all histories
in a section exhibit the same operation sequences for each thread
(Fig. 7, middle). This format has two advantages. For one, when
our algorithm is looking for a serial witness in the observation set,
it is enough to search one group, because any serial witness must
perform matching operation sequences in each thread. Second, this
format is easier to understand and navigate manually if the histories
become large.

When we report a linearizability violation to the user we include
the violating history (Fig. 7, bottom). Often, the first step in analyz-
ing such a report is to examine the observation file for a clue to why
it does not contain a serial witness.

4.3 Random Sampling
We found that a literal implementation of the algorithm AutoCheck
(Fig. 6) does not perform well in practice. The reason is that
(1) the model checker performance starts to drop dramatically
when going beyond 3x3 matrices, and (2) using the invocation
enumeration sets In may require unnaturally large values of n for
the right combination of invocations to show up in the test. We thus
developed a random sampling technique that performed quite well
in practice.

Specifically, our adapted algorithm lets the user provide a list of
representative invocations I , the desired dimension n × m of the
matrix, and a sample size k. We then run Check on a uniform ran-
dom sample of k tests from MI

n×m. Like Check and AutoCheck,
the function RandomCheck is complete, but we no longer have a
soundness guarantee (bugs may be missed). However, our empiri-
cal results in Section 5 show that random sampling is quite efficient
at discovering failing testcases.

Another big practical benefit of random sampling is that it is
embarrassingly parallel: it is very easy to distribute the various tests
and let each core run Check independently.

We also allow users to specify entire sequences of invocations
to be used when constructing tests, as well as initial and final
sequences of operations to perform before and after each test,
respectively. Any professional experience of the tester about how
to construct effective tests can thus be easily integrated with the

Thread A Thread B

Add (200) Take()
Add (400) TryTake ()

<observationset>
<observation>

<thread id="A">1 2</thread>
<thread id="B">3 4</thread>
<op id="1" name="Add">value="200"</op>
<op id="2" name="Add">value="400"</op>
<op id="3" name="Take">result="200"</op>
<op id="4" name="TryTake">result="Fail"</op>
<history>1[]1 3[]3 4[]4 2[]2</history>

</observation>
<observation>

<thread id="A">1 2</thread>
<thread id="B">3 4</thread>
<op id="1" name="Add">value="200"</op>
<op id="2" name="Add">value="400"</op>
<op id="3" name="Take">result="200"</op>
<op id="4" name="TryTake">result="400"</op>
<history>1[]1 2[]2 3[]3 4[]4</history>
<history>1[]1 3[]3 2[]2 4[]4</history>

</observation>
<observation>

<thread id="A"></thread>
<thread id="B">1B</thread>
<op id="1" name="Take" />
<history>1[#</history>

</observation>
</observationset>

Line-Up encountered a non-linearizable history:
<thread id="A">1 2</thread>
<thread id="B">3 4</thread>
<op id="1" name="Add">value="200"</op>
<op id="2" name="Add">value="400"</op>
<op id="3" name="Take">result="200"</op>
<op id="4" name="TryTake">result="Fail"</op>
<history>1[3[]1 2[]3]2 4[]4</history>

Figure 7. (Top) An example 2x2 test for a concurrent FIFO queue
implementation. Add adds an element to the queue, TryTake re-
moves and returns the oldest element or fails if the queue is empty,
and Take removes and returns the oldest element or blocks if the
queue is empty. (Middle) An example of what the observation file
looks like for this test. The histories are grouped into sections (each
<observation> element is one such section). All histories in a
section agree on the sequence of operations performed by each in-
dividual thread (<thread> elements show the sequence of opera-
tions by each thread, while <op> elements show the details of each
operation), but differ in the precise interleaving of the operation
calls and returns (<history> elements show the precise interleav-
ing of each history, in the form i[and]i for call and return of an
operation i , respectively). Blocking operations are marked with a
letter B, and stuck histories are marked with a final #. (Bottom)
Example of a linearizability violation report for this test and ob-
servation file. The test failed because no serial witness was found:
there is only one history in the matching <observation> element
of the file, and it does not order the call of TryTake after the return
of Add(400), so it is not a serial witness for this observation.

1: procedure RandomCheck(X, I, i, j, n) begin
2: M ← random sample of size n drawn from MI

i×j

3: for all m ∈M do
4: if Check(X,m) returns FAIL then
5: return FAIL
6: end if
7: end for
8: return PASS
9: end

Figure 8. The algorithm RandomCheck(X).

automatic test generation . Also, the user is always free to specify
test matrices directly, a useful feature for testing very specific
scenarios or for writing regression tests.

To allow the model checker CHESS to complete its schedule
exploration, we found it necessary to use the preemption bound-
ing heuristic in CHESS, thus further compromising on soundness.
However, we use no bounding during phase 1, so we can retain the
important completeness guarantee (that any reported violation is
correct).

5. Results
We now present the practical experiences we gathered when apply-
ing Line-Up to 13 classes with a total of 90 methods in the .NET
Framework 4.0 concurrency classes (Table 1). We used two differ-
ent versions of these classes, a technology preview (indicated by
Pre in our results) and the beta2 release of the library. The two ver-
sions are separated by more than a year of development and much
of the implementation and the APIs were changed between these
two versions. Some of the bugs in the older version were originally
found by (an earlier version of) Line-Up and have been fixed in the
latest version.

5.1 Approach
For each class, we run the RandomCheck procedure to test a uni-
form random sample of 100 tests of dimension 3×3. To track down
the observed failures, we manually remove operations from failing
3x3 test matrices to obtain a failing test of minimal dimension, for
the sake of easier reasoning and regression testing. We then ana-
lyze the reduced failures further to determine the root cause of the
failure.

Table 2 summarizes our results. Each line corresponds to a class
we tested (Table 1). A class with the suffix (Pre) indicates a version
from the older release of the .NET Framework 4.0.

5.2 Line-Up Failures
For each failure reported by Line-Up, we identified 12 unique root
causes indicated by A to L in Table 2. The table also shows the
minimum dimension of a test that is sufficient to find each root
cause. The numbers show that most failures can be found with very
small tests, confirming the small scope hypothesis.

A Line-Up failure indicates that the class is not linearizable with
respect to any deterministic sequential specification. Accordingly,
the root cause can be classified as one of the following three
categories; we describe each cateogory in a separate subsection.

1. A Bug (7 found): The class is intended to be deterministically
linearizable with respect to the set of methods tested. Thus the
failure indicates a bug in the program.

2. Intentional Nondeterminism (3 found): The tested methods
are intended to be linearizable but with respect to a nondeter-
ministic specification.

Class LOC Properties & Methods checked
Lazy Initialization 470 Value, ToString, IsValueCreated
ManualResetEvent 868 Set, Wait, Reset, IsSet, WaitOne
SemaphoreSlim 585 CurrentCount, Release, Release(2), Wait, Wait(0)
CountdownEvent 571 IsSet, Wait, Wait(0), CurrentCount, WaitOne

for x in (ε,2) {Signal(x), AddCount(x), TryAddCount(x)}
ConcurrentDictionary 1833 Count, IsEmpty, Clear, for x in (10,20) {TryAdd(x), TryRemove(x),

TryGet(x), get[x], set[x], TryUpdate(x), ContainsKey(x)}
ConcurrentQueue 819 Count, IsEmpty, Enqueue, ToArray, TryDequeue, TryPeek
ConcurrentStack 835 Clear, Count, Push, PushRangeTen, TryPop, TryPopRangeOne,

TryPopRangeTwo, TryPopRangeFour, TryPeek, ToArrayOrderBy
ConcurrentLinkedList Count, AddFirst,AddLast,RemoveFirst, RemoveFirst(out value),

RemoveList, RemoveLast(out value)
BlockingCollection 1808 Count, ToArray, TryAdd, TryAdd(1), IsCompleted, IsAddingCompleted,

CompleteAdding, Add, Take, TakeWithEnum, TryTake, TryTake(1)
ConcurrentBag 1074 Count, Add(10), Add(20), TryTake, IsEmpty, TryPeek, ToArray
TaskCompletionSource 392 Exception, TrySetCanceled, TrySetException, TrySetResult,

SetCanceled, SetException, SetResult, Wait, TryResult
CancellationTokenSource 946 Increment, Cancel
Barrier 870 SignalAndWait, ParticipantsRemaining, RemoveParticipant,

CancelToken, CurrentPhaseNumber, ParticipantCount, AddParticipant

Table 1. Classes from .NET Framework 4.0 (beta 2) that we used to evaluate Line-Up. The description of these classes is available at [20].

Class Smallest

Bugs failing # # avg. time avg. time

nondet. nonlin. testcase avg max avg max pass fail pass [min] fail [min] PB
Lazy Initialization 60 68 0.07 0.07 100 0 9.7 2
ManualResetEvent(Pre) A A:2x3 828 1680 3.31 8.36 93 7 12.9 19.9 2
ManualResetEvent 76 133 0.07 0.07 100 0 170.5 2
SemaphoreSlim 1511 1680 3.91 7.31 100 0 18.1 1
CountdownEvent 410 1680 1.20 4.95 100 0 6.3 2
ConcurrentDictionary 1678 1680 7.02 10.94 100 0 6.8 1
ConcurrentQueue(Pre) B B:2x2 1680 1680 6.00 6.33 43 57 33.8 5.7 2
ConcurrentQueue 1680 1680 6.37 6.77 100 0 33.7 2
ConcurrentLinkedList(Pre) C C:2x2 1674 1680 8.54 12.36 80 20 5.8 2.0 1
ConcurrentStack 1680 1680 3.49 3.68 100 0 1.3 2
BlockingCollection(Pre) D K D:2x2 K:2x2 850 1680 4.09 17.84 13 87 109.6 47.4 2
BlockingCollection H, I K H: 2x2 I:3x2 259 501 0.07 0.07 43 57 205.3 68.7 2
ConcurrentBag(Pre) E J E:2x2 1680 1680 4.18 4.52 75 25 1.7 0.4 1
ConcurrentBag J J: 2x2 1680 1680 4.05 4.43 87 13 0.6 3.2 2
TaskCompletionSource(Pre) F F:2x2 1432 1680 7.30 20.26 65 35 32.9 9.4 2
TaskCompletionSource G G:2x2 1209 1680 5.98 11.95 53 47 53.3 3.7 2
CancellationTokenSource 1680 1680 4.49 5.74 100 0 9.6 2
Barrier L L:2x2 1166 1680 4.10 7.02 22 78 7.0 1.5 2

Root Causes

Intentional

Phase 2

#histories time [min]

Phase 1

Table 2. Results of applying Line-Up. to classes from the .NET Framework 4.0. The classes from the Parallel Extensions preview [19] are
marked with (Pre), all others are from the Beta 2 release.

3. Intentional Nonlinearizability (2 found): The tested methods
are not intended to be linearizable.

5.2.1 Bugs
Line-Up found a total of 7 bugs tagged A to G in Table 2. These
bugs range from simple synchronization errors to flaws in the logic
of the algorithm. In many cases, understanding the bugs requires an
intimate knowledge of the class implementation.

We describe one bug (A) in the ManualResetEvent class in more
detail. This class implements an event, and as one would expect, a
thread waits till the event is set by another thread. The event can
also be reset after being set. For the test shown in Figure 9, Line-
Up produced a concurrent execution in which Thread 1 was never

unblocked. We can be convince ourselves that this is an erroneous
(or at least, an unexpected) behavior even without understanding
how this class is implemented. On careful inspection, we identified
the source of the bug to an erroneous use of the compare and swap
(CAS) operation shown below:

int state;
Wait(){
//...
int localstate = state;
int newstate = f(state); // compute new value
compare_and_swap(&state, localstate, newstate);
//...

}

Thread 1 Thread 2

mre.Wait(); mre.Set();
mre.Reset();
mre.Set();

Figure 9. A ManualResetEvent test. Irrespective of the interleav-
ing between the two threads, one expects Thread 1 to be eventually
unblocked.

It is common for concurrent algorithms to use a CAS operation
to atomically update a shared variable. The correct usage is to read
the shared variable into a local copy, use this copy to compute
the new value of the variable, and update the shared variable only
if the variable has not been modified by another thread in the
interim. However, the implementation above contains a pernicious
typographical error where the shared variable state is read the
second time when computing the new value. Arguably, this bug is
very hard to find by manual inspection. Moreover, even when the
bug is known, it is very hard to design a test harness that exposes the
bug: the value of state needs to change between the two reads but
needs to be set to the first value before the CAS operation, which
would otherwise fail.

5.2.2 Intentional Nondeterminism
Line-Up reported 3 failures (H, I, J) that resulted from nondeter-
minism in the specification. A ConcurrentBag represents an un-
ordered collection of items and the implementation is allowed to
remove any one of the elements during a TryTake. For the Block-
ingCollection, Line-Up generated a test where the Count method
could return 0 even when the collection is not empty. Similarly, it
generated a test where the TryTake method can fail even when the
collection is not empty. While these are clearly unexpected behav-
iors, the developers of these classes were unable to provide a fix
that was both efficient and did not require global changes to the im-
plementation, and decided instead to change the official documen-
tation of these methods to include the potentially nondeterministic
behavior.

5.3 Intentional Nonlinearizability
Line-Up reported 2 instances (K, L) of nonlinearizability. The
BlockingCollection contains a Cancel method where the effects of
cancellation can take place well after the method has returned. This
class is linearizable for all other methods. The Barrier is a classic
example of a nonlinearizable class. Barriers block each thread until
all threads have entered the barrier, a behavior that is not equivalent
to any serial execution.

In summary, the results above show that a large variety of
concurrency errors can be caught quite easily as a linearizability
violation of randomly chosen 3x3 tests. They also show that there
is some room for improvement in extending our method to support
nondeterministic or nonlinearizable methods.

5.4 Runtime of the Two Phases
The table 2 shows the runtime characteristics of the two phases.
For Phase 1, the enumeration of serial histories, the table shows
how many histories were observed on average and on maximum.
The table also shows how long it takes to run phase 1 on a single
3x3 testcase (average and maximum observed). All measurements
were performed on an 8 Core 2.33 GHz Intel Xeon, with one core
assigned to one testcase at a time. The numbers demonstrate that
the automatic enumeration of a sequential specification is very
cheap, which is a key fact exploited by the Line-Up algorithm.

For Phase 2, the enumeration of concurrent histories, the table
shows how many testcases passed and failed. Most violations were

caught by a large proportion of the sample. We also show how
long it takes to complete a failing/passing testcase on average. As
usual, testcases fail much quicker than they pass. The PB column
shows the preemption bound used to limit the search. We use 2 (the
CHESS default) except where it performed unacceptably slow.

5.5 Relevance of using generalized linearizability
Because we are generating random tests, some tests may get
stuck. For example, a random test may easily acquire a block-
ing semaphore more often than release it, thus causing deadlock
(in both phases). This is reflected by the fact that the number of
histories enumerated in phase one is sometimes less than the com-
binatorial number of full histories for 3x3 matrices, which is 1680.

Our use of generalized linearizability (as opposed to classical
linearizability) is significant insofar 5 of the 13 classes tested ex-
hibited deadlocking tests and could not have been tested with a
methodology that can not handle them. In particular, we would not
be able to single out the bug in Figure 9 with a tool that checks
standard (nonblocking) linearizability only.

5.6 Comparisons
To compare Line-Up with other dynamic checking methods, we
also checked for data races and atomicity violations. For data race
detection, we used the happens-before based dynamic race detector
included with CHESS. To perform atomicity checking, we imple-
mented the algorithm described in [10], which checks whether a
given dynamic execution is conflict-serializable.

All the data races we found were benign, and it appeared that
they remained in the code only because of limitations in the C#
compiler (which does not permit arrays of volatiles, or references
to volatiles). We believe the surprisingly low number of data races
we found shows that, for this type of application, a conservative use
of volatile declarations and interlocked operations is a relatively
simple way to avoid data races (but does of course nothing to
prohibit higher-level mistakes in the logic of the algorithm).

Our experiments with atomicity (conflict serializability) check-
ing resulted in hundreds of warnings. We abandoned the effort of
classifying these warnings into real errors after inspecting the first
ten of them which turned out to be false alarms. Our initial inves-
tigation yielded four good and common reasons why programs (in
particular, concurrent data types) can exhibit non-serializable exe-
cutions and still be correct.4 We briefly list these here.

1. (ConcurrentStack, ConcurrentQueue) The code performs a
CAS. A failing CAS leads to a retry. However, the accesses
performed before the retry break serializability.

2. (SemaphoreSlim) The code contains a timing optimization
(similar to double-checked locking) that does not affect cor-
rectness, but breaks serializability.

3. (CancellationTokenSource) The current state is read and com-
pared using a ≥ operator. At an abstract level, this comparison
is a right-mover, but a simple serializability detector does not
know that.

4. (ConcurrentBag) A thread performs lazy initialization, acquir-
ing a global lock. This work does not affect the current opera-
tion in any way, but breaks serializability.

It is labor-intensive to decide whether an atomicity violation is be-
nign as doing so requires a good understanding of the design prin-
ciples of the implementation, and we did not write this code our-

4 We believe that all of the observed non-serializable behaviors could be
made serializable by exploiting global knowledge about invariants and
commutativity of operations (e.g. using atomic blocks and movers [7]), but
automating such an approach would indeed be very challenging.

selves. Using Line-Up was easier because the reported violations of
linearizability provided a sufficiently conclusive evidence of mal-
function to convince the original developers that they had to ana-
lyze and fix the problem.

5.7 Memory model issues
The algorithm as presented in this paper is orthogonal to memory
model issues in the sense that it is the responsibility of the underly-
ing model checker to produce all histories (including histories that
manifest for non-sequentially consistent executions). However, the
CHESS model checker does not directly enumerate the relaxed be-
haviors of the target architecture; instead it checks for potential vi-
olations of sequential consistency using a special algorithm similar
to data race detection [3]. We thus used this technique, but did not
find any such issues in the studied implementations.

6. Conclusion and Future Work
We have made several important contributions in this paper. First,
we show how to improve the definition of linearizability so it can
detect erroneous blocking in implementations. Then, we present an
automatic algorithm to detect linearizability violations, and show
how it can be practically implemented and applied using a stateless
model checker.

We then demonstrated on real production code that our tool
Line-Up can detect a variety of concurrency bugs automatically.
Our work shows the practical value of a tool that checks imple-
mentations without requiring knowledge of their design principles,
and the appeal of error reports that show a specific scenario where
the component misbehaves in an externally observable way.

As future work, we would like to take Line-Up beyond sim-
ple linearizable methods and incorporate support for (1) asyn-
chronous methods, such as the cancel method, and (2) nondeter-
ministic methods, such as methods that may fail on interference.

References
[1] M. Abadi and L. Lamport. The existence of refinement mappings.

Theor. Comput. Sci., 82(2), 1991.

[2] S. Burckhardt, R. Alur, and M. Martin. CheckFence: Checking con-
sistency of concurrent data types on relaxed memory models. In Pro-
gramming Language Design and Impl. (PLDI), pages 12–21, 2007.

[3] S. Burckhardt and M. Musuvathi. Effective program verification for
relaxed memory models. In Computer-Aided Verification (CAV), pages
107–120, 2008.

[4] R. Colvin, L. Groves, V. Luchangco, and M. Moir. Formal verification
of a lazy concurrent list-based set algorithm. In Computer-Aided
Verification (CAV), LNCS 4144, pages 475–488. Springer, 2006.

[5] K. Coons, M. Musuvathi, and S. Burckhardt. Gambit: Effective unit
testing of concurrency libraries. In Principles and Practice of Parallel
Programming (PPoPP), 2010.

[6] S. Doherty, D. Detlefs, L. Grove, C. Flood, V. Luchangco, P. Martin,
M. Moir, N. Shavit, and G. Steele. DCAS is not a silver bullet for
nonblocking algorithm design. In Symposium on Parallel Algorithms
and Architectures (SPAA), pages 216–224, 2004.

[7] T. Elmas, S. Qadeer, and S. Tasiran. A calculus of atomic actions. In
Principles of Programming Languages (POPL), 2009.

[8] T. Elmas and S. Tasiran. VyrdMC: Driving runtime refinement check-
ing with model checkers. Electr. Notes Theor. Comput. Sci., 144:41–
56, 2006.

[9] T. Elmas, S. Tasiran, and S. Qadeer. VYRD: verifying concurrent
programs by runtime refinement-violation detection. In Programming
Language Design and Impl. (PLDI), pages 27–37, 2005.

[10] A. Farzan and P. Madhusudan. Monitoring atomicity in concurrent
programs. In Computer-Aided Verification (CAV), 2008.

[11] C. Flanagan and S. Freund. Efficient and precise dynamic race detec-
tion. In Programming Language Design and Impl. (PLDI), 2009.

[12] C. Flanagan, S. Freund, and J.Yi. Velodrome: A sound and complete
dynamic atomicity checker for multithreaded programs. In Program-
ming Language Design and Impl. (PLDI), 2008.

[13] K. Fraser. Practical Lock-Freedom. PhD thesis, University of Cam-
bridge, 2004.

[14] K. Fraser and T. Harris. Concurrent programming without locks. ACM
Trans. Comput. Syst., 25(2), 2007.

[15] M. Herlihy and J. Wing. Linearizability: a correctness condition for
concurrent objects. ACM Trans. Program. Lang. Syst., 12(3):463–492,
1990.

[16] L. Lamport. How to make a multiprocessor computer that correctly
executes multiprocess programs. IEEE Trans. Comp., C-28(9):690–
691, 1979.

[17] D. Marino, M. Musuvathi, and S. Narayanasamy. LiteRace: Effective
sampling for lightweight data-race detection. In Programming Lan-
guage Design and Impl. (PLDI), 2009.

[18] M. Michael and M. Scott. Correction of a memory management
method for lock-free data structures. Technical Report TR599, Uni-
versity of Rochester, 1995.

[19] MSDN, http://blogs.msdn.com/somasegar/archive/2007/
11/29/parallel-extensions-to-the-net-fx-ctp.aspx.
Parallel Extensions to the .NET FX CTP, November 2007.

[20] MSDN, http://msdn.microsoft.com/en-us/library/
dd460718(VS.100).aspx. .NET Framework 4 Data Structures for
Parallel Programming, November 2009.

[21] M. Musuvathi and S. Qadeer. Fair stateless model checking. In
Programming Language Design and Impl. (PLDI), 2008.

[22] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. Nainar, and I. Neamtiu.
Finding and reproducing heisenbugs in concurrent programs. In Op-
erating Systems Design and Impl. (OSDI), pages 267–280, 2008.

[23] C. H. Papadimitriou. The serializability of concurrent database up-
dates. J. ACM, 4(26), October 1979.

[24] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson.
Eraser: A dynamic data race detector for multithreaded programs.
ACM Trans. Comp. Sys., 15(4):391–411, 1997.

[25] V. Vafeiadis. Shape-value abstraction for verifying linearizability. In
Verification, Model Checking and Abstract Interpretation (VMCAI).
Springer-Verlag, 2009.

[26] V. Vafeiadis, M. Herlihy, T. Hoare, and M. Shapiro. Proving correct-
ness of highly-concurrent linearisable objects. In Principles and Prac-
tice of Parallel Programming (PPoPP), pages 129–136, 2006.

[27] M. Vechev, E. Yahav, and G. Yorsh. Experience with model checking
linearizability. In SPIN, 2009.

A. Proofs
We first establish the following lemma which states that the enu-
meration done in phase 1 provides all the necessary histories. For
each history H , let mH be the corresponding test (that is, we let
mH(t) be the sequence of calls made by thread t in H).

LEMMA 9 (Specification Synthesis.). Let X be a linearizable im-
plementation of some object o with respect to a deterministic se-
quential specification Y .

1. If H ∈ Y is complete, then H ∈ M̂s(X,mH).
2. If H ∈ Y , then H ∈M s(X,mH).

PROOF. LetH ∈ Y orH ∈ Y (thusH is serial). Now consider an
execution of the test mH where the schedule is restricted in such
a way that calls are made in the exact sequence that they appear in
H , and no call is made before the previous call returns. Such an
execution must be possible without getting stuck prematurely (any

stuck partial execution would not be consistent with the fact that
X is linearizable w.r.t. Y , because that would imply that H ′# is
in Y for some prefix H ′ of H which is impossible because H in
Y and Y is deterministic) and all the returns must match the ones
in the sequence H (because X is linearizable w.r.t. Y and Y is
deterministic). Thus, such an execution must end up reproducing
H . If H is complete, it is full for mH , and thus H ∈ M̂s(X,mH).
On the other hand, if H ∈ Y , then the execution can not possibly
continue with a return (such a continuation, since linearizable,
would again contradict the determinism of Y). Thus, it must be
stuck, and thus H ∈M s(X,mH). �

A.1 Proof of Thm. 5
We assume there exists a deterministic spec Y such that X is lin-
earizable with respect to Y , but assume that Check(X,m) never-
theless returns FAIL, and show that a contradiction results. Distin-
guish cases.

Case 1: The check on line 4 returns FAIL. Then there must exist
histories H 6= H ′ in A ∪ B whose maximal common prefix ends
in a call. But then both of H,H ′ must be in Y (or Y) if they are
full (or stuck), because the only serial witness for a serial history
is that exact history. But that contradicts the assumption that Y is
deterministic or the definition of Y .

Case 2: The check on line 8 returns FAIL for H ∈ M̂(X,m).
Because X is linearizable and complete, we know H has a serial
witness S ∈ Y . By Lemma 9, we know S ∈ M̂s(X,mH).
Because H is a full execution of m, we know mH = m, thus
S ∈ M̂s(X,m). But that implies that S ∈ A after phase 1 (see
Fig. 5) so when the check on line 8 is performed, it does not fail,
contradicting our assumption.

Case 3: The check on line 13 returns FAIL for H ∈M(X,m).
Let e be the operation in H for which H[e] fails the linearizability
test (in the sense of Def. 2). Because X is linearizable, there exists
by Def. 2 a serial witness S ∈ Y for H[e]. By Lemma 9, we know
S ∈ M s(X,mH[e]). Now, because mH[e] is a prefix of m, this
implies S ∈ M s(X,m). But that implies that S ∈ B after phase
1, so the check on line 13 could not have failed as we assumed.

A.2 Proof of Thm. 6
Assume that there exists no test m such that Check(X,m) re-
turns FAIL. For a test m, let Am, Bm be the sets computed in
Check(X,m), and letB′m be the set of histories obtained fromBm

by removing all pending calls and symbols #. Then define Y to be
the prefix-closure of

⋃
m(Am ∪B′m) and observe the following:

1. Y is deterministic. If not, it would contain distinct histories
whose longest common prefix ends with a call, but which con-
tinue differently (with different returns). Tracking these back
to the tests m,m′ where they came from, we can reason that
the model checker would produce the same options to con-
tinue this same prefix in both Check(X,m) and Check(X,m′),
which implies that the nondeterminism would be detected on
the lines 4, contrary to the assumption that all tests pass.

2. IfH ∈ Bm, thenH ∈ Y . To see this, letH = H〈o i t〉#; then
H ∈ Y . For the same reason as argued in observation 1, H can
not be the prefix of any longer history in Y , thus H in Y .

3. Each element of M̂(X,m) is linearizable with respect to Y : the
check on line 8 passed, which implies that Am contains a serial
witness, thus Y does too.

4. Each element of M(X,m) is linearizable with respect to Y :
the check on line 13 passed, which implies that Bm contains a
serial witness for each H[e]. By observation 2 this implies that
Y also contains those serial witnesses.

A.3 Proof of Thm. 7
We know by Thm. 6 that there exists a testm such that Check(X,m)
returns FAIL. Now, pick an n such that (1) In contains all the invo-
cations appearing in m, and (2) n is larger than the largest thread
such that m(t) is nonempty, and (3) n is larger than length of the
longest sequence m(t), for any t. This then implies that MIn

n×n

contains a test m′ such that m is a prefix of m′. The claim then
follows by Lemma 8.

A.4 Proof of Lemma 8
We assume that the testm is a prefix of a testm′, that Check(X,m)
returns FAIL, that Check(X,m′) returns PASS, and show that a
contradiction results. Let A = Am, B = Bm, A′ = Am′ , and
B′ = Bm′ . Now we distinguish by where the check fails.

Case 1: The check on line 4 returns FAIL. Then there must exist
histories H 6= H ′ in A ∪ B whose maximal common prefix ends
in a call. Now, because m is a prefix of m′, the model checker will
explore histories of m′ that follow H exactly, but continue (if H is
not already stuck) until they are full or stuck. Thus each of H,H ′

is either in B′ (if it is stuck) or is a prefix of some longer history in
A′∪B′. This implies that the check on line 4 fails in Check(X,m′)
as well, contradicting the assumption.

Case 2: The check on line 13 returns FAIL for H ∈M(X,m).
Let e be the operation in H for which H[e] fails the linearizability
test (in the sense of Def. 2). Since m is a prefix of m′, H is also
a stuck history of m′, and since Check(X,m′) passed, B′ must
contain a serial witness S for H

′
[e]. But because S′ can only

contain operations that are in m, this implies also that S′ ∈ B
which contradicts the assumption that the test on line 13 failed.

Case 3: The check on line 8 returns FAIL for H ∈ M̂(X,m).
Now, because m is a prefix of m′, the model checker will explore
histories of m′ that start with H but continue until they are full or
stuck. Let’s distinguish these cases. (Case 3a) H is a prefix of a
fullH ′ ∈ M̂(X,m′). Then because the check passed form′, there
exists a serial witness S′ ∈ A′ for H ′. Because of condition 3
in the definition of a serial witness (Section 2.1.4), we know that
within S′, all operations of ops(H) must precede the operations
of ops(H ′) − ops(H). Thus there exists a prefix S of S′ that
contains exactly the operations ops(H) and that is thus a serial
witness for H . But then we would necessarily have S ∈ A which
contradicts the assumption that Check(X,m) returns FAIL. (Case
3b) H is a prefix of a stuck H ∈ M(X,m′). Then because the
check passed for m′, there exists a serial witness S′ ∈ B′ for
H[e] for some e. Because of condition 3 in the definition of a serial
witness (Section 2.1.4), we know that within S′, all operations of
ops(H) must precede the operations of ops(H ′)− ops(H). Thus
there exists a prefix S of S′ that contains exactly the operations
ops(H) and that is thus a serial witness for H . But then we would
necessarily have S ∈ A which contradicts the assumption that
Check(X,m) returns FAIL.

