
Symbolic Query Exploration?

Margus Veanes1, Pavel Grigorenko2??, Peli de Halleux1, and Nikolai Tillmann1

1 Microsoft Research, Redmond, WA, USA
{margus,jhalleux,nikolait}@microsoft.com

2 Institute of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
pavelg@cs.ioc.ee

Abstract. We study the problem of generating a database and param-
eters for a given parameterized SQL query satisfying a given test condi-
tion. We introduce a formal background theory that includes arithmetic,
tuples, and sets, and translate the generation problem into a satisfia-
bility or model generation problem modulo the background theory. We
use the satisfiability modulo theories (SMT) solver Z3 in the concrete
implementation. We describe an application of model generation in the
context of the database unit testing framework of Visual Studio.

1 Introduction

The original motivation behind this work comes from unit testing of relational
databases. A typical unit test, first populates the database with concrete test
tables, then evaluates a given test query with respect to the tables, and finally
checks if the result of the evaluation satisfies a given test condition. Typical test
conditions are, checking if the result is empty, nonempty, has a certain number
of rows, or contains a specific value.

In general, a test query may also be parameterized, i.e., involve variables in
place of some concrete values, in which case the parameter variables first need
to be instantiated with concrete values in a separate step prior to evaluating the
query. A test query uses domain specific knowledge about the particular database
schema and acts like a usage scenario, much like code in a traditional unit test.
A test condition validates the result. The task of coming up with concrete test
tables and parameters for the test query satisfying the test condition is, on the
other hand, a combinatorial problem that is both error-prone and tedious.

We propose a technique that can be used to automate the above data gen-
eration problem for a class of SQL queries. The idea is illustrated in Figure 1
where Qex is the underlying analysis engine. For this we introduce a formal back-
ground theory T Σ that is rich enough to capture the semantics for the class of
queries under consideration, and is tailored for automatic analysis with state of
the art SMT solvers. A given query q and a test condition ϕ are translated into
a formula ψ in T Σ. The translation is such that, if the formula ψ is satisfiable
modulo T Σ, i.e., ψ has a model S in T Σ, then the values of the variables in S,
are mapped back to concrete test tables and input parameters for q.
? Submission to ICFEM’09
?? This work was done during an internship at Microsoft Research, Redmond.

2

Fig. 1. Using Qex for data generation.

Satisfiability checking combined with finding a concrete model as a witness is
usually called model generation. We illustrate the use of model generation in the
context of the Visual Studio database unit testing framework. In this application,
model generation is seen as a black box from the user’s perspective. There are
other well-known applications of model generation in the context of databases,
such as integrity and security constraint checking, where this technique could be
useful.

In Section 2 we introduce the background theory T Σ. In Section 3 we define a
formal translation from a class of SQL queries into T Σ. In Section 4 we introduce
an analysis approach of formulas in T Σ by using satisfiability modulo theories
(SMT). In Section 5 we discuss a concrete application for generating database
unit tests in Visual Studio, we look at some concrete examples and provide some
benchmarks. In Section 6 we discuss future work. Section 7 is about related work.

2 Background T Σ

We use a fixed state background T Σ that includes arithmetic, Booleans, tuples,
and finite sets. The universe is multi-sorted, with all values having a fixed sort.
The sorts Z, R, and B are used for integers, reals, and Booleans, respectively; Z
are R are called numeric sorts. The sorts Z, R and B are basic, so is the tuple
sort T(σ0, . . . , σk), provided that each σi is basic. The set sort S(σ) is not basic
and requires σ to be basic.

The universe of values of sort σ is denoted by Uσ. Universes of distinct sorts
are disjoint.3 For each sort σ, there is a specific Defaultσ in Uσ. In particular,
3 We could assume that for distinct set sorts σ1 and σ2 the empty set is shared, but

we may also assume, as we do here, that there is distinct empty set for each set sort.
Either assumption is fine, because all expressions in T Σ are well-sorted.

3

Tσ ::= xσ | Defaultσ | Ite(T B, Tσ, Tσ) | TheElementOf (T S(σ)) |
πi(T

T(σ0,...,σi=σ,...))

T T(σ0,...,σk) ::= 〈Tσ0 , . . . , Tσk 〉

T Z ::= k | T Z + T Z | k ∗ T Z | Σi(T S(T(σ0,...,σi=Z,...)))

TR ::= r | TR + TR | k ∗ TR | Σi(T S(T(σ0,...,σi=R,...))) | AsReal(T Z)

T B ::= true | false | ¬T B | T B ∧ T B | T B ∨ T B

Tσ = Tσ | T S(σ) ⊆ T S(σ) | Tσ ∈ T S(σ) | T Z ≤ T Z | TR ≤ TR

T S(σ) ::= XS(σ) | {Tσ |x̄ T B} | T S(σ) ∪ T S(σ) | T S(σ) ∩ T S(σ) | T S(σ) \ T S(σ)

F ::= T B | ∃xF | ∃X F

Fig. 2. Well-formed expressions in T Σ.

DefaultB = false, DefaultZ = 0, DefaultR = 0, DefaultS(σ) = ∅, and for a tuple
sort the Default tuple is the tuple of Default’s of the respective element sorts.
There is a function AsReal : UZ → UR that maps integers to corresponding reals.

We refer to a sort σ together with a semantic constraint on Uσ as a type.
In particular, the type Z+ refers to the positive integers, i.e., the constraint is
∀xZ+

(x > 0). An enum or k-enum type refers to integers 0 through k − 1 for
some k > 0.

2.1 Expressions

We use an expression language that we also refer to as T Σ. Well-formed expres-
sions or terms of T Σ are shown in Figure 2. A term t of sort σ is written tσ; xσ is
a variable of basic sort σ; Xσ is a variable where σ is a set sort. We adopt the con-
vention that upper case letters are used for set variables. Boolean terms are also
called formulas. We always assume that terms are well-sorted but omit the sorts
when they are clear from the context. The set of free variables of a term t is de-
noted by FV (t), these are all the variables that have an occurrence in t that is not
in the scope of a quantifier. In particular, FV ({t |x ϕ}) = (FV (t)∪FV (ϕ))\{x},
where |x is the comprehension quantifier. A term without free variables is a closed
term. We write t[x0, . . . , xn−1] for a term t where each xi may occur free in t.
Let θ be the substitution {xi 7→ ti}i<n (where xi and ti have the same sort)4;
tθ denotes the application of θ on t. We write also t[t0, . . . , tn−1] for tθ. For
example, if t[x] is the term Ite({x |x ϕ} = ∅, x+ x, x) and θ = {x 7→ x+ y} then
tθ or t[x+ y] is the term Ite({x |x ϕ} = ∅, (x+ y) + (x+ y), x+ y).

We often omit the variables x̄ from the comprehension quantifier |x̄ when
they are clear from the context. We also use additional definitions in terms of

4 We always make the assumption that substitutions are well-sorted in this sense,
without further notice.

4

T Σ when they are needed. When a definition is obvious (such as x < y), we use
it without further notice. We often use the abbreviation x.i for πi(x).

A term in T Σ of the form {x | x = t1 ∨ · · · ∨ x = tn} (where x is not free in
any ti), is abbreviated by {t1, . . . , tn} and is not considered as a comprehension
term, but as an explicit set term.

2.2 Semantics

A state S is a mapping of variables to values. Since T Σ is assumed to be the
background we omit it from S, and assume that S has an implicit part that
includes the interpretation for the function symbols of T Σ, for example that +
means addition and ∪ means set union. By slight abuse of notation, we reuse the
function symbols in Figure 2 also to denote their interpretations, e.g., we write
πi also for πT

Σ

i , and let the context determine whether we refer to the symbol
or its interpretation in T Σ. We write Dom(S) for the domain of S. Given two
states S1 and S2 we write S1] S2 for the union of S1 and S2 but where the
variables in Dom(S1) ∩Dom(S2) have the value in S2.

A state for a term t is a state S such that FV (t) ⊆ Dom(S). Given a term
t and a state S for t, tS is the interpretation or evaluation of t in S, defined by
induction over the structure of t. Given a formula ϕ and a state S for ϕ, S |= ϕ
means that ϕS is true. Besides the standard logical connectives, arithmetical
operations and set operations, equations (1–4) below show the semantics for the
nonstandard constructions of t in Figure 2.

Ite(ϕ, t1, t2)S =
{
tS1 , if S |= ϕ;
tS2 , otherwise.

(1)

TheElementOf (tS(σ)
1)S =

{
a, if tS1 = {a};
Defaultσ, otherwise.

(2)

{t0 |xσ ϕ}S = {tS]{x 7→a}0 : a ∈ Uσ, S] {x 7→ a} |= ϕ} (3)

Σi(t1)S =
∑
a∈tS1

πi(a) (4)

The interpretation of a comprehension with several variables is a straightforward
generalization of (3). In (3) it is assumed that there are only finitely many a
such that S] {x 7→ a} |= ϕ, otherwise we may assume that {t0 |xσ ϕ}S is ∅.5
The use of comprehensions as terms is well-defined since sets are extensional :
∀X Y (∀z(z ∈ X ⇔ z ∈ Y)⇔ X = Y).6

A state S for a formula ϕ such that S |= ϕ is a model of ϕ. A formula ϕ
is satisfiable if there exists a model of ϕ, and ϕ is valid if all states for ϕ are
models of ϕ.

For a closed term t we talk about evaluation of t, without reference to any
particular state.
5 In our translation from SQL to T Σ, finiteness is guaranteed by construction.
6 Extensionality of sets is a meta-level property that is not expressible in T Σ.

5

Multiplication. We define n ∗m with Σ0, where n > 0 is an integer.

n ∗m def= Σ0({〈m,x〉 | 0 ≤ x < n}) =
n−1∑
x=0

π0(〈m,x〉) =
n−1∑
x=0

m (5)

Note that m may be an integer or a real and the sort of m determines the sort
of n ∗m.

Bags. Bags or multisets are represented as graphs of maps with positive integer
ranges, i.e., a bag b with elements {ai}i<n each having multiplicity mi > 0 in
b for i < n, is represented as a set of pairs {〈ai,mi〉}i<n, thus having the sort
S(T(σ,Z)) for some basic sort σ called the domain sort of b. We let M(σ) be the
type S(T(σ,Z+)) with the additional map constraint :

∀XM(σ) ∀xσ yσ ((x ∈ X ∧ y ∈ X ∧ x.0 = y.0)⇒ x.1 = y.1).

We use the following definitions for dealing with bags.

AsBag(Y S(σ)) def= {〈y, 1〉 | y ∈ Y }
AsSet(XM(σ)) def= {y.0 | y ∈ X}

Σb
i (XM(T(σ0,...,σi,...))) def= Σ0({〈x.1 ∗ x.0.i, x.0〉 | x ∈ X}) (σi is numeric)

Intuitively AsSet(X) eliminates the duplicates from X. Σb
i is a generalization

of the projected sum over sets to bags. Note that x.1 above is always positive
(thus, the use of ∗ is well-defined). Note that an expression like XM(σ) ∪ Y M(σ)

is a well-formed expression in T Σ, but it does not preserve the type M(σ).

Example 1. Let q[XM(T(Z,Z,Z))] be the following expression where ϕ[x] is the
formula x < 4.

q[X] = {〈x.0.0,Σb
1({y | y ∈ X ∧ x.0.0 = y.0.0 ∧ ϕ[y.0.2]})〉 | x ∈ X ∧ ϕ[x.0.2]}

Let t = {〈〈0, 2, 1〉, 2〉, 〈〈1, 2, 3〉, 1〉, 〈〈1, 2, 4〉, 1〉}. Consider the evaluation of q[t].

q[t] = {〈x.0.0,Σb
1({y | y ∈ t ∧ x.0.0 = y.0.0 ∧ ϕ[y.0.2]})〉 | x ∈ t ∧ ϕ[x.0.2]}

= {〈0,Σb
1({y | y ∈ t ∧ 0 = y.0.0 ∧ ϕ[y.0.2]})〉,

〈1,Σb
1({y | y ∈ t ∧ 1 = y.0.0 ∧ ϕ[y.0.2]})〉}

= {〈0,
∑
a∈{〈〈0,2,1〉,2〉} π1(a) ∗ π1(π0(a))〉,

〈1,
∑
a∈{〈〈1,2,3〉,1〉} π1(a) ∗ π1(π0(a))〉}

= {〈0, 4〉, 〈1, 2〉}

3 From SQL to T Σ

In this section we show how we translate a class of SQL queries into T Σ. We
name the translation Q : SQL→ T Σ. This section is less formal than Section 2.

6

We omit full details of Q and illustrate it through examples and templates, that
should be adequate for understanding how the general case works. Moreover, we
restrict our focus to queries without side-effects and consider a subset of SELECT
statements. We illustrate parts of the concrete grammar with simplified grammar
fragments extracted from [1]. Queries that may cause deletion or addition of rows
in the database are outside the scope of this paper. Also, queries that use ORDER
BY are not handled here. In Section 6 we briefly discuss an extension of our
approach for analyzing queries with side-effects, as ongoing and future work.
In the general case, tables and results of queries are represented as bags whose
domain sort is a tuple.

3.1 Data types

Typical databases use additional data types besides numbers and Booleans. In
particular, strings are used in virtually every database. So how do we support
them? There are two approaches to deal with this. One is to encode the data
types in T Σ. The other one is to extend T Σ with the corresponding sorts and
background theories. In this paper we take the first approach. The main advan-
tage is that we have a smaller core that we need to deal with in the context
of analysis, that is discussed in Section 4. The main disadvantage is that the
overhead of the encoding may be more expensive than using a built-in theory.

Strings. There are several ways how strings can be encoded in T Σ. Suppose that
in a given column, all strings have a maximum length k; a possible encoding of a
k-string is as a k-tuple of integers, where each character a is encoded as an integer
c(a) in the range [1, 255]. A further constraint associated with this encoding is
that it has the form 〈c(a0), . . . , c(al), 0, . . . , 0〉 for a string a0 · · · al for l < k, and
the empty string is the Default of the tuple sort. Operations over k-strings, such
as extracting a substring, can then be defined in terms of tuple operations.

Commonly, a collection of strings D are used as enums in a given column
(for example names of persons), and the only string operations that are relevant
are equality and lexicographic ordering ≤lex over strings in D. In this case one
can define a bijection fD : D → [0, |D| − 1] such that, for all a, b ∈ D, a ≤lex b
iff fD(a) ≤ fD(b), and encode strings in D as |D|-enums.

3.2 Nullable values

We encode nullable values with tuples. Given a basic sort σ, let ?σ be the sort
T(σ,B) with the constraint ∀x?σ (x.1 = false ⇒ x.0 = Defaultσ) and null?σ def=
DefaultT(σ,B). Operations that are defined for σ are lifted to ?σ. For example, for
a numeric sort σ,

x?σ + y?σ def= Ite(x.1 ∧ y.1, 〈x.0 + y.0, true〉,null?σ).

The projected sum operation is lifted analogously. The sorts T(σ,B) are not
used to represent any other data types besides ?σ. This encoding introduces an
overhead for the symbolic analysis and is avoided unless the corresponding value
type is declared nullable.

7

3.3 Query expressions

We consider top level query expressions that have the form query expr according
to the (simplified) grammar:

query expr ::= select | (query expr set operation query expr)
set operation ::= UNION | EXCEPT | INTERSECT
select ::= SELECT [DISTINCT] select list

FROM table src [WHERE condition] [group by having]

Set operations such as UNION remove duplicate rows from the arguments and the
resulting query. In particular, the translation for UNION is:

Q(q1 UNION q2) def= AsBag(AsSet(Q(q1)) ∪AsSet(Q(q2))).

The other set operations have a similar translation.

3.4 Select clauses

A select clause refers to a particular selection of the columns from a given table
by using a select list . In the following translation we translate a select list l into
a sequence of projection indices (l0, . . . , ln) on the table on which the selection
is applied.

Q(SELECT l FROM t) def= {〈〈x.0.l0, . . . , x.0.ln〉,M(x)〉 | x ∈ Q(t)} (6)

where M(x) = Σ0({〈y.1, y〉 | y ∈ Q(t) ∧
n∧
i=0

y.0.li = x.0.li})

Note that multiplicities of the resulting tuples are computed separately, which
is needed to preserve the type of the result as a bag. For example, the following
is not a valid translation, unless l is *.

{〈〈x.0.l0, . . . , x.0.ln〉, x.1〉 | x ∈ Q(t)} (this is not a bag in general!)

If the DISTINCT keyword is used then duplicate rows are removed.

Q(SELECT DISTINCT l FROM t) def= AsBag(AsSet(Q(SELECT l FROM t)))

The following property is used in the set conversion:

AsSet(Q(SELECT l FROM t)) = {〈y.l0, . . . , y.ln〉 | y ∈ AsSet(Q(t))} (7)

An optional WHERE condition is translated into a formula in T Σ and appears as
an additional condition in the above comprehensions.

8

3.5 Join operations

Join operations are used in FROM statements. In general, a FROM statement takes
an argument table src, that, in simplified form, has the grammar:

table src ::= table name [AS alias] | joined table
joined table ::= table src join table src ON condition
join ::= [{INNER | {{LEFT | RIGHT | FULL} [OUTER]}}] JOIN

The condition may use column names of the (aliased) tables and operations on
the corresponding data types. We only consider the case of INNER JOIN:

Q(t1 INNER JOIN t2 ON c) def= (8)
{〈x1.0× x2.0, x1.1 ∗ x2.1〉 | x1 ∈ Q(t1) ∧ x2 ∈ Q(t2) ∧Q(c)[x1.0, x2.0]}

where Q(c)[y1, y2] denotes the translation of the condition c to the corresponding
formula in T Σ, where the column names referring to the tables t1 and t2 occur
as corresponding tuple projection operations on y1 and y2, respectively. The
operation × is defined as follows, where x is an m-tuple and y is an n-tuple:

x× y def= 〈π0(x), . . . , πm−1(x), π0(y), . . . , πn−1(y)〉

The following property holds for the translation:

AsSet(Q(t1 INNER JOIN t2 ON c)) = (9)
{y1 × y2 | y1 ∈ AsSet(Q(t1)) ∧ y2 ∈ AsSet(Q(t2)) ∧Q(c)[y1, y2]}

3.6 Grouping and aggregates

A very common construct is the combined use of GROUP BY with aggregate op-
erations. A group by having expression has the following (simplified) grammar,
where a group by item for us is a column name.

group by having ::= group by [HAVING condition]
group by ::= GROUP BY group by list
group by list ::= group by item [,...n]

This expression appears in a select expression, the grammar of which is shown
above, and there is a context condition that the columns in select list that are not
included in group by list must be applied to aggregate operations. The context
condition is needed to eliminate duplicate rows produced by the select clause
by combining the values in the columns not in the group by list into a single
value for the given column. Here we only consider aggregates in combination
with grouping.7 The aggregate operations we consider are SUM, COUNT, MAX, MIN.

Example 2. Assume that X is a table with the columns (A,B,C) where each
column has integer type. Consider the following query q.
7 In general, aggregates may also be used in a select expression without using grouping.

9

SELECT A, SUM(B) AS D
FROM X
WHERE C < 4
GROUP BY A

Q(q) is AsBag(q[X]) with q[X] as in Example 1, where it is shown how

q[

A B C

0 2 1
0 2 1
1 2 3
1 2 4

] evaluates to
A D

0 4
1 2

.

In order to simplify the presentation assume that select list and group by list
are like in Example 2. (Generalization is straightforward, but tedious.) The trans-
lation is as follows, where t is SELECT a SUM(b) AS d FROM t1 WHERE c1,

Q(t GROUP BY a HAVING c2) def= AsBag({z | z ∈ G ∧Q(c2)[z]})
where G = {〈x.0.0,Σb

1({y | y ∈ Q(t) ∧ y.0.0 = x.0.0})〉 | x ∈ Q(t)}

Note that the condition y.0.0 = x.0.0 corresponds to group list . Note also that
c2 is applied to the result G of the grouping and in the formula Q(c2)[z], z.0
corresponds to a and z.1 corresponds to d. The other aggregates are translated
similarly. For example, if SUM(b) is replaced by COUNT(b) then in the above
translation Σb

1 is replaced by Count def= Σ1. For MIN and MAX the projected sum
operation is not needed, for example:

Min(XS(σ)) def= TheElementOf ({y | y ∈ X ∧ {z | z ∈ X ∧ z < y} = ∅}) (10)

Although we do not consider the aggregate AVG here, it can be translated as
Σb
i (X) ÷ Count(X), where ÷ is division by positive integer in R and can be

defined as follows:

r ÷ k def= TheElementOf ({xR | k ∗ x = r}). (11)

3.7 Simplifications

Many operations convert bags into sets. There are certain further simplification
rules, besides (7) and (9), that are based on the following properties between
bag an set operations and are used in the translation to reduce operations over
bags to operations over sets, whenever possible.

AsSet(AsBag(XS(σ))) = X

Σb
i (AsBag(XS(σ))) = Σi(X)

AsSet({t | ϕ}M(σ)) = {t.0 | ϕ}

Moreover, further simplifications are done at the level of basic sorts, such as
πi(〈t0, . . . , ti, . . .〉) = ti, that are also used as part of the simplification process.
More accurately, the simplifications are part of an equivalence preserving post
processing phase of Q(q) for a given query q.

10

4 Model generation with SMT

Translation Q leads to a subclass of expressions in T Σ, denoted by T Σ
Q . The core

problem we are interested in is model generation in T Σ
Q .

Definition 1 (Model Generation in T Σ
Q). Given a quantifier free formula

ϕ[X] in T Σ, and a query q, decide if ψ = ϕ[Q(q)] is satisfiable, and if ψ is
satisfiable generate a model of ψ.

Our main application is to generate a database for a given query such that the
query satisfies a certain property. In general a query may also include parameters,
other than the input tables, e.g., in Example 2, the constant 4 can be replaced
by a parameter variable @x.8 Thus, one can use model generation for parameter
generation as well as database generation, given a (partially) fixed database and
a parameterized query q, generate a model of ϕ[Q(q)], where ϕ represents a test
criterion (such as the result being nonempty). Once a model is generated, it is
used to generate a concrete unit test, see Section 5.

For model generation we use the state of the art SMT solver Z3 [25, 10]. For
bags and sets we use the built-in theory of extensional arrays in Z3, similarly for
tuples, Booleans, integers and reals. In some cases the formula ϕ[Q(q)] can be
first simplified, e.g., so that all bags are reduced to sets. Below we describe the
general mechanism without emphasis on such simplifications.

4.1 Eager expansion

Consider a formula ψ[X] as an instance of the model generation problem, where
every X in X is a bag variable. The formula ψ may include other free variables
that correspond to parameter variables in the original query. For the analysis,
we introduce a special inductively defined term called a set describer, with the
sort S(σ).

– The constant EmptyS(σ) is a set describer.
– If tS(σ) is a set describer then so is the term Set(ϕB, uσ, t).

Given a state S for Set(ϕ, u, t), the interpretation in S is,

Set(ϕ, u, t)S = Ite(ϕ, {u}, ∅)S ∪ tS , EmptyS = ∅.

Consider a fixed X in X and let tX be the set describer

Set(true, 〈x1,m1〉, . . .Set(true, 〈xk,mk〉,Empty) . . .)

where k and all the mj ’s are some positive integer constants and each xi is a
variable. Thus, tX describes the set {〈x1,m1〉, . . . , 〈xk,mk〉}. It is also assumed
that there is an associated constraint distinct(x1, . . . , xk) stating that all the

8 Parameters are prefixed with the @ sign in the concrete query language we are using.

11

xi’s are pairwise distinct. Thus tX is a valid bag term, in any context where the
constraint holds.

The expansion of ψ[tX], Exp(ψ[tX]), eliminates comprehensions and pro-
jected sums from ψ[tX]. The definition of Exp is by induction over the structure
of terms. The case of comprehensions is as follows. Here we assume that the
comprehension has a single bound variable, the definition is straightforward to
generalize to any number bound variables. It is also assumed here that the com-
prehension has a special form where the bound variable x has a range expression
x ∈ r where x is not free in r.

Exp({t |x x ∈ r ∧ ϕ})
def= ExpC(t, x,Exp(r), ϕ)

ExpC(t, x,Empty , ϕ) def= Empty

ExpC(t[x], x,Set(γ, u, rest), ϕ[x]) def= Set(γ ∧Exp(ϕ[u]),Exp(t[u]),
ExpC(t, x, rest , ϕ))

Not all comprehensions are expanded this way, some expressions use special-
ized expansion rules. For example, for (10), Exp(Min(t)) is replaced by a fresh
variable x and the formula

Ite (Exp(t) 6= ∅, (IsLeq(x,Exp(t)) ∧ x ∈ Exp(t)), x = 0) ,

which is equivalent to x = Min(t), that is included as a top-level conjunct (in
Exp(ψ[tX])),9 where

IsLeq(x,Empty) def= true

IsLeq(x,Set(ϕ, u, r)) def= (ϕ⇒ x ≤ u) ∧ IsLeq(x, r)

For Σi the expansion is as follows.

Exp(Σi(t))
def= Sumi(Exp(t),Empty)

Sumi(Empty , s) def= 0

Sumi(Set(γ, u, rest), s) def= Ite(γ ∧ u /∈ s, πi(u), 0) + Sumi(rest ,Set(γ, u, s))

Note that the role of s is to accumulate elements that have already been included
in the sum, so that the same element is not added twice.

Regarding multiplication, the general form of (5), that involves a compre-
hension without a range expression, is not needed. Since all multiplicities in
the initial tables tX are fixed constants, it follows that multiplications are ei-
ther of the form k1 ∗ k2, where k1 and k2 are constants (in formulas created in
(8)), which preserves the constant multiplicities in the resulting table), or mul-
tiplicities are finite sums of constants (as in (6)), which provides constant upper
and lower bounds for the multiplicities. Multiplication under these constraints
is supported in Z3.
9 Note that a formula ϕ[t] is equivalent to the formula ∃x(ϕ[x] ∧ x = t), where x is a

fresh variable.

12

It is also possible to expand t÷u as defined in (11), by replacing Exp(t÷u)
with a fresh variable xR and adding the top-level conjunct Exp(u)∗x = Exp(t).
Here Exp(u) is also a sum of terms that have constant upper and lower bounds.

The overall approach amounts to systematically enumerating the sizes of the
tables and the multiplicities, and searching for a model of the resulting expanded
formula.

4.2 Lazy expansion

The main disadvantage of the eager approach is that it expands all terms up-
front, without taking into account if a certain expansion is actually needed in
a particular context. An alternative (or complementary) approach is to delay
the expansion of (some) terms by delegating the expansion to the proof search
engine of the underlying solver. We explain here a high-level view of how to
accomplish such delayed or lazy expansion in the context of SMT.

In addition to a quantifier free formula ψ that is provided to the SMT solver
and for which proof of satisfiability is sought, one can also provide additional uni-
versally quantified axioms. During proof search, axioms are triggered by match-
ing subexpressions in ψ. An axiom has the form

(∀x̄(α), patα)

where α is a quantifier free formula, patα is a quantifier free term, and FV (α) =
FV (patα) = x̄. The axioms typically define properties of uninterpreted function
symbols in an extended signature. The high-level view behind the use of the
axioms is as follows. If ψ contains a subterm t and there exists a substitution θ
such that t = patαθ, i.e., t matches the pattern patα, then ψ is replaced during
proof search by (a reduction of) ψ∧αθ.10 Note that, if a pattern is never matched
in this way, the use of the corresponding axiom is not triggered. Thus, the use of
axioms is inherently incomplete, and it is not guaranteed that the axioms hold
in a model of ψ, if one is found, or even if the axioms are consistent.

We illustrate the use of axioms with the projected sum operator. Assume
that Empty , Set , and Sumi are new function symbols and assume that we have
the following axioms:

α1 = ∀s(Sumi(Empty , s) = 0)
patα1

= Sumi(Empty , s)
α2 = ∀b u r s (Sumi(Set(b, u, r), s) =

Ite(b ∧ u /∈ s, πi(u), 0) + Sumi(r, Ite(b, {u}, ∅) ∪ s))
patα2

= Sumi(Set(b, u, r), s)

Note that, unlike we defined Sumi in Section 4.1, the argument s here is not a
set describer, but a set valued term that has built-in interpretation in the SMT
10 In general, one can associate several patterns with an axiom, one of which is used for

triggering, and one can also use multi-patterns in Z3. A multi-pattern is a collection
of patters all of which must be matched for the axiom to be triggered.

13

solver.11 Let us consider an example reduction, let ψ0 be the formula:

x ≤ Sum1(Set(true, 〈1, y〉,Set(true, 〈1, z〉,Empty)), ∅)

The right hand side of ψ0 matches patα2
, so ψ0 reduces to ψ1:12

x ≤ y + Sum1(Set(true, 〈1, z〉,Empty), {〈1, y〉})

The same axiom is applied again, and ψ1 is reduced to ψ2:

x ≤ y + Ite(z 6= y, z, 0) + Sum1(Empty , {〈1, y〉, 〈1, z〉})

Finally, α1 is used to reduce ψ2 to x ≤ y + Ite(z 6= y, z, 0). Some concrete
examples, using the smt-lib format, are given in the technical report [24].

In general, such axioms can be defined for expanding other constructs. The
main tradeoff is whether the additional overhead of the axiomatization of the
expansion rules and the loss of completeness pays off. One also has to take into
account that in the intended application, discussed in Section 5, we are mostly
interested in generating small databases.

5 Application to unit testing

Returning to the main motivation behind this work, we are primarily interested
in the problem of generating a database (a collection of tables) and concrete
parameters for a given parameterized query that, when evaluated with respect to
the database, satisfies a certain test criterion. Examples of standard test criteria
are: the answer is empty, the answer is nonempty, and the answer contains a
given number of (distinct) rows.

We are abstracting here from the problem of determining what exactly are
the intended domains of the values in a column, e.g., a certain column may be
declared to have the string type, but effectively the strings are used as enums.
In fact, the particular encoding of the domain values depends of the query. We
suppose that we have domain specific functions, that enable us to map models
generated by the analysis engine, to corresponding concrete tables and parameter
values for the query, e.g., that the value 12 in a certain column corresponds to
the string “Bob”. See also Section 3.1.

With this encoding in mind, we view the analysis engine here as a black
box, called Qex, which given a parameterized query, produces a set of tables and
parameters to that query. A high-level workflow diagram of Qex is illustrated
in Figure 3. One can also see a short video that introduces Qex [18]. In the
following we look at some examples and illustrate a concrete application of Qex
in the context of generating database unit tests in Visual Studio.

11 It is not possible to pattern-match against built-in operations in Z3.
12 To be precise the reduction takes several steps that are skipped here.

14

Fig. 3. High-level view of the workflow in Qex.

Experiments. We consider here a sample database for an online store that con-
tains tables for products, orders and customers; products have a product id, a
name and a price; customers have a customer id and a name; orders have an
order id and a customer id. Figure 4 illustrates some sample queries over the
database. Query q1 selects customers and related orders based on a constraint on
the ids. Query q2 selects those customers and corresponding number of orders,
who have more than one order. Query q3 selects “good” customers and has a
parameter named @value. Table 1 shows some performance measures of model
generation for different input table sizes and test conditions for the queries in
Figure 4 using the eager expansion. The total evaluation time is divided into
expansion time texp and proof search time tz3 with Z3. The current prototype
implementation of the eager expansion algorithm is unoptimized and uses a
naive representation of terms in T Σ without structure sharing, e.g., the size of
the expanded term Q(q2) for k = 3 is over 5 million symbols. This is reflected
by the fact that in most cases texp >> tz3, although the actual parameter and
table generation takes place during proof search. Note that texp is independent

15

q1: SELECT C.CustomerID, O.OrderID

FROM Orders AS O

JOIN Customers AS C ON

O.CustomerID = C.CustomerID

WHERE O.CustomerID > 2 AND

O.OrderID < 15

q2: SELECT C.CustomerID,

Count(O.OrderID)

FROM Orders AS O

JOIN Customers AS C ON

O.CustomerID = C.CustomerID

GROUP BY C.CustomerID HAVING

Count(O.OrderID) > 1

q3: DECLARE @value AS INT;

SELECT C.CustomerID, SUM(OP.OrderProductQuantity * P.ProductPrice)

FROM OrderProducts AS OP

JOIN Orders AS O ON OP.OrderID = O.OrderID

JOIN Products AS P ON OP.ProductID = P.ProductID

JOIN Customers AS C ON O.CustomerID = C.CustomerID

WHERE @value > 1

GROUP BY C.CustomerID

HAVING SUM(OP.OrderProductQuantity * P.ProductPrice) > 100 + @value

Fig. 4. Sample queries.

Table 1. Model generation for sample queries. Evaluation times texp and tz3 are given
in seconds; k is the expected number of rows in each of the generated input tables; all
multiplicities of rows in input tables are 1.

query condition k check texp tz3

q1

res 6= ∅

1 sat .03 .001
2 sat .05 .005
3 sat .3 .02
4 sat 1.4 .13

res = ∅

1 sat .03 .001
2 sat .05 .006
3 sat .3 .12
4 sat 1.4 2

query condition k check texp tz3

q1 |res| = 5

1 unsat .03 .001
2 unsat .05 .01
3 unsat .3 .16
4 unsat 1.4 10
5 sat 8.4 1.6

q2 res 6= ∅
1 unsat .03 .001
2 sat .7 .006
3 sat 26 .03

q3 res 6= ∅ 1 sat .34 .001
2 sat 30 .03

Fig. 5. Screenshot of model generation through Pex integration of Qex in Visual Studio.

16

of the test condition, whereas tz3 clearly depends on it. In general, exhaustive
search for models, in the case when the formula is unsatisfiable, is more time
consuming than when a model exists. Note also that query q2 is unsatisfiable
with 1 row in each input table due to the condition Count(O.OrderID) > 1.
The actual tables and parameters generated for q3 using Pex [17] integration in
Visual Studio Database edition are illustrated by a screenshot in Figure 5. The
integration also generates automatically a unit test. A partial screenshot of the
generated unit test is illustrated in Figure 6. The test contains two SQL scripts.
The first script prepares the database by deleting old data from the tables and
by inserting newly generated rows into the database. The second script declares
the given query together with the generated parameter values. The unit test
is executed against the actual database, which in this case is provided through
MS SQL Server 2005.

...

Fig. 6. Automatically generated database unit test in Visual Studio.

6 Extensions

The Qex project is a new project that has some flavor of model-based testing
as well as parameterized unit testing. The current implementation is a proto-
type that needs further evaluation and case studies. The approach can also be

17

extended in several ways. The choice of the background theory T Σ was partly
motivated with some of those extensions in mind. Here we discuss a few of the
extensions that are ongoing and future work.

Side-effects. The background theory T Σ is an extension of the background the-
ory T with the projected sum operator and restricted to finite sets; T is used
for symbolic model program analysis [23, 22] by reduction to SMT solving. The
projected sum operation has not been considered in that context; one reason is
that it causes undecidability of some fragments that are otherwise decidable. In
principle though, model programs can also be based on the background T Σ. A
model program can be used to describe an evaluation of a query together with
side-effects, where the side-effects are computed as update sets to respective
tables that are applied at the end of the evaluation in a single transaction. In
this setting one can also symbolically analyze the resulting model program for
potential update inconsistency [23].

Data types. Another extension is better support for data types that are in the
current approach encoded with tuples. This encoding is not fully adequate for
supporting commonly used algebraic data types such as trees and lists, or terms
in the sense of a free-algebra with a separate sort. The encoding of such data
types in T Σ is both expensive and incomplete (from the analysis point of view).
Also, one can adopt existing techniques to represent strings, and solve constraints
involving common operations over strings, in the context of an SMT solver [3].

Integration with parameterized unit testing of code. From the practical perspec-
tive, more complex unit tests, used for testing store procedures, may use a com-
bination of queries and code. It is possible to combine parameterized unit testing
of managed code [20] with query evaluation discussed in this paper.

7 Related work

Deciding satisfiability of SQL queries requires a formal semantics. While we give
meaning to SQL queries by an embedding into our formal background theory
T Σ, which is in turn mapped to a logic of an SMT solver, there are other ap-
proaches, e.g., defining the semantics in the Extended Three Valued Predicate
Calculus [16], or using bags as a foundation [7]. Satisfiability of queries is also re-
lated to logic-based approaches to semantic query optimization [5]. The general
problem of satisfiability of SQL queries is undecidable and computationally hard
for very restricted fragments, e.g., deciding if a query has a nonempty answer is
NEXP-hard for nonrecursive range-restricted queries [9].

Several research efforts have considered formal analysis and verification of
aspects of database systems, usually employing a possibly interactive theorem
prover. For example, one system [19] checks whether a transaction is guaranteed
to maintain integrity constraints in a relational database; the system is based
on Boyer and Moore-style theorem proving [4].

18

There are many existing approaches to generate databases as test inputs.
Most approaches create data in an ad-hoc fashion. Only few consider a target
query. Tsai et.al. present an approach for test input generation for relational
algebra queries [21]. They do not consider comprehensions or bags. They pro-
pose a translation of queries to a set of systems of linear inequalities, for which
they implemented an ad-hoc solving framework which compares favorably to
random guessing of solutions. A practical system for testing database transac-
tions is AGENDA [11]. It generates test inputs satisfying a database schema
by combining user-provided data, and it supports checking of complex integrity
constraints by breaking them into simpler constraints that can be enforced by
the database. While this system does not employ a constraint solver, it has been
recently refined with the TGQG [6] algorithm: Based on given SQL statements,
it generates test generation queries; execution of these queries against a user-
provided set of data groups yields test inputs which cover desired properties of
the given SQL statements.

Some recent approaches to test input generation for databases employ au-
tomated reasoning. The relational logic solver Alloy [13, 14] has been used by
Khalek et.al. [15] to generate input data for database queries. Their implemen-
tation supports a subset of SQL with a simplified syntax. In queries, they can
reason about relational operations on integers, equality operations on strings,
and logical operations, but not about nullable values, or grouping with aggre-
gates such as SUM; they also do not reason about duplicates in the query results.
QAGen [2] is another approach to query-solving. It first processes a query in an
adhoc-way, which requires numerous user-provided “knob” settings as additional
inputs. From the query, a propositional logic formula is generated, which is then
decided by the Cogent [8] solver to generate the test inputs. Recently, test input
generation of queries has been combined with test input generation of programs
that contain embedded queries in the program text [12], using ad-hoc heuristic
solvers for some of the arising constraints from the program and the queries.

8 Conclusion

The current prototype of Qex is a proof-of-concept. Qex can be used in the con-
text of the Unit Testing Framework of Visual Studio Database Edition; a short
video is available on the Qex project page [18] that illustrates the integration.
For practical usage in an industrial context, we are working on an integration of
Qex inside Pex [17]. In the context of Pex, embedded SQL queries in C# code
can be translated into formulas that can be conjuncted with path-conditions
that are generated by Pex. This combination is possible because the underlying
theorem prover Z3 [25] is used in a similar way in both tools and the API of
Z3 enables incremental evaluation and backtracking over the search space. In
this setting, Qex may be viewed as a database extension of Pex that supports
analysis of constraints involving high-level data types, such as sets and maps
and aggregate operations. Path conditions generated by Pex establish different
contexts where evaluating the same query may yield different tables depending

19

on the parameter values that have been established in the path conditions for
covering different code branches.

A practical limitation of the approach is if queries use multiple joins and ag-
gregates and the input tables need to contain a high number of rows in order to
satisfy the test condition. Another limitation is the use nonlinear constraints, in
particular multiplication, that has currently only limited support in Z3. However,
for generating tables we start with singleton tables and increment the number
of rows only when a model is not found. We believe that this heuristic should be
adequate for most practical applications, although further evaluation is needed.
In general, checking for nonsatisfiability (or searching for a model of an unsatis-
fiable formula) is less efficient than generating a model of a satisfiable formula,
this is also reflected in Table 1.

References

1. SELECT (T-SQL). http://msdn.microsoft.com/en-us/library/ms189499.aspx.

2. C. Binnig, D. Kossmann, E. Lo, and M. T. Özsu. Qagen: generating query-aware
test databases. In SIGMOD ’07: Proceedings of the 2007 ACM SIGMOD inter-
national conference on Management of data, pages 341–352, New York, NY, USA,
2007. ACM.

3. N. Bjørner, N. Tillmann, and A. Voronkov. Path feasibility analysis for string-
manipulating programs. In Tools and Algorithms for the Construction and Analysis
of Systems (TACAS’09), volume 5505 of LNCS, pages 307–321. Springer, 2009.

4. R. S. Boyer and J. S. Moore. A computational logic handbook. Academic Press
Professional, Inc., San Diego, CA, USA, 1988.

5. U. S. Chakravarthy, J. Grant, and J. Minker. Logic-based approach to semantic
query optimization. ACM Trans. Database Syst., 15(2):162–207, 1990.

6. D. Chays, J. Shahid, and P. G. Frankl. Query-based test generation for database
applications. In Proceedings of the 1st International Workshop on Testing Database
Systems (DBTest’08), pages 1–6, New York, NY, USA, 2008. ACM.

7. H. R. Chinaei. An ordered bag semantics of SQL. Master’s thesis, University of
Waterloo, Waterloo, Ontario, Canada, 2007.

8. B. Cook, D. Kroening, and N. Sharygina. Cogent: Accurate theorem proving for
program verification. In Proceedings of CAV 2005, volume 3576 of Lecture Notes
in Computer Science, pages 296–300. Springer, 2005.

9. E. Dantsin and A. Voronkov. Complexity of query answering in logic databases
with complex values. In Proceedings of the 4th International Symposium on Logical
Foundations of Computer Science (LFCS’97), pages 56–66, London, UK, 1997.
Springer.

10. L. de Moura and N. Bjørner. Z3: An efficient SMT solver. In Tools and Algorithms
for the Construction and Analysis of Systems, (TACAS’08), LNCS. Springer, 2008.

11. Y. Deng, P. Frankl, and D. Chays. Testing database transactions with AGENDA.
In ICSE ’05: Proceedings of the 27th international conference on Software engi-
neering, pages 78–87, New York, NY, USA, 2005. ACM.

12. M. Emmi, R. Majumdar, and K. Sen. Dynamic test input generation for database
applications. In Proceedings of the 2007 International Symposium on Software
Testing and Analysis (ISSTA’07), pages 151–162. ACM, 2007.

20

13. D. Jackson. Automating first-order relational logic. SIGSOFT Softw. Eng. Notes,
25(6):130–139, 2000.

14. D. Jackson. Software Abstractions. MIT Press, 2006.
15. S. A. Khalek, B. Elkarablieh, Y. O. Laleye, and S. Khurshid. Query-aware test

generation using a relational constraint solver. In ASE, pages 238–247, 2008.
16. M. Negri, G. Pelagatti, and L. Sbattella. Formal semantics of SQL queries. ACM

Transactions on Database Systems, 17(3):513–534, September 1991.
17. Pex. http://research.microsoft.com/projects/pex.
18. Qex. http://research.microsoft.com/projects/qex.
19. T. Sheard and D. Stemple. Automatic verification of database transaction safety.

ACM Trans. Database Syst., 14(3):322–368, 1989.
20. N. Tillmann and J. de Halleux. Pex - white box test generation for .NET. In Proc.

of Tests and Proofs (TAP’08), volume 4966 of LNCS, pages 134–153, Prato, Italy,
April 2008. Springer.

21. W. T. Tsai, D. Volovik, and T. F. Keefe. Automated test case generation for pro-
grams specified by relational algebra queries. IEEE Trans. Softw. Eng., 16(3):316–
324, 1990.

22. M. Veanes and N. Bjørner. Symbolic bounded conformance checking of model
programs. In A. Pnueli, I. Virbitskaite, and A. Voronkov, editors, Perspectives of
System Informatics (PSI’09), LNCS. Springer, 2009.

23. M. Veanes, N. Bjørner, Y. Gurevich, and W. Schulte. Symbolic bounded model
checking of abstract state machines. Int J Software Informatics, 3(2–3):149–170,
June/September 2009.

24. M. Veanes, P. Grigorenko, P. de Halleux, and N. Tillmann. Symbolic query explo-
ration. Technical Report MSR-TR-2009-65, Microsoft Research, May 2009.

25. Z3. http://research.microsoft.com/projects/z3.

