
When Can We Trust Progress Estimators for SQL Queries?

Surajit Chaudhuri Raghav Kaushik Ravishankar Ramamurthy
Microsoft Research

{surajitc, skaushi, ravirama}@microsoft.com

ABSTRACT
The problem of estimating progress for long-running queries
has recently been introduced. We analyze the characteristics
of the progress estimation problem, from the perspective of
providing robust, worst-case guarantees. Our first result
is that in the worst case, no progress estimation algorithm
can yield anything even moderately better than the trivial
guarantee that identifies the progress as lying between 0%
and 100%. In such cases, we introduce an estimator that
can optimally bound the error. By placing different types of
restrictions on the data and query characteristics, we show
that it is possible to design effective progress estimators with
small error bounds. We show where previous solutions lie
in this spectrum. We then demonstrate empirically that
these “good” scenarios are common in practice and discuss
possible ways of combining the estimators.

1. INTRODUCTION
For long-running decision support queries, the ability to es-
timate the progress of query execution could be very useful,
for instance, to help end users or applications decide whether
to terminate the query or allow it to complete. The problem
of estimating the execution progress of long-running queries
has been recently studied [5, 13]. The authors observed that
naive approaches to progress estimation, such as returning
the fraction of operators that are completed, are inadequate
for complex query plans. Instead, a novel model for the
work done by a query (“progress”) is proposed and esti-
mation techniques are developed under this model. Their
proposed estimators fared well in the empirical studies that
they reported. Recent work in [14] increases the coverage of
the previous techniques by including a wider class of SQL
queries.

Database technology prides itself for its robustness and
therefore a natural question that arises is whether the pro-
posed estimators are indeed resilient for varying execution
plans and data distributions. Ideally, a progress estimator
should be able to provide guarantees to the user, irrespec-

"Permission to make digital or hard copies of all or part of thiswork for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD 2005 June 14-16, 2005, Baltimore, Maryland, USA Copyright
2005 ACM 1-59593-060-4/05/06$5.00"

tive of the nature of the query and data distributions under
consideration. Unfortunately, prior work does not dwell on
this key question and does not offer any explanation as to
when and why the proposed estimators will be reliable.

We start with the model of work proposed in [5] which uses
a simple aggregate measure based on the iterator model of
query execution (Section 2). The model of work proposed
in [13] is very similar and the results in this paper would
extend to this model as well. Progress of query execution is
defined as fraction of “work” done. We study the progress
estimation problem with the goal of bounding the ratio error
of estimating this fraction.

We begin by showing that even for the simple case of a single
join query, in the worst case, it is not possible to do much
better than a trivial progress estimator that returns the in-
terval (0, 1) at every instant (Section 3). This result applies
to any typical database system that uses statistics on base
relations, allowing a broad class of statistics that covers both
histograms and pre-computed samples. Since an effective
strategy for this case is a prerequisite to realizing the gen-
eral goal of providing guarantees on the estimated progress
for complex SQL queries, this result shows that providing
robust guarantees for the problem of progress estimation is
impossible within the framework we consider.

Our worst case result shatters the hope that the proposed
estimators can be used universally and is in apparent con-
trast with the empirical results demonstrated in prior work.
However, we are able to characterize when and why we can
expect the previously proposed solutions to yield low errors.

We next ask the question whether there are other estima-
tors that can serve settings where prior estimators can have
high errors. We show that for the class of queries where
the average work done per “input” tuple (tuples at the leaf
of a query plan) is small, we can build a progress estima-
tor (pmax), which (1) is guaranteed to be an upper bound
on the progress, and (2) yields a low bound on the ratio
error. We empirically demonstrate through measurements
on benchmark and real data sets, that such cases are fairly
common in practice. We also propose an estimator (safe)
that is guaranteed to be worst-case optimal (i.e., no algo-
rithm is guaranteed to be more accurate in this setting). We
show through experiments that both the above estimators
can substantially improve the effectiveness of progress esti-
mation where the previously proposed techniques fall short.

Given this tool-kit of progress estimators, we then ask if
it is possible to combine them effectively so that we can
cover the settings addressed by each of them. We show that,
unfortunately, it is not possible to detect which setting we
are in and use the “right” estimator. Hence, it is not possible
to combine the above estimators to provably improve the
error bounds. In Section 6, we reflect on the question of
how we can effectively use these estimators in practice given
the empirical study that indicates that the “good” scenarios
are likely to be common.

An interesting observation is that the effectiveness of
progress estimation can depend on the set of physical op-
erators under consideration. By restricting the class of
physical operators to exclude those that perform nested
iteration, the effectiveness of all the above estimators prov-
ably improves in this setting. We also show this result
empirically.

Finally, we explore the connection between the problem
of progress estimation and related problems in query op-
timization, including cardinality estimation, join sampling,
and query reoptimization. We discuss why it is possible to
provide reasonably robust solutions for progress estimation
without requiring solutions for cardinality estimation, and
the potential implications of this on query optimization.

2. PRELIMINARIES
In this section we present our basic framework, in particular
we formalize the notion of a progress estimator and con-
cretely define information such estimators may be allowed
to use including optimizer statistics and observing execution
feedback. The high level relationship between the different
components is illustrated in Figure 1. We also define differ-
ent metrics in order to evaluate the “accuracy” of a progress
estimator.

2.1 Queries
As indicated in Figure 1, one of the inputs to a progress es-
timator is a query plan which is a tree of physical operators.
The set of operators we consider include scan, index-seek,

σ, π, ⊲⊳NL, ⊲⊳INL, ⊲⊳hash, ⊲⊳merge, sort, γ(group by).

2.2 GetNext Model
We use the model of work proposed in [5] which is based
on the number of getnext calls invoked in a query tree. The
notion of work used in [13] (based on the number of bytes
processed in the query tree) is very similar and the results in
this paper would be equally applicable to the other model.
For ease of exposition, we present the results for only the
getnext model in this paper.

The execution of a query Q is modeled as a sequence of
getnext calls across all operators, Seq(Q) = (g1, g2, . . . , gq),
corresponding to the standard iterator model of query ex-
ecution of Q in a typical database system. Assume that
total(Q) returns the total number of getnext calls issued by
query Q.

For any prefix s of Seq(Q), we define progress(s) =
|s|/total(Q), where we use |s| to denote the cardinality of s.
In addition to the getnext calls, we assume that the progress

Figure 1: Progress Estimator

estimator can observe any intermediate tuple values gener-
ated during partial query execution.

2.3 Database Statistics
A progress estimator can also use any available database
statistics in order to aid its estimation. A single-relation
statistics generator SG takes an instance of relation R as in-
put and produces a single-relation statistic SG(R). Single-
column histograms are examples of a single-relation statis-
tic. The database statistics are obtained by using the
single-relation statistics generator over each relation in the
database separately to produce a union of single-relation
statistics. We note that most commercial database systems
maintain statistics only on single tables without capturing
inter-table correlations. In this paper, we only focus on
single-relation statistics, noting that our results also carry
over in the presence of a bounded number of statistics over
views [1, 2].

Since the set of statistics is typically a small fraction of the
original relations, there is an inherent “loss” in information,
in other words, one can always modify a relation R such
that SG(R) remains the same. This notion is formalized
below. A single-relation statistics generator is defined to be
lossy if for any sufficiently large relation size N and any tuple
position i, there are instances R and R′, each with N tuples,

such that R′ can be obtained from R by changing the ith

tuple t ∈ R with values not currently present in the relation,
and both R and R′ produce the same statistic. Observe that
(single or multi-dimensional) histograms are lossy, since it
is possible to change the individual values in some bucket
without affecting the overall histogram. In this paper, we
only consider single-relation statistics that are lossy.

We allow the statistics generator to be deterministic (cov-
ering single-table histograms) or randomized (covering pre-
computed samples). For ease of exposition, however, we
present results only for the case when the statistics genera-
tor is deterministic. We note that all our results also apply
to randomized statistics generators (with a high probability
requirement).

2.4 Progress Estimators
We now formalize the notion of a progress estimator. Fix
any query Q and let s be a prefix of Seq(Q) (representing the
partial execution of Q). A progress estimator is a function
that takes as input Q, s along with the data returned so far
as a consequence of s, and the database statistics, to return

an estimate of progress(s).

Note that we do not restrict the time taken by the progress
estimator. However, the only part of the data the estimator
is allowed to access is the part returned by the sequence of
getnext calls so far. In particular, the estimator is not al-
lowed to run the query on the data instance (which would
make the problem trivial). Hence, if the instance changes
without changing the statistics and the sequence of get-
next calls seen so far, the progress estimator is constrained
to return the same value.

2.5 Guarantees
In order for a progress estimator to be fully “accurate”, it
needs to obtain the correct value for total(Q) before the
query starts executing. Observe that it is possible to com-
pute this value if a solution to the cardinality estimation
problem exists. Thus the progress estimation problem (un-
der our model of work) is trivially solved if a solution to the
cardinality estimation problem exists. In general, cardinal-
ity estimates are known to be erroneous [11]. To focus our
attention on such cases, we consider two weaker forms of
guarantees.

The first is the ratio-error requirement: for e ≥ 1, a progress
estimator is said to yield a ratio error of e if the estimate
is always within a factor of e of the real progress. The goal
of a progress estimator is to yield as small a ratio error
as possible. Of course, if cardinality estimates have a low
error, this requirement can be met. This could happen in
cases when accurate statistics are available on the data, and
propagation errors are low, for example, when the joins are
key lookups.

A weaker form of guarantee relaxes the notion of a ratio
error and looks at providing an interval which bounds the
actual progress. Of course, a trivial guarantee that can be
provided by any progress estimator is that the progress is in
the interval (0, 1). The bare minimum requirement for any
reasonable progress estimator is to better the trivial guar-
antee. One way to achieve this is by requiring the progress
estimator to return whether the progress is above or below
a certain threshold, say τ . For instance, an interface that
tells the user if the query progress is greater or less than
50% could certainly be useful. In addition, we allow a lit-
tle leeway, captured through a “grey area” indicator δ. A
progress estimator is said to satisfy the threshold require-
ment with threshold τ and error δ if the following holds: at
any instant, (1) if the progress is less than τ − δ, then it re-
turns an estimate in the interval (0, τ), (2) if the progress is
more than τ + δ, it returns an estimate in the interval (τ, 1).
If the progress is between τ − δ and τ + δ, the estimate is
allowed to be above or below the threshold. To illustrate,
let us consider for example τ = 0.5, and δ = 0.05. What
the threshold requirement says is that we must be able to
identify whether the progress is below or above 50%, give or
take the grey area of 5% on either side.

Notice that the threshold requirement is weaker than the
ratio error requirement. A progress estimator that satisfies
the ratio error requirement satisfies the threshold require-
ment with arbitrary τ and δ = τ.max(1 − 1/e, e − 1).

R2

R1

σ

Figure 2: Single Join Query

3. DIFFICULTY OF PROGRESS ESTIMA-
TION

In this section, we analyze what worst-case guarantees are
achievable for the progress estimation problem. We consider
the simplest scenario of a single join with selections. An ef-
fective strategy for this case is a prerequisite to realizing
the general goal of providing guarantees for complex SQL
queries. Unfortunately, it turns out that in this basic set-
ting, satisfying even the threshold requirement (Section 2.6)
is impossible. Consider the restricted class of linear joins,
where the size of the output is bounded by the larger of the
two inputs. Notice that this subsumes the common class of
key-foreign key joins. We illustrate the difficulty of progress
estimation through the following example.

Example 1.: Fix a progress estimator P . Consider the
query shown in Figure 2, where the selection σ is R1.A =
x or y and the join condition is R1.A = R2.B. Assume that
the join algorithm used is index nested loops join and the
appropriate index on relation R2 exists. In addition assume
that |R2| = 10|R1|.

Since the database statistics are lossy, there is an instance of
R1 such that some tuple t appearing after 90% of the tuples
in the relation has value x in column A and changing this
value to y does not affect the statistics. Suppose we fix R2

so that it has a large number of y values (say 9|R1| + 9) in
its (single) column B. Notice that we can do this without
changing the statistics for R1 since we only consider single-
relation statistics. The amount of work done for the query
could significantly vary depending on which of the two values
is actually present in relation R1. Depending on whether t.A
is x or y, the total number of getnext calls performed varies
from |R1| + 1 to 10|R1| + 10.

Consider the behavior of P at the instant before t is retrieved
from R1. P has to base its estimate on whether t.A is y or
not, if it hopes to be accurate. But the only information
P has is the execution trace seen so far, and the database
statistics. The execution trace seen so far does not reveal
anything about whether the next tuple to be retrieved has the
value x or y. Owing to our choice of x and y, the database
statistics also do not reveal whether t.A is going to be x or
y. At this point P has to guess one way or the other and
there will always be a case where it’s estimate is inaccurate.
Thus, if P biases its decision on the assumption that t could
have the value x, it must suffer from a large error should the
value turn out to be y, and vice versa.

For the above example, before t is retrieved, if the estimate

returned by P is less than 0.1, the error is high when t.A is
x (in which case the progress is around 0.9). On the other
hand, if the estimate is more than 0.9, then the error is high
when t.A is y (where the progress is less than 0.1).

Hence, P cannot address the ratio error requirement with
bound 9, nor even the threshold requirement with τ = 0.5
and δ as large as 0.4.

The above argument is formalized below.

Theorem 1.: For any 0 < τ < 1 and 0 < δ < 1, such
that 0 < τ −δ and τ +δ < 1, no progress estimator can meet
the threshold error requirement with threshold τ and error δ.

Proof: We give the proof for the deterministic case. The
proof for the randomized progress estimatoris analogous.
Fix a single-relation-statsprogress estimatorP as required in
the statement above. Let R11 and R12 be two instances of
relation schema R1 where R12 is obtained by changing ex-
actly one tuple t in R11, such that (a) their single-relation
synopsis is the same, (b) t appears after a fraction f2 of the
rows in R11. Let t be changed in column A from value v to
v′, where v′ is not present elsewhere in the relation. Let the
first column in R2 be B. Fill R2 with (f2

f1

− 1)|R11| rows

where each row has the value v′ in column B.

Now, consider the query scan(R1) ⊲⊳INL
R1.A=R2.B R2. Consider

the output of P when the first f2|R11| tuples in R11 have
been read. It must return a value ≥ f2, since R11 does not
join with any tuple in R2. However, when the first f2|R12|
tuples in R12 have been read, it must return a value ≤ f1,
since t joins with the whole of R2. But the first f2|R12|
tuples in R12 are the same as the first f2|R11| tuples in R11,
a contradiction, since the single-relation synopsis of both
R11 and R12 is the same. 2

Corollary 2.: For any e ≥ 1, no progress estima-
tor can meet the ratio error requirement with error bound
e.

Several observations are in order. First, while the above
example is presented for linear joins, the same result would
hold when R1.A is a key column and the index nested loops
join looks up R2.B to find matching foreign keys.

Second, this “adversarial” scenario is not only of theoretical
interest, it could occur in practice, for example, in a star
schema when rows selected from a small dimension table
after a selection are used to lookup the much larger fact
table. If the foreign key column in the fact table has a zipfian
distribution (known to be common in real data sets [16]), we
have the kind of situation described in the above example —
it is hard to decide if the key matching the high frequency
values in R2 will fail the selection or not.

Third, note that the argument in the example is carried out
for δ = 0.4 which is a high value for the “grey area”. In
fact, for this value of δ coupled with τ = 0.5, the threshold

requirement boils down to the following: at any given in-
stant, if the progress is less than 0.1, return (0, 0.9) and if
the progress is more than 0.9, return (0.1, 1). This is only
slightly better than the trivial guarantee of returning the in-
terval (0, 1). What our result shows is that given our frame-
work, in the worst case, it is impossible to achieve anything
even slightly better than the trivial guarantee of returning
the interval (0, 1).

Fourth, we can make several observations about the data
and query in the above argument: (1) the mean number of
tuples with which a tuple in R1 joins can be really high if
t.A has y, (2) there is an “offending” tuple, i.e., a tuple with
a high join skew, and the progress estimator has no way
to detect (either through database statistics or execution
feedback) if the “offending” tuple will participate in this
query, and (3) the join is an index nested loops join. The
question that arises is whether any of these properties of the
above argument can be relaxed to make progress estimation
effective. We address this question in the following sections.
We begin in the next section with the previously proposed
technique [5, 13] where empirical results demonstrate cases
that are amenable to effective solutions.

4. CHARACTERIZING PRIOR TECH-
NIQUE

As discussed above, empirical results in [5, 13] suggest that
several common cases in practice are amenable to reason-
able solutions. In this section, we characterize when the
previously proposed technique yields low errors. The esti-
mators proposed in [5, 13] are quite similar, and measure
the progress of a query by focusing on certain nodes in the
query plan, referred to as driver/dominant nodes. We begin
by reviewing this technique (referred to henceforth as the
dne estimator), and move on to our analysis, relating it to
the lower bound argument in Section 3.

4.1 Review ofdne

The dne estimator is based on the observation that an ex-
ecution tree can be decomposed into a set of pipelines that
execute in a partial order. The solution primarily focuses
on estimating the progress within a single pipeline, which is
then extended to complex queries.

In a serial execution of the query tree, a pipeline is a set of
concurrently executing operators (we refer the reader to [5,
13] for details). Common examples of pipelines are a ta-
ble scan followed by a sequence of filters, and a table scan
followed by index nested loops joins or a simple nested sub-
query. The example shown in Figure 2 is an example of a
single pipeline query.

The approach taken in [5, 13] is to identify the operator node
that acts as input to the pipeline (referred to as a segment
in [13]) 1. The pipeline is intuitively “driven” by the tuples
returned by this input node. As a result, this input node is
referred to as the driver node (the “dominant” node in [13]).
The dne estimator is based on using the fraction of the tuples
read at the input node as an estimate of the progress.

1In general, multiple nodes could be inputs to the pipeline.
We do not address that case in this paper

Definition 1.: Consider any instant during the exe-
cution of a single pipeline. The dne estimator returns the
fraction of the tuples read at the input node.

Thus, for example, in Figure 2, the input node is the table
scan of the outer R1. At any instant, dne estimates the
progress to be the fraction of R1 scanned.

4.2 Effect of Input Order
We now proceed to analyze the behavior of this approach.
Since the core of the dne estimator addresses the case of a
single pipeline, we restrict ourselves to single pipeline queries
in this section.

We illustrate the intuition behind the dne estimator through
the single pipeline query shown in Figure 2. As mentioned
above, the input node in this case is the table scan of R1, and
the estimate of progress at any instant is the fraction of R1

scanned. For each tuple in R1, the number of getnext calls
performed is 1 in order to scan the tuple, plus 1 plus the
number of tuples with which it joins in case it passes through
the selection. Let µ be the number of getnext calls performed
on the average per tuple in R1. Consider an instant during
the query execution. Let µcurr be the average number of
getnext calls performed on the average per tuple of R1 seen
so far. Intuitively, the dne estimator assumes that µcurr is µ,
from which it follows that the progress is the fraction of the
driver node scanned so far. Observe that this assumption
holds good when the tuples arrive at the driver node in a
“uniform” manner, and when the variance in the per-tuple
number of getnext calls is low. We formalize this intuition
as follows.

Let D be the input node of the pipeline under consideration.
We refer to the number of getnext calls performed for a given
tuple of D as the work done for that tuple. Let µ be the
average work done per tuple retrieved from D, and let var
be the variance in the work done. We have the following
result.

Theorem 3.: Consider an instant during query execu-
tion when k tuples have been processed out of the N tuples to
be retrieved from the input node D. Let prog be the progress
at this instant. Let err = |prog − dne| be the error yielded
by dne. If tuples are retrieved from D in random order,
then E(err) = 0. In other words, if tuples are retrieved in
random order, dne is expected to be accurate.

Proof: Since the tuples arrive in a random order, the subset
of tuples retrieved from D constitutes a random sample of
all the tuples to be retrieved from D. The result follows
from the Central Limit Theorem. 2

Hence, if the tuples are retrieved from the input node in ran-
dom order, then dne is expected to yield the correct value of
the progress. We note that previous work on online aggrega-
tion [6, 7, 8, 9] assumes that data is retrieved in a random
order, and so the random order assumption made by the
dne approach holds whenever online aggregation techniques
apply. A purely random order, while sufficient, is however
not necessary. Instead, it is enough if the order in which tu-
ples are retrieved from the driver node is independent of the

Query 1 (Mu =1.98, Var =0.01)

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90 100

Actual Progress

E
s
ti
m
a
te
d

P
ro
g
re
s
s

dne

Figure 3: The dne estimator for TPCH Query 1

number of getnext calls per tuple. For example, in Figure 2,
it is enough if the ordering of the tuples of R1 is independent
of the number of tuples in R2 with which it joins. This con-
dition can be met if the storage of R1 is determined purely
by its own properties.

In addition, by the Central Limit Theorem, Var(err) is pro-
portional to var

N
. Hence, the error of the dne estimate drops

as more of the tuples from the driver node are examined,
approaching zero as k approaches N . Indeed, if var is low,
then the dne estimate is tight and converges to the correct
value of the progress very soon. The value var can be low
when we are dealing, for example, with pipelines that only
consist of filters and index nested loop joins that look up
keys. In such a setting, where the difference between the
maximum and minimum amount of work done per tuple is
small, the dne estimator is likely to be very effective.

We next empirically examine whether the above characteri-
zation holds. The graph in Figure 3 shows the performance
of the dne estimator for Query 1 of the TPCH decision sup-
port benchmark [17]. We generated a 1 GB TPCH database
with a skew factor of 2 [18]. The graph plots the progress
as estimated by the dne estimator on the y axis and the
actual progress (according to the getnext model) on the x
axis. As the graph shows, the dne estimator is almost ex-
actly accurate. For this pipeline, it turns out that µ is 1.98
and var is 0.01, which is extremely small. This confirms
our intuition that the dne estimator would work well in such
scenarios. Note that this behavior is in spite of errors in
cardinality estimates (recall that the data has high skew).

On the other hand, a low value of var is required for fast
convergence (as confirmed by experiments in Section 5). We
next ask the question what happens when both assumptions
fail, i.e., var is high and the tuples retrieved from the driver
node aren’t in random order. Note that the lower bound ar-
gument sketched in Example 1 exploits this property: there
is a tuple that causes a high join skew and it appears late.
This question is pertinent since the data layout is typically
fixed before query execution, and hence, tuples are retrieved
in that order.

In this case, we examine if it is possible to bound the er-
ror after a fraction of the tuples from the driver node is
consumed. As discussed above, dne requires that the work
done per tuple seen so far reflect the overall average work

done per tuple. We introduce the notion of predictive orders
where this property holds after a certain point, fixed at 50%.
An order of retrieval of tuples from the driver node D is c-
predictive if after half the tuples have been retrieved from D,
the average work done per tuple so far is within a factor of c
of µ. In a predictive order, the average work done per tuple
is within a factor of the overall average after some point in
the execution. Several questions arise. First, what is the
effectiveness of dne given a predictive order. Second, how
frequent is a predictive order. We address these questions
below. First, we observe that:

Property 2. : Given a c-predictive order of D,
dne yields a ratio error of c after half the tuples in D
have been retrieved.

We next ask what fraction of orders are predictive. Fortu-
nately, it turns out this is a reasonable fraction, irrespective
of µ and var.

Theorem 4. : At least 1/2 the orders of D are 2-
predictive.

Coupled with Property 2, this implies that dne yields a ratio
error of at most 2 after half the tuples from the driver node
are retrieved, for at least 50% of all orders.

All the above results indicate that there are reasonable cases
where dne guarantees bounded error, at least after some frac-
tion of the input is consumed. This provides some intuition
behind the empirical results presented in [5, 13].

Among the factors influencing the lower bound argument,
the ones relaxed in this discussion was the variance in the
amount of work done per tuple and the input order. This
raises the question whether there are other scenarios not
addressed by dne where we can design progress estimators
that bound the ratio error. This is the question we address
next.

5. OPPORTUNITIES TO DO BETTER
We showed that the dne does well for single pipelines where
the variance in costs is small and the input order is favorable.
These relax only some of the properties of the argument pre-
sented in Section 3. In this section, we ask where we can
do better. We describe two progress estimators —pmax and
safe— that use bounds on the cardinalities to perform bet-
ter than the dne estimator in certain scenarios. We then
discuss how the problem of progress estimation can be sim-
plified when certain physical operators, involving those that
perform some form of nested iteration, are ignored.

5.1 Bounds on Cardinalities
Recall that our goal is to provide progress estimation with
formal guarantees on the error. In order to estimate total(Q)
for a query Q, we consider maintaining lower and upper
bounds on total(Q), instead of using the query optimizer’s
estimates which do not come with error intervals.

We maintain cardinality bounds for each operator in the
execution. For example, a table scan has lower and upper

bounds equal to the cardinality of the base relation, which
is accurately available from the database catalogs. As exe-
cution proceeds, these bounds can be refined. For example,
the lower bound for σ is at least the number of tuples re-
turned so far (“at least” since we could use histograms to
yield better bounds). For linear operators such as σ, π and
γ, the upper bound is at most that of its child node. In
addition, if we know that any of the join operators is lin-
ear, that is returns at most as many tuples as the larger of
its children, we can set its upper bound to be the larger of
the upper bounds of its children. This is the case, for ex-
ample with foreign key joins. We refer the reader to [5] for
more details on how these bounds can be maintained as the
execution proceeds.

5.2 The PMax Progress Estimator
The first estimator we describe uses the above bounds as
follows. At any point in the query execution, let Curr be
the current number of getnext calls across all operators in
the operator tree. Let LB be the sum of the lower bounds
for the total number of getnext calls across all nodes in the
operator tree. The pmax estimator assumes that only the
least amount of work is going to be done in the future.

Definition 3.: Consider an instant during query exe-
cution. The pmax estimator returns Curr

LB
.

Since pmax uses a lower bound on the actual cardinalities,
we have the following result (also the intuition behind the
name pmax).

Property 4.: Consider any instant during query execu-
tion. Let prog be the progress. We have that: prog ≤ pmax.

We now explain the properties of the pmax estimator
through an example.

Example 2.: Consider the index nested loops join ex-
ample in Figure 2. Suppose both R1 and R2 have 100,000
tuples each. Assume that the only tuple to pass through the
selection in R1 joins with 10,000 tuples in R2 and that the
other tuples fail the selection. Notice that for this query,
total(Q) = 100, 000 + 10, 000 + 1 = 110, 001.

The maximum error faced by pmax is when its estimate
of the total number of getnext calls is farthest from the
true value. The LB used by the pmax estimator is at
least 100,000 since the outer relation has to be scanned once
to evaluate this query. Thus, the ratio error for the pmax es-
timator is at most 1.1 (irrespective of the ordering of relation
R1).

To put this in perspective, we first contrast this setting with
the one in Example 1. Recall that in Example 1, the cardi-
nality of R2 is 10 times that of R1. As a result, if there is a
tuple in R1 that joins with a large number of tuples in R2,
it will dominate the cost, since there are not enough tuples
in R1 to “compensate”. On the other hand, in the current
example, there are enough tuples of R1 to be processed so

that even in the presence of join skew, pmax is able to effec-
tively estimate the progress. This is the intuition captured
by a small value of µ.

On the other hand, this is a data set where the variance
in the per-tuple work is high, since there is one tuple that
joins with 10,000 tuples of R2 whereas no other tuple even
passes through the selection. As a result, dne could yield high
errors for certain orderings of relation R1. For instance, if
the tuple that satisfies the predicate happens to be the first
tuple of R1, the correct value of progress (after the first tuple
is processed) is 10,000/110,001 whereas dne would calculate
the progress as 1/100,000, which would result in a huge ratio
error.

The above example highlights the intuition behind when
pmax is likely to be effective for progress estimation. We
formalize this intuition as follows. For a query tree, let Ls

be the set of leaves that are scanned (exactly once). We
know then that LB ≥ Σi∈Ls

Li where Li is the cardinality
of leaf i.2

Define µ = total(Q)/Σi∈Ls
Li. Intuitively, µ is the average

number of getnext calls performed during the entire query
execution per “input” tuple. For the single pipelines consid-
ered in Section 4, this reduces to the notion of µ introduced
there. In particular, for the example in Figure 2, µ is the
average number of getnext calls performed per tuple of R1.
We have the following:

Theorem 5.: Consider any instant during query exe-
cution. Let prog be the progress. Then: prog ≤ pmax ≤
µ · prog. In other words, pmax is within a factor of µ of the
correct progress.

Proof: The proof follows from the fact that the lower
bound is at most a fraction of 1/µ of the correct number
of getnext calls. 2

This result states that pmax is effective as a progress esti-
mator when µ is small. Observe that the above guarantee
depends only on µ and holds irrespective of the variance
in the “per-tuple costs”. In cases where µ is small and the
variance is high, the pmax estimator is likely to substantially
outperform the dne estimator.

We now illustrate this with an experiment performed on Mi-
crosoft SQL Server 2005 (Beta 2). We base our experiment
on a synthetic data set that introduces a skew in the “work
done” per tuple. For this purpose, we generate two rela-
tions R1(A) and R2(B), both containing 10,000,000 tuples.
The tuples of R2(B) are generated using the zipfian distri-
bution on the join attribute which is known to commonly
occur in practice. The zipfian parameter z is set at 2. On
the other hand, the values in R1(A) are unique. The vari-
ance in the per-tuple cost is achieved simply by joining R1

with R2 through index nested loops, using a plan similar to
the one shown in Figure 2. The µ value for this query is 2.

2For a leaf operator that is a range scan on a clustered in-
dex, lower bounds can be obtained by looking at appropriate
bucket boundaries in histograms

0

20

40

60

80

100

0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
8
0
9
0
1
0
0

Actual Progress

E
s
ti
m
a
te
d
 P
ro
g
re
s
s

pmax

dne

Figure 4: pmax vs dne

However, the variance in per-tuple costs is high since the
join column in R2 follows a zipfian distribution. Analogous
to the discussion in Example 2, consider an ordering of R1

where the elements that cause a high join skew appear at
the very beginning. In this setting, as argued in Example 2,
the dne estimator tends to substantially underestimate the
progress. Figure 4 shows how these estimators perform for
this query. As the graph indicates, the pmax estimator is
more effective while the dne estimator substantially under-
estimates the progress.

We note here that while the above experiment is carried out
for a single join query, the underlying behavior of the data
and query, where the value of µ is small, but the variance
in per-tuple costs is high, could easily be part of a more
complex query. The pmax estimator is an effective choice
for such cases. In Section 6, we investigate how small the
values of µ are, over both benchmark and real data sets.

So far, we have shown that the problem of progress estima-
tion can be effectively addressed in scenarios obtained by
restricting some of the properties of the lower bound argu-
ment in Section 3. The lower bound results indicate that
when these “interesting” subclasses don’t apply, then the
progress estimator cannot provide effective guarantees. In
the next section, we revisit the worst case and ask if we can
limit the error obtained.

5.3 The Safe Estimator
Let us revisit the scenario described in Example 1. The key
problem that a progress estimator faces when it is about to
retrieve the next tuple from R1 is whether this tuple is go-
ing to cause a lot of getnext calls or very few getnext calls
or somewhere in between. The dne estimator takes the ap-
proach of saying the present is an indicator of the future, and
so the next tuple is going to produce as many getnext calls
as the current per-tuple average. The pmax estimator, on
the other hand, simply assumes that the next tuple produces
minimal number of getnext calls. Both these estimators suf-
fer when their prediction is way off the mark, as in the lower
bound argument (Example 1), where the tuple t produces
a huge number of getnext calls. The reason is that they do
not account for the possibility that their assumptions about
the future tuples may be totally wrong. In this section, we
introduce the safe estimator that is prepared for the possi-
bility that the future could be completely different from the
execution trace seen so far.

The safe estimator also uses the bounds maintained on car-
dinalities discussed in Section 5.1. At any point in the query
execution, let Curr be the current number of getnext calls
across all operators in the operator tree. Let LB be the sum
of the lower bounds for the total number of getnext calls
across all nodes in the operator tree and UB be the corre-
sponding sum of the upper bounds.

Definition 5.: Consider an instant during query exe-
cution. The safe estimator returns Curr√

LB×UB
.

Observe that the ratio error yielded by the safe estimator

is at most
√

UB
LB

. Consider the lower bound argument in

Example 1. The essence of the argument is that the presence
or absence of a single tuple can determine whether the sum
of all the operator cardinalities approaches the lower bound
or the upper bound. It is impossible to detect the presence or
absence of a single tuple from the database statistics and the
execution feedback. The safe estimator hence plays it “safe”
by assuming that either of the two bounds is attainable. The
following result shows that this is indeed worst-case optimal.

Theorem 6. : No progress estimator can guarantee a
ratio error lower than the safe estimator in the worst case.
In other words, safe is worst-case optimal.

Proof: This result follows from the proof of Theorem 1 as
follows. There is a query and the set of instances considered
in that proof. On at least one of the instances, any progress
estimator has a higher ratio error than safe. Hence, there
is at least one query and one instance where any progress
estimator yields higher error than safe. 2

Note that the safe estimator deals with the kind of scenario
described in Example 1 by assuming that both the extremes
are possible in future, and taking a “middle” road to mini-
mize the worst-case error. We now show experimentally how
this estimator can substantially improve upon the dne esti-
mator when the worst case behavior takes place. We use the
same experimental setup as in the previous section (relations
R1(A) and R2(B)). Consider (R1 1 R2) where the join al-
gorithm is index nested loops (with R1 as the outer). Recall
that while R1 has unique values in its column A, the distri-
bution of R2(B) is zipfian. Consider the ordering of relation
R1 where the element that joins with the most number of
tuples occurs at the end. At the instant before this tuple is
retrieved, the dne estimator forecasts that the query is al-
most finished thus overestimating the progress, whereas this
tuple joins with a lot of tuples in R2, thus causing a large
number of getnext calls. The safe estimator, on the other
hand accounts for this possibility and yields substantially
lower error, as shown in Figure 5. We note that on this in-
stance, the pmax estimator would behave almost identically
to the dne estimator.

In this section, we presented an estimator (safe) which is
worst-case optimal. We also showed empirically that this es-
timator could perform substantially better than the dne es-
timator for the worst case. We examine the lower bound
argument again to note that the argument is carried out us-
ing the index nested loops join algorithm. Thus, one of the

0

20

40

60

80

100

0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
8
0
9
0
1
0
0

Actual Progress

E
s
ti
m
a
te
d
 P
ro
g
re
s
s

safe

dne

Figure 5: worst-case order

possibilities in addressing the lower bound in Section 3 is to
simply ask if it is a property of the specific physical operator
considered. We consider this option next.

5.4 Scan Based Queries
One property of the lower bound argument in Section 3 is
that the join method used is index nested loops. This gives
rise to the question whether the crux of the argument is
specific to this particular join method. Does the nature of
the progress estimation problem change in the absence of
this operator? We investigate this question in this section.

We begin with an example involving a hash join and study
what happens.

Example 3. : Consider the two-way join

(R1 ⊲⊳Hash
R1.A=R2.B R2, where R1 is the build side. As-

sume that the join is linear, that is that the output size
is at most that of the larger input. Also assume that, as
in Example 1, |R2| > |R1|. Query execution would start
with a build phase where relation R1 is scanned followed
by a probe phase in which relation R2 is scanned. There
is a crucial difference in this setting contrasting it with
the setting described in Section 3. The key is that both
R1 and R2 are scanned. As a result, the total number of
getnext calls lies between |R1| + |R2| and 2(|R1| + |R2|).

On this instance, safe yields a ratio error of at most
√

2,
while pmax yields a ratio error of at most 2, since µ ≤ 2.
Hence, changing the physical join operator makes it possible
to bound the error in progress estimation.

The key in the above example is that both the inputs to
the join are fully scanned. Indeed, if the join operator is
a sort-merge join where each input is sorted, we obtain a
similar result. We generalize this to the class of what we
call scan-based queries.

A scan based query is defined to be defined to be opera-

tor trees without operators ⊲⊳NL, ⊲⊳INL and index-seek i.e.,
operators performing some form of nested iteration. Scan-
based operator trees have the property that each leaf node
is scanned (exactly once). We assume linear operator trees,
where each operator is linear, that is has the property that
its result size is at most the size of the largest of its inputs.

Note that σ, π, γ, and foreign key joins are all linear opera-
tors. Scan-based queries are quite common in decision sup-
port environments, especially with adhoc queries. In fact,
many of the benchmark queries in the TPCH benchmark
produce plans that are scan-based.

Let the operator tree have m internal nodes. Let Li, 1 ≤ i ≤
l be the cardinalities of the leaf nodes in the operator tree.
Observe that:

LB ≥ Σl
1Li

UB ≤ Σl
1Li + m.max(Li) by linearity

Setting L1 = max(Li) and α = Σl
2Li, we get

UB ≤ L1(m + 1) + α ≤ (m + 1)LB

As a result, we have the following properties of scan-based
queries.

Property 6.: Consider a scan-based query with m in-
ternal nodes.

1. µ ≤ (m + 1)
2. The safe estimator yields a ratio error of at most√

m + 1

It follows that pmax yields a ratio error of at most m+1. By
constraining dne to be within the upper and lower bounds
on the progress, we find that dne also yields a ratio error of
at most m + 1.

Given that in the presence of nested iteration, we cannot
even achieve even the threshold guarantee (Section 3), the
above result shows that the problem becomes worst-case
tractable in the absence of nested iteration. We also note
that the above bounds are worst-case, and errors are likely
to be much smaller in practice. Next, we empirically study
the improvement obtained by restricting the class of physical
operators.

Recall that our experiment in Section 5.3 involving relations
R1(A) and R2(B) illustrates the worst case behavior of the
dne estimator, and also the pmax estimator. This happens
when the element that causes high join skew appears at the
end of R1 and both the dne and pmax estimators do not ac-
count for this. We study the effect of scan-based operators
simply by reusing the same setup and repeating the experi-
ment with a hash join instead of an index nested loops join.
We then compare the effectiveness of each of the estimators
under consideration between the two cases. Table 1 reports
the results of our experiment. Clearly, there is a substan-
tial improvement when we move to a scan based plan. We
also note that this property holds for all the estimators we
consider.

To summarize the results in this section, we began with the
lower bound argument and found that by relaxing some of
the properties of the argument, we are able to design ef-
fective progress estimators for different scenarios. We now
move on to study whether it is possible to combine the
progress estimators we have described so far to obtain one
that addresses all the above scenarios.

Progress Max Err Max Err Avg Err Avg Err
Estimator (INL) (Hash) (INL) (Hash)

dne 49.50% 19.20% 24.74% 7.37%
pmax 49.50% 19.20% 24.74% 9.04%
safe 25.2% 8.2% 14.8% 4.2%

Table 1: Impact of Scan-based Plan

6. WHICH ESTIMATOR TO USE?
Section 3 shows that no progress estimator can guarantee
low error bounds across all data and query distributions.
However, Sections 4 and 5 discuss different progress estima-
tors that address various scenarios obtained by relaxing the
properties of the argument in Section 3. Previous work has
shown that there are common cases where the dne estimator
is effective. We begin by empirically showing that “good”
cases for the pmax estimator are also common in practice.
On the other hand, the safe estimator is worst-case optimal.
This leaves us with the question of which of these estimators
to use which we elaborate in this section.

6.1 Scenarios in Practice
We first address how common are the scenarios that favor
the estimators we discuss. Previous work [5, 13] has shown
cases in practice where the dne estimator is effective. Recall
that the safe estimator targets worst case scenarios. What
about the pmax estimator? Are the cases where µ (recall
that this is the average “work” performed per input tuple,
as defined in Section 5) is small common in practice? We
address this question in this section.

Intuitively, in adhoc decision support queries, we expect that
a large amount of data is scanned in order to compute a rel-
atively small number of aggregates. This leads us to expect
relatively small values of µ for such data sets. We confirm
this intuition with measurements over two data sets. One
is the TPCH decision support benchmark [17], generated
with a skew factor of 2 [18], and its associated benchmark
queries. The other is the personal edition of the Sky Server
database [4] which is a real-life astronomical database, which
comes with a suite of 35 queries. The data sizes in both cases
is 1GB.

Table 2 illustrates the µ values for the benchmark queries
in the TPCH suite. Table 3 illustrates the same for the
long running queries from the Sky Server data set. As the
numbers indicate, there are many cases when the µ value is
extremely small. For example, query 4 in the TPCH bench-
mark suite has a value of µ = 1.003. For this query, the
maximum ratio error yielded by the pmax estimator is 1.003.

Consider cases where the µ value is higher, for instance
TPCH Query 21, a complex query with multiple subqueries.
Even here, the continuous refinement of the bounds on car-
dinalities means that the pmax estimator catches up with
the actual progress as execution proceeds. Figure 6 shows
how the ratio error drops as query execution proceeds for
Query 21. We can see that the error drops to a small value
(around 1.5) after a reasonable fraction (around 30%) of the
query is done, soon converging to 1 as the query executes
further.

Query µ Value
1 1.989
2 1.213
3 1.886
4 1.003
5 1.007
6 1.008
7 1.538
8 1.432
9 1.021
10 1.004
11 1.014
12 1.001
13 2.019
14 1.001
15 1.149
16 1.157
17 1.020
18 2.771
19 1.025
20 1.159
21 2.782

Table 2: µ values for TPCH

Query µ value
3 1.008
6 1.428
14 1.078
18 1.79
22 1.246
28 1.044
32 1.253

Table 3: µ values for Sky Server

6.2 Is One Estimator Enough?
In this section, we ask the question if there is a clear winner
among the three estimators we have discussed so far.

Our experiments in Section 5 show that there are scenarios
likely to occur in practice where the pmax and safe estima-
tors are substantially more effective than the dne estimator.

What about the pmax estimator? Consider TPCH Query 1,
where we showed previously that the dne estimator is very
effective (Figure 3), with an average error of less than 1%).
On this query, the pmax algorithm results in an average
error of around 11%. The fact that the variance in per-
tuple “costs” is small is not exploited by the pmax estimator,
whereas if the variance is indeed small as it is for this query,
the dne estimator is very effective.

What about safe? It has the property of worst-case opti-
mality. How bad can it be with respect to the dne in cases
favorable to the dne estimator. We study this using the
same setup used to show where safe is more effective than
dne. Figure 5 illustrated the tradeoff between the dne and
safe estimators for the worst case. Consider the same join
query (between tables R1 and R2) with an additional pred-

TPCH Query 21

0

0.5

1

1.5

2

2.5

3

0 10 20 30 40 50 60 70 80 90 100

Actual Progress

R
a
ti
o
 E
rr
o
r

pmax

Figure 6: Ratio error of pmax over query execution

0

20

40

60

80

100

0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
8
0
9
0
1
0
0

Actual Progress
E
s
ti
m
a
te
d
 P
ro
g
re
s
s

safe

dne

Figure 7: safe vs. dne

icate on relation R1 that filters out the high skewed tuples
in R1. As a result, very few tuples will actually join; thus
the variance in the per-tuple work is negligible. Figure 7
recasts the performance of the two algorithms (dne, safe) in
this scenario; dne is almost exactly accurate in this case (as
expected) while the safe estimator is off by 20% even at the
end. This illustrates the point that while the safe estima-
tor is worst-case optimal, it’s accuracy could suffer in cases
favorable to the other estimators we discuss.

The main observation we make from this discussion is that
there is no clear winner among the estimators we have dis-
cussed. Hence, we are left with a tool-kit of three estimators,
which have the following properties: one is a “safe” estima-
tor that is prepared for the worst case. The others make
assumptions about the query and data characteristics, and
are very effective when those assumptions hold. Our empir-
ical evidence indicates that these assumptions often hold in
practice. But, of course, both these estimators could yield
large errors in the worst case. We also recall from Section 3
that the worst case behavior is quite likely in practice. How
do we then fix an estimator? Can we at least detect when
to switch among these estimators? We address this question
next.

6.3 Detecting which estimator to use
Among the three progress estimators we discuss, the dne es-
timator is geared toward single pipelines where the variance
in the per-tuple cost is low, or at least the order is predictive
(as defined in Section 4) so that the estimator can converge
after processing a fraction of the input. On the other hand,

the pmax estimator is geared toward cases where the mean
per-tuple cost is small. The safe estimator does not assume
anything about the data and accounts for the worst case.

In order to be able to use the above estimators for the spe-
cific settings they target, the least we must be able to do is to
detect these settings. We show next that unfortunately, this
is not possible. The intuition behind these results is similar
to the argument in Section 3. Recall that in Example 1,
a progress estimator is unable to decide whether the next
tuple to be retrieved joins with a large number of tuples or
not. Note that depending on whether this tuple joins with
a large number of tuples or not, the value of the “per-tuple
average” µ would undergo a large change too. We formalize
this through the following result.

Theorem 7.: Consider a query tree Q. For any c ≥ 1,
no progress estimator can estimate µ within a factor of c.

Proof: Follows from the proof of Theorem 1. 2

Similarly, recall that the dne estimator primarily focuses on
single pipelines and relies on the input order having “pre-
dictive” properties. We next ask whether it is possible to
detect whether the input order is predictive, in which case
Property 2 tells us that the dne estimator is effective. Again,
the same intuition used for the argument in Section 3 also
explains why no progress estimator can detect whether the
input order is predictive or not — if the next tuple joins
with a large number of tuples, then the input order is not
predictive, and if not, then the input order is predictive. We
formalize this intuition through the following result.

Theorem 8. : Consider a single pipeline query. Fix
constant c > 1. Even after half the tuples are retrieved from
the input node, no progress estimator can determine whether
the input order is c-predictive or not.

Proof: Follows from the proof of Theorem 1. 2

Given these results, the only option we are faced with is to
identify heuristic approaches to combine these estimators.
We next discuss some possible approaches that can be taken.

6.4 Combining the estimators
The previous sections have outlined a tool-kit of estimators
that consist of one worst-case optimal “safe” estimator and
two other estimators, each of which addresses scenarios that
we have demonstrated occur often in practice. We also have
results that show that no single algorithm can perform well
across the spectrum and that, in particular it is not pos-
sible to formally improve effectiveness by switching among
these algorithms at runtime. Hence the choice must be made
heuristically based on query and data characteristics.

Using the execution of the query so far or over a sliding win-
dow to gather information is a useful direction to consider.
This could be used to find out whether µ is small, whether
the variance in per-tuple costs is small, and whether the
input order is predictive (in the case of single pipelines).
Based on the behavior of the query so far, we can think of

ways of switching between the estimators. For example, one
can even think of a hybrid algorithm that uses the safe es-
timator but switches to the pmax estimator for the current
pipeline if the value of µ is small.

Other approaches could be based on the properties of the
specific physical plan. For example, for queries involving
queries involving simple filter predicates and key lookup
joins, the variance in per-tuple costs is likely to be low. In
such cases, the dne estimator is likely to be the best choice.

Another promising direction is to use inter-query feedback,
either across different runs of the same query, or across runs
of similar looking physical plans. This could be used to
bound the values of µ, the values of the variance, or even to
detect whether the tuple arrival order is predictive.

We intend to study the possibilities of some of the above
approaches in detail as part of future work.

7. DISCUSSION
In this section, we explore the relationship between progress
estimation and some of the traditional problems of query
optimization [10] such as cardinality estimation, join sam-
pling [3] and query reoptimization [12, 15].

The model of work used in this paper is based on the num-
ber of getnext calls. Notice that under this model, if a solu-
tion to cardinality estimation exists, the progress estimation
problem is trivially solved (since accurate estimates at each
individual node are available). We presented some interest-
ing subclasses where effective estimators are available. It
is important to note that the errors in cardinality estima-
tion could remain in such cases. For instance, we showed
in certain cases the µ values for the TPCH database (even
with skew 2) could be small making it an effective case for
progress estimation. However, since the skew factor is high,
the errors in the cardinality estimates are off by orders of
magnitude. A similar case arises for TPCH Query 1 (which
has low variance), where the dne estimator can perform well
in spite of the errors in cardinality estimation. The key dif-
ference is the fact that progress estimation (as defined by the
getnext model) only needs accurate estimates for the sum of
the cardinalities at all nodes and does not require accurate
estimate at each individual node.

Interestingly, as seen from our discussion in Section 5, it
turns out that the nature of join algorithm used in the final
plan can strongly influence the robustness of progress esti-
mation. This is not the case for problems such as cardinality
estimation and join sampling, which are independent of the
algorithm used by the join operator.

There has been work in the context of query reoptimization
where the optimizer recomputes the cardinality estimates at
runtime in order to change the current plan. If the recom-
puted cardinality estimates are accurate, it could obviously
be used for progress estimation. Typically, such systems
reinvoke the optimizer cost functions to derive the new esti-
mates; as a result errors due to simplistic assumptions (e.g.,
independence between predicates) would remain. Moreover,
the optimizer estimates come with no guarantees which is
the focus of this work. The estimators proposed in this paper

relied on maintaining bounds on cardinalities at runtime. It
would be interesting to examine the use of similar bounds
for the purpose of query reoptimization.

Moreover, we are able to exploit in addition to everything
else, the order in which tuples are processed, which is again
in contrast with cardinality estimation and join sampling.
As a result, if we assume that tuples arrive in a random
order, it is possible to provide accurate solutions to progress
estimation in certain cases. There has been prior work in
the context of online aggregation which propose specialized
operators (e.g., ripple joins) in order to provide a random
order. The dne estimator is guaranteed to work well for such
operators.

Query optimizers have traditionally worked on throughput
or response time metrics. Some optimizers have the abil-
ity to optimize queries for the “first-tuple” metric. In this
paper, we showed that the join algorithm could be an impor-
tant factor in the robustness of a progress estimator. The
interface to the user could be an important factor while
choosing query plans. Exploring further connections be-
tween query optimization and progress estimation is future
work.

8. CONCLUSIONS
The focus of this paper has been to characterize the query
progress estimation problem introduced in [5, 13] so as to
understand what the important parameters are and under
what situations can we expect to have a robust estimation
of such progress. We have good and bad news.

The bad news is that providing any nontrivial guarantee in
a worst-case sense for even single join queries is not possible.
We presented an algorithm (safe) that can provide the best
possible error guarantees for the worst-case. The good news
is that by placing appropriate restrictions on the query/data
characteristics, we can design effective estimators. We show
where previously proposed solutions (based on the concept
of driver/dominant node) lie in this spectrum. We also il-
lustrate the fact that these “good” cases are fairly common
in practise (using real and benchmark data sets).

It turns out that there is an interesting tradeoff between
these algorithms. While the estimators dne and pmax can
have high errors in the worst case, the safe estimator can
perform poorly in the “good” cases. Thus, there is no sin-
gle estimator that can cover the whole spectrum. We also
showed that it is not possible to choose one of these esti-
mators dynamically. This leads to a tool-kit of estimators;
we explored some initial ideas on choosing an appropriate
estimator and intend to develop further heuristics based on
query/data characteristics as part of future work.

9. REFERENCES
[1] S. Acharya, P. Gibbons, V. Poosala, and

S. Ramaswamy. Join synopses for approximate query
answering. In SIGMOD, 1999.

[2] N. Bruno and S. Chaudhuri. Statistics on query
expressions. In SIGMOD, 2002.

[3] S. Chaudhuri, R. Motwani, and V. Narasayya. On
random sampling over joins. In SIGMOD, 1999.

[4] S. Chaudhuri and V. Narasayya. The sky server
database. http://skyserver.sdss.org.

[5] S. Chaudhuri, V. Narasayya, and R. Ramamurthy.
Estimating progress of long-running queries. In
SIGMOD, 2004.

[6] P. Haas. Large-sample and deterministic confidence
intervals for online aggregation. In SSDBM, 1997.

[7] P. Haas and J. Hellerstein. Ripple joins for online
aggregation. In SIGMOD, 1999.

[8] P. Haas, J. Naughton, S. Seshadri, and A. Swami.
Selectivity and cost estimation for joins based on
random sampling. Journal of Computer and System
Sciences, 1996.

[9] J. Hellerstein, P. Haas, and H. Wang. Online
aggregation. In SIGMOD, 1997.

[10] Y. Ioannadis. Query optimization. ACM Computing
Surveys, 1996.

[11] Y. E. Ioannidis and S. Christodoulakis. On the
propagation of errors in the size of join results. In
SIGMOD, 1991.

[12] N. Kabra and D. DeWitt. Efficient mid-query
re-optimization of sub-optimal query execution plans.
In SIGMOD, 1998.

[13] G. Luo, J. Naughton, C. Ellmann, and M. Watzke.
Towards a progress indicator for database queries. In
SIGMOD, 2004.

[14] G. Luo, J. Naughton, C. Ellmann, and M. Watzke.
Increasing the accuracy and coverage of SQL progress
indicators. In ICDE, 2005.

[15] V. Markl, V. Raman, D. E. Simmen, G. M. Lohman,
and H. Pirahesh. Robust query processing through
progressive optimization. In SIGMOD, 2004.

[16] V. Poosala and Y. E. Ioannidis. Balancing histogram
optimality and practicality for query result size
estimation. In SIGMOD, 1995.

[17] The TPCH Benchmark. http://www.tpc.org.

[18] Program for TPC-D Data Generation with Skew.
ftp://ftp.research.microsoft.com

/users/viveknar/tpcdskew.

