
Symbolic String Transformations with Regular

Lookahead and Rollback

Margus Veanes

Microsoft Research
margus@microsoft.com

Abstract. Implementing string transformation routines, such as en-
coders, decoders, and sanitizers, correctly and efficiently is a difficult
and error prone task. Such routines are often used in security critical
settings, process large amounts of data, and must work efficiently and
correctly. We introduce a new declarative language called Bex that builds
on elements of regular expressions, symbolic automata and transducers,
and enables a compilation scheme into C, C# or JavaScript that avoids
many of the potential sources of errors that arise when such routines
are implemented directly. The approach allows correctness analysis us-
ing symbolic automata theory that is not possible at the level of the
generated code. Moreover, the case studies show that the generated code
consistently outperforms hand-optimized code.

1 Introduction

Recent focus on string analysis is motivated by the fact that strings play a cen-
tral role in all aspects of web programming. As soon as you visit a web page
or read a file, several encoders, decoders and sanitizers launch for different pur-
poses. Some coders are related to data integrity and format, such as UTF8
encoding and decoding that translates between standard text file representation
(UTF8) and standard runtime memory representation (UTF16) of Unicode char-
acters. Other encoders, called sanitizers, are used to prevent cross-site scripting
(XSS) attacks; typical examples are Html encoder and Css encoder. While for
such coders, basic functional correctness criteria is often vital for security, it
may be notoriously difficult to implement them correctly or even reason about
such correctness criteria [3, 13]. One reason behind this difficulty is the subtle
semantics resulting from a combinaton of arithmetic with automata theory. In-
dividual characters are represented by integers and operations over characters
often involve arithmetic operations such as bit-shifting and modulo arithmetic.
Automata theory, on the other hand, is used overs strings (sequences of char-
acters) to check for possible input or output patterns that may cause security
vulnerabilities. Encoding related security vulnerabilities have been exploited for
example through over-encoding [20, 18], double-encoding [19], and XSS attacks.
Some recent work has studied sanitizer correctness by utilizing automata tech-
niques [16, 6, 17], including Bek [13] that our current work builds on.

Here we introduce a language called Bex. The main features of Bex that
make it more expressive and succinct than Bek are: 1) regex lookahead for pattern
matching that removes the burden of having to explicitly encode state machines;
2) default rules to specify what happens when a normal rule fails. In contrast,
Bek supports only single-character guards and construction of default rules is
then trivial by using the disjunction of all the negated guards from a given state
as the guard of the default rule from that state.

Example 1. Consider the following Bex program B. B decodes two-digit html
decimal encodings. The first rule, with pattern P0 = "�", states that
the null character must not be decoded. The second rule, with pattern P1 =
"&#[0-9]{2};", is the normal decoding case. The third rule, with pattern P2 =
"&#$", uses the end-anchor $ so it applies only if the match occurs at the end
of the input. The fourth rule is a default rule, it applies only when no other
rule applies and it always reads a single character while a normal rules read k
characters at a time with k being the length of the matched input.

program B { "�" ==> "�";

"&#\d\d;" ==> [(10*(x2-48))+(x3-48)];

"&#$" ==> "&#";

else ==> [x0]; }

Consider the input u = "&�&&#". No pattern matches initially, both
P0 and P1 match from position 1, P1 matches from position 6, and P2 matches
from position 11. For the overlapping case, Pi has priority over Pj for i < j. So

B(u) = "&"+ "�"+ [(10∗(’3’−48))+(’8’−48)] + "&#" = "&�&&#"

where the ASCII character codes are ’&’ = 38, ’3’ = 51 and ’8’ = 56. ⊠

Bek programs were originally compiled into symbolic finite transducers or
SFTs [13]. Unlike sanitizers, a direct representation of decoders with SFTs is
highly impractical due to state space explosion [24]. Even when registers are
added to Bek and symbolic transducers with registers (STs) are being used, di-
rect representation with Bek and STs is still very cumbersome and error prone,
as illustrated by the representation of HTMLdecode (corresponding to B) in [24,
Figure 7]. The need to read several characters at once without storing them in
registers and without introducing intermediate states, motivated the introduc-
tion of extended symbolic finite transducers (ESFTs) [8], that add support for
lookahead. However, unlike in the classical case where lookahead can effectively
be eliminated [26, Theorem 2.17], analysis of ESFTs does not reduce to anal-
ysis of SFTs and requires, for decidability, further restriction to the Cartesian

case [7] where guards are conjunctions of unary predicates. Regexes such as P1 in
Example 1 naturally give rise to Cartesian guards, e.g., P1 represents the guard
λx̄.(x0 = ’&’ ∧ x1 = ’#’ ∧ ’0’ ≤ x2 ≤ ’9’ ∧ ’0’ ≤ x3 ≤ ’9’ ∧ x4 = ’;’). The

guard is Cartesian because it has the form λx̄.
∧|x̄|
i=1 ϕi(xi).

Cartesian ESFTs are still a powerful extension of SFTs because outputs may
depend on multiple variables and use nonunary functions. For example, the sec-
ond rule of B in Example 1 has the output function λx̄.[10 ∗ (x2− 48)+x3− 48].

2

The main difficulty with Bex is how to efficiently deal with default rules. A
naive implementation of the semantics of bex, e.g., by using a regex matching
library, is far too inefficient. For example, the full version of HtmlDecode re-
quires 280 rules. One approach would be to eliminate default rules by adding
more normal rules in an attempt to transform Bex programs to ESFTs. For ex-
ample, we could add the rule "&[^#&]" ==> [’&’,x1] to cover the case when
the matched subsequence starts with & but is not followed by # or &. Continuing
this transformation quickly leads to an explosion of cases and requires interme-
diate states, obfuscating the semantics and defeating the purpose of the concise
declarative style of Bex.

Instead, we provide here a novel compilation scheme from Bex programs to
an intermediate form called symbolic rollback transducers SRTs that are subse-
quently compiled into STs. SRTs use lookback to avoid state space explosion.
For example, an SRT may treat the pattern "&#\d{6};" of an html decoder
using nine transitions rather than 100k transitions required by an SFT; once it
successfully matches the pattern it refers back to the characters in the matched
input, similar to k-SLTs [5]. SRTs incorporate the notion of rollback in form of
rollback -transitions not present in STs [24], ESFTs [8] or k-SLTs [5], to accom-
modate default or exceptional behavior.

To summarize, this paper makes the following contributions:

– Bex : a new declarative language for specifying string coders;
– SRTs : a variant of ESFTs with the capability of rewinding the input tape;
– Algorithm for compiling bex programs into SRTs.

As a key component the algorithm makes use of the recent algorithm for mini-
mizing SFAs [9].

2 Symbolic automata

In this section we introduce the basic concepts of symbolic automata that we are
using in this paper. A key role is played by symbolic representation of alphabets
as effective Boolean algebras. An effective Boolean algebra A has components
(D, Ψ, [[]],⊥,⊤,∨,∧,¬). D is a nonempty r.e. (recursively enumerable) set of do-
main elements. Ψ is an r.e. set of predicates closed under the Boolean connectives
and ⊥,⊤ ∈ Ψ. The denotation function [[]] : Ψ → 2D is r.e. and is such that,
[[⊥]] = ∅, [[⊤]] = D, for all ϕ, ψ ∈ Ψ, [[ϕ ∨ ψ]] = [[ϕ]] ∪ [[ψ]], [[ϕ ∧ ψ]] = [[ϕ]] ∩ [[ψ]],
and [[¬ϕ]] = D \ [[ϕ]]. For ϕ ∈ Ψ, we write IsSat(ϕ) when [[ϕ]] 6= ∅ and say
that ϕ is satisfiable. The intuition is that A is represented programmatically as
an API with corresponding methods implementing the components. We use the
following symbolic alphabets.

2k is the powerset algebra with domain {n | 0 ≤ n < 2k}. Case k = 0 is trivial
and is denoted 1. For k > 0, a predicate in Ψ2k is a BDD of depth k.1 The

1 The variable order of the BDD is the reverse bit order of the binary representation
of a number, thus, the most significant bit has the lowest ordinal.

3

Boolean operations are the BDD operations. The denotation [[β]] is the set
of all n, 0 ≤ n < 2k, whose binary representation is a solution of β.

U We let U
def

= 216 denote the basic Unicode alphabet. We use standard regex
character class notation to describe predicates in ΨU . For example [[A]] =
[[\x41]] = {65}, [[[01]]] = {48, 49}, and [[[\0-\xFF]]] = {n | 0 ≤ n ≤ 255}.

We use the following construct for alphabet extensions. Given a domain D
we write D′ for an injective renaming of all elements in D, D′ = {a′ | a ∈ D}.
Similarly for D′′. One concrete definition of D′ is D×{1} and of D′′ is D×{2}.
In particular, D′ ∩D′′ = ∅.

Definition 1. The disjoint union A+B of two effective Boolean algebras A and
B, is the effective Boolean algebra (D′

A ∪D′′
B, ΨA × ΨB, [[]],⊥,⊤,∨,∧,¬) where,

[[〈α, β〉]]
def

= [[α]]′A ∪ [[β]]′′B, 〈α, β〉 ⋄ 〈α1, β1〉
def

= 〈α ⋄A α1, β ⋄B β1〉, (⋄ ∈ {∨,∧})

¬〈α, β〉
def

= 〈¬Aα,¬Bβ〉, ⊥
def

= 〈⊥A,⊥B〉, ⊤
def

= 〈⊤A,⊤B〉.

It is straightforward to prove that A+B is still an effective Boolean algebra.
Observe that the implementation of A+B is trivial given the implementations
of A and B, e.g., extension of A with a new element can be defined as A+1.

Given a word u ∈ D∗
A we write u′ for the word [u|′0, u|

′
1, . . . , u|

′
|u|−1] in D∗

A+B.
Similarly for the second subdomain.

Definition 2. A symbolic finite automaton (SFA) M is a tuple (A, Q, q0, F,∆)
where A is an effective Boolean algebra, called the alphabet, Q is a finite set
of states, q0 ∈ Q is the initial state, F ⊆ Q is the set of final states, and
∆ ⊆ Q × ΨA × Q is a finite set of moves or transitions. Elements of DA are
called characters and finite sequences of characters are called words. ⊠

A word w of length |w|, is denoted by [a0, a1, . . . , a|w|−1] where all the ai are
characters. Given a position i < |w|, w|i denotes the i’th character ai of w. The
empty word is []. Given two words u and v, u.v denotes their concatenation. In
particular, u.[] = [].u = u.

A move ρ = (p, ϕ, q) from p to q is also denoted by p
ϕ
−→ q where p is the

source state Src(ρ), q is the target state Tgt(ρ), and ϕ is the guard or predicate
of the move Grd(ρ). A move is feasible if its guard is satisfiable. In the following
let M = (A, Q, q0, F,∆) be a fixed SFA.

Definition 3. A word w ∈ D∗
A, is accepted at state q of M , w ∈ Lq(M), if

there exists a set of moves {qi
ϕi
−→qi+1}i<k ⊆ ∆ where k = |w|, q0 = q, qk ∈ F ,

and w|i ∈ [[ϕi]] for i < k. The language of M is L(M)
def

= Lq0(M).

For q ∈ Q, we use the definitions

∆(q)
def

= {ρ ∈ ∆ | Src(ρ) = q}, ∆−1(q)
def

= {ρ ∈ ∆ | Tgt(ρ) = q}.

A state q of M is a deadend when Lq(M) = ∅. A deadend-move is a move
whose target is a deadend. A state q ofM is partial if ¬

∨
{Grd(ρ) | ρ ∈ ∆(q)} is

satisfiable. A move is feasible if the guard of the move is satisfiable. The following
terminology is used to characterize various subclasses of SFAs.

4

– M is deterministic: for all p
ϕ
−→ q, p

ϕ′

−→ q′ ∈ ∆, if IsSat(ϕ ∧ ϕ′) then q = q′.
– M is partial (incomplete): there is a partial state.
– M is clean: all moves are feasible and all states are reachable from q0,
– M is trim: M is clean and has no deadend-moves,
– M is normalized : forall p, q ∈ Q, there is at most one move from p to q.
– M is minimal : M is deterministic, trim, and normalized, and forall p, q ∈ Q,
p = q if and only if Lp(M) = Lq(M).

– M is a prefix acceptor if M is minimal, M has a single final state qfM and

either ∆M (qfM) = ∅, or ∆M (qfM) = {qfM
⊤
−→ qfM}, and all paths from q0M to

qfM without passing through qfM have a fixed length K, the length of M .

Regexes used here range over the Unicode alphabet U and support character
classes, the syntax and the semantics is the same as in C# or JavaScript.2 Given
a regex P we write ^P for P prepended with the start anchor. We write L(P)
for the regular language over DU accepted by P . Given a regular language L,
we write SFAmin(L) for a minimal SFA accepting L.

Anonymous functions. We write Λ(D→R) for some well-defined effective rep-
resentation of functions, or λ-terms, with domain D and range R. A λ-term
f ∈ Λ(D→R) denotes the mathematical function f : D → R.

Let the alphabet A be fixed and let D stand for DA and let Ψ stand for ΨA.

We let Dk def

= {w ∈ D
∗ | |w| = k}.3 We write Λ for

⋃
m>0,n≥0Λ(D

m→D
n), i.e.,

Λ is the set of λ-terms denoting functions from nonempty fixed length words to
fixed length words (the range may be {[]}). Given f ∈ Λ, let ♮(f) denote the
input rank m of f ∈ Λ(Dm→Dn).

Example 2. Consider A = U . Let h ∈ Λ(D→D) be λx.(x < 10 ? x+48 : x+55).
Then h encodes every nibble (value in {0, . . . , 15}) as the corresponding hexadec-
imal (ASCII) digit,4 e.g., h(11) = ’B’ and h(7) = ’7’. Let f ∈ Λ(D1 →D2)
be λx.[h(x|0 ≫ 4), h(x|0 &15)] (≫ is shift-right and & is bitwise-and). Then
f encodes every single-byte-word as a word of two hexadecimal digits, e.g.,
f("K") = f ([4B16]) = [h(4B16 ≫ 4),h(4B16 &15)] = [’4’, ’B’] = "4B". ⊠

3 Symbolic Rollback Transducers

Symbolic transducers (STs) are a generalization of symbolic finite transducers
or SFTs; STs were originally introduced in [24]. An ST may use registers in
addition to a finite set Q of states. In general, registers can hold arbitrary values
and the use of registers is unrestricted. Here we introduce another extension of

2 Regular Expression Language - Quick Reference:
http://msdn.microsoft.com/en-us/library/az24scfc.aspx

3 Observe that D0 = {[]} and D
1 = {[a] | a ∈ D}.

4 No semantic distinction is made between characters and their numeric codes. Thus
’0’, ’\x30’, and 48 all denote number 48.

5

α β · · · rest of input tape · · ·
↑
q

Fig. 1. Intuition behind a snapshot 〈α, q, β〉 of an SRT.

SFTs called SRTs that do not allow explicit use of registers but allow lookback

and rollback of input. SRTs have three kinds of transitions, defined below.
To formally define the semantics of transitions we introduce the notion of a

snapshot s, that is a triple 〈α, q, β〉 ∈ S = D∗ × Q × D∗ with argument store

α, state q and buffer β. We say current character for the first character of the
buffer if it is nonempty, else for the first character in the rest of the input. The
unread portion of the input tape is not part of the snapshot. The idea behind
the concept of a snapshot is illustrated in Figure 1. The buffer is intended to
be a prepending to the rest of the input; the semantics enforces that the buffer
must be empty before any more characters are read from the rest of the input.

An input-transition p
ϕ
−→ q ∈ Q × Ψ × Q has the following semantics. From

source state p it reads and enqueues the current character a into the argument
store, provided that a ∈ [[ϕ]], and enters the target state q, formally:

[[p
ϕ
−→ q]]

def

= {〈α, p, []〉
[a]/[]
−−−→ 〈α.[a], q, []〉 | a ∈ [[ϕ]], α ∈ D∗} ∪

{〈α, p, [a].β〉
[]/[]
−−→ 〈α.[a], q, β〉 | a ∈ [[ϕ]], α, β ∈ D∗}

An output-transition p
f
7−→ q ∈ Q × Λ×Q has the following semantics. From

state p it consumes the argument store α outputs the word f(α) and enters state
q. The transition is enabled when the length of α matches the arity of f .

[[p
f
7−→ q]]

def

= {〈α, p, β〉
[]/f(α)
−−−−→ 〈[], q, β〉 | β ∈ D

∗, α ∈ D
♮(f)}

A rollback-transition p
ϕ
99K q has the following semantics. From state p, if the

current character a ∈ [[ϕ]], it “rewinds the input tape” by pushing the current
character and the argument store (back) into the buffer, and enters state q.

[[p
ϕ
99K q]]

def

= {〈α, p, []〉
[a]/[]
−−−→ 〈[], q, α.[a]〉 | a ∈ [[ϕ]], α ∈ D∗} ∪

{〈α, p, [a].β〉
[]/[]
−−→ 〈[], q, α.[a].β〉 | a ∈ [[ϕ]], α, β ∈ D∗}

The idea is that a rollback-transition is taken when a normal input sequence
cannot be completed, the target state q is then an “exception handling” state.

Definition 4. A Symbolic Rollback Transducer (SRT) is a tuple (A, Q, q0, F,∆),
where A, Q, q0, and F are as in Definition 2, and ∆ is a finite set of transitions
as defined above. ⊠

The semantics of an SRT B is defined using a transducer (s0,S,T) that is the
unwinding of B, where s0 is the initial snapshot 〈[], q0, []〉 of B, S is the set
D∗ ×Q×D∗ and T ⊆ S×D∗ ×D∗ ×S is the set

⋃
ρ∈∆[[ρ]].

6

The relation s
u/v
−−→→ t for s, t ∈ S and u, v ∈ D∗ is defined as the least relation

such that s0
[]/[]
−−→→ s0 and if s

u/v
−−→→ s1 and s1

u1/v1
−−−−→ t ∈ T then s

u.u1/v.v1
−−−−−−→→ t. The

transduction of B is now defined as the following function from D∗ to 2D
∗

.

TB(u)
def

= {v | ∃q ∈ F 〈[], q0, []〉
u/v
−−→→ 〈[], q, []〉}

As a minimal requirement, we want the transition relation T to be well-founded

in the following sense: there is no infinite chain {si
[]/vi
−−−→ si+1}i<ω in T. For ex-

ample, if there is a rollback-transition p
⊤
99K p then T is not well-founded, because

〈[], p, [a]〉
[]/[]
−−→ 〈[], p, [a]〉 ∈ T. A sufficient condition to ensure well-foundedness

of T is that the SRT is not ill-defined :

Definition 5. An SRT is ill-defined if there exists a path of states (qi)i≤n and
states p1 and p2 such that, p1 99K q0, (for 0 ≤ i < n) qi −→ qi+1, and qn 99K p2.
The SRT is well-defined otherwise. ⊠

In a well-defined SRT, any two rollback-transitions must be separated by at

least one output-transition. For example, if p
⊤
99K p then the SRT is ill-defined.

An output-state is a state that has an outgoing output-transition.

Definition 6. An SRT B is deterministic if every output-state has exactly one
outgoing transition and for every other state q, all transitions from q have mu-
tually disjoint guards. B is single-valued if, for all u, |TB(u)| ≤ 1. ⊠

Proposition 1. Every deterministic SRT is single-valued.

Proof. Determinism implies that for any snapshot and current character there
can be at most one resulting snapshot. Thus, for any given u ∈ D∗, there can

be at most one path {si
ui/vi
−−−→ si+1}i<n such that u = u0.u1. · · · .un−1. Thus,

either TB(u) = ∅ or TB(u) = {v0.v1. · · · .vn−1}. ⊠

We treat a deterministic SRT B as a partial function and we write B(u) = v for
TB(u) = {v}.

Example 3. Let f be defined as in Example 2. Let B be the SRT

(U , {q0, q1}, q0, {q0}, {q0
[\0-\xFF]
−−−−−−→ q1, q1

f
7−→ q0)}

Since there are no rollback-transitions the buffer is never used. We have

〈[], q0, []〉
"o"/[]
−−−→ 〈"o", q1, []〉

[]/"6F"
−−−−→ 〈[], q0, []〉

"k"/[]
−−−→ 〈"k", q1, []〉

[]/"6B"
−−−−→ 〈[], q0, []〉

Thus 〈[], q0, []〉
"ok"/"6F6B"
−−−−−−−→→ 〈[], q0, []〉, so B("ok") = "6F6B". ⊠

End anchors. Given an alphabet A, in order to detect the end of the input string
over DA, we can lift A to A+1 and lift all u ∈ D∗

A to u′.[0′′] ∈ D∗
A+1

where the
character 0′′ ∈ DA+1 is used only as the last input character. Such end-of-input
character can then be used to trigger a final output-transition that empties the
store (when the store is nonempty).

7

4 Bex

The alphabet is fixed to U here, D stands for DU . A bex program consist of a
nonempty sequence of pattern rules (Pı =⇒ fı)0≤ı<k and a default output fd,
where all Pı are regexes, called patterns, and all fı and fd are output expressions
such that the following well-formdness criteria hold.

– SFAmin(L(^Pı)) is a prefix acceptor of some length Kı > 0.
– fı ∈ Λ and ♮(fı) = Kı.
– fd is undefined or fd ∈ Λ and ♮(fd) = 1.

The first well-formdness condition ensures that all patterns have fixed lengths.
The second condition ensures that the output functions are in scope: depend
only on the characters matched by the pattern. The third condition ensures that
the default output function only depends on one character (the current one).

The formal semantics of bex programs is as follows. The intent is to support
straightforward specification of how typical encoders and decoders work in prac-
tice. Given a word u and indices i and j, 0 ≤ i ≤ j < |u|, we write u[i..] for the
suffix [u|i, . . . , u||u|−1] and u[i..j] for the subsequence [u|i, . . . , u|j] of u.

Definition 7. Given a bex programB = ((Pı =⇒ fı)0≤ı<k, fd). The denotation
of B, B, is a (partial) function from D∗

U to D∗
U . Let u ∈ D∗

U be the input
sequence. Let n := 0 and v := []. Let Mı = SFAmin(L(^Pı)) and let Kı be the
length of Mı. Repeat the following until n = |u|:

1. Let I = {ı | u[n..] ∈ L(Mı)}.
2. If I 6= ∅ let ı = min{i ∈ I | Ki = min{Kj | j ∈ I}} and (m, f) = (Kı, fı)
3. If I = ∅ let (m, f) = (1, fd).
4. Let v := v + f(u[n..n+m− 1]) and n := n+m.

Then B(u) = v. (B(u) is undefined if fd is used but is undefined). ⊠

Example 1 is a simplified version of an Html decoder. Its purpose is to il-
lustrate the use and the semantics of typical pattern rules and the default rule.
It is used as a running example in the rest of the paper. In the next section we
describe an algorithm that converts a bex program into an equivalent SRT.

5 Bex to SRT compiler

The purpose of the bex to SRT compiler is, given a well-formed bex program
B = ((Pı =⇒ fı)0≤i<k, fd) as input, to generate a well-defined deterministic
SRT that is equivalent to B. We assume that the default output fd is defined.
The case when fd is undefined amounts to a trivial modification of the compiler.

The compiler works in two main phases. First, all the patterns of the rules
are combined into a single pattern automaton N that is then minimized. The

alphabet of N is U2
def

= U+U . The first subuniverse U ′ serves the purpose of the
Unicode alphabet, while the second subuniverse U ′′ serves the purpose of bex
rule identifiers.

8

Second, the pattern automaton N is (essentially) extended with output-
transitions and rollback-transitions to form the final SRT. It follows from mini-
mality of N and the construction of the additional transitions that the resulting
SRT is well-defined and deterministic and preserves the semantics of the original
bex program.

The alphabet of the generated SRT is going to be U + 1. The new element
0′′ ∈ DU+1 is used as the end-of-input symbol of words. Observe that DU+1 =
D′

U ∪ {0′′}. The main correctness theorem is the following.

Theorem 1. Given a bex program B, SRT(B) is a well-defined deterministic

SRT such that, for all u, v ∈ D∗
U , B(u) = v iff T

SRT(B)(u
′.[0′′]) = {v′.[0′′]}.

Proof. Formal proof is by induction over the length of computations, relating the
points in Definition 7 to the constructs below and by using basic properties of
N and SFAs operations. The construction of the SFA N itself uses an algorithm
for minimizing SFAs [9]. ⊠

Detailed descriptions of the compilation phases are given below. The following
example illustrates a small but realistic example.

SRT(B):

q0

qf

q0$

0’’

q1

&

default_in

[0’’]

q2

#

q2$

0’’

q3

0

q4

[1-9]

"&#".[0’’]

q9

0

q6

[1-9][0-9]

q10

;

q7

;

"�"[(10*(x2-48))+(x3-48)]

default_out

[x0]

Fig. 2. Sample SRT with rollback-transitions.

9

Example 4. Consider the bex program B in Example 1. Figure 2 shows the
generated SRT(B). The rollback-transitions have a guard (not shown) that is
the complement of the disjunction of all the guards from all other transitions

from the source state. E.g., q2
〈[^0-9],⊥〉

99K defaultin and q1
〈[^#],⊤〉
99K defaultin ⊠

5.1 Pattern automaton construction

1. Let E := ∅; E is computed as the set of all pattern ids having end anchors.
2. For ı = 0, . . . , k − 1:

(a) Let Mı = SFAmin(L(^Pı)). (Recall that Mı is a prefix acceptor.)
Let Kı be the length of Mı.
If ∆Mı

(qfMı
) = ∅ then E := E ∪ {ı}.

(b) Let qı be a new state not it QMı
. Lift Mı into Nı:

Nı = (U2 , QMı
∪ {qı}, q0Mı

, {qı}, ∆),

where ∆ = {p
〈ϕ,⊥〉
−−−−→ q | p

ϕ
−→ q ∈ ∆Mı

, p 6= qfMı
} ∪ {qfMı

〈⊥,ı̂〉
−−−→ qı}

3. Let

N := SFAmin(
⋃

ı

L(Nı)).

N has a single final state, say FN = {qfN}, and ∆N (qfN) = ∅. A move

p
〈⊥,β〉
−−−→ qfN is a final move; let ı = min[[β]], the state p is ı-final.

4. Cleanup:

(a) If a state p is ı-final but ı /∈ E then delete all non-final moves from p.

(b) Remove unreachable states from N .

Cleanup removes unreachable cases: shorter patterns override longer ones (for
the overlapping cases) and for patterns of the same length the ones with smaller
id have priority (see Definition 7.2). The following are key properties of N .

Proposition 2. For all w ∈ D∗
U2 the following statements are equivalent:

– w ∈ L(N)
– for some u ∈ D∗

U and ı ∈ DU , w = u′.[ı′′] and w ∈ L(Nı)
– for some u ∈ D∗

U and ı ∈ DU , w = u′.[ı′′] and u ∈ L(Mı) and |u| = Kı

Proposition 3. If q0N
v
−→→ q and q

〈⊥,ψ〉
−−−−→ qfN ∈ ∆N then for all ı ∈ [[ψ]], |v| = Kı.

Proof. Fix ı, ∈ [[ψ]]. Then v + ı(2), v + (2) ∈ L(N). So, by Proposition 2,
v = u(1) for some u ∈ D∗

U such that u ∈ L(Mı) ∩ L(M) and |u| = Kı = K. ⊠

The purpose of N is going to be that N is used to construct a control flow
graph of the SRT. N takes care of selecting the correct rule for a given input.

10

Example 5. Consider the bex program B in Example 1. The SFAs N0, N1, N2

and N are as follows:5

N0: q0 q6q1(&,[]) q2(#,[]) q3(0,[]) q4(0,[]) q5(;,[]) ([],\0)

N1: q0 q8q1(&,[]) q3(#,[]) q4([0-9],[]) q6([0-9],[]) q7(;,[]) ([],\x01)

N2: q0 q3q1(&,[]) q2(#,[]) ([],\x02)

N: q0 q1(&,[]) q2(#,[])

([],\x02)

q3(0,[])

q4

([1-9],[]) q9
(0,[])

q6

([1-9],[])

([0-9],[])

q10(;,[])

q7(;,[])

([],[\0\x01])

([],\x01)

In N the overlapping patterns are reflected in the final move q10
〈[],[\0\x01]〉
−−−−−−−−→ qfN

where [[[\0\x01]]] = {0, 1}. E = {2}. If the end anchor was removed from P2

then E would be empty and the cleanup step would delete the moves from q2 to
q3 and q4. Then the states {q3, q4, q6, q7, q9, q10} would become unreachable. ⊠

5.2 Compute normal transitions

We will now use N as a starting point for constructing an SRT SRT(B) from B.
We lift functions f over the universe DU implicitly to functions over the

universe DU+1 by lifting elements in DU to elements in the first subuniverse D′
U

of DU+1. Let ∆
in be the following set of input-transitions.

∆in = {p
〈ϕ,⊥〉
−−−−→ q | p

〈ϕ,⊥〉
−−−−→ q ∈ ∆N}

In other words, all nonfinal moves of N become input-transitions. Let ∆out be
the following set of output-transitions, where q0 = q0N ,

∆out = {p
fı
7−→ q0 | p

〈⊥,β〉
−−−→ qfN ∈ ∆N , ı = min[[β]], ı /∈ E}

In other words, if a state p is ı-final and the pattern Pı is not a suffix pattern
of the input (ı /∈ E) then, upon reaching the state p, the input store contains a
word s of length Kı matching the pattern Pı. The output function f ı is applied
to the matched word s committing to the output word f ı(s). The process is
repeated from the initial state q0.

5.3 Compute ending transitions

When a regex pattern Pı ends with an end anchor ($ or \z) then this is reflected
in N by the fact that there is a state p that is ı-final and ı ∈ E . This means that
the match must end with the end-of-input character 0′′ because all valid input

5 Predicates in ΨU are denoted by regex character classes, or individual characters.
The predicate ⊥ is denoted by the empty character class [].

11

words have the form u′.[0′′] for u ∈ D∗
U . There are new output states pı$ for all

ı ∈ E , with the following input-transitions leading to them.

∆in$ = {p
〈⊥,⊤〉
−−−−→ pı$ | p

〈⊥,β〉
−−−→ qfN ∈ ∆N , ı = min[[β]], ı ∈ E}

There are output-transitions from each pı$ that apply the corresponding final
output function to the final stored input word in each case, append the ending
character 0′′, so that all output words are also 0′′-terminated, and transition to
the final state qf = qfN of the SRT.

∆out$ = {pı$
λx.(fı(x).[0

′′])
7−−−−−−−−−→ qf | p

〈⊥,β〉
−−−→ qfN ∈ ∆N , ı = min[[β]], ı ∈ E}

There are also transitions from the initial state q0 = q0N leading to the final state
(upon end of input), where q0$ is a new output state:

∆0 = {q0
〈⊥,⊤〉
−−−−→ q0$

λx.[0′′]
7−−−−→ qf}

There are no transitions outgoing from the final state qf.

5.4 Compute default transitions

The default behavior kicks in from a state p when the current character does
not match any of the possible guards of the outgoing input-transitions from p.
Formally, let G(p) be the disjunction of all the guards from transitions exiting
from p. Here p is an input state that is a non-output state and not qf.

G(p)
def

=
∨

{ϕ | ∃q(p
ϕ
−→ q ∈ ∆in ∪∆in$ ∪∆0)}, γp

def

= ¬G(p).

Predicate γp describes all characters that break all possible patterns at state p.
If γp is satisfiable then, for all current characters in [[γp]], roll back the input
tape back to the position before the match was started, then apply the default
function to the first character in the input tape (it cannot be 0′′ because the input
store is nonempty when p 6= q0 and 0′′ /∈ [[γq0]]), and finally continue the process
from state q0 and the next input position. This corresponds to Definition 7.3.
Formally, the following transitions are added to capture this default behavior.

∆default = {p
γp
99K defaultin | p is an input state, [[γp]] 6= ∅}

∪{defaultin
⊤
−→ defaultout

f
d7−→ q0}

where defaultin and defaultout are fixed new states. Observe that the well-
definedness criterion (see Definition 5) is trivially satisfied. Let Q be the set
of all states that occur in the transitions. The final result of the compilation is
the SRT:

SRT(B)
def

= (U + 1, Q, q0, {qf}, ∆in ∪∆out ∪∆in$ ∪∆out$ ∪∆0 ∪∆default)

Moreover, a well-defined SRT can be further translated into an equivalent
ST without rollback-transitions by performing a symbolic partial evaluation of
the default cases. Generation of C# or JavaScript code is straightforward from
either well-defined deterministic SRTs or deterministic STs.

12

6 Implementation and experiments

The bex language and the algorithm for generating symbolic transducers from
bex programs has been implemented and is available in an online toolkit and
tutorial [4]. The tutorial includes several samples, such as base64 encoding and
decoding, allows online editing, and enables JavaScript generation from the bex
programs. The generated JavaScript can also be directly executed online.

We have built a prototype implementation of the compiler. In a final phase
the compiler converts the generated SRT into an ST without rollback-transitions.
It does so by symbolically forward executing the rollback-cases and by optimiz-
ing the generated code through a combination of SFA techniques and SMTlib
representation of terms using Z3 [10, 27]. Z3 terms are used to simplify arithmetic
expressions and to prune unsatisfiable predicates. The STs are then converted
into either C# or JavaScript implementations.

We have applied this technique to a variety of different encoders and decoders
such as: Utf16Encoder/Decoder, Base32Encoder/Decoder, Base64Encoder/Decoder,
CssEncoder, JavaScriptEncoder, JsonEncoder, and HtmlEncoder/Decoder. They
all fall into a category of string transformation routines that can be very natu-
rally expressed and analyzed in bex.

So far our largest case study is a bex program for the complete version of
HtmlDecode that uses over 280 rules. The full bex program is less than 300 lines
of code including comments. The large number of rules is due to many special
cases of patterns such as "<"=⇒"<" and "≤"=⇒"\u2264" in addition
to rules that decode numeric (decimal or hexadecimal) encodings of characters.
The resulting minimal pattern automaton N has in this case 920 states and
the generated C# code is just shy of 20k lines of code (with sparsely generated
code). The end-to-end compilation time was around 8 seconds that includes
preprocessing as well as some analysis of the generated code. A key factor here
was an efficient minimization algorithm of SFAs [9]. The minimization algorithm
is used repeatedly in the loop where the SFAs Ni are being constructed during
the pattern automaton construction phase of the bex compiler. For the alphabet
algebra we use U2 for most parts, but for dealing with λ-terms and satisfiability
checking of linear arithmetic formulas in the final phases of the compiler we use
SMT2lib representation of terms and Z3 [27].

We compared the running time of the bex generated HtmlDecoder in C#
against the hand-optimized HtmlDecoder in the .NET System.Net.WebUtility
library. As input to both decoders we used maximally encoded input (with hex-
adecimal encoding of all non-ASCII) texts over various parts of the Unicode
alphabet. In this experiment, the bex coder outperformed the System coder by
2 times on average.

7 Related work

Symbolic finite transducers (SFTs) and the Bek language were originally in-
troduced in [13] and formally studied in [24]. SFTs were also extended to STs

13

in [24] to allow the use of registers for increased expressive power. A common
usage pattern that often occurs in the context of string decoders is that of a
finite window of characters that are grouped and processed together. For such
a class of problems, SFTs are too weak, while STs sacrifice analyzability. Two
related formalisms have been proposed to address this issue, ESFTs [8] and k-
SLTs [5]. The former uses bounded lookahead and reads several characters at
once, while the latter uses bounded lookback and reads one character at a time.
Further properties of ESFTs are studied in [7].

The formalism of SRTs is in spirit related to k-SLTs, because output-transitions
refer to earlier characters as a form of lookback. However, once an output hap-
pens (is “committed”), there is no way to refer back to those input characters
that were used, in later transitions; this is similar to the sematic of ESFTs. The
aspect that is new in SRTs, is the notion of a rollback -transition that allows the
input tape to be rewound or rolled back conditionally. As we demonstrated with
bex, this aspect greatly simplifies the task of programming typical encoders and
decoders, HtmlDecoder being a perfect example, where default rules are used
extensively when pattern matching fails.

Automata over infinite alphabets have received a lot of interest [21], start-
ing with the work on register automata [14]. A different line of work on au-
tomata with infinite alphabets called lattice automata, originates from verifica-
tion of symbolic communicating machines [11]. Streaming transducers [1] provide
a recent symbolic extension of finite transducers. Extended Finite Automata,
or XFAs, is a succinct representation of DFAs that use registers, are intro-
duced in [22] for network packet inspection. XFAs support only finite alphabets.
History-based finite automata [15] are another extension of DFAs that have been
introduced for encoding regular expressions in the context of network intrusion
detection systems. Finite state transducers have been used for dynamic and
static analysis to validate sanitization functions in web applications [17, 25].

Symbolic transductions can also be considered over infinite strings. For finite
alphabets, a study of transformations of infinite strings is proposed in [2]. Yet a
different extension is symbolic transductions over trees [23].

We use the SMT solver Z3 [10] for incrementally solving and simplifying con-
straints in the process of composing predicates that arise during bex compilation.
Similar applications of SMT techniques have been introduced in the context of
symbolic execution of programs by using path conditions [12].

References

1. R. Alur and P. Cerný. Streaming transducers for algorithmic verification of single-
pass list-processing programs. In POPL’11, pages 599–610. ACM, 2011.

2. R. Alur, E. Filiot, and A. Trivedi. Regular transformations of infinite strings. In
LICS, pages 65–74. IEEE, 2012.

3. D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic, E. Kirda, C. Kruegel, and
G. Vigna. Saner: Composing static and dynamic analysis to validate sanitization
in web applications. In SP’2008, pages 387–401. IEEE, 2008.

4. Bex, 2013. http://www.rise4fun.com/Bex/tutorial.

14

5. M. Botincan and D. Babic. Sigma*: symbolic learning of input-output specifica-
tions. In POPL’13, pages 443–456. ACM, 2013.

6. A. S. Christensen, A. Møller, and M. I. Schwartzbach. Precise Analysis of String
Expressions. In SAS, 2003.

7. L. D’Antoni and M. Veanes. Equivalence of extended symbolic finite transducers.
In CAV 2013, volume 8044 of LNCS, pages 624–639. Springer, 2013.

8. L. D’Antoni and M. Veanes. Static analysis of string encoders and decoders. In
VMCAI 2013, volume 7737 of LNCS, pages 209–228. Springer, 2013.

9. L. Dantoni and M. Veanes. Minimization of symbolic automata. In POPL’14.
ACM, 2014.

10. L. de Moura and N. Bjørner. Z3: An Efficient SMT Solver. In TACAS’08, LNCS.
Springer, 2008.

11. T. L. Gall and B. Jeannet. Lattice automata: A representation for languages on
infinite alphabets, and some applications to verification. In SAS, pages 52–68,
2007.

12. P. Godefroid. Compositional dynamic test generation. In POPL’07, pages 47–54,
2007.

13. P. Hooimeijer, B. Livshits, D. Molnar, P. Saxena, and M. Veanes. Fast and precise
sanitizer analysis with Bek. In USENIX Security, August 2011.

14. M. Kaminski and N. Francez. Finite-memory automata. TCS, 134(2):329–363,
1994.

15. S. Kumar, B. Chandrasekaran, J. Turner, and G. Varghese. Curing regular expres-
sions matching algorithms from insomnia, amnesia, and acalculia. In ANCS 2007,
pages 155–164. ACM/IEEE, 2007.

16. B. Livshits, A. V. Nori, S. K. Rajamani, and A. Banerjee. Merlin: specification
inference for explicit information flow problems. In PLDI’09, pages 75–86, 2009.

17. Y. Minamide. Static approximation of dynamically generated web pages. InWWW
’05, pages 432–441, 2005.

18. NVD. http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2008-2938.
19. OWASP. https://www.owasp.org/index.php/Double Encoding.
20. SANS. http://www.sans.org/security-resources/malwarefaq/wnt-unicode.php.
21. L. Segoufin. Automata and logics for words and trees over an infinite alphabet. In

CSL, pages 41–57, 2006.
22. R. Smith, C. Estan, S. Jha, and S. Kong. Deflating the big bang: fast and scalable

deep packet inspection with extended finite automata. SIGCOMM ’08, pages 207–
218. ACM, 2008.

23. M. Veanes and N. Bjørner. Symbolic tree transducers. In Perspectives of System
Informatics (PSI’11), 2011.

24. M. Veanes, P. Hooimeijer, B. Livshits, D. Molnar, and N. Bjørner. Symbolic finite
state transducers: Algorithms and applications. In POPL’12, pages 137–150, 2012.

25. G. Wassermann, D. Yu, A. Chander, D. Dhurjati, H. Inamura, and Z. Su. Dynamic
test input generation for web applications. In ISSTA, 2008.

26. S. Yu. Regular languages. In G. Rozenberg and A. Salomaa, editors, Handbook of
Formal Languages, volume 1, pages 41–110. Springer, 1997.

27. Z3. http://research.microsoft.com/projects/z3.

15

