
Safe to the Last Instruction: Automated
Verification of a Type-Safe Operating System

Jean Yang
Massachusetts Institute of Technology

Computer Science and Artificial Intelligence Laboratory

Chris Hawblitzel
Microsoft Research

Abstract
Typed assembly language (TAL) and Hoare logic can verify the
absence of many kinds of errors in low-level code. We use TAL and
Hoare logic to achieve highly automated, static verification of the
safety of a new operating system called Verve. Our techniques and
tools mechanically verify the safety of every assembly language
instruction in the operating system, run-time system, drivers, and
applications (in fact, every part of the system software except the
boot loader). Verve consists of a “Nucleus” that provides primitive
access to hardware and memory, a kernel that builds services on
top of the Nucleus, and applications that run on top of the kernel.
The Nucleus, written in verified assembly language, implements
allocation, garbage collection, multiple stacks, interrupt handling,
and device access. The kernel, written in C# and compiled to TAL,
builds higher-level services, such as preemptive threads, on top of
the Nucleus. A TAL checker verifies the safety of the kernel and
applications. A Hoare-style verifier with an automated theorem
prover verifies both the safety and correctness of the Nucleus.
Verve is, to the best of our knowledge, the first operating system
mechanically verified to guarantee both type and memory safety.
More generally, Verve’s approach demonstrates a practical way
to mix high-level typed code with low-level untyped code in a
verifiably safe manner.

Categories and Subject Descriptors D.2.4 [SOFTWARE ENGI-
NEERING]: Software/Program Verification

General Terms Verification

Keywords Operating system, run-time system, verification, type
safety

1. Introduction
High-level computer applications build on services provided by
lower-level software layers, such as operating systems and lan-
guage run-time systems. These lower-level software layers should
be reliable and secure. Without reliability, users endure frustration
and potential data loss when the system software crashes. Without
security, users are vulnerable to attacks from the network, which
often exploit low-level bugs such as buffer overflows to take over

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLDI’10, June 5–10, 2010, Toronto, Ontario, Canada.
Copyright c© 2010 ACM 978-1-4503-0019/10/06. . . $10.00

a user’s computer. Unfortunately, today’s low-level software still
suffers from a steady stream of bugs, often leaving computers vul-
nerable to attack until the bugs are patched.

Many projects have proposed using safe languages to increase
the reliability and security of low-level systems. Safe languages
ensure type safety and memory safety: accesses to data are guar-
anteed to be well-typed and guaranteed not to overflow memory
boundaries or dereference dangling pointers. This safety rules out
many common bugs, such as buffer overflow vulnerabilities. Un-
fortunately, even if a language is safe, implementations of the lan-
guage’s underlying run-time system might have bugs that under-
mine the safety. For example, such bugs have left web browsers
open to attack.

This paper presents Verve, an operating system and run-time
system that we have verified to ensure type and memory safety.
Verve has a simple mantra: every assembly language instruction in
the software stack must be mechanically verified for safety. This
includes every instruction of every piece of software except the
boot loader: applications, device drivers, thread scheduler, interrupt
handler, allocator, garbage collector, etc.

The goal of formally verifying low-level OS and run-time sys-
tem code is not new. Nevertheless, very little mechanically verified
low-level OS and run-time system code exists, and that code still
requires man-years of effort to verify [9, 14]. This paper argues
that recent programming language and theorem-proving technolo-
gies reduce this effort substantially, making it practical to verify
strong properties throughout a complex system. The key idea is
to split a traditional OS kernel into two layers: a critical low-level
“Nucleus,” which exports essential runtime abstractions of the un-
derlying hardware and memory, and a higher-level kernel, which
provides more fully-fledged services. Because of these two dis-
tinct layers, we can leverage two distinct automated technologies to
verify Verve: TAL (typed assembly language [18]) and automated
SMT (satisfiability modulo theories) theorem provers. Specifically,
we verify the Nucleus using automated theorem proving (based on
Hoare Logic) and we ensure the safety of the kernel using TAL
(generated from C#). Note that this two-layer approach is not spe-
cific to just Verve, but should apply more generally to systems that
want to mix lower-level untyped code with higher-level typed code
in a verifiably safe way.

A complete Verve system consists of a Nucleus, a kernel, and
one or more applications. We wrote the kernel and applications
in safe C#, which is automatically compiled to TAL. An existing
TAL checker [6] verifies this TAL (again, automatically). We wrote
the Nucleus directly in assembly language, hand-annotating it with
assertions (preconditions, postconditions, and loop invariants). An
existing Hoare-style program verifier called Boogie [2] verifies the
assembly language against a specification of safety and correctness.
This ensures the safety and correctness of the Nucleus’s implemen-

tation, including safe interaction with the TAL code and safe in-
teraction with hardware (including memory, interrupts, timer, key-
board, and screen). Boogie relies on Z3 [7], an automated SMT the-
orem prover, to check that the assertions are satisfied. Writing the
assertions requires human effort, but once they are written, Boogie
and Z3 verify them completely automatically. As a result, the Verve
Nucleus requires only 2-3 lines of proof annotation per executable
statement, an order of magnitude less than similar projects based
on interactive theorem provers [9, 14].

The Verve operating system demonstrates the following:

• It is, to the best of our knowledge, the first operating system
mechanically verified to ensure type safety. Furthermore, every
assembly language instruction that runs after booting is stat-
ically verified (we do not have to trust a high-level-language
compiler, nor do we have to trust any unverified library code).

• It is a real system: it boots and runs on real, off-the-shelf x86
hardware, and supports realistic language features, including
classes, virtual methods, arrays, and preemptive threads.

• It is efficient: it supports efficient TAL code generated by an op-
timizing C#-to-TAL compiler, Bartok [6], using Bartok’s native
layouts for objects, method tables, and arrays. It incorporates
the code from earlier verified garbage collectors [13], which, as
shown in [13], can run realistic macro-benchmarks at near the
performance of Bartok’s native garbage collectors.

• It demonstrates that automated techniques (TAL and automated
theorem proving) are powerful enough to verify the safety of
the complex, low-level code that makes up an operating system
and run-time system. Furthermore, it demonstrates that a small
amount of code verified with automated theorem proving can
support an arbitrary large amount of TAL code.

In its current implementation, Verve is a small system and has
many limitations. It lacks support for many C# features: exception
handling, for example, is implemented by killing a thread entirely,
rather than with try/catch. It lacks the standard .NET class library,
since the library’s implementation currently contains much unsafe
code. It lacks dynamic loading of code. It runs only on a single pro-
cessor. Although it protects applications from each other using type
safety, it lacks a more comprehensive isolation mechanism between
applications, such as Java Isolates, C# AppDomains, or Singularity
SIPs [8]. The verification does not guarantee termination. Finally,
Verve uses verified garbage collectors [13] that are stop-the-world
rather than incremental or real-time, and Verve keeps interrupts dis-
abled throughout the collection.

Except for multi-processor support, none of the limitations in
Verve’s present implementation are fundamental. We expect that
with more time, the high degree of automation in Verve’s verifica-
tion will allow Verve to scale to a more realistic feature set, such
as a large library of safe code and a verified incremental garbage
collector.

1.1 Availability
All of the Verve source code is freely available for download or
browsing at the following URL (browse the latest version under
“Source Code” to see the “verify” directory, which contains Verve):

http://www.codeplex.com/singularity

2. Tools for constructing a safe OS
Two complementary verification technologies, TAL and automated
theorem proving, drive Verve’s design. On one hand, TAL is rela-
tively easy to generate, since the compiler automatically turns C#
code into TAL code, relying only on lightweight type annotations

GarbageCollect
GetStackState
ResetStack
YieldTo
VgaTextWrite
TryReadKeyboard
StartTimer
SendEoi

AllocObject
AllocVector
Throw
readField
writeField
readStack
writeStack

N
u

cl
e

u
sE

n
tr

yP
o

in
t

FaultHandler
ErrorHandler
InterruptHandler
FatalHandler

Nucleus
(BoogiePL)

B
o

o
t

Lo
ad

e
r

x86 Hardware

KernelEntryPoint NewThread, Yield, ...

Kernel
(TAL)

Application
 (TAL)

Main

Figure 1. Verve structure, showing all 20 functions exported by the
Nucleus

already present in the C# code. This enables TAL to scale easily to
large amounts of code. For Verve, we use the Bartok compiler [6]
to generate TAL code.

On the other hand, automated theorem provers can verify deeper
logical properties about the code than a typical TAL type system
can express. Leveraging this power requires more effort, though,
in the form of heavyweight programmer-supplied preconditions,
postconditions, and loop invariants. To exploit the tradeoff between
TAL and automated theorem proving, we decided to split the Verve
operating system code into two parts, shown in Figure 1: a Nucleus,
verified with automated theorem proving, and a kernel, verified
with TAL. The difficulty of theorem proving motivated the balance
between the two parts: only the functionality that TAL could not
verify as safe went into the Nucleus; all other code went into the
kernel.

The Nucleus’s source code is not expressed in TAL, but rather
in Boogie’s programming language, called BoogiePL (or just Boo-
gie), so that the Boogie verifier can check it. Since the Nucleus
code consists of assembly language instructions, these assembly
language instructions must appear in a form that the Boogie verifier
can understand. As described in detail below, we decided to encode
assembly language instructions as sequences of calls to BoogiePL
procedures (e.g. an “Add” procedure, a “Load” procedure, etc.), so
that the Boogie verifier can check that each instruction’s precon-
dition is satisfied. After Boogie verification, a separate tool called
“BoogieAsm”, developed for an earlier project [13], extracts stan-
dard assembly language instructions from the BoogiePL code. A
standard assembler then turns these instructions into an object file.

Rather than hand-code all of the Nucleus in assembly language,
we wrote some of the less performance-critical parts in a high-level
extension of BoogiePL that we call “Beat”. Our (non-optimizing)
Beat compiler transforms verifiable Beat expressions and state-
ments into verifiable BoogiePL assembly language instructions.

In Figure 2 we show the trusted and untrusted components of
our system. Besides the boot loader, the only trusted components
are the tools used to verify, assemble, and link the verified Nucleus
and kernel. Note that none of our compilers are part of our trusted
computing base: we do not need to trust the compilers to ensure
the correctness of the Nucleus and safety of the Verve system as
a whole. As shown in Figure 2, the TAL checker and Boogie/Z3
verifier check that the output of the compilers conforms to the TAL
type system and the Nucleus specification, so we just need to trust
these checkers.

U
N

TR
U

STED

TR
U

STED

Beat compiler

Linker ISO generator
Assembler

Nucleus.beat

BoogieAsm

Spec.bpl

Nucleus.bpl (x86)

BootLdr.exe

Kernel.cs

Bartok compiler

C# compiler

App.cs

Kernel.obj (x86)

SafeOS.iso (bootable CD-ROM image)

TAL checker Boogie/Z3

V
ER

IFIED

Figure 2. Building the Verve system: trusted, untrusted components

Beyond the TAL checker and Boogie/Z3 verifiers, Figure 2
shows additional components in Verve’s trusted computing base:
the assembler, the linker, the ISO CD-ROM image generator, and
the boot loader. In addition, the trusted computing base includes the
specification of correctness for the Nucleus’s BoogiePL code. This
includes specifications of the behavior of functions exported by
the Nucleus, shown in Figure 1. (For example, the specification of
“YieldTo” ensures that the Nucleus sets the stack pointer to the top
of the correct stack during a yield.) It also includes specifications
for assembly language instructions and for interaction with hard-
ware devices and memory; we took some of these specifications
from existing work [13], and wrote some of them from scratch. All
Boogie specifications are written as first-order logic formulas in the
BoogiePL language.

By expressing and checking properties at a low level (assem-
bly language), we can ensure non-trivial properties with high con-
fidence. The bulk of this paper focuses on these properties, with
an emphasis on the specification and verification of the Nucleus’s
correctness properties. The next section discusses the Nucleus’s de-
sign, and subsequent sections discuss specification and verification.

3. The Nucleus interface
The core of our verification is the Nucleus, which provides a ver-
ified interface to the low-level functionality of the operating sys-
tem. We verify the Nucleus using Hoare logic in Boogie, based on
a trusted specification for x86 assembly language instructions. In
Verve, all access to low-level functionality must occur through the
Nucleus — the kernel’s TAL code and application’s TAL code can
only access low-level functionality indirectly, through the Nucleus.
For example, TAL code cannot directly access device registers. Fur-
thermore, even though TAL code can directly read and write words
of memory, it can only read and write words designated as safe-for-
TAL by the Nucleus’s garbage collector.

The Nucleus consists of a minimal set of functions necessary
to support the TAL code that runs above it. We wanted a minimal
set because even with an automated theorem prover, Hoare-style
verification is still hard work; less code in the Nucleus means less
code to verify. At the same time, the set has to guarantee safety in
the presence of arbitrary TAL code; it can assume that the TAL
code is well typed, but can make no further assumptions about
the behavior of the TAL code. For example, when an interrupt

occurs, the Nucleus attempts to transfer control to a designated TAL
interrupt handler. The Nucleus cannot assume that this handler is in
the correct state to handle the interrupt, and must therefore check
the handler’s state at run-time (see section 4.5).

One design decision greatly simplified the Nucleus: following a
design used in recent micro-kernels [11, 14], no Nucleus function
ever blocks. In other words, every Nucleus function performs a
finite (and usually small) amount of work and then returns. The
Nucleus may, however, return to a different thread than the thread
that invoked the function. This allows the kernel built on top of the
Nucleus to implement blocking thread operations, such as waiting
on a semaphore.

These design decisions led us to a small Nucleus API consist-
ing of just 20 functions, all shown in Figure 1. These 20 func-
tions, implemented with a total of about 1500 x86 instructions, in-
clude 3 memory management functions (AllocObject, AllocVec-
tor, GarbageCollect), one very limited exception handling func-
tion (Throw), 3 stack management functions (GetStackState, Re-
setStack, YieldTo), and 4 device access functions (VgaTextWrite,
TryReadKeyboard, StartTimer, SendEoi). Most of the functions are
intended for use only by the kernel, not by applications. However,
applications may call AllocObject and AllocVector directly.

The Nucleus exports four pseudo-functions, readField, write-
Field, readStack, and writeStack, to the kernel and applications.
These functions, described further in section 4, contain no exe-
cutable code, but their verification guarantees that the kernel and
applications will find the values that they expect when they try to
access fields or objects or slots on the current stack. The Nucleus
exports another 4 functions to the hardware for handling faults and
interrupts: FatalHandler halts the system, while FaultHandler, Er-
rorHandler, and InterruptHandler yield execution to kernel TAL
code running on a designated interrupt-handling stack. Finally, the
Nucleus exports an entry point, NucleusEntryPoint to the boot
loader.

As more devices are added to the system, more Nucleus func-
tions may be required. However, a minimal Nucleus only needs to
include the portion of the device interfaces critical the rest of the
system’s safety; if desired, Verve could use an I/O MMU to protect
the system from devices, minimizing the device code that needs to
reside in the Nucleus.

Following the approach taken by the recent verified L4 micro-
kernel, seL4 [14], Verve keeps interrupts disabled throughout the
execution of any single Nucleus function. (On the other hand, in-
terrupts may be enabled during the TAL kernel’s execution, with
no loss of safety.) Since Nucleus functions do not block, Verve still
guarantees that eventually, interrupts will always be re-enabled, and
usually will be re-enabled very quickly. However, Verve’s current
implementation sacrifices real-time interrupt handling because of
one particularly long function: “GarbageCollect”, which performs
an entire stop-the-world garbage collection. This is currently a sub-
stantial limitation for the responsiveness of the system, but it is not
fundamental to Verve’s approach. Given a verified incremental col-
lector, Verve could reduce the execution time of “GarbageCollect”
to, say, just the time required to scan the stacks (or even a single
stack), rather than the time required to garbage collect the whole
heap. (Alternatively, Verve could poll for interrupts periodically,
as in seL4. However, delivering these interrupts to the kernel TAL
code would still require that the garbage collector reach a state that
is safe for the kernel.)

The next two sections describes how Verve specifies, imple-
ments, and verifies the Nucleus functions listed above.

4. The Nucleus specification
To verify that the Nucleus behaves correctly, we have to spec-
ify what correct behavior is. Formally, this specification con-

sists of preconditions and postconditions for each of the 20 func-
tions exported by the Nucleus (Figure 1). The preconditions
reflect the guarantees made by other components of the sys-
tem when calling the Nucleus. For example, the precondition to
NucleusEntryPoint describes the state of memory when the Nu-
cleus begins execution; the (trusted) boot loader is responsible for
establishing this precondition. The preconditions for functions ex-
ported to the kernel and applications describe the state of regis-
ters and the current stack when making a call to the Nucleus; the
(trusted) TAL checker is responsible for guaranteeing that these
preconditions hold when the (untrusted) kernel and applications
transfer control to the Nucleus. (Note that any property not guar-
anteed by the TAL checker cannot be assumed by the Nucleus’s
preconditions for functions exported to the kernel and applications;
as a result, the Nucleus must occasionally perform run-time checks
to validate the values passed from the kernel and applications.)

When writing the Nucleus’s specification, we are not interested
so much in the Nucleus’s private, internal behaviors, but rather
how the Nucleus interacts with other components of the system.
For example, the Verve specification of garbage collection does
not specify which algorithm the garbage collector should imple-
ment (e.g. copying or mark-sweep), since the algorithm is an in-
ternal behavior that is irrelevant to the other components of the
system. Instead, following the approach of McCreight et al [17],
the specification simply says that the garbage collector must main-
tain the well-formedness of the stacks and heap, so that subsequent
reads and writes to the stack and heap other components of the sys-
tem behave as expected. (Internally, the garbage collectors used by
Verve [13] do have stronger invariants about specific details of the
algorithm, but these invariants are kept hidden from the other Verve
system components.)

The Nucleus interacts with five components: memory, hard-
ware devices, the boot loader, interrupt handling, and TAL code
(kernel and application code). Memory and hardware devices ex-
port functionality to the Nucleus, such as the ability to read mem-
ory locations and write hardware registers. Verve must verify that
the Nucleus satisfies the preconditions to each operation on mem-
ory and hardware. In turn, the Nucleus exports functionality to
the boot loader (the Nucleus entry point), the interrupt handling
(the Nucleus’s interrupt handlers), and the TAL code (AllocObject,
YieldTo, etc.).

4.1 Specification logistics
Verve expresses the specification for interacting with these compo-
nents as first-order logical formulas in BoogiePL [2]. These formu-
las follow C/Java/C# syntax and consist of:

• arithmetic operators: +, -, *, >, ==, !=, ...
• boolean operators: !, &&, ||, ==>, ...
• variables: foo, Bar, old(foo), ...
• boolean constants: true, false
• integer constants: 5, ...
• bit vector contants: 5bv16, 5bv32, ...
• function application: Factorial(5), Max(3,7), IsOdd(9), ...
• array indexing: foo[3], ...
• array update: foo[3 := Bar], ...
• quantified formulas: (∀i:int::foo[i]==Factorial(i)), ...

For a variable foo, the expression old(foo) refers to the value of
foo at the beginning of the procedure. BoogieAsm also enforces
the convention that capitalized variable names correspond with
read-only variables. For instance, the variable corresponding to the

instruction pointer Eip is read-only, while variable corresponding
to the register eax is directly readable and writable.

BoogiePL bit vectors correspond to integers in C/Java/C#,
which are limited to numbers that fit inside a fixed number of bits.
BoogiePL integers, on the other hand, are unbounded mathemati-
cal integers. BoogiePL arrays are unbounded mathematical maps
from some type (usually integers) to some other type. Unlike ar-
rays in C/Java/C#, BoogiePL arrays are immutable values (there
are no references to arrays and arrays are not updated in place).
An array update expression a[x := y] creates a new array, which
is equal to the old array a at all locations except x, where it con-
tains a new value, y. For example, (a[x := y])[x] == y and
(a[x := y])[x + 1] == a[x + 1]).

BoogiePL procedures have preconditions and postconditions,
written as BoogiePL logical formulas:
var a:int, b:int;
procedure P(x:int, y:int)
requires a < b && x < y;
modifies a, b;
ensures a < b && a == x + old(a);

{
a := a + x;
b := b + y;

}
In this example, the procedure P can only be called in a state

where global variable a is less than global variable b, and the
parameter x is less than the parameter y. Upon exit, the procedure’s
postconditions ensure that a is still less than b, and that a is equal
to x plus the old version of a (before P executed). Note that the
procedure must explicitly reveal all the global variables that it
modifies (“modifies a, b;” in this example), so that callers to
the procedure will be aware of the modifications.

To verify that a program’s code obeys its specification, the Boo-
gie tool relies on the Z3 [7] automated theorem prover. Z3 automat-
ically checks logical formulas involving linear arithmetic (addition,
subtraction, comparison), arrays, bit vectors, and functions. Z3 also
checks quantified formulas (formulas with forall and exists);
however, Z3 relies on programmer-supplied hints in the form of
triggers to help with quantifiers, since checking quantified formu-
las with arithmetic and arrays is undecidable in general. Earlier
work [13] describes how Verve’s garbage collectors use triggers.

For each function exported to the boot loader, interrupt han-
dling, and TAL code, the Nucleus implements a BoogiePL proce-
dure whose specification is given in terms of “requires”, “ensures”,
and “modifies” clauses. The Nucleus implements these procedures
in terms of more primitive hardware procedures: each BoogiePL
procedure exported from the memory and hardware devices to the
Nucleus corresponds to exactly one assembly language instruction,
such as an instruction to read a single memory location or write to
a single hardware register.

In order to convey concretely what the Nucleus specification
and verification entail, subsections 4.2-4.6 describe in detail the
BoogiePL specifications of the Nucleus’s interaction with the mem-
ory (4.2), hardware devices (4.3), boot loader (4.4), interrupt han-
dling (4.5), and TAL code (4.6). Note that the interfaces in sub-
sections 4.2-4.5 are for use only by the Nucleus, not by kernel and
application code. Kernel and application code can only make use
of these interfaces indirectly, via calls to the Nucleus.

4.2 Memory
Verve’s initial memory layout is set by the boot loader. Verve uses
the boot loader from the Singularity project [8], which sets up an
initial virtual-memory address space (i.e. it sets up a page table),
loads the executable image into memory, and jumps to the exe-
cutable’s entry point, passing detailed information about the mem-

ory layout to the entry point. The boot-loader-supplied address
space simply maps virtual memory directly to physical memory,
except for a small range of low addresses that are left unmapped
(to catch null pointer dereferences). A traditional operating system
would create new virtual memory address spaces to protect appli-
cations from each other. However, unlike traditional operating sys-
tems, Verve guarantees type safety, and can therefore rely on type
safety for protection. Because of this, Verve simply keeps the initial
boot-loader-supplied address space.

Verve’s mapped address space consists of three parts. First is
the memory occupied by the executable image, including code,
static fields, method tables, and memory layout information for the
garbage collector. Verve may read this memory, but may write only
to the static fields, not the code, method tables, or layout infor-
mation. Second, the Verve specification reserves the memory just
above the executable image for the interrupt table. Verve may write
to the table, but it can only write values that obey the specification
for interrupt handlers. Third, the remaining memory above the in-
terrupt handler is general-purpose memory, free for arbitrary use;
the Nucleus may read and write it at any time as it wishes (as long
as it ensures the well-formedness of the heap and current stack be-
fore transferring control to TAL code, as discussed in section 4.6).

The specification describes the state of general-purpose memory
using a global variable Mem, which is an array that maps integer
byte addresses to integer values. For any 4-byte-aligned address i
in general-purpose memory, Mem[i] contains the 32-bit memory
contents stored at address i, represented as an integer in the range
0 . . . 232 − 1. The memory exports two operations to the Nucleus,
Load and Store:

procedure Load(ptr:int) returns (val:int);
requires memAddr(ptr);
requires Aligned(ptr);
modifies Eip;
ensures word(val);
ensures val == Mem[ptr];

procedure Store(ptr:int, val:int);
requires memAddr(ptr);
requires Aligned(ptr);
requires word(val);
modifies Eip, Mem;
ensures Mem == old(Mem)[ptr := val];

Each of these two operations requires a 4-byte-aligned pointer
(“Aligned(...)”) to memory inside the general-purpose memory
region (“memAddr(...)”). The loaded or stored value must be
in the range 0 . . . 232 − 1 (“word(...)”). Any Store operation
updates the contents of Mem, so that subsequent Load operations
are guaranteed to see the updated value. Loads and stores have an
additional side effect, noted in the modifies clause: they modify the
current instruction pointer (program counter), “Eip”.

The executable image memory exports its own load/store inter-
face to the Nucleus, but with a store operation that applies only to
static fields.

Finally, the interrupt table exports a store operation that allows
the Nucleus to write to the interrupt descriptor table (IDT). On x86
processors, the interrupt descriptor table contains a sequence of 8-
byte entries that describe what code the processor should jump to
when receiving various kinds of faults and interrupts. This is a very
sensitive data structure, since an invalid entry could cause a jump
to an arbitrary address in memory, which would be unsafe. We had
originally hoped to use general-purpose memory for the interrupt
table, and to guarantee the well-formedness of the interrupt table
whenever the Nucleus transfers control to TAL code. Under this

hope, the Nucleus would be allowed to arbitrarily modify the in-
terrupt table temporarily, which would be safe while interrupts are
disabled. However, some x86 platforms support “non-maskable in-
terrupts”, which can occur even with interrupts disabled. If such
an interrupt ever occurred, we’d feel safer transferring control to
a designated fatal error handler than allowing arbitrary behavior.
Therefore, the interrupt table exports an interface that only allows
stores of approved entries:
procedure IdtStore(entry:int, offset:int,

handler:int, ptr:int, val:int);
requires 0 <= entry && entry < 256;
requires (offset == 0 && val == IdtWord0(handler))

|| (offset == 4 && val == IdtWord4(handler));
requires IsHandlerForEntry(entry, handler);
requires ptr == idtLo + 8 * entry + offset;
modifies Eip, IdtMem, IdtMemOk;
ensures IdtMem == old(IdtMem)[ptr := val];
ensures IdtMemOk == old(IdtMemOk)[ptr := true];

Like Store, IdtStore corresponds to a single x86 store in-
struction. Using IdtStore, the Nucleus may write to either 4-byte
word of any 8-byte entry in the table, as long as the word describes
a valid interrupt handler for the entry. After a valid word is writ-
ten to address ptr, the specification updates an array of booleans
“IdtMemOk” to reflect that the word at address ptr is now valid.
Valid words obey a strange Intel specification that splits the han-
dler’s address across the two words in 16-bit pieces; we show the
BoogiePL for this specification just to demonstrate that Verve can
deal with such low-level architectural details safely (and, or, and
shl are 32-bit bitwise AND/OR/SHIFT-LEFT):

function IdtWord0(handler:int) returns(int) {
or(shl(CSS, 16), and(handler, 0x0000ffff))

}
function IdtWord4(handler:int) returns(int) {
or(and(handler, 0xffff0000), 0x8e00)

}

4.3 Hardware devices
Verve currently supports four hardware devices: a programmable
interrupt controller (PIC), a programmable interval timer (PIT), a
VGA text screen, and a keyboard. Verve specifies the interaction
with this hardware using unbounded streams of events. The Nu-
cleus delivers events to the PIC, PIT, and screen, and it receives
events from the keyboard. For the screen, the events are commands
to draw a character at a particular position on the screen. For the
keyboard, events are keystrokes received from the keyboard. For
the PIC and PIT, particular sequences of events initialize interrupt
handling and start timers.

We present the keyboard specification as an example. Verve
represents the stream of events from the keyboard as an immutable
array KbdEvents mapping event sequence numbers (represented
as integers, starting from 0) to events (also represented as integers).
As the Nucleus queries the keyboard, it discovers more and more
events from the stream. Two indices into the array, KbdAvailable
and KbdDone, indicate the state of the Nucleus’s interaction with
the keyboard. Events 0...KbdDone-1 have already been read by the
Nucleus, while events KbdDone...KbdAvailable-1 are available
to read but have not yet been read.

Two operations, KbdStatusIn8 and KbdDataIn8, query the
keyboard. Each of these procedures represents a single 8-bit x86
assembly language I/O instruction, and BoogieAsm translates each
call to these procedures into a single x86 “in” instruction. By
invoking KbdStatusIn8, the Nucleus discovers the current state of

KbdAvailable and KbdDone. If this operation places a 0 in the eax
register’s lowest bit, then no events are available; if the operation
places a 1 in eax’s lowest bit, then at least one event is available.
If the Nucleus can prove that at least one event is available, it may
call KbdDataIn8 to receive the first available event.

var KbdEvents:[int]int;
var KbdAvailable:int, KbdDone:int;
procedure KbdStatusIn8();

modifies Eip, eax, KbdAvailable;
ensures and(eax,1)==0 ==> KbdAvailable==KbdDone;
ensures and(eax,1)!=0 ==> KbdAvailable> KbdDone;

procedure KbdDataIn8();
requires KbdAvailable > KbdDone;
modifies Eip, eax, KbdDone;
ensures KbdDone == old(KbdDone) + 1;
ensures and(eax,255) == KbdEvents[old(KbdDone)];

For example, the Nucleus implementation of the
TryReadKeyboard function first calls KeyboardStatusIn8,
and then performs a bitwise AND operation to discover the status:

implementation TryReadKeyboard() {
call KeyboardStatusIn8();
call eax := And(eax, 1);

...

4.4 Boot loader and Nucleus initialization
Interaction with the boot loader, interrupt handling, and TAL
code is specified by preconditions and postconditions on Nucleus-
implemented procedures. The first such procedure to execute is the
Nucleus entry point, NucleusEntryPoint. When booting com-
pletes, the boot loader transfers control to NucleusEntryPoint.
(After this control transfer, no boot loader code ever runs again.)
The Nucleus entry point implementation must obey the following
specification (for brevity, we omit some of the requires, modifies,
and ensures clauses):

procedure NucleusEntryPoint(...);
requires...idtLo == ro32(ro32(ecx+40)+72+0)

&& memHi == ro32(ro32(ecx+40)+72+8)+idtLo
...

requires RET == ReturnToAddr(KernelEntryPoint);
requires S == 0;
...
ensures esp == StackHi(S) - 4 && ebp == 0;
ensures StackCheckInv(S, StackCheck);
ensures IdtOk && PicOk(...) && TimerOk(...);
ensures NucleusInv(S,

StackState[S:=StackRunning],...);

The boot loader passes information about available memory in
the ecx register. This information supplies the Nucleus with the
bounds of the memory above the executable image, which ranges
from the low end of the interrupt table (idtLo) to the high end of
general-purpose memory. (The function ro32 maps each address
in read-only memory to the 32-bit value stored at that address.)

The “RET” value specifies how the procedure must return. It
equals one of two values: ReturnToAddr(i), which specifies that
the procedure must perform a normal return (the x86 ret instruc-
tion) to address i, or ReturnToInterrupted(i, cs, eflags),
which specifies that the procedure must perform an interrupt return
(the x86 iretd instruction) to return address i, restoring code seg-
ment cs and status flags eflags. The specification shown above
requires that the Nucleus entry point return to the TAL kernel en-

try point. (Notice that Nucleus functions do not necessarily return
to their direct caller; the Nucleus entry point returns to TAL, not
to the boot loader.) Furthermore, the Nucleus entry point must set
correct initial stack pointer (esp) and frame pointer (ebp) values. It
must also set a global variable StackCheck with the address of the
low end of the stack; TAL functions compare the stack pointer to
StackCheck to check for stack overflow.

Several postconditions ensure that devices and interrupts are set
up correctly: IdtOk guarantees that the Nucleus has completely
filled in the interrupt table and set up the x86’s pointer to the
interrupt table, PicOk guarantees that the Nucleus has initialized
the programmable interrupt controller, and TimerOk guarantees
that the Nucleus has initialized the programmable interval timer.

One of the Nucleus’s key roles is to manage multiple stacks,
so that the TAL kernel can implement multiple threads. (To dis-
tinguish the Nucleus’s functionality from the kernel’s function-
ality, we say that the Nucleus implements “stacks” and the ker-
nel implements “threads”.) The specification uses two variables, S
and StackState, to specify the current state of the Verve stacks.
Stacks are numbered starting from 0, and S contains the current
running stack. The Nucleus entry point specification S=0 indicates
that the nucleus should run the TAL kernel entry point in stack
0. At any time, each stack s is in one of four states, specified by
StackState[s]: empty, running, yielded, or interrupted. Initially,
stack 0 is set to running (StackRunning), and all other stacks
are empty. When TAL code is interrupted, its current stack’s state
changes to interrupted. When TAL code voluntarily yields, its cur-
rent stack’s state changes to yielded.

NucleusEntryPoint’s final postcondition sets up the Nu-
cleus’s private invariant, NucleusInv. This invariant is a Nucleus-
specified function that takes as arguments the Nucleus’s pri-
vate global variables, along with some specification variables like
Mem, S, and StackState. The Nucleus may define NucleusInv
any way it wants. If it defines too weak an invariant (e.g.
NucleusInv(...) = true), though, then the Nucleus will be not
have enough information to implement other Nucleus functions,
such as allocation. On the other hand, if the invariant is too strong
(e.g. NucleusInv(...) = false), the Nucleus entry point will
not be able to ensure it in the first place. For successful verifica-
tion, the Nucleus must define an invariant strong enough to ensure
the well-formedness of the stacks and heaps, as well as the well-
formedness of the Nucleus’s own internal data structures.

4.5 Interrupt handling
After the TAL kernel begins execution in stack 0, it voluntarily
yields control to another stack and enables interrupts. When a
stack voluntarily yields, its state changes from StackRunning
to StackYielded(_ebp, _esp, _eip), where _ebp, _esp, and
_eip indicate the values that the stack pointer, frame pointer, and
instruction pointer must be restored with in order to resume the
stack’s execution.

Upon receiving an interrupt or fault, the Nucleus’s inter-
rupt and fault handlers (InterruptHandler, FaultHandler, and
ErrorHandler) transfer control back to the TAL code in stack 0,
which then services the interrupt or fault. To specify this behav-
ior, the handler procedure’s preconditions and postconditions force
the interrupt and fault handlers to restore stack 0’s stack and frame
pointers and return to stack 0’s instruction pointer:

procedure InterruptHandler(...);
requires NucleusInv(S, ...);
requires (Tag(StackState[0])==STACK YIELDED ==>

RET == ReturnToAddr(eip)
&& StackState[0]==StackYielded(

ebp, esp, eip));

...
ensures (Tag(StackState[0])==STACK YIELDED ==>

NucleusInv(0, ...)
&& ebp == ebp
&& esp == esp);

The interrupted stack changes from state StackRunning to
state:
StackInterrupted(eax, ebx, ecx, edx, esi, edi,

ebp, esp, eip, cs, efl)

The values _eax..._efl indicate the x86 registers that must be
restored to resume the interrupted stack’s execution. (Verve does
not yet handle floating point code, so no floating point state needs
to be restored.)

Verve verifies the correctness of the Nucleus, but only verifies
the safety of the kernel. As a result, a buggy TAL kernel might leave
stack 0 in some state besides yielded. (For example, a buggy kernel
might enable interrupts while running in stack 0, which could cause
stack 0 to be in the running state when an interrupt occurs.) To
ensure safety even in the presence of a buggy kernel, the Nucleus
must check stack 0’s state at run-time; if it not in the yielded state,
the Nucleus halts the system. InterruptHandler’s precondition
enforces this run-time check: it allows the stack to be in any state,
but RET is only known in the case where the state is yielded, so that
InterruptHandler’s implementation has to check that the state
is yielded to use RET and return to the kernel.

4.6 TAL kernel and applications
The Nucleus exports various functions directly to TAL code. First,
it exports three stack manipulation functions to the TAL kernel:
GetStackState, ResetStack, and YieldTo. GetStackState
simply returns the state of any stack. ResetStack changes the state
of a stack to empty; the kernel may use this to terminate an unused
thread. Finally, YieldTo transfers control to another stack. The
kernel uses YieldTo to implement thread scheduling; for example,
the kernel’s timer interrupt handler calls YieldTo to preempt one
thread and switch to another thread. The exact behavior of YieldTo
depends on the state of the target stack that is being yielded to. If the
target stack is in the yielded or interrupted state, YieldTo restores
the target stack’s state and resumes its execution. If the target stack
is in the empty state, YieldTo runs the TAL kernel’s entry point
in the target stack; the kernel uses this to start new threads. If
the target state is in the running state, then the stack is switching
to itself; in this case, YieldTo simply returns. For brevity, we
omit most of the specification for YieldTo here; it looks much
like InterruptHandler’s specification from section 4.5, but with
cases for all four stack states, rather than just for the yielded state:

procedure YieldTo(...);
requires NucleusInv(S, ...);
requires ScanStackInv(S, ..., esp, ebp);
requires
(StackState[s]==StackRunning && s==S

&& RET==ReturnToAddr(Mem[esp]))
|| (StackState[s]==StackYielded(ebp, esp, eip)

&& RET==ReturnToAddr(eip))
|| (StackState[s]==StackInterrupted(eax,..., efl)

&& RET==ReturnToInterrupted(eip, cs, efl))
|| (StackState[s]==StackEmpty

&& RET==ReturnToAddr(KernelEntryPoint)
&& ...);

...

YieldTo differs from InterruptHandler in one crucial re-
spect. When TAL code voluntarily calls a Nucleus function, the

TAL code leaves its stack contents in a state that the verified
garbage collector can scan: the garbage collector follows the chain
of saved frame pointers until it reaches a saved frame pointer equal
to 0. For each frame, the collector uses the frame’s return address
as an index into tables of GC layout information. By contrast,
an interrupted stack is not necessarily scannable. The requirement
ScanStackInv(...) expresses the layout of the stack that allows
scanning by the garbage collector, and the TAL checker enforces
that the TAL code satisfies this requirement.

The Nucleus exports several run-time system functions to
both TAL kernel and TAL application code: AllocObject,
AllocVector, GarbageCollect, and Throw. Currently, Verve
implements only trivial exception handling: when TAL tries to
throw an exception, Throw simply terminates the current stack by
setting its state to empty and transferring control to stack 0. Verve
takes its allocation and garbage collection implementations (both
mark-sweep and copying collection) directly from another project
on verified garbage collection [13]; more information about them
can be found there. Verve makes only minor changes to the alloca-
tion and GC implementation. First, the allocators return null when
the heap is full, rather than invoking garbage collection directly.
This allows the TAL kernel to schedule the remaining threads to
prepare for garbage collection, as described in section 6. Second,
the original verified collectors scanned only a single stack; Verve
adds a loop that scans all the stacks.

Following earlier work by [17], the verified garbage collec-
tors [13] export functions readField and writeField that read
and write heap object fields on behalf of the TAL code. More pre-
cisely, these functions grant the TAL code permission to read and
write fields of objects, by ensuring that the fields reside at valid
memory locations and, for reads, that the fields contain the correct
value. The “correct value” is defined by an abstract heap that the
specification maintains [13, 17]. The key invariant in the garbage
collector verification is that the concrete values stored in memory
accurately reflect the abstract heap whenever the TAL code is run-
ning.

Verve extends the abstract heap with multiple abstract stacks,
each consisting of zero or more abstract stack frames. Prior
work [13, 17] used auxiliary variables to describe the contents
of the abstract heap. In the same way, Verve uses auxiliary vari-
ables FrameCount and FrameAbs to describe the number of frames
in each stack and the abstract contents of each word of each
frame of each stack. The Nucleus exports functions readStack
and writeStack that guarantee that the concrete stack contents in
Mem match the abstract contents. As in prior work [13, 17], this
matching is loose enough to allow the garbage collector to update
concrete pointers as objects move in memory (since the copying
collector moves objects). In the specification for readStack, the
InteriorValue predicate matches a concrete value val at mem-
ory address ptr to the abstract value at offset j in the abstract frame
frame of the current stack S:

procedure readStack(ptr:int, frame:int, j:int)
returns(val:int);

requires StackState[S] == StackRunning;
requires NucleusInv(S,...);
requires 0 <= frame < FrameCounts[S];
requires ...
ensures ...
ensures val == Mem[ptr];
ensures InteriorValue(val,...,

FrameAbs[S][frame][j],...);

(The name “InteriorValue” reflects the fact that a stack value
might be an “interior” pointer to the inside of an object, which the

garbage collector must properly track [13].) Note that readStack
does not modify the instruction pointer, Eip, because it contains
no instructions (the same is true for readField, writeField, and
writeStack). Because of this, the TAL code need not generate
any code to call readStack at run-time. Instead, it simply reads
the data at Mem[ptr] directly.

Finally, the Nucleus exports device management func-
tions to the TAL kernel: VgaTextWrite, TryReadKeyboard,
StartTimer, and SendEoi (send end-of-interrupt). The specifica-
tion for TryReadKeyboard, for example, requires that the Nucleus
return a keystroke (in the range 0-255) if one is available, and oth-
erwise return the value 256:

procedure TryReadKeyboard();
...
ensures KbdAvailable==old(KbdDone) ==> eax==256;
ensures KbdAvailable> old(KbdDone) ==>

eax==KbdEvents[old(KbdDone)];

5. The Nucleus implementation and verification
Verve follows earlier work [13] by using BoogiePL to express ver-
ified assembly language instructions, but improves on the earlier
work by generating much of the verified assembly language auto-
matically from higher-level source code. We illustrate the verified
assembly language code with a small, but complete, example —
the verified source code implementing TryReadKeyboard:

implementation TryReadKeyboard() {
call KeyboardStatusIn8();
call eax := And(eax, 1);
call Go(); if (eax != 0) {goto skip;}
call eax:=Mov(256);
call Ret(old(RET)); return;

skip:
call KeyboardDataIn8();
call eax := And(eax, 255);
call Ret(old(RET)); return;

}
To verify this, we simply run the Boogie tool on the source code,

which queries the Z3 theorem prover to check that the procedure
satisfies its postconditions, and that all calls inside the procedure
satisfy the necessary preconditions. Given the BoogiePL source
code, this process is entirely automatic, requiring no scripts or
human interactive assistance to guide the theorem prover.

Each statement in the verified BoogiePL code corresponds to
0, 1, or 2 assembly language instructions. (“If” statements require
2 instructions, a compare and branch. Dynamically checked arith-
metic statements also require 2 instructions, an arithmetic operation
followed by a jump-on-overflow.) BoogieAsm, a tool developed for
earlier work [13], transforms this verified BoogiePL source code
into valid assembly code:

?TryReadKeyboard proc
in al, 064h
and eax, 1
cmp eax, 0
jne TryReadKeyboard$skip
mov eax, 256
ret

TryReadKeyboard$skip:
in al, 060h
and eax, 255
ret

BoogieAsm checks that the source code contains no circular
definitions of constants or functions (which would cause the ver-
ification to be unsound), and no recursive definitions of proce-
dures (which the translator currently cannot generate code for [13]).
BoogieAsm also checks that the verified source code conforms
to a restricted subset of the BoogiePL syntax. For example, be-
fore performing an “if” or “return” statement, the code must per-
form call Go() or call Ret(old(RET)) operations to update
the global variables that reflect the machine state:

procedure Go();
modifies Eip;

procedure Ret(oldRET:ReturnTo);
requires oldRET == ReturnToAddr(Mem[esp]);
requires Aligned(esp);
modifies Eip, esp;
ensures esp == old(esp) + 4;
ensures Aligned(esp);

5.1 Beat
To relieve some of the burden of writing detailed, annotated as-
sembly and to clarify the code, we developed a small extension of
BoogiePL called Beat, which we compile to BoogiePL. Beat pro-
vides some modest conveniences, such as defining named aliases
for x86 assembly language registers, and very simple high-level-
to-assembly-level compilation of statements and expressions. This
aids readability, since named variables and structured control con-
structs (“if/else”, “while”) are easier to read than unstructured as-
sembly language branches, without straying too far from the low-
level assembly language model. For non-performance-critical code,
we used Beat’s high-level statements rather than writing assembly
language instructions directly. As a very simple example of using
Beat, here is an alternate implementation of TryReadKeyboard,
rewritten to use Beat’s structured “if/else” construct:

implementation TryReadKeyboard() {
call KeyboardStatusIn8();
call eax := And(eax, 1);
if (eax == 0) {

eax := 256;
} else {
call KeyboardDataIn8();
call eax := And(eax, 255);

}
call Ret(old(RET)); return;

}

As shown in Figure 2, the Beat compiler generates (untrusted)
BoogiePL assembly language code for the Nucleus from (un-
trusted) Beat code. The close correspondence between the Beat
code and the generated BoogiePL assembly language code ensures
that verifiable Beat compiles to verifiable BoogiePL assembly lan-
guage.

5.2 The Nucleus Invariant
As mentioned in section 4.4, the Nucleus is free to choose its
own internal invariant, NucleusInv, that describes the state of its
internal data structures. Verve’s definition of NucleusInv consists
of two parts. The first part holds the garbage collector’s internal
invariants, as described in more detail in [13]. The second part
holds the invariants about stacks. For example, the second part
contains an invariant for each stack s in the yielded state:

Tag(StackState[s])==STACK YIELDED ==>
...

&& Aligned(StackEsp(s,...))
&& StackState[s]==StackYielded(StackEbp(s,...),...)
&& ScanStackInv(s,...,StackEbp(s,...))

This invariant says that each yielded stack has an aligned stack
pointer (Aligned(...)), contains the appropriate ebp register,
esp register, and return address (StackState[s]==...), and is
scannable by the garbage collector (ScanStackInv(...)). The
Nucleus keeps an internal data structure that holds each stack’s
saved context, including the saved esp register, the saved ebp reg-
ister, etc. This data structure occupies TSize bytes of memory per
stack and starts at address tLo. The Nucleus defines the functions
StackEsp, StackEbp, etc. to describe the layout of the saved con-
text for each stack s:

function StackEsp(s,...){tMems[s][tLo+s*TSize+4]}
function StackEbp(s,...){tMems[s][tLo+s*TSize+8]}
function StackEax(s,...){tMems[s][tLo+s*TSize+12]}
...

In the definitions above, tMems is an auxiliary variable describ-
ing the subset of memory devoted to storing saved stack contexts;
for this subset, tMems[s][...] is equal to Mem[...]. The Nu-
cleus uses Load and Store operations to read and write the saved
contexts. The NucleusInv invariant makes sure that each saved
context contains correctly saved registers, so that the Nucleus’s im-
plementation of InterruptHandler and YieldTo can verifiably
restore each saved context.

6. Kernel
On top of the Nucleus, Verve provides a simple kernel, writ-
ten in C# and compiled to TAL. This kernel follows closely in
the footsteps of other operating systems developed in safe lan-
guages [1, 4, 8, 20], so this section focuses on the interaction of
the kernel with the Nucleus.

The kernel implements round-robin preemptive threading on top
of Nucleus stacks, allowing threads to block on semaphores. The
kernel scheduler maintains two queues: a ready queue of threads
that are ready to run, and a collection queue of threads waiting for
the next garbage collection. A running thread may voluntarily ask
the kernel to yield. In this case, the thread goes to the back of the
ready queue. The scheduler then selects another thread from the
front of the ready queue and calls the Nucleus YieldTo function to
transfer control to the newly running thread.

The kernel TAL code may execute the x86 disable-interrupt and
enable-interrupt instructions whenever it wishes. While perform-
ing scheduling operations, the kernel keeps interrupts disabled. It
enables interrupts before transferring control to application TAL
code. Thus, a thread running application code may get interrupted
by a timer interrupt. When this happens, the Nucleus transfers con-
trol back to the kernel TAL code running on stack 0. This code uses
the Nucleus GetStackState function to discover that the previ-
ously running thread was interrupted. It then moves the interrupted
thread to the back of the scheduler queue, and calls YieldTo to
yield control to a thread from the front of the ready queue.

When an application asks the kernel to spawn a new thread,
the kernel allocates an empty Nucleus stack, if available, and
places the new thread in the ready queue. When the empty thread
runs (via a scheduler call to YieldTo), it enters the kernel’s en-
try point, KernelEntryPoint, which calls the application code.
When the application code is finished running, it may return back

to KernelEntryPoint, which marks the thread as “exited” and
yields control back to the kernel’s stack 0 code. The stack 0
code then calls ResetThread to mark the exited thread’s stack
as empty (and thus available for future threads to use). (Note that
KernelEntryPoint is not allowed to return, since it sits in the
bottom-most frame of its stack and has no return address to return
to. The TAL checker verifies that KernelEntryPoint never tries
to return, simply by assigning KernelEntryPoint a TAL type that
lacks a return address to return to.)

Applications may allocate and share semaphore objects to co-
ordinate execution among threads. The Verve keyboard driver, for
example, consists of a thread that polls for keyboard events and
signals a semaphore upon receiving an event. Each semaphore sup-
ports two operations, Wait and Signal. If a running thread re-
quests to wait on a semaphore, the kernel scheduler moves the
thread into the semaphore’s private wait queue, so that the thread
blocks waiting for someone to signal the thread. A subsequent re-
quest to signal the semaphore may release the thread from the wait
queue into the ready queue.

The kernel’s scheduler also coordinates garbage collection. We
modified the Bartok compiler so that at each C# allocation site, the
compiler generates TAL code to check the allocator’s return value.
If the value is null, the TAL code calls the kernel to block awaiting
garbage collection, then jumps back to retry the allocation after the
collection. The kernel maintains a collection queue of threads wait-
ing for garbage collection. Following existing Bartok design [6]
(and Singularity design [8]), before performing a collection Verve
waits for each thread in the system to block on a semaphore or at
an allocation site. This ensures that the collector is able to scan the
stack of every thread. It does raise the possibility that one thread
in an infinite loop could starve the other threads of garbage collec-
tions. If this is a concern, Bartok could be modified to poll for col-
lection requests at backwards branches, at a small run-time cost and
with larger GC tables. Alternatively, if Bartok were able to gener-
ate GC information for all program counter values in the program,
we could add a precondition to InterruptHandler saying that an
interrupted stack is scannable, so that the kernel need not wait for
threads to block before calling the garbage collector.

7. Measurements
This section describes Verve’s performance. We believe our mea-
surements are, along with seL4, the first measurements showing
efficient execution of realistic, verified kernels on real-world hard-
ware. (Feng et al [9] do not present performance results. On an
ARM processor, the seL4 implementation [14] reports just one
micro-benchmark: a one-way IPC time of 224 cycles (448 cycles
round-trip). Note that, as of the time of publication [14], this was
the time for a “fast path” IPC that had not yet been fully verified.
All the results we present for Verve are for fully verified code—that
is, code that has been fully checked against a specification.)

We also describe the size of the Nucleus implementation (in-
cluding annotations) and the verification time. The small size of the
annotated Nucleus implementation and the relatively small amount
of time for automated verification suggests that this is feasible as a
general approach for developing verified low-level systems.

7.1 Performance
We wrote our micro-benchmarks in C#, compiled them to TAL,
verified the TAL code, and linked them with the kernel and Nu-
cleus. We then ran them on a 1.8 GHz AMD Athlon 64 3000+ with
1GB RAM, using the processor’s cycle counters to measure time
and averaging over multiple iterations, after warming caches. The
benchmarks exercise the performance-critical interfaces exported
by the Nucleus: stack management and memory management. All
benchmarks were performed on two configurations — Verve built

with a copying collector, and Verve built with a mark-sweep col-
lector:

Copying MS
(cycles) (cycles)

2*YieldTo 98 98
2*Wait+2*Signal 216 216
Allocate 16-byte object 46 61
Allocate 1000-byte array 1289 1364
GC per 16-byte object (0MB live) 1 34
GC per 16-byte object (256MB live) 193 105

Our numbers compare favorably with round-trip inter-process
communication times for even the fastest x86 micro-kernels, and
compares very well with seL4’s “fast path”. The YieldTo bench-
mark shows that the Verve Nucleus requires 98 cycles to switch
from one stack to another and back (49 cycles per invocation of
YieldTo). The kernel builds thread scheduling and semaphores on
top of the raw Nucleus YieldTo operation. Using semaphore wait
and signal operations, it takes 216 cycles to switch from one thread
to another and back (108 cycles per thread switch). This 216 cy-
cles is actually considerably faster than the measured performance
of the round-trip intra-process wait/signal time measured by Fah-
ndrich et al [8], on the same hardware as our measurements were
taken, for the Singularity operating system (2156 cycles), the Linux
operating system (2390 cycles), and the Windows operating system
(3554 cycles). In fairness, of course, Singularity, Linux, and Win-
dows support far more features than Verve, and Verve might be-
come slower as it grows to include more features. The wait/signal
performance is comparable to the round-trip IPC performance of
fast micro-kernels such as L4 (242 cycles on a 166 MHz Pen-
tium [15]) and seL4 (448 cycles on an ARM processor [14]), al-
though in fairness, IPC involves an address space switch as well as
a thread switch.

We split the memory management measurements into allocation
time (when no GC runs) and GC time. The allocation times show
the time taken to allocate individual 16-byte objects and 1000-byte
arrays in a configuration with very little fragmentation. (The mark-
sweep times may become worse under heavy fragmentation.) The
GC times show the time taken to perform a collection divided by the
number of objects (all 16 bytes each) allocated in each collection
cycle. One measurement shows the time with no live data (the
collection clears out the heap entirely) and with 256MB of live data
retained across each collection. (256MB is 50% of the maximum
capacity of the copying collector and about 30% of the maximum
capacity of the mark-sweep collector; as the live data approaches
100% of capacity, GC time per allocation approaches infinity.)

Because Verve does not support all C# features and libraries
yet, we have not been able to port existing C# macro-benchmarks
to Verve. The micro-benchmarks presented in the section, though,
give us hope that Verve compares favorably with existing, un-
verified operating systems and run-time systems. Furthermore,
the verified allocators and garbage collectors used by Verve have
shown competitive performance on macro-benchmarks when com-
pared to native garbage collectors [13]. The TAL code generated
by Bartok has also shown competitive performance on macro-
benchmarks [6].

7.2 Implementation and verification
We next present the size of various parts of the Nucleus specifica-
tion and implementation. All measurements are lines of BoogiePL
and/or Beat code, after removing blank lines and comment-only
lines. The following table shows the size of various portions of the
trusted specification:

Basic definitions 61
Memory and stacks 116
Interrupts and devices 111
x86 instructions 126
GC tables and layouts 317
Nucleus GC, allocation functions 239
Nucleus other functions 215
Total BoogiePL lines 1185

Overall, 1185 lines of BoogiePL is fairly large, but most of
this is devoted to definitions about the hardware platform and
memory layout. The GC table and layout information, originally
defined by the Bartok compiler, occupies a substantial fraction of
the specification. The specifications for all the functions exported
by the Nucleus total 239 + 215 = 454 lines.

We measure the size of the Nucleus implementation for two
configurations of Verve, one with the copying collector and one
with the mark-sweep collector. (Note that the trusted specifications
are the same for both collectors.) 1610 lines of BoogiePL are shared
between the two configurations:

Copying Mark-Sweep
Shared BoogiePL lines 1610 1610
Private BoogiePL lines 2699 3243
Total BoogiePL lines 4309 4854
Specification BoogiePL lines 1185 1185
Total BoogiePL lines w/ spec 5494 6039
x86 instructions 1377 1489
BoogiePL/x86 ratio 3.1 3.3
BoogiePL+spec/x86 ratio 4.0 4.1

In total, each configuration contains about 4500 lines of Boo-
giePL. From these, BoogieAsm extracts about 1400 x86 instruc-
tions. (Note: the BoogieAsm tool can perform macro-inlining of as-
sembly language blocks; we report the number of x86 instructions
before inlining occurs.) This corresponds roughly to a 3-to-1 ratio
(or 4-to-1 ratio, if the specification is included) of BoogiePL to x86
instructions (or, roughly, 2-to-1 or 3-to-1 ratio of non-executable
annotation to executable code). This is about an order of magnitude
fewer lines of annotation and script than related projects [9, 14].

Of course, some annotations are easier to write than others.
In particular, annotations with quantifiers (forall and exists)
require programmer-chosen triggers for the quantifiers. The 7552
lines of BoogiePL listed in the table above contain 389 quantifiers,
each requiring a trigger. Fortunately, in practice, Verve’s quantifiers
tend use the same triggers over and over: across the 389 quantifiers,
there were only 15 unique choices of triggers. Another issue is that
Verve sometimes requires the BoogiePL code to contain explicit
assertions of triggers, which serve as hints to the theorem prover to
instantiate a quantified variable at some particular value (see [13]
for details). The 7552 lines of BoogiePL listed above contain 528
such assertions — more than we’d like, but still a small fraction of
the annotations.

Using Boogie/Z3 to verify all the Nucleus components, includ-
ing both the mark-sweep and copying collectors, takes 272 seconds
on a 2.4GHz Intel Core2 with 4GB of memory. The vast majority
of this time is spent verifying the collectors; only 33 seconds were
required to verify the system’s other components.

This small verification time enormously aided the Nucleus de-
sign and implementation, because it gave us the freedom to exper-
iment with different designs. Often we would finish implementing
and verifying a feature using one design, only to become dissatis-
fied with the complexity of the interface or limitations in the design.
In such cases, we were able to redesign and re-implement the fea-
ture in a matter of days rather than months, because we could make
minor changes to large, Nucleus-wide invariants and then run the

automated theorem prover to quickly re-verify the entire Nucleus.
In fact, some of our re-designs were dramatic: mid-way through
the project, we switched from an implementation based on blocking
Nucleus calls to an implementation based on non-blocking Nucleus
calls. We also had to revise the garbage collector invariants to re-
flect the possibility of multiple stacks, which weren’t present in the
original verified GC implementations [13]. In the end, the Verve de-
sign, implementation, and verification described in this paper took
just 9 person-months, spread between two people.

8. Related Work
The Verve project follows in a long line of operating system and
run-time system verification efforts. More than 20 years ago, the
Boyer-Moore mechanical theorem prover verified a small operating
system and a small high-level language implementation [5]. These
were not integrated into a single system, though, and each piece in
isolation was quite limited. The operating system, Kit, was quite
small, containing just a few hundred assembly language instruc-
tions. It supported a fixed number of preemptive threads, but did
not implement dynamic memory allocation or thread allocation. It
ran on an artificial machine rather than on standard hardware. The
language, micro-Gypsy, was small enough that it did not require a
significant run-time system, as it had no heap allocation or threads.

More recently, the seL4 project verified all of the C code for
an entire microkernel [14]. The goals of seL4 and the Verve Nu-
cleus are similar in some ways and different in others. Both work
on uni-processors, providing preemption via interrupts. seL4 pro-
vides non-blocking system calls; this inspired us to move the Verve
Nucleus to a non-blocking design as well. Both Verve and seL4 pro-
vide memory protection, but in different ways. Verve provides ob-
jects protected by type safety, while seL4 provides address spaces
of pages protected by hardware page tables. Verve applications
can communicate using shared objects and semaphores, while seL4
processes communicate through shared memory or message pass-
ing. seL4 verifies its C code, but its assembly language (600 lines
of ARM assembler) is currently unverified. The seL4 microkernel
contained 8700 lines of C code, substantially larger than earlier
verified operating systems like Kit. On the other hand, the effort
required was also large: they report 20 person-years of research de-
voted to developing their proofs, including 11 person-years specif-
ically for the seL4 code base. The proof required 200,000 lines of
Isabelle scripts — a 20-to-1 script-to-code ratio. We hope that while
seL4 demonstrates that microkernels are within the reach of inter-
active theorem proving, Verve demonstrates that automated theo-
rem proving can provide a less time-consuming alternative to inter-
active theorem proving for realistic systems software verification.

The seL4 kernel is bigger than Verve’s Nucleus, so seL4’s cor-
rectness proof verifies more than the Verve Nucleus’s correctness
proof (except for seL4’s unverified assembly language instruc-
tions). On the other hand, seL4 is still a microkernel — most tradi-
tional OS features are implemented outside the microkernel as un-
verified C/C++ code, and this unverified code isn’t necessarily type
safe (although it is protected by virtual memory at a page granular-
ity). By contrast, Verve’s type safety is a system-wide guarantee.
(Of course, type safety restricts which programs can run – seL4’s
use of page-level protection provides a way to run unsafe programs
as well as safe programs.)

The FLINT project sets an ambitious goal to build founda-
tional certified machine code, where certification produces a proof
about an executable program, and a very small proof checker can
verify the proof [9]. Such a system would have a much smaller
trusted computing base than Verve. The FLINT project uses pow-
erful higher-order logic to verify properties of low-level code, but
achieves less automation than Verve: their preemptive thread li-
brary (which, unlike Verve, proves the partial correctness of thread

implementation, not just safety) requires 35,000 lines of script for
about 300 lines of assembly language (plus many tens of thou-
sands of lines of script to build up foundational lemmas about
the program logic [10]). Separately, the FLINT project also cre-
ated a certified system combining TAL with certified garbage col-
lection [16]. However, the TAL/GC system was less realistic than
Verve: it supported only objects containing exactly two words, it
performed only conservative collection, and did not support mul-
tiple threads. A combination of automated proof and foundational
certification would be valuable, to get the certainty of foundational
certified code with the scalability of automated verification.

Like the Verve Nucleus, the H monad [12] exports a set of
operating system primitives usable to develop an operating system
in a high-level language. H was used to build the House operating
system [12]. However, H itself is not formally verified, and relies
on a large Haskell run-time system for correctness.

9. Conclusions and Future Work
Using a combination of typed assembly language and automated
theorem proving, we have completely verified the safety of Verve
at the assembly language level, and completely verified the par-
tial correctness of Verve’s Nucleus at the assembly language level.
Both Verve and its verification are efficient. So what happens when
we boot and run Verve? Since it’s verified, did it run perfectly (or
at least safely?) every time we ran it? We give a short answer (“al-
most”), and a slightly longer answer composed of two anecdotes:

Anecdote 1: The Debugger. Initially, we admitted two pieces of
unverified code into Verve: the boot loader and a debugger stub,
both written for earlier projects in C and C++. Our rationale was
that neither piece would run any instructions in a booted, deployed
system: the boot loader permanently exits after ceding control to
the Nucleus, and the debugger stub can be stripped from deployed
systems. (In the future, we could develop a verifiably safe debugger
stub, but using existing code was very appealing.) The debugger
stub allows a remote debugger to connect to the kernel, so that we
could examine the kernel memory and debug any inadvertent traps
that might occur. Unfortunately, the debugger stub turned out to
cause more bugs than it fixed: it required its own memory, its own
interrupt handling, and its own thread context definition, and we
implemented these things wrong as often as right. Debugging the
debugger stub itself was hardly fun, so after a while, we decided to
banish the debugger stub from Verve entirely. Developing a kernel
without a kernel debugger requires a bit of faith in the verification
process. After all, any bugs that somehow slipped through the
verification process would be very painful to find with no debugger.
But the decision paid off: we felt far more secure about Verve’s
invariants without the presence of unverified code to undermine
them. And after dropping the debugger, we encountered only one
bug that broke type safety or violated the Nucleus’s correctness
guarantees, described in the next anecdote.

Anecdote 2: The Linker. After dropping the debugger, we started
to get used to the verified Nucleus code working the first time for
each new feature we implemented. When we set up the first inter-
rupt table, fault handling worked correctly the first time. When we
programmed and enabled the timer, preemptive interrupts worked
correctly the first time. In fact, after dropping the debugger stub, ev-
erything worked the first time, except when we first ran the garbage
collector. Intriguingly, the garbage collector did run correctly the
first time when we configured Bartok to generate assembly lan-
guage code, which we assembled to an object file with the standard
assembler. But the GC broke when we configured Bartok to gener-
ate the object file directly (even though we ran our TAL checker on
the object file): it failed to scan the stack frames’ return addresses

correctly. To our surprise, this bug was due to a linking problem: al-
though the assembler attached relocation information to the entries
in the GC’s return address table when generating object files, the
object file generated directly by Bartok lacked this relocation infor-
mation (because Bartok has its own, special linking process for GC
tables, which doesn’t rely on the relocations). Thus, the tables’ re-
turn addresses were incorrect after linking and loading, causing the
GC to fail. Once we fixed this problem, the GC worked perfectly
with both assembler-generated and Bartok-generated object files.

9.1 Future work
Verve is still a small system, and there are many directions for it
to grow. The first candidate is an incremental or real-time garbage
collector. Such a collector would require read and/or write barri-
ers; prior work [17] has addressed this issue for verified garbage
collection, but it remains to be seen whether this work can be im-
plemented efficiently in a realistic system.

Another large area of research is multicore and multiprocessor
machines. For Verve’s TAL code, multiprocessing poses few prob-
lems; Bartok TAL is thread-safe. For the Nucleus, any shared data
between processors makes verification much harder. The Barrelfish
project [3] advocates one approach that would ease multiproces-
sor verification: minimize sharing by treating the multiprocessor
as a distributed system of cores or processors communicating via
message passing. Another approach would be to increase the gran-
ularity of the Nucleus interface; processors could allocate large
chunks from a centralized Nucleus memory manager, and the cen-
tralized memory manager could use locks to minimize concurrency.
At least one TAL type system, for example, can verify allocation
from thread-local chunks [19].

A third area of research is to incorporate virtual memory man-
agement into the Nucleus and kernel (following, for example,
seL4 [14]). In its full generality, virtual memory would complicate
the semantics of Load and Store, and would thus be a non-trivial
extension to the system. In addition, swapping garbage collectable
memory to disk would bring the disk and disk driver into the Nu-
cleus’s trusted computing base. However, some applications of vir-
tual memory hardware, such as sandboxing unsafe code and using
IO/MMUs to protect against untrusted device interfaces, could be
implemented without requiring all of virtual memory’s generality.

A fourth area of research is to verify stronger properties of
the TAL kernel. High-level languages like JML and Spec# could
provide light-weight verification, weaker than the Nucleus veri-
fication, but beyond standard Java/C# type safety. This might al-
low us to prove, for example, that threads correctly enter and exit
the runnable queue, and that each runnable thread is scheduled
promptly.

Finally, we would like to improve Verve’s TAL checking to be
more foundational (as in FLINT) and to support dynamic loading.
For dynamic loading, a key question is whether to run the TAL
checker (currently written in C#) in the kernel or port the checker
to run in the Nucleus. The former would be easier to implement, but
the latter would keep the Nucleus independent from the kernel and
would allow more foundational verification of the checker itself.

Acknowledgments
We would like to thank Jeremy Condit, Galen Hunt, Ed Nightin-
gale, Don Porter, Shaz Qadeer, Rustan Leino, Juan Chen, and David
Tarditi for their suggestions and assistance.

References
[1] G. Back, W. C. Hsieh, and J. Lepreau. Processes in kaffeos: isolation,

resource management, and sharing in Java. In OSDI’00: Proceedings
of the 4th conference on Symposium on Operating System Design &

Implementation, pages 23–23, Berkeley, CA, USA, 2000. USENIX
Association.

[2] M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and K. R. M. Leino.
Boogie: A modular reusable verifier for object-oriented programs. In
Formal Methods for Components and Objects (FMCO), volume 4111
of Lecture Notes in Computer Science, 2006.

[3] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs, S. Peter,
T. Roscoe, A. Schüpbach, and A. Singhania. The multikernel: a new
os architecture for scalable multicore systems. In SOSP ’09, pages
29–44, 2009.

[4] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. E. Fiuczynski,
D. Becker, C. Chambers, and S. Eggers. Extensibility safety and
performance in the SPIN operating system. In SOSP ’95: Proceedings
of the fifteenth ACM symposium on Operating systems principles,
pages 267–283, New York, NY, USA, 1995. ACM.

[5] W. R. Bevier, W. A. H. Jr., J. S. Moore, and W. D. Young. An approach
to systems verification. J. Autom. Reasoning, 5(4):411–428, 1989.

[6] J. Chen, C. Hawblitzel, F. Perry, M. Emmi, J. Condit, D. Coetzee, and
P. Pratikakis. Type-preserving compilation for large-scale optimiz-
ing object-oriented compilers. SIGPLAN Not., 43(6):183–192, 2008.
ISSN 0362-1340. doi: http://doi.acm.org/10.1145/1379022.1375604.

[7] L. M. de Moura and N. Bjørner. Z3: An efficient SMT solver. In
TACAS, pages 337–340, 2008.

[8] M. Fähndrich, M. Aiken, C. Hawblitzel, O. Hodson, G. C. Hunt, J. R.
Larus, and S. Levi. Language support for fast and reliable message-
based communication in Singularity OS. In EuroSys, pages 177–190,
2006.

[9] X. Feng, Z. Shao, Y. Dong, and Y. Guo. Certifying low-level programs
with hardware interrupts and preemptive threads. In PLDI, pages 170–
182, 2008.

[10] X. Feng, Z. Shao, Y. Guo, and Y. Dong. Certifying low-level programs
with hardware interrupts and preemptive threads. J. Autom. Reason.,
42(2-4):301–347, 2009.

[11] B. Ford, M. Hibler, J. Lepreau, R. McGrath, and P. Tullmann. Interface
and execution models in the Fluke kernel. In OSDI, pages 101–115,
1999.

[12] T. Hallgren, M. P. Jones, R. Leslie, and A. P. Tolmach. A principled
approach to operating system construction in Haskell. In ICFP, pages
116–128, 2005.

[13] C. Hawblitzel and E. Petrank. Automated verification of practical
garbage collectors. In POPL, pages 441–453, 2009.

[14] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell,
H. Tuch, and S. Winwood. seL4: Formal verification of an OS kernel.
In Proc. 22nd ACM Symposium on Operating Systems Principles
(SOSP), pages 207–220, Big Sky, MT, USA, Oct. 2009. ACM.

[15] J. Liedtke, K. Elphinstone, S. Schönberg, H. Härtig, G. Heiser, N. Is-
lam, and T. Jaeger. Achieved ipc performance (still the foundation for
extensibility). In Proceedings of the 6th Workshop on Hot Topics in
Operating Systems (HotOS-VI), Cape Cod, MA, May 5–6 1997. URL
http://l4ka.org/publications/.

[16] C. Lin, A. McCreight, Z. Shao, Y. Chen, and Y. Guo. Foundational
typed assembly language with certified garbage collection. Theoreti-
cal Aspects of Software Engineering, 2007.

[17] A. McCreight, Z. Shao, C. Lin, and L. Li. A general framework for
certifying garbage collectors and their mutators. In PLDI, pages 468–
479, 2007.

[18] G. Morrisett, D. Walker, K. Crary, and N. Glew. From System F to
typed assembly language. In POPL ’98: 25th ACM Symposium on
Principles of Programming Languages, pages 85–97, Jan. 1998.

[19] L. Petersen, R. Harper, K. Crary, and F. Pfenning. A type theory for
memory allocation and data layout. In POPL, pages 172–184, 2003.

[20] D. D. Redell, Y. K. Dalal, T. R. Horsley, H. C. Lauer, W. C. Lynch,
P. R. McJones, H. G. Murray, and S. C. Purcell. Pilot: an operating
system for a personal computer. Commun. ACM, 23(2):81–92, 1980.

