
LiteRace: Effective Sampling for
Lightweight Data-Race Detection

Daniel Marino
University of California, Los Angeles

dlmarino@cs.ucla.edu

Madanlal Musuvathi
Microsoft Research, Redmond

madanm@microsoft.com

Satish Narayanasamy
University of Michigan, Ann Arbor

nsatish@umich.edu

Abstract
Data races are one of the most common and subtle causes of perni-
cious concurrency bugs. Static techniques for preventing data races
are overly conservative and do not scale well to large programs.
Past research has produced several dynamic data race detectors that
can be applied to large programs. They are precise in the sense that
they only report actual data races. However, dynamic data race de-
tectors incur a high performance overhead, slowing down a pro-
gram’s execution by an order of magnitude.

In this paper we present LiteRace, a very lightweight data race
detector that samples and analyzes only selected portions of a pro-
gram’s execution. We show that it is possible to sample a multi-
threaded program at a low frequency, and yet, find infrequently
occurring data races. We implemented LiteRace using Microsoft’s
Phoenix compiler. Our experiments with several Microsoft pro-
grams, Apache, and Firefox show that LiteRace is able to find more
than 70% of data races by sampling less than 2% of memory ac-
cesses in a given program execution.

Categories and Subject Descriptors D. Software [D.2 Software
Engineering]: D.2.5 Testing and Debugging – Debugging aids

General Terms Algorithms, Experimentation, Reliability, Verifi-
cation

Keywords Sampling, Dynamic Data Race Detection, Concur-
rency Bugs

1. Introduction
Multi-threaded programs are notoriously difficult to get right,
largely due to the non-deterministic way in which threads in the
program interleave during execution. As a result, even well-tested
concurrent programs contain subtle bugs that may not be discov-
ered until long after deployment. Data races [28] are one of the
common sources of bugs in shared-memory, multi-threaded pro-
grams. A data race happens when multiple threads perform con-
flicting data accesses without proper synchronization. The effects
of a data race range from subtle memory corruption issues to un-
expected memory model effects of the underlying compiler [23, 6]
and hardware [1].

Over the last couple of decades, several static and dynamic
techniques have been developed to automatically find data races

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLDI’09, June 15–20, 2009, Dublin, Ireland.
Copyright c© 2009 ACM 978-1-60558-392-1/09/06. . . $5.00

in a multi-threaded program. Static techniques [7, 17, 33, 37, 19,
34, 16, 40, 27] provide maximum coverage by reasoning about
data races on all execution paths. However, they tend to make
conservative assumptions that lead to a large number of false data
races. On the other hand, dynamic techniques [38, 30, 43, 15] are
more precise than static tools, but their coverage is limited to the
paths and thread interleavings explored at runtime. In practice, the
coverage of dynamic tools can be increased by running more tests.

A severe limitation of dynamic data races detectors is their run-
time overhead. Data race detectors like RaceTrack [43] that are
implemented as part of a managed runtime system, incur about
2x to 3x slowdown. Data race detectors for unmanaged programs
such as Intel’s Thread Checker [36], incur performance overhead
on the order of 200x. Such a large performance overhead prevents
the wide-scale adoption of dynamic data-race detectors in practice.
First, such a severe overhead dramatically reduces the amount of
testing that can be done for a given amount of resources. More im-
portantly, programmers and testers shy away from using intrusive
tools that do not allow them to test realistic program executions.

The main reason for this very large performance overhead is
that dynamic data-race detection requires analyzing every memory
operation executed by the program. In this paper, we propose to
use sampling to address this issue. By processing only a small
percentage of memory accesses, a sampling-based approach can
significantly reduce the runtime overhead of data-race detection.

At the outset, a sampling-based data-race detector may seem un-
likely to succeed. Most memory accesses do not participate in data
races. Sampling approaches, in general, have difficulty capturing
such rare events. To make matters worse, a data race results from
two conflicting accesses. Thus, the sampler has to capture both of
the accesses in order to detect the data race. Due to the multiplica-
tive effect of sampling probabilities, a naive sampling algorithm
will fail to detect most of the data races.

We present a sampling algorithm for effective data-race detec-
tion. The sampling algorithm is based on the cold-region hypoth-
esis that data races are likely to occur when a thread is executing
a “cold” (infrequently accessed) region in the program. Data races
that occur in hot regions of well-tested programs either have al-
ready been found and fixed, or are likely to be benign. Our adaptive
sampler starts off by sampling all the code regions at 100% sam-
pling rate. But every time a code region is sampled, its sampling
rate is progressively reduced until it reaches a lower bound. Thus,
cold regions are sampled at a very high rate, while the sampling rate
for hot regions is adaptively reduced to a very small value. In this
way, the adaptive sampler avoids slowing down the performance-
critical hot regions of a program.

This paper describes an implementation of the proposed sam-
pling algorithm in a tool called LiteRace, and demonstrates its ef-
fectiveness on a wide range of programs. LiteRace is implemented
using the Phoenix compiler [24] to statically rewrite (x86) pro-

gram binaries. For every function, LiteRace produces an instru-
mented copy of the function that logs all memory accesses and
synchronization operations. In addition, LiteRace adds a check be-
fore every function entry. This dynamic check switches the execu-
tion between the uninstrumented and instrumented functions based
on sampling information which is maintained for each thread. Our
sampling technique is an extension of the adaptive profiling tech-
nique used in SWAT [18] for detecting memory leaks. The key dif-
ference is that our sampler needs to be “thread-aware”. We want
to avoid the situation where a code region that becomes hot due
to repeated execution by a certain thread is not sampled when an-
other concurrent thread executes it for the first time. To accom-
plish this, LiteRace maintains separate profiling information for
each thread.To our knowledge, LiteRace is the first data-race de-
tection tool that uses sampling to reduce the runtime performance
cost.

This paper describes many of the challenges and trade-offs in-
volved in building a tool like LiteRace. One of our key require-
ments for LiteRace is that it never report a false data race. Data
races, like many concurrency bugs, are very hard to debug. We
deemed it unacceptable for the users of the tool to spend lots of
time triaging false error reports. Thus, although LiteRace samples
memory accesses, it still captures all the synchronizations in the
program. This is necessary to ensure that there are no false posi-
tives, as is explained in Section 3.2.

By sampling only a portion of the memory accesses, LiteR-
ace is able to reduce the cost of logging meta-data about mem-
ory accesses, which can easily become a performance bottleneck in
dynamic race detectors. The log of the sampled memory accesses
and all of the synchronization operations can be consumed either
by an online data race detector executing concurrently on a spare
processor-core in a many-core processor, or by an offline data race
detector. In this paper, we focus on the latter. The offline data race
detector could be either a happens-before based [21] or a lockset
based detector [38]. We chose to use happens-before based detec-
tion since it avoids reporting false races.

This papers makes the following contributions:

• We demonstrate that the technique of sampling can be used to
significantly reduce the runtime overhead of a data race detector
without introducing any additional false positives. LiteRace is
the first data-race detection tool that uses sampling to reduce
the runtime performance cost. As LiteRace permits users to
adjust the sampling rate to provide a bound on the performance
overhead, we expect that such a sampling-based approach will
encourage users to enable data race detection even during beta-
testing of industrial applications.

• We discuss several sampling strategies. We show that a naive
random sampler is inadequate for maintaining a high detection
rate while using a low sampling rate. We propose a more effec-
tive adaptive sampler that heavily samples the first few execu-
tions of a function in each thread.

• We implemented LiteRace using the Phoenix compiler, and
used it to analyze Microsoft programs such as ConcRT and
Dryad, open-source applications such as Apache and Firefox,
and two synchronization-heavy micro-benchmarks. The results
show that by logging less than 2% of memory operations, we
can detect more than 70% of data races in a particular execution.

The rest of this paper is organized as follows. In Section 2
we review happens-before data race detection, and the reasons for
its high runtime overhead. Section 3 presents an overview of our
sampling based approach to reduce the runtime cost of a data race
detector. Section 4 details the implementation of our race detector.
We present our experimental results in Section 5. In Section 6 we

lock L

unlock L

write X

lock L

unlock L

write X

Thread 2

lock L

unlock L

Thread 1Time

lock L

unlock L

write X

data race on X!

lock L

unlock L

write X

lock L

unlock L

Thread 1 Thread 2

Figure 1. Examples of properly and improperly synchronized ac-
cesses to a memory location X. Edges between nodes represent a
happens-before relationship. There is no data race for the example
on the left, because there is a happens-before relation (due to un-
lock and lock operations) between the two writes to the location X.
However, for the example on the right, there is no happens-before
relation between the two writes. Thus, it has a data race.

describe related work and position our contributions. We briefly
discuss future work in Section 7 and conclude in Section 8.

2. Background
Dynamic data race detectors [38, 43] incur a high runtime overhead
and we seek to address this problem in this paper. Dynamic data
race detectors can be classified into two major categories: happens-
before based and lockset based. Happens-before data race detec-
tors [21, 11] find only the data races that manifest in a given pro-
gram execution. Lockset based techniques [38] can predict data
races that have not manifested in a given program execution, but
can report false positives. In this work, we focus on happens-before
based data race detectors as they do not report any false positives.
However, our approach to sampling could equally well be applied
to a lockset-based algorithm.

In this section, we review how happens-before race detection
works and the reasons for the runtime overhead of a happens-before
data race detector.

2.1 Happens-Before Race Detection
We provide a brief review of detecting data races by using the
happens-before relation on program events. The happens-before re-
lation, −→, is a partial order on the events of a particular execution
of a multi-threaded program. It can be defined by the following
rules:

(HB1) a−→b if a and b are events from the same sequential thread
of execution and a executed before b.

(HB2) a−→b if a and b are synchronization operations from dif-
ferent threads such that the semantics of the synchronization
dictates that a precedes b.

(HB3) The relation is transitive, so if a−→b and b−→c, then
a−→c.

We can then define a data race as a pair of accesses to the
same memory location, where at least one of the accesses is a
write, and neither one happens-before the other. In addition to being
precise, another advantage that happens-before race detection has
over the lockset-based approach is that it supports a wide range
of synchronization paradigms, not just mutual exclusion locks. For
instance, our formulation of the second rule for defining happens-
before allows us to introduce a happens-before ordering between a
call to fork in a parent thread and the first event in the forked child
thread.

Figure 1 shows how the happens-before relationship is used to
find data races. The edges between instructions indicate a happens-
before relationship derived using rule HB1 or HB2. Transitively,

by HB3, if there is a path between any two nodes, then there is a
happens-before relationship between the two nodes. The example
on the left in Figure 1 shows two properly synchronized accesses
to a shared memory location. Since the two writes have a path
between them, they do not race with each other. In the example
shown on the right in Figure 1, thread 2 accesses a shared memory
location without proper synchronization. Because there is no path
between the two writes, the two writes are involved in a data race.

2.2 Sources of Runtime Overhead
There are two primary sources of overhead for a happens-before
dynamic data race detector. One, it needs to instrument all the mem-
ory operations and all the synchronizations operations executed by
the application. This results in a high performance cost due to the
increase in the number of additional instructions executed at run-
time. Two, it needs to maintain meta-data for each memory location
accessed by the application. Most of the happens-before based al-
gorithms [21, 28, 2, 9, 10, 12, 11, 39, 31, 35, 26] use vector clocks
to keep track of the times of all the memory operations along with
the address of the locations they accessed. Maintaining such meta-
data further slows down the program execution due to increased
memory cost.

3. LiteRace Overview
This section presents a high-level overview of LiteRace. The im-
plementation details together with various design trade-offs are dis-
cussed in Section 4.

LiteRace has two key goals. First, LiteRace should not add too
much runtime overhead during dynamic data-race detection. Our
eventual goal is to run LiteRace during beta-testing of industrial
applications. Prohibitive slowdown of existing detectors limits the
amount of testing that can be done for a given amount of resources.
Also, users shy away from intrusive tools that do not allow them
to test realistic program executions. Second, LiteRace should never
report a false data race. Data races are very difficult to debug and
triage. False positives severely limit the usability of a tool from a
developer’s perspective. This second goal has influenced many of
our design decisions in LiteRace.

3.1 Case for Sampling
The key premise behind LiteRace is that sampling techniques can
be effective for data-race detection. While a sampling approach has
the advantage of reducing the runtime overhead, the main trade-off
is that it can miss data races. We argue that this trade-off is accept-
able for the following reasons. First, dynamic techniques cannot
find all data races in the program anyway. They can only find data
races on thread interleavings and paths explored at runtime. Fur-
thermore, a sampling-based detector, with its low overhead, would
encourage users to widely deploy it on many more executions of
the program, possibly achieving better coverage.

Another key advantage is that sampling techniques provide a
useful knob that allow users to trade runtime overhead for coverage.
For instance, users can increase the sampling rate for interactive
applications that spend most of their time waiting for user inputs.
In such cases, the overhead of data-race detection is likely to be
masked by the I/O latency of the application.

3.2 Events to Sample
Data-race detection requires logging the following events at run-
time.

• Synchronization operations along with a logical timestamp that
reflects the happens-before relation between these operations.

lock L

unlock L

write X

false data race
reported on X!

lock L

unlock L

write X

lock L

unlock L

thread 1time thread 2

Not Logged

Figure 2. Failing to log a synchronization operation results in loss
of happens-before edges. As a result, a false data race on X would
be reported.

• Reads and writes to memory are logged in the program order,
logically happening at the timestamp of the preceding synchro-
nization operation of the same thread.

These logs can then be analyzed offline or during program exe-
cution (§4.4). The above information allows a data-race detector to
construct the happens-before ordering between synchronization op-
erations and the memory operations executed in different threads.
A data race is detected if there is no synchronization ordering be-
tween two accesses to the same memory location, and at least one
of them is a write.

Clearly instrumenting code to log every memory access would
impose a significant overhead. By sampling only a fraction of
these events we can reduce the overhead in two ways. First, the
execution of the program is much faster because of the reduced
instrumentation. Second, the offline data-race detection algorithm
needs to process fewer events making it faster as well.

While we seek to reduce the runtime overhead using sam-
pling, we must be careful in choosing which events to log and
which events not to log. In particular, we have to log all the syn-
chronization events in order to avoid reporting false data races.
Figure 2 shows why this is the case. Synchronization operations
induce happens-before orderings between program events. Any
missed synchronization operation can result in missing edges in
the happens-before graph. The data-race detection algorithm will
therefore incorrectly report false races on accesses that are oth-
erwise ordered by the unlogged synchronization operations. To
avoid such false positives, it is necessary to log all synchroniza-
tion operations. However, for most applications, the number of
synchronization operations is small compared to the number of in-
structions executed in a program. Thus, logging all synchronization
operations does not cause significant performance overhead.

We can, however, selectively sample the memory accesses. If
we choose not to log a particular memory access, we risk missing a
data race involving that access (a false negative). As we discussed
in Section 3.1, this is an acceptable trade-off. But, a good strategy
for selecting which memory accesses to log is essential in order not
to miss too many races. A data race involves two accesses and a
sampler needs to successfully log both of them to detect the race.
We describe a sampler that accomplishes this below.

3.3 Sampler Granularity
In this paper, we treat every function as a code region. Our static
instrumentation tool creates two copies for each function as shown
in Figure 3. The instrumented function logs all the memory op-
erations (their addresses and program counter values) and synchro-
nization operations (memory addresses of the synchronization vari-
ables along with their timestamps) executed in the function. The

un-instrumented copy of the function logs only the synchronization
operations. Before entering a function, the sampler (represented as
dispatch check in Figure 3) is executed. Based on the decision of
the sampler, either the instrumented copy or the un-instrumented
copy of the function is executed. As the dispatch check happens
once per function call, we have to ensure that the dispatch code is
as efficient as possible.

3.4 Thread Local Adaptive Bursty Sampler
There are two requirements for a sampling strategy. Ideally, a
sampling strategy should maintain a high data-race detection rate
even with a low sampling rate. Also, it should enable an efficient
implementation of the dispatch check that determines if a function
should be sampled or not. A naive random sampler does not meet
these requirements as we show in Section 5.

Our sampler is an extension of the adaptive bursty sampler [18],
previously shown to be successful for detecting memory leaks. An
adaptive bursty sampler starts off by analyzing a code region at
a 100% sampling rate, which means that the sampler always runs
the instrumented copy of a code region the first time it is executed.
Since the sampler is bursty, when it chooses to run the instrumented
copy of a region, it does so for several consecutive executions. The
sampler is adaptive in that after each bursty sample, a code region’s
sampling rate is decreased until it reaches a lower bound.

To make the adaptive bursty sampler effective for data-race de-
tection, we extend the above algorithm by making it “thread local”.
The rationale is that, at least in reasonably well-tested programs,
data races occur when a thread executes a cold region. Data-races
between two hot paths are unlikely – either such a data race is al-
ready found during testing and fixed, or it is likely to be a benign or
intentional data race. In a “global” adaptive bursty sampler [18], a
particular code region can be considered “hot” even when a thread
executes it for the first time. This happens when other threads have
already executed the region many times. We avoid this in LiteR-
ace by maintaining separate sampling information for each thread,
effectively creating a “thread local” adaptive bursty sampler. Our
experiments (§5) show that this extension significantly improves
the effectiveness of LiteRace.

Note that a thread-local adaptive sampler can also find some
data races that occur between two hot regions or between a hot
and a cold region. The reason is that our adaptive sampler initially
assumes that all the regions are cold, and the initial sampling rate
for every region is set to 100%. Also, the sampling rate for a region
is never reduced below a lower bound. As a result, our sampler,
even while operating at a lower sampling rate, might still be able
to gather enough samples for a frequently executed hot region.
Because of these two aspects of our adaptive sampler we find some,
but not all, data races between hot-hot regions and hot-cold regions
in a program.

4. LiteRace Implementation
This section describes the implementation details of LiteRace.

4.1 Instrumenting the Code
LiteRace is based on static instrumentation of x86 binaries and does
not require the source code of the program. We use the Phoenix [24]
compiler and analysis framework to parse the x86 executables and
perform the transformation depicted in Figure 3. LiteRace creates
two versions for each function: an instrumented version that logs
all the memory operations and an uninstrumented version that does
not log any memory operation. As explained in Section 3, avoiding
false positives requires instrumenting both the instrumented and the
uninstrumented versions to log synchronization operations. Then,
LiteRace inserts a dispatch check at every function entry. This

dispatch check

x86 function
LiteRace

original code

+

log synch ops

original code

+

log synch ops

+

log memory ops

When coldUsually

original code

+

log synch ops

original code

+

log synch ops

+

log memory ops

original code

+

log synch ops

Figure 3. LiteRace Instrumentation.

Synchronization Op SyncVar Add’l Sync?
Lock / Unlock Lock Object Address No
Wait / Notify Event Handle No
Fork / Join Child Thread Id No
Atomic Machine Ops Target Memory Addr. Yes

Table 1. Logging synchronization operations.

check decides which of the two versions to invoke for a particular
call of the function at runtime.

In contrast to prior adaptive sampling techniques [18], LiteR-
ace maintains profiling information per thread. For each thread,
LiteRace maintains a buffer in the thread-local storage that is al-
located when the thread is created. This buffer contains two coun-
ters for each instrumented function: the frequency counter and the
sampling counter. The frequency counter keeps track of the num-
ber of times the thread has executed a function and determines the
sampling rate to be used for the function (a frequently executed
function will be sampled at a lower sampling rate). The sampling
counter is used to determine when to sample the function next. On
function entry, the dispatch check decrements the sampling counter
corresponding to that function. If the sampling counter’s value is
non-zero, which is the common case, the dispatch check invokes the
uninstrumented version of the function. When the sampling counter
reaches zero, the dispatch check invokes the instrumented version
of the function, and sets the sampling counter to a new value based
on the current sampling rate for the function as determined by the
frequency counter.

As the dispatch check is executed on every function entry, it
is important to keep the overhead of this check low. To avoid
the overhead of calling standard APIs for accessing thread-local
storage, LiteRace implements an inlined version using the Thread
Execution Block [25] structure maintained by the Windows OS
for each thread. Also, the dispatch check uses a single register
edx for its computation. The instrumentation tool analyzes the
original binary for the function to check if this register and the
eflags register are live at function entry, and injects code to save
and restore these registers only when necessary. In the common
case, our dispatch check involves 8 instructions with 3 memory
references and 1 branch (that is mostly not taken). We measure the
runtime overhead of the dispatch check in Section 5.

4.2 Tracking Happens-Before
As mentioned earlier, avoiding false positives requires accurate
happens-before data. Ensuring that we correctly record the happens-
before relation for events of the same thread is trivial since the log-
ging code executes on the same thread as the events being recorded.
Correctly capturing the happens-before data induced by the syn-
chronization operations between threads in a particular program
execution requires more work.

For each synchronization operation, LiteRace logs a SyncVar
that uniquely identifies the synchronization object and a logical
timestamp that identifies the order in which threads perform op-

erations on that object. Table 1 shows how LiteRace determines the
SyncVar for various synchronization operations. For instance, Lit-
eRace uses the address of the lock object as a SyncVar for lock
and unlock operations. The logical timestamp in the log should
ensure that if a and b are two operations on the same SyncVar and
a−→b then a has a smaller timestamp than b. The simplest way
to implement the timestamp is to maintain a global counter that is
atomically incremented at every synchronization operation. How-
ever, the contention introduced by this global counter can dramat-
ically slowdown the performance of LiteRace-instrumented pro-
grams on multi-processors. To alleviate this problem, we use one
of 128 counters uniquely determined by a hash of the SyncVar for
the logical timestamp.

To ensure the accuracy of the happens-before relation, it is im-
portant that LiteRace computes and logs the logical timestamp
atomically with the synchronization operation performed. For some
kinds of synchronization, we are able to leverage the semantics of
the operation to guarantee this. For instance, by logging and in-
crementing the timestamp after a lock instruction and before an
unlock instruction, we guarantee that an unlock operation on
a particular mutex will have a smaller timestamp than a subse-
quent lock operation on that same mutex in another thread. For
wait/notify operations, LiteRace increments and logs the timestamp
before the notify operation and after the wait operation to guaran-
tee consistent ordering. A similar technique is used for fork/join
operations.

For some synchronization operations, however, LiteRace is
forced to add additional synchronization to guarantee atomic times-
tamping. For example, consider a target program that uses atomic
compare-and-exchange instructions to implement its own locking.
Since we don’t know if a particular compare-and-exchange is act-
ing as a “lock” or as an “unlock”, we introduce a critical section
to ensure that the compare-and-exchange and the logging and in-
crementing of the timestamp are all executed atomically. Without
this, LiteRace can generate timestamps for these operations that are
inconsistent with the actual order. Our experience shows that this
additional effort is absolutely essential in practice and otherwise
results in hundreds of false data races.

4.3 Handling Dynamic Allocation
Another subtle issue is that a dynamic data-race detector should ac-
count for the reallocation of the same memory to a different thread.
A naive detector might report a data-race between accesses to the
reallocated memory with accesses performed during a prior alloca-
tion. To avoid such false positives, LiteRace additionally monitors
all memory allocation routines and treats them as additional syn-
chronization performed on the memory page containing the allo-
cated or deleted memory.

4.4 Analyzing the Logs
The LiteRace profiler generates a stream of logged events during
program execution. In our current implementation, we write these
events to the disk and process them offline for data races. Our main
motivation for this design decision was to minimize perturbation
of the runtime execution of the program. We are also currently
investigating an online detector that can avoid runtime slowdown
by using an idle core in a many-core processor.

The logged events are processed using a standard implementa-
tion [36] of the happens-before based data-race detector described
in Section 2.1. We did not use a lock-set based data-race detection
algorithm to avoid false positives. However, the proposed sampling
algorithms could be useful for lock-set based data-race detectors as
well.

Benchmarks Description # Fns Bin. Size
Dryad Library for

distributed data-
parallel apps

4788 2.7 MB

ConcRT .NET Concurrency
runtime framework

1889 0.5 MB

Apache 2.2.11 Web server 2178 0.6 MB
Firefox 3.6a1pre Web browser 8192 1.3 MB

Table 2. Benchmarks used. The number of functions and the bi-
nary size includes executable and any instrumented library files.

5. Results
In this section we present our experimental results. We begin by de-
scribing our benchmarks (§5.1) and the samplers that we evaluate
(§5.2). In Section 5.3 we compare the effectiveness of various sam-
plers in detecting data races. We show that our thread-local adaptive
sampler achieves a high data-race detection rate, while maintaining
a low sampling rate. Section 5.4 discusses the performance and log
size overhead of thread-local adaptive sampler implemented in Lit-
eRace, and compares it to an implementation that logs all the mem-
ory operations. All experiments were run on a Windows Server
2003 system with two dual-core AMD Opteron processors and 4
GB of RAM.

5.1 Benchmarks
We selected the four industrial-scale concurrent programs listed in
Table 2 as our benchmarks. Dryad is a distributed execution engine,
which allows programmers to use a computing cluster or a data
center for running coarse-grained data-parallel applications [20].
The test harness we used for Dryad was provided by its lead de-
veloper. The test exercises the shared-memory channel library used
for communication between the computing nodes in Dryad. We ex-
perimented with two versions of Dryad, one with the standard C
library statically linked in (referred to as Dryad-stdlib), and the
other without. For the former, LiteRace instruments all the stan-
dard library functions called by Dryad. Our second benchmark,
ConcRT, is a concurrent run-time library that provides lightweight
tasks and synchronization primitives for developing data-parallel
applications. It is part of the parallel extensions to the .NET frame-
work [14]. We used two different test inputs for ConcRT: Messag-
ing, and Explicit Scheduling. These are part of the ConcRT concur-
rency test suite. We use Apache, an open-source HTTP web server,
as our third benchmark. We evaluate the overhead and effective-
ness of LiteRace over two different inputs for Apache (referred to
as Apache-1 and Apache-2). The first consists of a mixed work-
load of 3000 requests for a small static web page, 3000 requests
for a larger web page, and 1000 CGI requests. The second con-
sists solely of 10,000 requests for a small static web page. For both
workloads, up to 30 concurrent client connections are generated by
Apache’s benchmarking tool. Our final benchmark is Firefox, the
popular open-source web browser. We measure the overhead and
sampler effectiveness for the initial browser start-up (Firefox-Start)
and for rendering an html page consisting of 2500 positioned DIVs
(Firefox-Render).

5.2 Evaluated Samplers
The samplers that we evaluate are listed in Table 3. The “Short
Name” column shows the abbreviation we will use for the samplers
in the figures throughout the rest of this section. The table also
shows the effective sampling rate for each sampler. The effective
sampling rate is the percentage of memory operations that are
logged by a sampler. Two averages for effective sampling rate are

Weighted Average
Sampling Strategy Short Name Description Average ESR ESR
Thread-local Adaptive TL-Ad Adaptive back-off per function / per thread

(100%,10%,1%,0.1%); bursty
1.8% 8.2%

Thread-local Fixed 5% TL-Fx Fixed 5% per function / per thread; bursty 5.2% 11.5%
Global Adaptive G-Ad Adaptive back-off per function globally (100%, 50%,

25%, ... , 0.1%); bursty
1.3% 2.9%

Global Fixed G-Fx Fixed 10% per function globally; bursty 10.0% 10.3%
Random 10% Rnd10 Random 10% of dynamic calls chosen for sampling 9.9% 9.6%
Random 25% Rnd25 Random 25% of dynamic calls chosen for sampling 24.8% 24.0%
Un-Cold Region UCP First 10 calls per function / per thread are NOT sam-

pled, all remaining calls are sampled
98.9% 92.3%

Table 3. Samplers evaluated along with their short names used in figures, short descriptions, and effective sampling rates averaged over the
benchmarks studied. The weighted average uses the number of memory accesses in each benchmark application as a weight.

0%

25%

50%

75%

100%

Dryad Channel
+ stdlib

Dryad channel ConcRT
Messaging

ConcRT
Explicit

Scheduling

Apache 1 Apache 2 Firefox Start Firefox Render Average Weighted Avg
Eff Sampling

Rate

%
 o

f
D

at
a

R
ac

es

D
et

ec
te

d

TL-Ad TL-Fx G-Ad G-Fx Rnd10 Rnd25 UCP

Figure 4. Proportion of static data races found by various samplers. The figure also shows the weighted average effective sampling rate for
each sampler, which is the percentage of memory operations logged (averaged over all the benchmarks).

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Dryad

Channel +

stdlib

Dryad

channel

Apache 1 Apache 2 Firefox

Start

Firefox

Render

Average

R
a
r
e
 D

a
ta

 R
a
c
e
 D

e
te

c
ti

o
n

 R
a
te

TL-Ad TL-Fx G-Ad G-Fx Rnd10 Rnd25 UCP

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Dryad

Channel +

stdlib

Dryad

channel

Apache 1 Apache 2 Firefox

Start

Firefox

Render

Average

F
re

q
u

e
n

t
D

a
ta

 R
a
c
e
 D

e
te

c
ti

o
n

 R
a
te

TL-Ad TL-Fx G-Ad G-Fx Rnd10 Rnd25 UCP

Figure 5. Various samplers’ detection rate for rare (on the left) and frequent (on the right) static data races.

shown. One is just the average of the effective sampling rates over
the nine benchmark-input pairs described in Section 5.1. The other
is the weighted average, where the weight for a benchmark-input
pair is based on the number of memory operations executed at
runtime.

LiteRace’s thread-local adaptive sampler is the first one listed
in the table. For each thread and for each function, this sampler
starts with a 100% sampling rate and then progressively reduces
the sampling rate until it reaches a base sampling rate of 0.1%.
To understand the utility of this adaptive back-off, we evaluate a
thread-local fixed sampler, which uses a fixed 5% sampling rate per
function per thread. The next two samplers are “global” versions
of the two samplers that we just described. The adaptive back-off
for the “global” sampler is based on the number of executions of
a function, irrespective of the calling thread. This global adaptive
sampler is similar to the one used in SWAT [18], except that we use
a higher sampling rate. Even with a higher rate, our experiments

show that the global samplers are not as effective as the thread-local
samplers in finding data races. The four samplers mentioned thus
far are “bursty”. That is, when they decide to sample a function,
they do so for ten consecutive executions of that function. The
next two samplers are based on random sampling and are not
bursty. Each function call is randomly sampled based on the chosen
sampling rate (10% and 25%). The final sampler evaluates our cold-
region hypothesis by logging only the “uncold” regions. That is, it
logs all but the first ten calls of a function per thread.

5.3 Effectiveness of Samplers Comparison
In this section, we compare different samplers and show that the
thread-local adaptive sampler is the most effective of all the sam-
plers we evaluated. For our evaluation, we group each data race
detected by our tool based on the pair of instructions (identified by
the value of the program counter) that participate in the data race.
We call each group a static data-race. From the user’s perspective, a

static data-race roughly corresponds to a possible synchronization
error in the program. Table 4 shows the number of static data-races
that LiteRace finds for each benchmark-input pair. The table also
distinguishes between rare and frequent static data-races, based on
the number of times a particular static data-race manifests at run-
time.

To have a fair comparison, different samplers need to be eval-
uated on the same thread interleaving of a program. However, two
different executions of a multi-threaded program are not guaran-
teed to yield the same interleaving even if the input is the same.
To compare the effectiveness of the various samplers in detecting
data races accurately, we created a modified version of LiteRace
that performs full logging, where all synchronization and all mem-
ory operations are logged. In addition to full logging, upon function
entry, we execute the “dispatch check” logic for each of the sam-
plers we wish to compare. We then mark in the log whether or not
each of the samplers would have logged a particular memory oper-
ation.

By performing data-race detection on the complete log, we find
all the data races that happened during the program’s execution.
We can then perform data-race detection on the subset of the mem-
ory operations that a particular sampler would have logged. Then,
by comparing the results with those from the complete log, we are
able to calculate the detection rate, which is the proportion of data
races detected by each of the samplers. When we analyze the per-
formance and space overhead in Section 5.4, however, we experi-
ment with only LiteRace’s thread-local adaptive sampler turned on.

Each application was instrumented using our modified version
of LiteRace described above. We ran the instrumented application
three times for each benchmark. The detection rate we report for
each benchmark is the average of the three runs. The results for
overall data-race detection rate are shown in Figure 4. The results
are grouped by benchmarks with a bar for each sampler within each
group. The weighted average effective sampling rate for each of the
samplers (discussed in Section 5.2) is also shown as the last group.
A sampler is effective if it has a very low effective sampling rate
along with a high data-race detection rate. Notice that the proposed
LiteRace sampler (TL-Ad) achieves this, as it detects about 70% of
all data-races by sampling only 1.8% of all memory operations. The
non-adaptive fixed rate thread-local sampler also detects about 72%
of data-races, but its effective sampling rate is 5.2% (more than 2.5x
higher than the TL-Ad sampler). Clearly, among the thread-local
samplers, the adaptive sampler is better than the fixed rate sampler.

The two thread-local samplers outperform the two global sam-
plers. Though the global adaptive sampler logs only 1.3% of mem-
ory operations (comparable to our thread-local adaptive sampler),
it detects only about 22.7% of all data-races (about 3x worse than
TL-Ad). The global fixed rate sampler logs 10% of memory opera-
tions, and still detects only 48% of all data-races.

All the four samplers based on cold-region hypothesis are bet-
ter than the two random samplers. For instance, a random sampler
finds only 24% of data-races, but logs 9.9% of all memory opera-
tions.

Another notable result from the figure is that of the “Un-Cold
Region” sampler, which logs all the memory operations except
those executed in the cold-regions (§5.2). It detects only 32% of
all data-races, but logs nearly 99% of all memory operations. This
result validates our cold-region hypothesis.

5.3.1 Rare Versus Frequent Data Race Detection
We have so far demonstrated that a thread-local adaptive sampler
finds about 70% of all static data-races. If a static data-race occurs
frequently during an execution, then it is likely that many sampling
strategies would find it. It is more challenging to find data races that
occur rarely at run-time. To quantify this, we classified all of the

Benchmarks # races found # Rare # Freq
Dryad Channel + stdlib 19 17 2
Dryad Channel 8 3 5
Apache-1 17 8 9
Apache-2 16 9 7
Firefox Start 12 5 7
Firefox Render 16 10 6

Table 4. Number of static data-races found for each benchmark-
input pair (median over three dynamic executions), while logging
all the memory operations. These static data-races are classified
into rare and frequent categories. A static data-race is rare, if it
is detected less than 3 times per million non-stack memory instruc-
tions during any execution of the program.

static data races that were detected (using the full, unsampled log)
based on the number of times that a static data-race occurs in an
execution. We classified as rare those racing instruction pairs that
occurred fewer than 3 times for each million non-stack memory in-
structions executed. The rest are considered frequent. The number
of rare and frequent data races for each benchmark-input pair is
shown in Table 4 (some of the data races found could be benign).
The various samplers’ data-race detection rates for these two cate-
gories are shown in Figure 5.

Most of the samplers perform well for the frequent data races.
But, for infrequently occurring data races, the thread-local samplers
are the clear winners. Note that the random sampler finds very few
rare data races.

5.4 Analysis of Overhead
In Section 5.3 we presented results showing that the thread-local
adaptive sampler performs well in detecting data-races for a low
sampling rate. Here we present the performance and log size over-
head of thread-local adaptive sampler implemented in LiteRace.
We show that, on average, it incurs about 28% performance over-
head for our benchmarks when compared to no logging, and is up
to 25 times faster than an implementation that logs all the memory
operations.

Apart from the benchmarks used in Section 5.3, we used two ad-
ditional compute and synchronization intensive micro-benchmarks
for our performance study. LKRHash is an efficient hash table im-
plementation that uses a combination of lock-free techniques and
high-level synchronizations. LFList is an implementation of a lock-
free linked list available from [22]. LKRHash and LFList exe-
cute synchronization operations more frequently than the other real
world benchmarks we studied. These micro-benchmarks are in-
tended to test LiteRace’s performance in the adverse circumstance
of having to log many synchronization operations.

To measure the performance overhead, we ran each of the
benchmarks ten times for each of four different configurations. The
first configuration is the baseline, uninstrumented application. Each
of the remaining three configurations adds a different portion of Lit-
eRace’s instrumentation overhead: the first adds just the dispatch
check, the second adds the logging of synchronization operations,
and the final configuration is the complete LiteRace instrumenta-
tion including the logging of the sampled memory operations. By
running the benchmarks in all of these configurations we were able
to measure the overhead of the different components in LiteRace.

Figure 6 shows the cost of using LiteRace on the various bench-
marks and micro-benchmarks. The bottom portion of each verti-
cal bar in Figure 6 represents the time it takes to run the unin-
strumented application (baseline). The overhead incurred by the
various components of LiteRace are stacked on top of that. As
expected, the synchronization intensive micro-benchmarks exhibit

Baseline LiteRace Full Logging LiteRace Full Logging
Benchmarks Exec Time Slowdown Slowdown Log Size (MB/s) Log Size (MB/s)
LKRHash 3.3s 2.4x 14.7x 154.5 1936.3
LFList 1.7s 2.1x 16.1x 92.5 751.7
Dryad+stdlib 6.7s 1x 1.8x 1.2 12.8
Dryad 6.6s 1x 1.14x 1.1 2.6
ConcRT Messaging 9.3s 1.03x 1.08x 0.7 10.6
ConcRT Explicit Scheduling 11.5s 2.4x 9.1x 4.6 109.7
Apache-1 17.0s 1.02x 1.4x 1.2 41.9
Apache-2 3.0s 1.04x 3.2x 4.0 260.7
Firefox Start 1.8s 1.44x 8.89x 7.4 107.0
Firefox Render 0.61s 1.3x 33.5x 19.8 731.1
Average 6.15s 1.47x 9.09x 28.6 396.5
Average (w/o Microbench) 7.06s 1.28x 7.51x 5.0 159.6

Table 5. Performance overhead of LiteRace’s thread-local adaptive sampler and full logging implementation when compared to the execution
time of the uninstrumented application. Log size overhead in terms of MB/s is also shown.

0

0.5

1

1.5

2

2.5

3

P
er

fo
rm

an
ce

 O
ve

rh
ea

d

Logging Mem Ops

Logging Synch Ops

Dispatch Check

Baseline

Figure 6. LiteRace slowdown over the uninstrumented applica-
tion.

the highest overhead, between 2x and 2.5x, since we must log all
synchronization operations to avoid false positives. The ConcRT
Scheduling test also has a high proportion of synchronization oper-
ations and exhibits overhead similar to the micro-benchmarks. The
more realistic application benchmarks show modest performance
overhead of 0% for Dryad, 2% to 4% for Apache, and 30% to
44% for Firefox.

In order to evaluate the importance of sampling memory oper-
ations in order to achieve low overhead, we measured the perfor-
mance of logging all the synchronization and memory accesses.
Unlike the LiteRace implementation, this full-logging implemen-
tation did not have the overhead for any dispatch checks or cloned
code. Table 5 compares the slowdown caused by LiteRace to the
slowdown caused by full logging. The sizes of the log files gen-
erated for these two implementations are also shown in terms of
MB/s. LiteRace performs better than full logging in all cases. The
performance overhead over baseline when averaged over realistic
benchmarks is 28% for the LiteRace implementation, while the full
logging implementation incurs about 7.5x performance overhead.

The generated logs, as expected, are also much smaller in Lit-
eRace. On average, LiteRace generated logs at the rate of 5.0
MB/s, whereas a full logging implementation generated about
159.6 MB/s.

6. Related Work
In this section we discuss prior work in two areas related to this
paper: data race detectors and samplers.

6.1 Data Race Detection
Prior data race detection can be broadly classified into static and
dynamic techniques. Static techniques include those that use type-
based analysis [7, 17, 33, 37] or data-flow analysis [40, 16, 27, 42]
to ensure that all data accesses are consistently protected by locks.
Many of these techniques are scalable and most are complete in
that they find all data races in a program. The downside is that
static techniques are inherently imprecise and typically report a
large number of false data races that place a tremendous burden
on the user of the tool. More importantly, these techniques are not
able to handle synchronizations other than locks, such as events,
semaphores, and I/O completion ports common in many systems
programs. Thus, data accesses that are synchronized through these
mechanisms will be falsely reported as potential data races. Model
checking techniques [19, 34] are capable of handling such syn-
chronizations, but are not scalable due to the complexity of their
analysis. A dynamic tool, such as LiteRace, does not suffer these
problems.

Dynamic analysis techniques are either lockset based [38, 41,
29] or happens-before based [21, 28, 2, 9, 10, 12, 11, 39, 31, 35, 26]
or a hybrid of the two [13, 43, 30, 32, 15]. Dynamic techniques are
scalable to applications with large code bases and are also more
precise than static tools as they analyze an actual execution of a
program. The downside is that they have much less coverage of data
races (false negatives), as they only examine the dynamic path of
one execution the program. However, the number of false negatives
can be reduced by increasing the number of tests.

One of the main limitations of a dynamic data race detection
tool is its high run-time overhead, which perturbs the execution
behavior of the application. Apart from consuming users time, a
heavy-weight data race detector is not useful for finding bugs that
would manifest in a realistic execution of an application. There
have been attempts to ameliorate the performance cost of dynamic
analysis using static optimizations for programs written in strongly
typed languages [8]. Dynamic data race detectors for managed
code [43] also have the advantage that the runtime system already
incurs the cost of maintaining meta-data for the objects, which
they make use of. For unmanaged code like C and C++, however,
the runtime performance overhead of data race detection remains
high. Intel’s ThreadChecker [36], for example, incurs about 200x

overhead to find data races. In this paper, we propose an efficient
sampling mechanism that pays the cost for logging only a small
fraction of the program execution, but is effective in detecting a
majority of the data races. Unlike existing data race detectors, it
also gives the user an ability to tradeoff performance cost with
coverage (number of false negatives).

6.2 Sampling Techniques for Dynamic Analysis
Arnold et al. [4] proposed sampling techniques to reduce the over-
head of instrumentation code in collecting profiles for feedback di-
rected optimizations. Chilimbi and Hauswirth proposed an adaptive
sampler for finding memory leaks [18]. We extend their solution to
the sampling of multi-threaded programs, and show that samplers
can be effectively used to find data races as well. QVM [3] is an
extension to Java Virtual Machine that provides an interface to en-
able dynamic checking such as heap properties, local assertions,
and typestate properties. It uses sampling to tradeoff accuracy with
runtime overhead. The sampling technique used in QVM is object-
centric, in that, all the events to a sampled object’s instance are pro-
filed. In contrast, our samplers are based on cold-region hypothesis.

7. Future Work
Our current LiteRace implementation samples code regions at the
granularity of functions (Section 3.3). While this approach works
very well for server applications like Apache, web browsers like
Firefox, and highly concurrent programs like Dryad and ConcRT,
it may not be the best possible implementation for computationally
intensive scientific applications like Parsec [5]. These application
often have loops with high trip count. Therefore sampling at a loop-
level granularity might help improve the efficiency of LiteRace for
these applications. Offline profiling can be used to identify loops
with high trip count, which can then be instrumented to adaptively
reduce the sampling rate of the loop within a single function exe-
cution.

8. Conclusions
Multi-threaded programs are hard to understand and debug. Dy-
namic data race detectors can automatically find concurrency bugs
with a very high accuracy, which would be of immense help to pro-
grammers. However, a significant impediment to their adoption is
their runtime overhead. Programmers shy away from heavy-weight
dynamic tools that prevent them from testing realistic executions
of their application. Moreover, the high overhead of such tools dra-
matically reduces the amount of testing possible for a given amount
of computing and time resources.

This paper argues for sampling-based techniques to ameliorate
the runtime performance overhead of dynamic data race detectors.
We demonstrate that intelligent sampling can be effective in finding
data races with acceptable runtime overhead. Our best sampler,
the thread local adaptive sampler, logs less than 2% of memory
accesses but can detect more than 70% of data races.

Another key advantage of a sampling-based technique is that it
provides a knob in the form of sampling rate, which the program-
mer can use to trade-off performance for data-race coverage. Many
testing tools never find acceptance in development teams because
of their high runtime overhead. With such a knob, programmers
would be able to specify the performance penalty that they are will-
ing to pay, and they would get coverage that is commensurate with
this penalty.

Acknowledgments
We would like to thank the anonymous reviewers for providing
valuable feedback on this paper. We would also like to thank Tr-
ishul Chilimbi for helpful discussions.

References
[1] S. Adve and K. Gharachorloo. Shared memory consistency models:

A tutorial. Computer, 29(12):66–76, 1996.

[2] S. V. Adve, M. D. Hill, B. P. Miller, and R. H. B. Netzer. Detecting
data races on weak memory systems. In ISCA ’91: Proceedings of
the 18th Annual International Symposium on Computer architecture,
1991.

[3] M. Arnold, M. Vechev, and E. Yahav. QVM: An efficient runtime
for detecting defects in deployed systems. In OOPSLA ’08:
Proceedings of the 23rd ACM SIGPLAN conference on Object-
oriented programming systems languages and applications, 2008.

[4] Matthew Arnold and Barbara G. Ryder. A framework for reducing
the cost of instrumented code. In PLDI ’01: Proceedings of the ACM
SIGPLAN 2001 conference on Programming language design and
implementation, pages 168–179, 2001.

[5] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC benchmark
suite: Characterization and architectural implications. In Proceedings
of the 17th International Conference on Parallel Architectures and
Compilation Techniques, 2008.

[6] Hans-Juergen Boehm and Sarita V. Adve. Foundations of the C++
concurrency memory model. In PLDI ’08: Proceedings of the 2008
ACM SIGPLAN conference on Programming language design and
implementation, pages 68–78, 2008.

[7] C. Boyapati, R. Lee, and M. Rinard. Ownership types for safe
programming: Preventing data races and deadlocks. In OOPSLA
’02: Proceedings of the 17th ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications, pages
211–230, 2002.

[8] J. D. Choi, K. Lee, A. Loginov, R. O’Callahan, V. Sarkar, and M. Srid-
haran. Efficient and precise datarace detection for multithreaded
object-oriented programs. In PLDI ’02: Proceedings of the ACM
SIGPLAN 2002 Conference on Programming language design and
implementation, pages 258–269, 2002.

[9] J. D. Choi, B. P. Miller, and R. H. B. Netzer. Techniques for debugging
parallel programs with flowback analysis. ACM Transactions on
Programming Languages and Systems, 13(4):491–530, 1991.

[10] M. Christiaens and K. De Bosschere. TRaDe, a topological
approach to on-the-fly race detection in java programs. In JVM ’01:
Proceedings of the Java Virtual Machine Rsearch and Technology
Symposium, 2001.

[11] J. M. Crummey. On-the-fly detection of data races for programs with
nested fork-join parallelism. In Supercomputing ’91: Proceedings of
the 1991 ACM/IEEE conference on Supercomputing, pages 24–33,
1991.

[12] A. Dinning and E. Schonberg. An empirical comparison of
monitoring algorithms for access anomaly detection. In PPOPP ’90:
Proceedings of the second ACM SIGPLAN symposium on Principles
& practice of parallel programming, pages 1–10, 1990.

[13] A. Dinning and E. Schonberg. Detecting access anomalies in
programs with critical sections. In PADD ’91: Proceedings of the
1991 ACM/ONR workshop on Parallel and distributed debugging,
pages 85–96, 1991.

[14] Joe Duffy. A query language for data parallel programming: invited
talk. In DAMP, page 50, 2007.

[15] T. Elmas, S. Qadeer, and S. Tasiran. Goldilocks: A race and
transaction-aware java runtime. In PLDI ’07: Proceedings of the
2007 ACM SIGPLAN conference on Programming language design
and implementation, pages 245–255, New York, NY, USA, 2007.
ACM.

[16] D. Engler and K. Ashcraft. RacerX: Effective, static detection of
race conditions and deadlocks. In SOSP ’03: Proceedings of the
nineteenth ACM symposium on Operating systems principles, pages
237–252, 2003.

[17] C. Flanagan and S. N. Freund. Type-based race detection for Java.
In PLDI ’00: Proceedings of the ACM SIGPLAN 2000 conference on

Programming language design and implementation, pages 219–232,
2000.

[18] M. Hauswirth and T. M. Chilimbi. Low-overhead memory leak
detection using adaptive statistical profiling. In ASPLOS-XI:
Proceedings of the 11th international conference on Architectural
support for programming languages and operating systems, pages
156–164, New York, NY, USA, 2004. ACM.

[19] T. A. Henzinger, R. Jhala, and R. Majumdar. Race checking
by context inference. In PLDI ’04: Proceedings of the ACM
SIGPLAN 2004 conference on Programming language design and
implementation, pages 1–13, 2004.

[20] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad:
Distributed data-parallel programs from sequential building blocks.
In Proceedings of the EuroSys Conference, pages 59–72, 2007.

[21] L. Lamport. Time, clocks, and the ordering of events in a distributed
system. Communications of the ACM, 21(7):558–565, 1978.

[22] Generic concurrent lock-free linked list —
http://www.cs.rpi.edu/ bushl2/project web/page5.html.

[23] J. Manson, W. Pugh, and S. Adve. The Java memory model. In
Principles of Programming Languages (POPL), 2005.

[24] Microsoft. Phoenix compiler. http://research.microsoft.com/Phoenix/.

[25] Microsoft. Thread execution blocks. http://msdn.microsoft.com/en-
us/library/ms686708.aspx.

[26] S. L. Min and J.-D. Choi. An efficient cache-based access anomaly
detection scheme. In Proceedings of the 4th International Conference
on Architectural Support for Programming Languages and Operating
System (ASPLOS), pages 235–244, 1991.

[27] M. Naik, A. Aiken, and J. Whaley. Effective static race detection
for Java. In PLDI ’06: Proceedings of the 2006 ACM SIGPLAN
conference on Programming language design and implementation,
pages 308–319, 2006.

[28] R. H. B. Netzer. Optimal tracing and replay for debugging shared-
memory parallel programs. In Proceedings of the ACM/ONR
Workshop on Parallel and Distributed Debugging, pages 1–11, 1993.

[29] H. Nishiyama. Detecting data races using dynamic escape analysis
based on read barrier. Third Virtual Machine Research & Technology
Symposium, pages 127–138, May 2004.

[30] R. O’Callahan and J. D. Choi. Hybrid dynamic data race detection.
In PPoPP ’03: Proceedings of the ninth ACM SIGPLAN symposium
on Principles and practice of parallel programming, pages 167–178,
2003.

[31] D. Perkovic and P. J. Keleher. Online data-race detection via
coherency guarantees. In OSDI ’96: Operating System Design and
Implementation, pages 47–57, 1996.

[32] E. Pozniansky and A. Schuster. Efficient on-the-fly data race detection
in multithreaded C++ programs. In PPoPP ’03: Proceedings of
the ninth ACM SIGPLAN symposium on Principles and practice of
parallel programming, pages 179–190, 2003.

[33] P. Pratikakis, J. S. Foster, and M. Hicks. LOCKSMITH: Context-
sensitive correlation analysis for race detection. In PLDI ’06:
Proceedings of the 2006 ACM SIGPLAN conference on Programming
language design and implementation, pages 320–331, 2006.

[34] S. Qadeer and D. Wu. KISS: Keep it simple and sequential. In
PLDI ’04: Proceedings of the ACM SIGPLAN 2004 Conference on
Programming Language Design and Implementation, pages 14–24,
2004.

[35] M. Ronsse and K. de Bosschere. Non-intrusive on-the-fly data race
detection using execution replay. In Proceedings of Automated and
Algorithmic Debugging, Nov 2000.

[36] P. Sack, B. E. Bliss, Z. Ma, P. Petersen, and J. Torrellas. Accurate and
efficient filtering for the Intel Thread Checker race detector. In ASID
’06: Proceedings of the 1st workshop on Architectural and system
support for improving software dependability, pages 34–41, 2006.

[37] A. Sasturkar, R. Agarwal, L. Wang, and S. D. Stoller. Automated
type-based analysis of data races and atomicity. In PPoPP ’05:
Proceedings of the tenth ACM SIGPLAN symposium on Principles
and practice of parallel programming, pages 83–94, 2005.

[38] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson.
Eraser: A dynamic data race detector for multithreaded programs.
ACM Transactions on Computer Systems, 15(4):391–411, 1997.

[39] E. Schonberg. On-the-fly detection of access anomalies. In
Proceedings of the ACM SIGPLAN’89 Conference on Programming
Language Design and Implementation (PLDI), 1989.

[40] N. Sterling. WARLOCK - a static data race analysis tool. In
Proceedings of the USENIX Winter Technical Conference, pages
97–106, 1993.

[41] C. von Praun and T. R. Gross. Object race detection. In OOPSLA
’01: Proceedings of the 16th ACM SIGPLAN conference on Object
oriented programming, systems, languages, and applications, pages
70–82, 2001.

[42] J. W. Voung, R. Jhala, and S. Lerner. RELAY: Static race detection on
millions of lines of code. In ESEC-FSE ’07: Proceedings of the the
6th joint meeting of the European software engineering conference
and the ACM SIGSOFT symposium on The foundations of software
engineering, pages 205–214, 2007.

[43] Y. Yu, T. Rodeheffer, and W. Chen. Racetrack: efficient detection of
data race conditions via adaptive tracking. In SOSP ’05: Proceedings
of the twentieth ACM symposium on Operating systems principles,
pages 221–234, 2005.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

