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Abstract
We provide a new characterization of scheduling nondeterminism by
allowing deterministic schedulers to delay their next-scheduled task.
In limiting the delays an otherwise-deterministic scheduler is al-
lowed, we discover concurrency bugs efficiently—by exploring few
schedules—and robustly—i.e., independent of the number of tasks,
context switches, or buffered events. Our characterization elegantly
applies to any systematic exploration (e.g., testing, model checking)
of concurrent programs with dynamic task-creation. Additionally,
we show that certain delaying schedulers admit efficient reductions
from concurrent to sequential program analysis.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; D.2.5 [Software Engineering]:
Testing and Debugging

General Terms Algorithms, Reliability, Testing, Verification

Keywords Concurrency, Asynchronous programs, Delay, Sequen-
tialization

1. Introduction
A concurrent program is a transition system combined with a
(nondeterministic) scheduler. The program’s semantics is easy to
describe: the scheduler repeatedly chooses an enabled state-altering
transition to execute, executes it, then chooses another transition,
and so on. This inherently nondeterministic semantics is the root
cause of Heisenbugs—i.e., programming errors that manifest rarely,
and are hard to reproduce and repair. A class of techniques known as
model checking [8] systematically explore this nondeterminism in
order to discover, or occasionally prove the absence of, such bugs.

Although systematically exploring (or searching) a concurrent
program’s behavior is a simple and intuitively appealing idea, the
exploration is computationally expensive. For programs in which the
only source of nondeterminism is the scheduler, the combinatorial
cost is determined by two factors: the maximum number I of
scheduler invocations, and the maximum number C of choices
available to the scheduler at each invocation. Given these two factors,
the cost of exploration is O(CI). While I naturally corresponds to
the length of program executions, C corresponds to the number of
concurrently executing tasks. Both C and I grow rapidly in realistic
programs, causing a combinatorial explosion in the exploration cost.
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Search prioritization is a basic strategy to combat the explosion.
In general, one characterizes a subset of the search space by a
bounding parameter p. More behaviors are explored as p is increased,
and in the limit all behaviors are explored. A prioritization is
effective when useful information (e.g., the presence of bugs) is
obtained by examining few behaviors (i.e., low values of p).

In this work we introduce delay-bounding: an effective search
prioritization strategy for concurrent programs that handles both
statically-known and dynamically-created tasks. We begin by quan-
tifying scheduler nondeterminism with the concept of delay. Our
main insight is captured by the premise:

A deterministic scheduler is made sufficiently nondetermin-
istic with the ability to delay its next-scheduled task.

In other words, we can quantify—and thus limit—scheduling
nondeterminism by allotting a finite delay-budget.

More concretely, delay-bounding parameterizes the search space
by a deterministic scheduler M , and a delay-bound K. When K =0,
exploration is limited to the unique execution produced by M . When
K > 0, the scheduler may deviate from its usual schedule a total
of K times over an entire execution. For instance, a round-based
delaying scheduler executes all of its scheduled tasks to completion
in a given round i, before advancing to the next round, where the
tasks delayed in round i are again scheduled; as the total number of
exercised delays is bounded by K, the number of rounds is bounded
by K +1. The search space for any deterministic scheduler and
delay-bound K is bounded by IK.

Delay-bounding is endowed with many appealing properties:

• Delay-bounding is a canonical characterization, and a means of
limiting, scheduling nondeterminism. Since the bound is chosen
independently of the number of tasks, the approach naturally
handles both statically-known and dynamically-created tasks.
• The cost of delay-bounded exploration is polynomial in I . Our

preliminary experiments discover (previously unknown) bugs in
real programs with small delay-bounds, suggesting that delay-
bounded search does provide adequate coverage in practice.
• The choice of a deterministic scheduler is independent of the

delay-bound, and every reasonable scheduler discovers any
given bug at some cost. To minimize exploration cost it is
even possible to perform parallel exploration using various
deterministic schedulers—perhaps even chosen at random.
• It is possible, with certain deterministic schedulers, to capture a

concurrent program’s delay-bounded semantics as a sequential
program. Theoretically, the scheduling complexity of these
schedulers is reduced from undecidable (with preemptible tasks),
or EXPSPACE-complete (with non-preemptible tasks), to NP-
complete (with or without preemption). In practice, the reduction
allows us to leverage the numerous existing tools and techniques
for sequential-program verification, including symbolic model
checking, and symbolic exploration with SMT solvers.



1.1 Contributions
Our contributions are summarized as follows:

• We introduce a canonical characterization of scheduling non-
determinism, allowing a simple, elegant, and unified approach
for prioritized exploration of concurrent programs with dynamic
task-creation.
• We show that delaying deterministic schedulers can efficiently

discover both known and previously-undiscovered bugs by
systematic exploration (e.g., testing).
• We give concurrent-to-sequential program translations using

clever encodings of certain delaying schedulers. The encodings
rely on insightful extensions of Lal and Reps [27]’s guess
and constrain methodology, and ultimately lead to practical
verification algorithms.
• We identify an NP-complete analysis problem: state-reachability

under a particular delaying scheduler. The complexity is lower
than related bounded reachability problems.

1.2 Comparison to Related Search Prioritizations
Delay-bounding represents a convergence of a progression over
the last decade of search prioritization techniques for concurrent
programs. Given a number I of scheduler invocations and C of
choices available to the scheduler at each invocation—recall the cost
of complete search is O(CI):

Depth-bounding limits the number of scheduler invocations by
a depth-bound d, reducing the search complexity to O(Cd).
Though this approach is taken by VERISOFT [17], it is clearly
not effective as d approaches I . In practical terms, errors mani-
fested deeply in a program execution remain difficult to discover.

Context-bounding [34] labels the choices available to the sched-
uler by distinct (task) identifiers, and bounds the number of label
changes in executions by a context-bound c. Here the complexity
is reduced to O((IC)c); the polynomial dependence on execu-
tion length alleviates, to a large extent, the aforementioned prob-
lem with depth-bounding. Empirically, low context-bound values
are sufficient for finding many bugs in real programs [27, 35].
However, in many cases, bugs are exhibited only after each of
the, say C, tasks have a chance to execute. (In practice this
dependence arises in, e.g., initialization patterns, round-robin
protocols, etc.) Consequently, the exponential dependence on c
in O((IC)c) is practically an exponential dependence on C as
well. Worse yet, when tasks are created dynamically, context-
bounding suffers the same ill fate as depth-bounding: errors
manifested deeply in a task-creation chain are discovered only
for high values of c.

Preemption-bounding [29] also labels scheduler choices with dis-
tinct identifiers, but only bounds the number of preemptive label
changes (by p); label changes due to blocking or completion are
not budgeted. Preemption-bounded search addresses the main
problem with context-bounding, as each task gets the oppor-
tunity to complete its execution. Unfortunately, the number of
label changes is expected to depend on C, rendering the search
complexity, O((IC)p+C), prohibitive for large values of C.

As we can see, when tasks are numerous or dynamically created, the
existing prioritized exploration techniques are ineffective. Delay-
bounding fixes these problems by allowing an unbounded number of
tasks to execute, and bounding instead the degree of variation from a
deterministic scheduling order. The exploration cost using K delays
is IK, which is independent of the number of (dynamically-created)
tasks.

2. Asynchronous Programs
So that our approach handles dynamic task-creation by design, we
begin with a model of simple asynchronous programs corresponding
to the style of single-threaded event-driven programming. The style
is typically used as a lightweight technique for adding reactivity to
single-threaded applications by breaking up long-running computa-
tions into a collection of tasks. In this model, control begins with
a non-empty task buffer of pending tasks from which a dispatcher
picks a single task to execute. The dispatcher transfers control to the
task, which is essentially a sequential program that can read from
and write to global storage, and post additional tasks to the task
buffer. When a task completes its execution, control returns to the
dispatcher, which picks another task from the task buffer, and so
on. When the dispatcher has control and the task buffer is empty,
the program terminates. This model forms the basis of (client-side)
web applications [15], and has been shown useful for building fast
servers [32], routers [22], and embedded sensor networks [18].

In what follows we generalize the usual notion [37] of task-buffer
dispatch (i.e., choosing any pending task) by exposing a scheduler,
by which we parameterize a simple program semantics.

To capture programs with interruptible tasks (or, alternatively,
concurrently running tasks on sequentially consistent proces-
sors/threads), we extend the simple asynchronous model to permit
arbitrary task interruption with the yield-statement. Although the
extension may seem modest, the resulting language is powerful
enough to model concurrent programs with arbitrary preemption
and synchronization, e.g., by inserting a yield-statement before ev-
ery shared variable access. The model particularly resembles typical
operating-systems kernel code and device drivers, which are often
implemented as a collection of preemptible task-handlers [9, 31].

2.1 The Scheduler
For the moment, let Tasks and Vals be uninterpreted sets, and
blocked : Tasks × Vals → B be an uninterpreted predicate.
Intuitively, each element w ∈ Tasks is a task to be scheduled,
each element g ∈ Vals is a global state, and blocked(w, g) holds
when w is not enabled in the global state g.

A scheduler M = 〈D, empty, give, take〉 consists of a data-
type D of scheduler objects m ∈ D, a scheduler constructor
empty ∈ D, and scheduler update functions give : D×Tasks→ D
to receive posted tasks, and take : D × Vals→ ℘(D × Tasks) to
determine which tasks can be scheduled next. The scheduler M
is deterministic when for all m ∈ D and g ∈ Vals, take(m, g)
contains at most one element, and is non-blocking when for all
w ∈ Tasks, g ∈ Vals, and m, m′ ∈ D, blocked(w, g) implies
〈m′, w〉 6∈ take(m, g). In general, non-blocking schedulers must
be aware of the program state; hence the argument g ∈ Vals to take.

Fix m ∈ D and g ∈ Vals. A task w is pending (in m) if
there is a sequence m1w2m2w3m3 . . . wjmj such that m1 = m,
wj = w, and for 1 < i ≤ j, 〈mi, wi〉 ∈ take(mi−1, g); in
other words, w is pending when w can eventually be taken from
m. A task w is schedulable (by m) when there exists m′ such that
〈m′, w〉 ∈ take(m, g).

Scheduler 1 (The bag scheduler). The multiset-based scheduler
bag is defined on the multiset domain Dbag of tasks as1

emptybag
def
= ∅

givebag(m, w)
def
= m ∪ {w}

takebag(m, g)
def
= {〈m \ {w}, w〉 : w ∈ m}.

The bag scheduler is non-deterministic, since all pending tasks are
returned by each application of takebag.

1 Here ∪ and \ are the multiset union and difference operators.



P ::= var g : T H∗

H ::= proc p (var l : T) s

s ::= s; s

| x := e

| skip

| assume e

| if e then s else s

| while e do s

| call x := p e

| return e

| post p e

x ::= g | l

Figure 1. The grammar of simple asynchronous programs.

We consider only schedulers M that refine the bag scheduler,
i.e., schedulers satisfying the property:

Property 1. Any sequence of give and take operations allowed by
M are also allowed by bag.

Note that a scheduler can be lossy—i.e., can drop pending tasks—
though is not allowed to “pull tasks out of thin air,” i.e., schedule
tasks that have not been posted. The following is an example of a
lossy scheduler that refines the bag scheduler.

Scheduler 2 (The bounded bag scheduler). The K-bounded bag
scheduler bb is defined on the multiset domain Dbb of tasks as

emptybb
def
= ∅

givebb(m, w)
def
=

{
m ∪ {w} if m(w) < K
m otherwise

takebb(m, g)
def
= {〈m \ {w}, w〉 : w ∈ m}.

The bounded bag scheduler is non-deterministic, since all pending
tasks are returned by each application of takebb. It is lossy since it
will drop posted tasks if its bound K has been reached.

2.2 Program Syntax
Let Procs be a set of procedure names, Vals a set of values con-
taining true and false, and T the type of values. The grammar of
Figure 1 describes our language of simple asynchronous programs,
where p ranges over procedure names. We intentionally leave the
syntax of expressions e unspecified, though we do insist the set of
expressions Exprs contains Vals and the (nullary) choice operator ?.
A simple (synchronous) program, or sequential program, is a simple
asynchronous program which does not contain post-statements.

Each program declares a single type-T global variable g, and a
sequence of procedures p1 . . . pn ∈ Procs∗. Each procedure p has
single type-T parameter l, and a top-level statement denoted sp.
The set of program statements s is denoted Stmts.

We assign the statements of simple asynchronous programs their
usual meaning. In particular, post p e is an asynchronous call
to procedure p with argument e, which returns immediately with
the expectation that p is invoked at a later time; the assume e
statement proceeds only when e evaluates to true. (Later on we use
the assume-statement to block undesired executions in a reduction
to sequential programs.)

2.3 Program Semantics
For the remainder of this section we fix a predicate blocked :
Tasks× Vals→ B and a scheduler M = 〈D, empty, give, take〉.

A frame 〈`, s〉 is a valuation ` ∈ Vals to the procedure-local
variable l with a statement s. A task w is a sequence of frames, and
the set (Vals× Stmts)∗ of tasks is denoted Tasks. A configuration
c = 〈g, w, m〉 is a valuation g ∈ Vals of the global variable g with
a task w ∈ Tasks, and a scheduler object m ∈ D. We say a task w
is blocked in a configuration 〈g, w′, m〉 (alternatively, in a global
state g) when blocked(w, g) = true.

For expressions without program variables, we assume the
existence of an evaluation function J·K : Exprs→ ℘(Vals) such that
J?K = Vals. For convenience, we define

e(〈g, 〈`, s〉w, m〉) def
= e(g, `)

def
= Je[g/g, `/l]K

—since g and l are the only variables, the expression e[g/g, `/l] has
no free variables. A statement context S is a term derived from the
grammar

S ::= � | S; s.

We write S[s] for the statement obtained by substituting a statement
s for the unique occurrence of � in S, and write 〈g, 〈`, S〉w, m〉 [s]
to denote the configuration 〈g, 〈`, S[s]〉w, m〉.

Figure 2 gives the scheduler-parameterized semantics of simple
asynchronous programs as a set of operational steps on configu-
rations. The choice operator ? is used in the CALL and RETURN-
SYNC rules only as a placeholder for an undetermined value. The
ASSUME rule restricts the set of valid executions: a step is only
allowed when the predicated expression e evaluates to true. (This
statement—usually confined to intermediate languages—is crucial
for our reduction to sequential programs in Section 5.) A task w′ in
a POST-step is said to be posted, and a task w in a DISPATCH-step
is said to be dispatched. We refer to the semantics instantiated by
a scheduler M as the M -semantics. The “natural” bag-semantics
(see Scheduler 1) corresponds to the usual asynchronous program
semantics [37]. We call the semantics of synchronous programs—
i.e., those without post-statements—the synchronous semantics,
which is in fact independent of the scheduler.

A configuration 〈g, 〈`, s; return ?〉 , empty〉, where s does not
contain return-statements, is called M -initial. An M -execution
(to cj) is a configuration sequence h = c1c2 . . . cj where

• c1 is M -initial, and
• ci → ci+1 for 1 ≤ i < j.

(The initial statement s begins the execution by posting tasks; if no
tasks are posted by s, the execution ends when s completes.) We
say a configuration c = 〈g, w, m〉 (alternatively, the global value
g) is M -reachable when there exists an M -execution to c, and is
M -final when in addition w = ε and take(m) = ∅.

For a scheduler M and program P , the M -value set on P is the
set of values g(c) of the global variable g such that c is M -final.2

The M -semantics on P is g-equivalent to the M ′-semantics on P ′

when the M -value set on P is equal to the M ′-value set on P ′.
Although we have not made task identifiers explicit, we may

assume that a set U ⊆ N of task identifiers is defined by an execution
h = c1c2 . . . cj such that u ∈ U is the task identifier of a task
dispatched3 by cu−1 → cu. With an execution in mind, there is
no ambiguity when referring to the frame or execution of a task
by its identifier. We say u is posted (resp., dispatched) in h when
there exists 1 ≤ i < j such that the task identified by u is posted
(resp., dispatched) in ci → ci+1.

2 In the presence of the assume-statement, only the values of completed
executions are guaranteed to be valid.
3 We could also define task identifiers by their tasks’ posting-points in h.



SKIP

c[skip; s]→ c[s]

ASSUME
true ∈ e(c)

c[assume e]→ c[skip]

IF-THEN
true ∈ e(c)

c[if e then s1 else s2]→ c[s1]

IF-ELSE
false ∈ e(c)

c[if e then s1 else s2]→ c[s2]

LOOP-DO
true ∈ e(c)

c[while e do s]→ c[s; while e do s]

LOOP-END
false ∈ e(c)

c[while e do s]→ c[skip]

ASSIGN-GLOBAL
g′ ∈ e(g, `)

〈g, 〈`, S[g := e]〉w, m〉 →
〈
g′, 〈`, S[skip]〉w, m

〉
ASSIGN-LOCAL

`′ ∈ e(g, `)

〈g, 〈`, S[l := e]〉w, m〉 →
〈
g,
〈
`′, S[skip]

〉
w, m

〉
CALL

`′ ∈ e(g, `)

〈g, 〈`, S[call x := p(e)]〉w, m〉 →
〈
g,
〈
`′, sp

〉
〈`, S[x := ?]〉w, m

〉
RETURN-SYNC

v ∈ e(g, `)〈
g, 〈`, return e〉

〈
`′, S[x := ?]

〉
w, m

〉
→
〈
g,
〈
`′, S[x := v]

〉
w, m

〉
POST

`′ ∈ e(g, `) w′ =
〈
`′, sp

〉
〈g, 〈`, S[post p(e)]〉w, m〉 →

〈
g, 〈`, S[skip]〉w, give(m, w′)

〉
DISPATCH〈
m′, w

〉
∈ take(m, g) ¬blocked(w, g)

〈g, ε, m〉 →
〈
g, w, m′

〉 RETURN-ASYNC

〈g, 〈`, return e〉 , m〉 → 〈g, ε, m〉

Figure 2. The operational semantics of simple asynchronous programs, parameterized by the scheduler M = 〈D, empty, give, take〉.

2.4 Programs with Preemption
The language of preemptive asynchronous programs extends the
grammar of Figure 1 with the production

s ::= yield,

and the semantics of Figure 2 with the rule
YIELD

w′ = 〈`, S[skip]〉w
〈g, 〈`, S[yield]〉w, m〉 →

〈
g, ε, give(m, w′)

〉 ,
allowing arbitrary task resumptions—not simply single frames—to
be added to, and later dispatched from, the task buffer.

2.5 Synchronization and Blocking
Our model of preemptive asynchronous programs (i.e., with the
yield-statement) can express arbitrary synchronization disciplines.

Example 1 (Locking). Lock-based mutual exclusion can be mod-
eled by adding an additional global variable lock. Critical sections
are surrounded with the lock acquire operation, encoded by

(while lock = true do yield); lock := true,

and the lock release operation, encoded by lock := false.
The blocked(w, g) predicate is defined to hold if and only if
w = 〈`, S[while lock = true do yield]〉w′ and lock(g, `) =
true; i.e., w is waiting for a lock that is in use. Although the mere
presence of these primitives does not imply that critical sections are
mutually exclusive, ensuring mutual exclusion in their presence is a
well-studied, and orthogonal problem [28].

Since exploration deadlocks when blocked tasks are scheduled,
we are generally interested in non-blocking schedulers.

Example 2 (Non-blocking lock scheduling). A deterministic non-
blocking scheduler for the lock-based mutual exclusion encoding of
Example 1 can be defined by differentiating between ready tasks,
and tasks waiting for the lock; the scheduler must not pick a waiting
task when lock(g, `) = true.

3. Delay-Bounded Scheduling
To limit the nondeterminism present in a scheduler, and thus the
number of executions explored—while at the same time retaining the
ability to consider “interesting” executions!—we allow deterministic
schedulers to exercise a limited (and parameterized) number of
deviations from their deterministic schedules. We define a delaying
scheduler as a tuple M = 〈D, empty, give, take, delay〉, where D,
empty, give, and take are defined as before for schedulers, and
the delay : D × Tasks → D function is intended to inform the
scheduler of task-postponement. The definitions of deterministic,
non-blocking, pending, and schedulable remain unchanged.

We extend the semantics of Figure 2 with a postponing rule
DELAY〈

m′, w
〉
∈ take(m, g)

〈g, ε, m〉 →
〈
g, ε, delay(m′, w)

〉
which we henceforth refer to as a delay (operation), and we say w is
delayed. Note that the delay operation occurs at the point when tasks
are usually dispatched, not the at point when they are posted. We
say an execution h is K-delay-bounded when the number of delay
operations in h is at most K. A delaying scheduler M is limit sound
when for any bag-reachable global value g, there exists K ∈ N such
that g is M -reachable in a K-delay-bounded execution.

Limit soundness has an operational characterization. When h
is an execution to c, we say w is blocked (resp., pending) in h
when w is blocked (resp., pending) in c. A delaying scheduler M is
lossless when for any M -execution h and task w posted4 in h, w is
either dispatched, pending, or blocked in h; otherwise we say M is
lossy. A delaying scheduler M is delay-accessible when for every
reachable configuration c1 with non-blocked, pending task w, there
exists a sequence c1 → . . . → cj of DELAY-steps such that w is
schedulable in cj .

Lemma 1. A delaying scheduler M is limit sound if M is lossless
and delay-accessible.

4 Here we assume w is uniquely identified by its task identifier.



Intuitively, a lossless and delay-accessible scheduler can always
spend delays to access any task pending in the bag scheduler, since
bag-pending tasks are also pending in lossless schedulers. A detailed
proof appears in our extended technical report [13].

As a consequence of Lemma 1, our approach will discover any
bug, with some delay-bound, using any well-behaved (i.e., lossless &
delay-accessible) deterministic scheduler—though the delay-bound
required to uncover a given bug depends on the scheduler. Since the
number of explored schedules is exponential in the delay-bound, in
practice one may want to hand-craft the scheduler to fit a particular
program- or bug-domain. Alternatively, it is also possible to run
several explorations with different schedulers in parallel with the
same (small) delay-bound, or even to choose schedulers at random.

Here we highlight a couple of simple deterministic delaying
schedulers to compare with existing exploration techniques, and as
a basis for defining practical exploration algorithms.

3.1 Round-Robin Scheduling
One simple scheduler cycles through tasks in task-creation order.
The scheduler advances to the next task when the current task either
(i) completes execution, (ii) yields, and is blocked, or (iii) is delayed.

Scheduler 3 (The round-robin scheduler). Let rr be the list-based
delaying scheduler 〈Tasks∗ × N, 〈ε, 0〉 , give, take, delay〉, where
the give(〈m, i〉 , w) operation is defined by5

1. if w = 〈`, sp〉 for some procedure p, then append w to m;
2. else (w is a yielding task): insert w into m at position i,

the delay(〈m, i〉 , w) operation is defined by

1. insert w into m at position i;
2. increment i modulo |m|,

and the take(〈m, i〉 , g) operation is defined by

1. if m(j) is blocked in g for all j ∈ 0 . . . |m| − 1, return ∅;
2. while m(i) is blocked in g, increment i modulo |m|;
3. remove w from m at position i;
4. return w.

It is easy to see that rr is deterministic, lossless, delay-accessible,
and non-blocking.

The round-robin scheduler demonstrates that delay-bounded
scheduling captures context-bounded scheduling [34].

Example 3 (Context-bounding). In the rr-scheduler, each delay
operation simulates a context-switch to the next task; context-
switching to any of n tasks generally requires n successive delay
operations. Given a “context-bound” K and a program with n tasks,
the set of nK-delay-bounded rr-executions contains the set of K-
context-bounded executions.

From the perspective of limiting scheduling choice, context-
bounding does not give a direct bound: the number of choices nK
is also dependent on the number of tasks. (In contrast, K-delay-
bounded exploration requires only K choices.)

3.2 Depth-First Scheduling
Another simple scheduler schedules all tasks posted by a given
task u before scheduling tasks that were pending when u was
dispatched, in a stack-based discipline. This scheduler is particularly
appealing since, as we show in Section 5, for any delay-bound K
and asynchronous program P , we can encode the K-delay-bounded
depth-first semantics of P compactly as a sequential program!

5 We define the give, delay, and take operations by destructively mutating
and returning the scheduler object.
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Figure 4. Depth-first traversals of round-partitioned asynchronous
call forests with task identifiers u1, . . . , u10. Arrows indicate task-
posting, dotted arrows indicate delays, and the dotted line separates
rounds. The traversal-order is u1, u2, . . . , u10.

Scheduler 4 (The depth-first scheduler). Let dfs be the stack-based
scheduler 〈Tasks∗ × Tasks∗ × Tasks∗, 〈ε, ε, ε〉 , give, take, delay〉
—for a scheduler object 〈qh, qr, qd〉, we call qh, qr and qd the
handler-, round-, and delay-stacks—where the give(〈qh, qr, qd〉 , w)
operation is defined by

1. push w to qh,

the delay(〈qh, qr, qd〉 , w) operation is defined by

1. push w to qd,

and the take(〈qh, qr, qd〉 , g) operation is defined by

1. empty qh into qr;
2. if qr = ε then empty qd into qr;
3. if qr = ε then return ∅;
4. pop w from qr;
5. return w.

Figure 3 shows the dfs-execution of a simple asynchronous program.
It is easy to see that dfs is deterministic, lossless, and delay-
accessible, though is not generally non-blocking.

To understand the task-execution order in depth-first scheduling,
we view executions as trees, where nodes are tasks, and the parent
relation corresponds to the posting relation on tasks. Let h be an
execution and U a set of task identifiers from h. We define the
asynchronous call forest6 as the ordered forest F with nodes labeled
by the identifiers u ∈ U of tasks posted in h. When u was posted
by a task u′ in h, u is a child of u′ in F ; children are ordered by
the order they are posted. We capture yielding by viewing task-
resumptions as newly-posted tasks. Note that synchronous calls are
not explicit in F : the tasks posted along the synchronous execution
of u appear directly as children of u.

The dfs-execution of a program proceeds in a sequence of
“rounds,” ending when a take operation encounters both qh and
qr empty. With this nomenclature, we schedule each delayed task w
in the round i+1 following the round i where w is delayed, after all
pending non-delayed tasks of round i have been scheduled.

A round partitioning of an asynchronous call forest F with
nodes U is a labeling R : U → N on the nodes of F such that
R(u1) ≤ R(u2) whenever u1 is an ancestor of u2. Given an
execution h, we can think of the round partitioning as a partition of
F into asynchronous call forests {F0, F1, . . .} where each task u is
in the forest FR(u) corresponding to the round in which it executes.
The depth-first scheduler traverses the asynchronous call forest in
a round-by-round depth-first preorder (see Figure 4). In this order,
yielding tasks u are rescheduled only after the tasks that u has posted
before yielding, have been scheduled.

6 We consider forests rather than trees since more than one task may be
posted initially—or as we encounter shortly, at the beginning of each “round”
in certain delaying schedulers.



var g : T

proc p1(var l : T)

s1; post p2 e1;

s2; post p3 e2; s3

proc p2(var l : T) s4

proc p3(var l : T) s5

g0
s1 // g1

post p2 e1// g1
s2 // g2

post p3 e2// g2
s3 // g3

return

��

g3
s4 // g4

return

��

g4
s5 // g5

return

��
g0

OO

g3 // g3

OO

g4 // g4

OO

g5

〈ε, p1〉 〈ε, ε〉 〈p2, ε〉

(
push p2(e1)

on qh

)





:
3

-
'

"

�
�

〈p2, ε〉 〈p3p2, ε〉

(
push p3(e2)

on qh

)





:
3

-
'

"

�
�

〈ε, p2p3〉 〈ε, p3〉 〈ε, p3〉 〈ε, ε〉 〈ε, ε〉

Figure 3. The no-delay dfs-execution of a simple asynchronous program. The scheduler objects 〈qh, qr〉—since there are no delays, qd is
omitted—are given below the corresponding points in the execution which are labeled with the global values. Solid lines indicate procedure
control, and dotted lines indicate dispatcher control. Note that the bag scheduler allows one additional execution, where p3 executes before p2.

4. Delay-Bounded Testing
In concurrency analyses which explicitly enumerate execution sched-
ules (e.g., systematic testing), using delay-bounded deterministic
schedulers has a clear scalability advantage over existing bounded
exploration approaches. For instance, the number of p-preemption-
bounded executions [29] of a program using n tasks is exponential
in n, since a complete execution must apply at least max(n, p) la-
bel changes; the number of k-delay-bounded executions does not
depend on n. Here we demonstrate that although delay-bounding
explores much fewer schedules than preemption-bounding (with
the same bound), existing bugs caught with p preemptions are also
caught with p delays. Furthermore, delay-bounded exploration is
able to discover bugs which have not been caught by bounding
preemptions—due to the exponential increase in schedules with
respect to the number of tasks.

To demonstrate this advantage, we have implemented the de-
laying round-robin scheduler (Scheduler 3) in the CHESS con-
currency testing tool [30] to directly compare preemption- and
delay-bounding on three programs: CCR, Futures (both written
by Microsoft product groups), and Region Ownership (written by
Peter Müller of ETH Zurich). We feel the round-robin scheduler
is appropriate for comparison with preemption-bounding since it
minimizes preemptions. We observe:

1. Every bug found with p preemptions is also found with p delays.

2. Delay-bounding explores significantly fewer schedules before
discovering a buggy execution.

3. Delay-bounding can discover at least one bug that cannot be
found with preemption-bounding, under similar time-constraints.

As a systematic testing tool, CHESS repeatedly executes each test
case to completion until all possible schedules—for each test case—
have been explored. During the exploration, CHESS has no control
over the number of tasks created, nor the number of steps taken
by the input program. Thus, each test case is expected to drive the
program to termination under any schedule.

CCR Microsoft’s Concurrency and Coordination Runtime pro-
vides a concurrent programming model with high-level primitives
for data- and work-coordination without the use of explicit threading
and synchronization. We evaluate a suite of 42 test cases exercising
various parts of CCR. Each test case takes between 82–255 steps
to complete, and creates at most 3 tasks, before exhibiting a known
bug (found with CHESS); 41 of these bugs were discovered with 1
preemption, and the remaining one with 2 preemptions. The delay-
ing rr-scheduler discovers each of these bugs with the same budget
of delays, but fewer schedules. Figure 5 compares the number of
schedules explored to discover each 1-preemption bug. Discover-
ing the remaining bug required exploring 8, 895 schedules using 2
preemptions, and only 2, 728 schedules using 2 delays.
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Figure 5. Comparing the number of schedules explored between
preemption- and delay-bounding before discovering known bugs
in 41 tests of Microsoft’s Concurrency and Coordination Runtime
(CCR). CHESS found each of these bugs with 1 preemption/delay.

Futures Microsoft’s Futures library provides a synchronization
primitive based on a proxy value for a computation whose result is
not yet known. We find two previously-discovered (with CHESS) 1-
preemption bugs, also with 1 delay. Both the livelock and uncaught
exception are exposed after the program has spawned 4 tasks:

Bug # steps # schedules (PB) # schedules (DB)
Livelock 1075 259 45
Exception 1152 1899 320

Region Ownership Peter Müller’s region ownership library man-
ages concurrency and coordination based on objects grouped into re-
gions that communicate with each other via asynchronous procedure
calls. The library is accompanied by a single test case comprising a
one-producer one-consumer system. During testing, at most 5 tasks
are created, and at most 284 execution steps taken. Preemption-
bounding with 0 and 1 preemptions terminates without finding a
bug; with 2 preemptions, CHESS generates 340, 000 schedules
over several hours without terminating, after which we manually
killed it. Bounding delays to 0, 1, and 2 did not expose any bugs,
though a delay-bound of 3 discovered a previously unknown bug
after exploring only 132, 507 schedules.

To determine whether this bug can be discovered with 2 pre-
emptions, we re-ran CHESS, focusing preemptions [3] to the meth-
ods interrupted in our (delay-bounded) error trace. After exploring
128, 998 schedules, CHESS finishes without discovering the bug.
Thus, this is the first bug CHESS has ever found in a real-world
program that requires at least 3 preemptions!



5. Sequentialization of Depth-First Scheduling
The depth-first scheduling order (i.e., of Scheduler 4) has a rather
nice property: the stack of pending tasks used for a depth-first
traversal of the asynchronous call forest (see Section 3.2) can be
combined with a synchronous program’s call stack (i.e., of activation
records). In this section we exploit that fact to compactly encode
a program’s delay-bounded dfs semantics as a sequential program.
(A similar encoding is possible for reverse depth-first scheduling—
i.e., where each task’s children are traversed in reverse order.)

In Section 5.1 we reveal the most basic encoding of no-delay
depth-first scheduling for simple asynchronous programs. In Sec-
tions 5.2 and 5.3, we orthogonally extend the basic encoding to
handle delaying and preemption. To improve clarity we leverage
the syntactic extensions of Appendix A, which each reduce to the
original syntax of asynchronous programs.

5.1 No-Delay Depth-First Scheduling
We begin by defining the function J·K0dfs which translates a simple
asynchronous program P into a synchronous program JP K0dfs which
encodes the no-delay depth-first scheduler:

Jvar g : T ~HK0dfs
def
= var g : T, ḡ : T

−−−→
JHK0dfs

Jproc p (var l : T) sK0dfs
def
= proc p (var l : T) JsK0dfs

Js1; s2K0dfs
def
= Js1K0dfs; Js2K0dfs

Jx := eK0dfs
def
= x := e

JskipK0dfs
def
= skip

Jassume eK0dfs
def
= assume e

Jif e then s1 else s2K0dfs
def
= if e then Js1K0dfs else Js2K0dfs

Jwhile e do sK0dfs
def
= while e do JsK0dfs

Jcall x := p eK0dfs
def
= call x := p e

Jreturn eK0dfs
def
= return e

Jpost p eK0dfs
def
= let gtmp : T = g in

let ḡ? : T in

g := ḡ;

ḡ := ḡ?;

call := p e;

assume g = ḡ?;

g := gtmp.

The initial configuration is translated as

J〈g, 〈`, s; return e〉 , m〉K0dfs
def
=
〈
g′,
〈
`, s′; return e

〉
, m
〉
,

with the initial global value g′
def
= {{g = g, ḡ = ?}}, and the initial

statement s′ given by

s′
def
= let ḡ? in

ḡ := ḡ?;

JsK0dfs;

assume g = ḡ?;

g := ḡ.

The key mechanism enabling the encoding is the introduction
of guessed global values in the form of unconstrained symbolic
constants ḡ?. These are essentially prophecy variables [1] whose
values will be available only later in the sequential execution.
Once the appropriate global values are available, the corresponding
guesses are suitably constrained.

In the translation, we replace post-statements with call-
statements, and introduce the following variables to ensure the cor-
rect global values are observed along the mimicked dfs-execution:

• gtmp caches the global value of a posting task, so that the posted
task can observe its future global value in g, and the posting task
can resume from its current global value without interference.
• ḡ? stores the (guessed) global value reached when each posted

task completes.
• ḡ stores the (guessed) global value reached after all tasks that

have been posted thus far (i.e., that have appeared on the call-
stack) have completed.

Example 4. The dfs-encoding of the program in Figure 3 is

var g : T, ḡ : T

proc p1(var l : T)

s1;

let gtmp : T = g in let ḡ? : T in
g := ḡ; ḡ := ḡ?;
call := p2 e1;
assume g = ḡ?; g := gtmp;


= Jpost p2 e1K0dfs

gtmp = g1, ḡ? = g4

s2;

let gtmp : T = g in let ḡ? : T in
g := ḡ; ḡ := ḡ?;
call := p3 e2;
assume g = ḡ?; g := gtmp;


= Jpost p3 e2K0dfs

gtmp = g2, ḡ? = g5

s3

proc p2(var l : T) s4

proc p3(var l : T) s5,

where we assume s1–s5 do not contain post-statements. To the
right of the braces we indicate the values stored in the let-bound
variables gtmp and ḡ?, which are the same values used below. This
program has the following unique, sequential execution:

g3
s4 // g4

return

��

g4
s5 // g5

return

��
g0

s1 // g1

call p2 e1

KS

g1
s2 // g2

call p3 e2

KS

g2
s3 // g3,

where the double lines indicate part of a Jpost . . .K0dfs-translation
(i.e., up to the call). Here each global value gi matches that of the
(asynchronous) dfs-execution (of Figure 3). Execution begins with
an initial guess for ḡ of g3, i.e., the global value after p1 executes.
The latter guessed values for ḡ of g4 and g5 are the global values
after the execution of p2 and p3. The final global value is g5.

Lemma 2. Let P be a simple asynchronous program. The syn-
chronous semantics of JP K0dfs is g-equivalent to the no-delay dfs-
semantics of P .

Proof sketch. Let h be a dfs-execution of P , and consider the
asynchronous call forest F of h with tasks U = {u1, u2, . . . uj}.
Furthermore, without loss of generality, suppose the dispatch order
< of tasks in h is u1 < u2 < . . . < uj . Since the dfs-schedule
corresponds to a preorder depth-first traversal of the forest F , each
task u’s children u′ are executed before any other pending task
or task to be posted later in u’s execution. In this way, the order
< corresponds exactly to the execution of synchronously executed
tasks—i.e., the order in which tasks would execute had they been
called instead of posted—except that the tasks would observe not
the semantically-consistent global state at the end of the current
task’s execution, but an intermediate global state. To ensure that



tasks observe the semantically-consistent global state, we rely on
the following invariant of the synchronous semantics of JP K0dfs:

The value of ḡ at the beginning of execution for each task
ui+1 is equal to the final value of g at the end of execution
for the task ui immediately preceding ui+1 in the order <.

Combining the invariant with the coincidence of task-execution
order in the dfs-schedule of P and the synchronous program JP K0dfs,
we have the sequence g0g1g2 . . . gj of global values during dispatch
points of h (i.e., when control is given to the dispatcher) is equal to
the sequence ḡ0ḡ1ḡ2 . . . ḡj of global values before the synchronous
execution of each task, and after all tasks have executed. Finally, the
last statement to be executed in JP K0dfs sets the global value to ḡj ,
ensuring the final global states of P and JP K0dfs are equal.

Note that in general, for an arbitrary deterministic scheduler,
algorithmic delay-bounded exploration is not possible. For example,
even no-delay scheduling with the round-robin scheduler (Sched-
uler 3) is undecidable, by reduction from the state-reachability
problem for Turing-complete Queue machines. From an automata-
theoretic point of view, delay-bounded depth-first scheduling re-
mains decidable since the asynchronous task-buffer is a stack which
can be combined with the synchronous activation stack.

5.2 Delaying Depth-First Scheduling
The function J·KK

dfs translates a simple asynchronous program P into
a synchronous program JP KK

dfs which encodes the K-delay bounded
depth-first scheduler:

Jvar g : T ~HKK
dfs

def
= var g : T, Ḡ : T K+1, kdelay : N

−−−→
JHKK

dfs

Jproc p (var l : T) sKK
dfs

def
= proc p (var l : T, kround : N) JsKK

dfs

Jcall x := p eKK
dfs

def
= call x := p (e, kround)

Jpost p eKK
dfs

def
= let gtmp : T = g in

let ḡ? : T in

var k : N := kround;

while ? and kdelay > 0 do

kdelay := kdelay − 1;

k := k + 1

g := Ḡ[k];

Ḡ[k] := ḡ?;

call := p (e, k);

assume g = ḡ?;

g := gtmp,

where the omitted statements are translated exactly as in the no-delay
translation J·K0dfs. The initial configuration is translated as

J〈g, 〈`, s; return e〉 , m〉KK
dfs

def
=
〈
g′,
〈
`′, s′; return e

〉
, m
〉
,

where the initial global and local values g′ and `′ are

g′
def
= {{g = g, Ḡ = [?, ?, . . . ], kdelay = K}}, and

`′
def
= {{l = `, kround = ?}},

and the initial statement s′ is given by

s′
def
= let kround : N = 0 in

let Ḡ? : T K+1 in

Ḡ := Ḡ?;

JsKK
dfs;

assume g = Ḡ?[0];

assume Ḡ[0] = Ḡ?[1];

. . .

assume Ḡ[K − 1] = Ḡ?[K];

g := Ḡ[K].

The K-delay-bounded encoding extends the no-delay encoding
in two important ways. First, the schedule proceeds in K+1 rounds;
we must note which round each task executes in, and separately
accumulate the perceived global values in each round. Second, each
time a task is posted, there is the possibility of delay; we must keep
track of how many delays have been spent. To accomplish this, we
introduce the following auxiliary variables:

• gtmp and ḡ? are used exactly as before, to cache the posting task’s
observed global value, and store the global value reached at the
end of the posted task.
• Ḡ is the multi-round extension to ḡ: each Ḡ[i] stores the global

value reached after all tasks that have been posted thus far, and
are executed in round i, have completed.
• kdelay stores the remaining budget of delays.
• kround indicates which round a given task executes in.
• k is incremented once per delay of the posted task, then passed

as the round-indicator (kround).

Note that a task may be delayed more than once, and we simulate
all the delays of a given task instantaneously.

Example 5. The 1-delay-bounded dfs-encoding of the program of
Figure 3, allows the following (sequential) execution:

g4
s4 // g5

return

��

___________________

g3
s5 // g4

return

��
g0

s1 // g1

call p2 e1

KS

g1
s2 // g2

call p3 e2

KS

g2
s3 // g3,

where p2 executes before p3. This execution mimics two rounds,
separated by a dashed line: p3, though posted second, executes with
p1 in the first round, while p2 executes alone in the second. Thus
Ḡ[0] takes the values g3, g4, and Ḡ[1] takes the values g4, g5. The
final global value is g5.

Lemma 3. Let P be a simple asynchronous program. The syn-
chronous semantics of JP KK

dfs is g-equivalent to the K-delay dfs-
semantics of P .

Proof sketch. As in the proof sketch of Lemma 2, there is a corre-
spondence between the K-delay-bounded dfs-execution order of
tasks in P and JP KK

dfs, except in this case the order is a round-by-
round depth-first preorder. Here, we adapt the previous invariant to
the K-round case:

The value of Ḡ[k] at the beginning of execution for each
task ui+1 of round k is equal to the value of g at the end of
execution for the task ui immediately preceding ui+1 in the
order <.

For adjacently executed tasks ui < ui+1 in differing rounds ka and
kb, the resulting global value of ui is guaranteed to be in Ḡ[ka],
which is in turn guaranteed to be equal the initial global value
Ḡ?[kb] of task ui+1.



Jvar g : T ~HK0dfs
def
= var g : T, ḡ : T

−−−→
JHK0dfs

Jproc p (var l : T) sK0dfs
def
= proc p (var l, ḡ? : T) JsK0dfs

Jcall x := p eK0dfs
def
= call (x, ḡ?) := p (e, ḡ?)

Jreturn eK0dfs
def
= return (e, ḡ?)

Jpost p eK0dfs
def
= let gtmp : T = g in

let ḡ′? : T in

g := ḡ;

ḡ := ḡ
′
?;

call ( , ḡ′?) := p (e, ḡ′?);

assume g = ḡ
′
?;

g := gtmp

JyieldK0dfs
def
= assume g = ḡ?;

ḡ? := ?;

g := ḡ;

ḡ := ḡ?

Figure 6. The symbolic encoding of no-delay depth-first schedul-
ing with yields extending the symbolic encoding of Section 5.1.
The translation of the missing control-flow statements and initial
configuration is identical to the yield-free encoding.

5.3 Depth-First Scheduling with Preemption
Perhaps surprising is the fact that our symbolic encodings of
delaying depth-first schedulers can be extended to preemptive
asynchronous programs. The encoding of Figure 6 extends the
no-delay depth-first scheduler encoding of Section 5.1 to handle
yield-statements. The key difference is that the guess (ḡ?) of the
post-state of each handler should not be verified only at the end of
a handler’s execution; instead, the guess is validated if a handler
yields, at which point a new guess is made, and the new guess will
be validated either at the next yield point—if one exists—or at the
end of the handler’s execution. To allow multiple guesses throughout
a handler’s execution, we simply ensure the guess-variable ḡ? is in
scope throughout by making it a parameter to every procedure.

The extension to delaying depth-first scheduling is straightfor-
ward; extending to multiple rounds is orthogonal to handling yields,
and is done exactly according to the extension of Section 5.2. In
particular, occurrences of ḡ are replaced by their multi-round coun-
terparts Ḡ[k], and incrementing the round counters also happens
at yield-points. We omit the full definition of JP KK

dfs for preemptive
asynchronous programs P , since it is redundant.

Lemma 4. Let P be a preemptive asynchronous program. The
synchronous semantics of JP KK

dfs is g-equivalent to the K-delay
dfs-semantics of P .

5.4 Complexity of Depth-First Scheduling
Thus far we have given sequentializations that reduce delay-bounded
depth-first semantics to sequential semantics. Since the number of
program variables in the resulting sequential program is O(K),
the worst-case complexity of program-state exploration using this
reduction (for programs with finite-data domains) is exponential
in K. What remains is the question of whether the exploration
via this reduction is (asymptotically) optimal. Here we find that a
sub-exponential algorithm is unlikely. The proofs of these results
are quite technical, and can be found in our extended technical
report [13].

For the remainder of this section we assume the data-domain
of asynchronous programs (i.e., the set Vals) is finite-state. We
show that delay-bounded depth-first state-reachability is an NP-
complete problem.7 Though this exploration corresponds to an
underapproximation of the program semantics, the complexity is
lower than the precise EXPSPACE-complete explorations of Sen and
Viswanathan [37] and Jhala and Majumdar [19] for non-preemptive
asynchronous programs. Additionally, our underapproximation has
a lower complexity than the PSPACE-hard underapproximation [5]
used by Jhala and Majumdar [19]’s algorithm, which corresponds
to our (non-preemptive) bounded bag semantics (see Scheduler 2).
Note in the case of preemptive programs, the analysis problem is
generally undecidable [36].

Interestingly, delay-bounded depth-first exploration has the same
NP-complete complexity as context-bounding for a finite number
of tasks [27], even though delay-bounded scheduling explores an
unbounded number of tasks.

Problem 1 (Delay-bounded depth-first scheduling). For a given
K ∈ N,8 initial configuration c0, and global value g of an asyn-
chronous program P , does there exist a K-delay-bounded dfs-
execution to g?

By reduction from the Circuit Satisfiability problem [33], we
show our exponential algorithm for delay-bounded depth-first
scheduling is likely to be asymptotically optimal.

Theorem 1. Delay-bounded depth-first scheduling is NP-hard.

To show membership in NP for the non-preemptive case, we
give an algorithm that validates a nondeterministically-guessed
execution witness to the target global value, given by the sequence
of tasks delayed in, and a global value reached at the end of, each
round. For a delay-bound K, we validate the guess by applying
K+1 polynomial-time sequential program analyses to sequential
encodings of each round of execution—the initial conditions of each
round are determined by the delayed tasks and final global state of
the previous round. Validation ensures that each round can indeed
reach the guessed global value while delaying exactly the guessed
delayed tasks.

Theorem 2. Delay-bounded depth-first scheduling for simple asyn-
chronous programs is in NP.

In fact we can extend the proof of Theorem 2 to the preemptive
case. The presence of yields poses an additional technical challenge:
a naı̈ve extension of the execution witnesses to record delayed task-
resumptions does not work, because the resumptions’ activation
stacks have no bound. We solve this problem essentially by realizing
the activation stacks of preempted tasks need not be stored across
rounds; instead we may re-execute tasks to recreate their stacks
from scratch—the same so-called “lazy” sequentialization technique
pioneered by La Torre et al. [23].

Theorem 3. Delay-bounded depth-first scheduling for preemptive
asynchronous programs is in NP.

Thus we achieve tight complexity-bounds on depth-first scheduling.

Corollary 1. Delay-bounded depth-first scheduling is NP-complete.

7 Since we are interested in measuring the scheduling complexity (rather
than complexity arising from program data), we have restricted the program
syntax so that a fixed number of variables is in scope at any moment. Indeed,
the reachability problem is EXPTIME-complete in the number of variables
(even with only a single recursive task), due to the logarithmic encoding of
states in the corresponding pushdown system.
8 We assume the delay-bound K is written in unary.



6. Delay-Bounded Verification
The sequentialization of Section 5 allows any sequential analysis
algorithm to be lifted, immediately, to a concurrent analysis algo-
rithm: a sequential analysis of JP KK

dfs is exposed to all concurrent
behaviors of P with a K-delay-bounded depth-first scheduler (an
underapproximation of P ’s concurrent semantics). The additional
implementation effort is minimal since only the source-to-source
translation is required.

As a proof-of-concept, we have implemented a source-to-source
symbolic encoding of the delaying depth-first scheduler in the
STORM [26] concurrent C-program checker. STORM analyzes
closed concurrent software modules (i.e., each module is closed
from below using stubs for external procedures, and closed from
above using a test driver with symbolic inputs). While CHESS
concretely executes a closed concurrent program with a single
input vector (see Section 4), STORM symbolically verifies a closed
concurrent program on a (potentially unbounded) set of input vectors.
To analyze the input program precisely, STORM unfolds loops and
recursive procedure calls up to a user-provided bound.

Prior to this work, STORM implemented context-bounded verifi-
cation for programs with a finite number of statically declared tasks.
Our experience applying STORM to realistic programs indicated
that the theoretical exponential complexity in the number of exe-
cution contexts does manifest in practice [26]. Furthermore, many
concurrency errors in realistic programs require a large (i.e., > 3)
number of tasks to be executed, and the number of tasks required to
manifest a concurrency error is a lower bound on the number of re-
quired contexts. In these cases, context-bounded discovery becomes
prohibitively expensive.

In contrast, delay-bounded scheduling discovers these errors
with very few delays—typically 1 or 2. The reason depth-first
scheduling works well (despite the fact that it is an artificial ordering)
is that the majority of these tasks need not participate in any
intricate interaction; they simply need to be executed in causal
order to reach a program point which manifests the bug. Thus, our
implementation of delay-bounded scheduling improves STORM in
two important ways: we enable STORM to handle programs with
dynamic task-creation, and to find a thus-far elusive class of bugs at
low computational cost.

The (end-to-end) implementation works in three phases. In the
first phase, we translate a concurrent C program into a concurrent
BOOGIE [11] program—though BOOGIE was originally intended as
an intermediate language for representing the semantics of simple
imperative sequential programs, we have extended the syntax and
semantics to express concurrent behavior. In the second phase,
we transform the concurrent BOOGIE program into a sequential
BOOGIE program encoding the delay-bounded depth-first semantics.
It is noteworthy that our algorithm was very easy to implement
with simple, minimal extensions to STORM. Finally, we verify
the resulting sequential BOOGIE program using the triumvirate
of field abstraction [26], verification-condition generation [4], and
satisfiability-modulo-theory (SMT) solving [10].

We have applied our implementation to symbolic exploration
of over 20 preemptible event-driven device drivers with 1K–30K
lines of code. In the process we have found 4 previously unknown
bugs with a maximum delay-budget of 2; the developers of these
drivers have confirmed the accuracy of these bugs. More importantly,
with the ability to handle dynamic task-creation, we can precisely
model the asynchrony in the device driver’s execution environment
(e.g., interrupts, deferred procedure calls, timers, driver request
cancellation and completion, etc.), thereby qualitatively extending
the applicability and precision of STORM.

7. Related Work
The programming models considered in this paper have received
plenty of attention from researchers interested in stack-based, finite-
data abstractions of concurrent programs. The preemptive model has
not been so heavily studied, primarily because the reachability prob-
lem is known to be undecidable [36]—even with a finite number of
tasks—due to interference between multiple stacks. More attention
has been paid to the non-preemptive model of asynchronous pro-
grams. Sen and Viswanathan [37] introduced the model explicitly to
reason about event-driven programs, and showed that control-state
reachability is EXPSPACE-hard; Ganty and Majumdar [14] tight-
ened this result to show that the problem is EXPSPACE-complete.
To combat this high worst-case theoretical complexity, Jhala and Ma-
jumdar [19] suggest a scheme that combines an underapproximate
and an overapproximate computation of the reachable states.

Context-bounded verification [34, 35] explores only those ex-
ecutions of a concurrent program in which the number of context
switches is bounded globally by a user-supplied value. However,
the idea of context-bounding does not make intuitive sense for pro-
grams with large or unbounded number of tasks. This problem is
well-known, and other researchers have proposed various fixes. Atig
et al. [2] suggested stratified context-bounding that allows an un-
bounded number of context switches without sacrificing decidability.
La Torre et al. [24] exploit the nondeterministic round-robin schedul-
ing scheme of Lal and Reps [27] to achieve unbounded number of
context switches for parameterized concurrent programs.

Exploiting sequential verifiers for concurrent program verifica-
tion is also an active area. The KISS verifier [35] pioneered this
approach by providing a source-to-source transformation from multi-
threaded programs into sequential programs that underapproximates
the set of behaviors of the original program. Lal and Reps [27]
achieved a breakthrough by providing the first source-to-source
translation that computes a context-bounded underapproximation
for any context-bound. This approach also pioneered the idea of
guessing future-values and constraining them later at an appropriate
control point in the execution; we exploit this idea in our transfor-
mation as well. A key weakness of Lal and Reps [27]’s so-called
“eager” approach is that control states unreachable in the original
concurrent program may be explored in the transformed sequen-
tial program; La Torre et al. [23]’s “lazy” technique addresses this
weakness by repeatedly re-executing to the control points where
guessed values would have been used; Ghafari et al. [16] empirically
compared the two approaches in the verification-condition-checking
paradigm where, as opposed to model-checking, benefits of lazi-
ness are unclear since the eager approach in fact outperforms the
lazy one. Kidd et al. [21] have introduced a reduction from con-
current programs with priority-preemptive schedulers to sequential
programs, though the construction requires a bound on the number
of tasks. Although none of these sequentializations handle dynamic
task-creation, La Torre et al. [25] have recently introduced a sequen-
tialization of their parameterized model-checking algorithm [24]
which does handle an unbounded number of tasks.

Finally, runtime-schedule “fuzzers” such as CONTEST [12] and
CALFUZZER [20] introduce delays by adding sleep statements;
PCT [7] introduces delays by randomly perturbing task priorities.
These techniques share with delay-bounding the ability to scale to
many tasks. In fact, a derandomized version of the PCT algorithm
provides a scheduling complexity that is independent of the number
of program tasks [6]; the mechanism for achieving this scalability
is based on their characterization of a bug’s depth as the minimum
number of events that must occur in a certain order to reveal the
bug. Bug-depth attempts, like delay-bounding, to canonize the effort
required to discover a given bug, but is defined with respect to
ordering constraints rather than deviations from a deterministic
scheduler.



8. Conclusion
We have introduced a canonical characterization of scheduling
nondeterminism by considering deterministic schedulers with the
ability to delay their next-scheduled task. We demonstrate that delay-
bounding is an effective search prioritization strategy for concurrent
programs by extending the applicability of existing prioritization
techniques. Furthermore, we identify a lower-complexity concurrent
analysis problem via delay-bounded depth-first scheduling, and
we show that our depth-first delaying schedulers admit practical
sequential reductions, allowing us to lift existing sequential analyses
to concurrent analyses. Our approach is generally applicable to
concurrent programs with dynamic task-creation, and arbitrary
preemption and synchronization.
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A. Syntactic Sugar
The following syntactic extensions are reducible to the original
syntax of asynchronous programs of Section 2.2. Here we freely
assume the existence of various type- and expression-constructors.
This does not present a problem since our program semantics does
not restrict the language of types nor expressions.

Multiple types. Multiple type labels T1, . . . , Tj can be encoded by
systematically replacing each Ti with the sum-type T =

∑j
i=1 Ti.

This allows local and global variables with distinct types.

Multiple variables. Additional variables x1 : T1, . . . , xj : Tj can
be encoded with a single record-typed variable x : T , where T is
the record type {{f1 : T1, . . . , fj : Tj}}, and all occurrences of xi
are replaced by x.fi. When combined with the extension allowing
multiple types, this allows each procedure to declare any number
and type of local variable parameters, distinct from the number and
type of global variables.

Local variable declarations. Additional (non-parameter) local
variable declarations var l′ : T to a procedure p can be encoded
by adding l′ to the list of parameters, and systematically adding an
initialization expression (e.g., the choice expression ?, or false) to
the corresponding position in the list of arguments at each call site
of p to ensure that l′ begins correctly (un)initialized.

Unused values. Call assignments call x := p e, where x is not
subsequently used, can be written as call := p e, where : T is
an additional unread local variable, or simpler yet as call p e.

Let bindings. Let bindings of the form let x : T = e in can be
encoded by declaring x as a local variable var x : T immediately
followed by an assignment x := e. This construct is used to
explicate that the value of x remains constant once initialized. The
binding let x : T in is encoded by the binding let x : T = ? in ,
where ? is the choice expression.

Tuples. Assignments (x1, . . . , xj) := e to a tuple of variables
x1, . . . , xj are encoded by the sequence let r : {{f1 : T1, . . . , fj :
Tj}} = e in x1 := r.f1; . . . ; xj := r.fj, where r is a fresh variable.
A tuple expression (x1, . . . , xj) occurring in a statement s is
encoded as let r : {{f1 : T1, . . . , fj : Tj}} = {{f1 = x1, . . . , fj =
xj}} in s[r/(x1, . . . , xj)], where r is a fresh variable, and s[e1/e2]
replaces all occurrences of e2 in s with e1. When a tuple-element xi

on the left-hand side of an assignment is unneeded (e.g., from the
return value of a call), we may replace the occurrence of xi with
the variable—see the “unused values” desugaring.

Arrays. Finite T j-arrays with j elements of type T can be encoded
as records of type T ′ = {{f1 : T, . . . , fj : T}}, where f1, . . . , fj are
fresh names. Occurrences of terms a[i] are replaced by a.fi, and
array-expressions [e1, . . . , ej] are replaced by record-expressions
{{f1 = e1, . . . , fj = ej}}.
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