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ABSTRACT tions with many processes. If one of the processes has an
error, the developer can investigate the error by replay-

Library-based record and replay tools aim to reproduce

an application’s execution by recording the results of selng that single process instead of all processes, observing

lected functions in a log and during replay returning thethe external interactions in the same order as during the

results from the log rather than executing the functions€¢°"ding-

These tools must ensure that a replay run is identical to R2 is a novel record and replay tool that allows de-
the record run. The challenge in doing so is that onlyvelopers to choose at what interface the interactions be-
invocations of a function by the application should between the application and its environment are recorded
recorded, recording the side effects of a function call cardnd replayed. R2 resides in the application’s address
be difficult, and not executing function calls during re- space and intercepts all functions in the chosen interface.
play, multithreading, and the presence of the tool mayR2 uses a library-based approach to simplify deploy-
change the application’s behavior from recording to re-ment, compared to hardware or virtual machine based
play. These problems have limited the use of such tools@pproaches. During recording, R2 executes the inter-
R2 allows developers to choose functions that can b&epted calls and records their results in a log. During re-
recorded and replayed correctly. Developers annotate thlay, the application runs as usual (i.e., making library
chosen functions with simple keywords so that R2 can@nd systems calls, modifying memory, etc.), but R2 in-
handle calls with side effects and multithreading. R2 geniercepts calls in the chosen interface, prevents the real
erates code for record and rep'ay from temp|ate8, a”owj.mplementation of the calls from eXeCUting, and instead
ing developers to avoid implementing stubs for hundredgives the application the results of the calls that were pre-
of functions manually. To track whether an invocation is Viously recorded in the log.
on behalf of the application or the implementation of a  R2 allows developers to choose the interposed inter-
selected function, R2 maintains a mode bit, which stubgace for two reasons: correctness and performance. The
save and restore. developers can choose an interface that is easy to make
We have implemented R2 on Windows and anno-replay faithful. If an interface is replay faithful, the re-
tated large parts (1,300 functions) of the Win32 API, play run of an application is identical to the recorded run
and two higher-level interfaces (MPI and SQLite). R2 of the application. This property ensures that if a prob-
can replay multithreaded web and database servers thiEm appears while the application is running in recording
previous library-based tools cannot replay. By allowingmode, the problem will also appear during replay. (R2
developers to choose high-level interfaces, R2 can alsdoesnot attempt to make the behavior of an application
keep recording overhead small; experiments show thatvith or without recording identical. That is, if a problem
its recording overhead for Apache is approximately 10% appears in the application while it is not being recorded,
that recording and replaying at the SQLite interface carR2 does not guarantee that the problem will happen again
reduce the log size up to 99% (compared to doing so aivhen the application is recorded.)
the Win32 API), and that using optimization annotations  Achieving faithful replay can be challenging be-
for BitTorrent and MPI applications achieves log size re-cause only calls on behalf of the application should be

duction ranging from 13.7% to 99.4%. recorded, recording the effects of a call can be difficult,
and not executing calls during replay, multithreading, the
1 INTRODUCTION presence of the tool in the application’s address space

Replay is a powerful technique for debugging applica-may cause the application to behave differently during
tions. When an application is running, a record and reJeplay. Previous library-based tools (e.g., liblog [10¢ian
play tool records all interactions between the applica-Jockey [28]) interpose a fixed low-level interface and
tion and its environment (e.g., reading input from a file,omit calls that are difficult to make replay faithful, and
receiving a message). Then when a developer wants t&Uus limit the applications they can replay.

track down an error, she can replay the application to a Consider recording and replaying at the system call
given state based on the recorded interactions, and invegiterface, which is a natural choice because the applica-
tigate how the application reached that state. Replay ision interacts with its environment through system calls.
particularly useful in the context of distributed applica- It is not easy to record the output of all system calls. For



Annotation Scope Description Section
in parameter| input (read-only) parameter §3
out parameter| output (mutable) parameter §3
bsize(val) parameter| modified size of an array buffevdl can be any expression) §3
xpointer (kind) parameter| address allocated internallkigd can benull, thread, or process) §3
prepare(key,buf) | function | prepare asynchronous data transfer §3
commit(key,size) | function | commit asynchronous data transfer §3
callback parameter| callback function pointer (upcall) 84
sync(key) function | causality among syscalls and upcaksy(can be any expression) 54
cache function | cache for reducing log size 86
reproduce function | reproduce /O for reducing log size §6

Table 1: Annotation keywords (for data transfer, execution ordad optimization).

example, to ensure faithful replay the developer must arSQLite API). It has successfully replayed various system
range to record the results®bcket cal | correctly but  applications (see Section 8), including applications that
its results vary for different parameters. For such casesannot be replayed with previous library-based tools. R2
R2 makes it easy for a developer to choose an interhas also replayed and helped to debug two distributed
face consisting of higher-level functions that cause thesystems, and has been used as a building block in other
same interactions with the environment, but are easietools [20, 31, 22].
to record and replay. For example, the developer may The main contributions of the paper are: first, a record
chooser ecv, which callssocket cal | ; recv’s ef-  andreplay tool that allows developers to decide which in-
fects are easier to record and replay. terface to record and replay; second, a set of annotations
The second reason for allowing developers to chooséhat allows strict separation of the application above the
the interface is that they can choose an interface that rdnterposed interface and the implementation below the
sults in low recording overhead for their app”cationsl interface, and that reduces the manual work that a devel-
Low overhead is important because the developers cafper must do; third, an implementation of a record and
then run their applications in recording mode even duringeplay library for Windows, which is capable of replay-
deployment, which may help in debugging problems thatng challenging system applications with low recording
show up rarely. To reduce overhead, a developer migh@verhead.
choose to record and replay the interactions at a high- The rest of the paper is organized as follows. Sec-
level interface (e.g., MPI and SQL library interface suchtion 2 gives an overview of the design. Section 3 and 4
as SQLite) because less information must be recorded. Ilescribe the annotations for data transfers and execution
addition, these higher-level interfaces may be easier to berders, respectively. Section 5 discuss how to record and
replay faithful. replay the MPI and SQLite interfaces. Section 6 and 7
To lower the implementation effort for intercepting, describe annotations for optimizations and implementa-

recording, and replaying a chosen interface, R2 genefiOn details, respectively. We evaluate R2 in Section 8,
ates stubs for the calls in the chosen interface and adiSCuss related work in Section 9, and conclude in Sec-

ranges that these stubs are called when the applicatiotllpn 10.

invokes the calls. The stubs perform the recording an

the replay of the calls. To ensure that these stubs beha DESIGN OVERVIEW

in way that is replay faithful, the developer must anno-A goal of R2 is to replay applications faithfully. To do

tate the interface with simple annotations (see Table 1¥0 the calls to intercept must be carefully chosen and

that specify, for example, how data is transferred acrosstubs must handle several challenges. This section starts

the interposed interface for calls that change memory irwith an example to illustrate the challenges, and then de-

addition to having a return value. To reduce the effort ofscribes how R2 addresses them.

annotating R2 reuses existing annotations from SAL [13]

for Windows API. Inspired by the kernel/user division in 2.1 An Example and Challenges

operating systems, R2 uses a mode bit, which stubs saveithful replay is particularly challenging for system

and restore, to track if a call is on behalf of the applica-appncationS’ which interact with the Operating sys-

tion and should be recorded. tem in complicated ways. Consider Figure 1, a typ-
We have implemented R2 on Windows, and used itical network program on Windows: a thread binds a

to record and replay at three interfaces (Win32, MPI, andsocket to an 1/0O portQr eat el oConpl eti onPort,



struct ioch {
OVERLAPPED ov;

1
2

3 void * buf, * user_data;

4}

5

6 int main() {

7 HANDLE hPort = ...;

8 for (...)

9 CreateThread(..., WorkerThread, hPort, ...);
10

11 SOCKET s = socket(...);

12 Creat el oConpl etionPort (s, hPort, ...);

13 struct iocb * cb = (struct iocbhb *)malloc(...);
14 cb->buf = mal | oc(BUFSI Z);

15 cb->user_data = ...;

16 BOOL fSucc = ReadFil eEx(s, cb->buf, BUFSIZ,

17 ( OVERLAPPED *) &b, 0);

18
19 }

21 DWORD W NAPI Wor ker Thr ead( HANDLE hPort) {
22 for (5 ;) {

23 struct iocb * cb;

24 DWORD si ze;

25 Get QueuedConpl eti onSt at us(hPort, &size, ...,
2 (OVERLAPPED *) &b, ...);
27 void * buf = cb->buf;

28 void * user_data = ch->user_dat a;

29

30 }

31 return O;

32 }

is for the stubs to call the original intercepted functions

and to record their results. This approach also allows R2
to record and replay functions for which only the binary

versions are available.

To achieve this implementation goal and to en-
sure faithful replay, the stubs must address a num-
ber of implementation challenges. Consider the case in
which the developer selects the functions from the Win-
dows API (e.g.,Get QueuedConpl et i onSt at us,
ReadFi | eEx, etc.) as the interface to be interposed.
During a record run, the stubs must record in a log
the socket descriptor and the completion port as inte-
gers, the output oBet QueuedConpl et i onSt at us
(e.g., the value ofcb at line 26 and the content of
cb- >buf at line 27), along with other necessary infor-
mation, such as the timestamp when the operating system
startsWor ker Thr ead as an upcall (callback) via a new
thread.

During a replay run, the stubs will not invoke
the intercepted functions such d&eadFi | eEx or
Get QueuedConpl et i onSt at us, but instead will
read the results such as descriptors, the valuelnf
and the content foch- >buf from the log. The stubs

Figure 1. A typical network program using asyn- must also cause the memory side effects to happen (e.g.,
chronous 1/0 and completion port on Windows. The pat-copying content int@b- >buf ). Finally, the replay run
tern is also widely available on other platforms, such asnmust also deliver upcalls (e.g\r ker Thr ead) at the
Linux aio ( o_get event s etc.), Solaris event comple- recorded timestamps.

tion (port _get etc.), and FreeBSD kqueue.

[ ]
line 12), enqueues an asynchronous 1/O request
(ReadFi | eEx, line 16), and a worker thread waits
on the I/O port for the completion of the I/O request
(Get QueuedConpl et i onSt at us, line 25). Similar
interfaces are provided on other operating systems such ®
as Linux @i o), Solaris port), and BSD kqueue),
and are used by popular software such as the lighttpd
web server that powers YouTube and Wikipedia.

The first challenge a developer must address is what
calls are part of the interface that will be recorded
and replayed. For example, in Figure 1, a developer
might choosesocket but notReadFi | eEx. However,
since during replay the call tvocket is not executed,
the returned socket descriptor is simply read from the
recorded log rather than created. So the choice may crash
ReadFi | eEx during replay and fail the application; the
developer should choose both functions, or a lower layer
thatReadFi | eEx uses. Section 2.2 formulates a num-

ber of rules that can guide the developer. °

R2 generates stubs for the functions that the devel-
oper chooses to record and replay, and arranges that in-
vocations to these functions will be directed to the cor-
responding stubs. To avoid reimplementing or modifying
the implementation of the interposed interface, R2’s goal

These requirements raise the following challenges:

Use of intercepted functions by the implementation
of the interposed interface. For example, the imple-
mentation itself may invoke the functi@ocket
and those invocations should not be recorded.

Functions that have side effects. For example, to
record and replayReadFi | eEx, the stubs must
record the content ofb- >buf and fill it during
replay. The stub forReadFi | eEx must know that
the second argument has side effects.

e Addresses returned hyal | oc must be identical

during recording and replay. The code in Figure 1
requires that the value that receives at line 13
mustnot change from record to replay: the replay
run reads the value afb from the log at line 26
and that should be equal to the value returned by
mal | oc at line 13; a different value focb may
lead to a crash in further uses (line 27 and 28).

Threads created by the implementation of the in-
terposed interface. The operating system, for exam-
ple, might create threads to deliver events to the ap-
plication, or might create “anonymous” threads to

perform household tasks. The former should be re-
created during replay, but the latter not.



e Execution order. Dependencies during recording
must be preserved during replay. For example,
ReadFi | eEx’s start of an asynchronous I/O must
happen before the completion of that I/O event.

2.2 Choosing an Interface

As a starting point for choosing an interface, the devel-
oper must choose functions that forncat in the call
graph. Consider the call graph in Figure 2. The function
mai n calls two functiong 1 andf 2, and those two both
call a third functiorf 3, which interacts with the applica- Figure 2: Four cuts in a call graph for record and replay.
tion’s environment. The developer cannot choose to havahe functionf 3 interacts with the environment.
only f 1 (or onlyf 2) be the interposed interface. In the
case of choosing 1, the effects of interactions bfy3
will be recorded only when called Hyl but not byf 2.
During replayf 3 interactions caused iyl will be read
from the log but calls td 3 from f 2 will be re-executed,;
f 1 andf 2 will see different interactions during replay.
For faithful replay, the interposed interface must form
a cut in the call graph, thus the interface carf 8e(cut
4) or bothf 1 andf 2 (cut 1). Cuts 3 and 4 are also fine,
but require R2 to track if 3 was called from its side of

the cut or from the other side. In the case of cut 3, R2ry £ 2 (NONDETERMINISM) Any source of nondeter-

will not record invocations of 3 by f 2 becausé 2's in-  yjinism should be below the interposed interface.
vocations will be recorded and replayed. R2 supports all

four cuts, and also handles recursive calls (seeal | If any nondeterminism is below the interposed inter-
in Section 2.3). face, the impact to functions above the interface will be
When the interposed interface forms a cut in the callcaptured and returned to them. Violating this rule will
graph, every function is either above the interface or befesult in unfaithful replay, because the behavior during
low the interface. For example, if the developer chooseseplay will be different from during recording.
f1 andf 2 as the interposed interface, themi n is The sources of nondeterminism are as follows.
above and 3 is below the interface. Functions above o
the interposed interface will be executed during replay, 1- Calls thatreceive input data from the external (e.g.,
while functions below the interposed interface will not environment variables, files, and network).
be executed during replay.
To ensure faithful replay, the cut must additionally
satisfy two rules.

memory access. During recording R2 records the file de-
scriptor as an integer. During replay, R2 retrieves the in-
teger from the log and returns it to functions above the
interposed interface, without invoking the operating sys-

tem to allocate descriptors. As long as R2 intercepts the
complete set of file functions, the recorded file descrip-

tor works correctly with the replayed application and en-

sures replay faithfulness.

2. Interprocess communications through shared mem-
ory (e.g.,Wi t eConsol e in Windows communi-
cates with the CSRSS system service for standard

RULE 1 (IsoLATION) All instances of unrecorded reads Inputfoutput through a shared-memory segment).

and writes to a variable should be either be below or 3. Interactions between threads through shared vari-
above the interposed interface. ables (e.g., spinlocks).

Following the isolation rule will eliminate any shared R2 can handle the first source easily if the developer
state between code above and below the interface. A varfollows the isolation rule because input data from the ex-
able below the interface will be unobservable to func-ternal is received through functions. For the Windows
tions above the interface; it is outside of the debuggingAPI the developer must mark these functions being part
scope of a developer. A variable above the interface willof the interposed interface, which eliminates the nonde-
be faithfully replayed, executingll operations on it. Vi-  terminism.
olating the isolation rule will result in unfaithful replay For the second source, R2 can re-execute during re-
because changes to a variable made by functions belopiay if the replayed application only reads from shared
the interface will not happen during the replay. memory. For more general cases the developer must

For the Windows API, the isolation rule typically mark the higher-level function that encloses the nonde-
holds. For example, all the operations on a file descripterminism of shared memory accesses as being part of
tor are performed through functions rather than directthe interposed interface (e.§¥, i t eConsol e).



r lows:
Applications R2 Replay Space
~ 1{ v e Replay space. All the code and data that is above
User Space §R2 Runtime § T the chosen syscall interface.
£ £ ; ;
4: - R2 System Space e System space. The R2 library and the underlying
Libraries libraries, as well as any application code and data
l that is below the chosen syscall interface.
Ker”e's‘:fce OS Kernel R2 records the output of syscalls invoked from appli-

cation space, the input of upcalls invoked from system
space, and their ordering. It faithfully replays them dur-
Qng the replay. R2 does not record and replay events in
system space.

Consider the code in Figure 1 again. The developer
may have chosemal | oc, socket, ReadFi | eEx,

CreateThread, CreateloConpletionPort,

The third source of nondeterminism stems from vari-and Get QueuedConpl etionStatus as syscalls.
ables that are shared between threads via direct mend-h€ execution ofmai n and Wor ker Thr ead is in
ory access instructions rather than functions. A similar'eplay space and the execution of the syscalls and the
case is the dt sc instruction on the x86 architecture underlying libraries is in system space.
that reads the CPU timestamp counter. Often these in- To record and replay syscalls and upcalls, R2 gener-
structions are enclosed by higher-level interface func-ates stubs from their function prototypes. R2 uses De-
tions (e.g., lock and unlock of spinlocks). Developerstours [15] to intercept syscalls and upcalls, and detour

must annotate them as being part of the interposed intheir execution to the generated stub. For syscalls that
terface. take a function as an argument, R2 dynamically gener-

In practice, library APIs are good candidates for theates a stub for the function and passes on the address of
interposed interface. First, library functions usuallydéa the upcall stub to the system layer. This way when later
variables shared between internal library routines and ith€ system layer invokes the upcall, it will invoke the up-
is difficult to select only a subset of them as the inter-Call Stub.
posed interface. Second, most sources of nondetermin- For syscalls that return data through a pointer argu-
ism are contained within software libraries (e.g., spikloc Ment, R2 must record the data that is returned during

variables in a lock library), and they affect external state'®cording and copy that data into application space dur-
only via library interfaces. ing replay. To do so correctly, the developer must anno-

tate pointer arguments so that R2 knows what data should
be recorded and how the stubs must transfer data across
the syscall interface. Section 3 describes those annota-
R2 must address the implementation challenges listed itions.
Section 2.1 for the stubs for the functions that are part R2 maintains a replay/system mode bit for each
of the appropriately-chosen interface. A starting point tothread to indicate whether the current thread is executing
handle these challenges is to separate the application thiat replay or system space (analog to user/kernel mode
is being recorded and replayed from the code below théit). When the application in replay space invokes a
interface. syscall, the syscall stub sets the replay/system mode bit
Inspired by isolation between kernel space and useto system space mode, invokes the syscall, records its re-
space in operating systems, R2 defines two spaces (sselts, and restores the mode bit. Similarly, an upcall stub
Figure 3):replay spaceandsystem spaceUnlike oper-  records the arguments, sets the mode bit to replay space
ating systems, however, the developer can decide whicmode, invokes the upcall, and restores the mode bit after
interface is the boundary between replay and systenthe upcall returns.
space. Like in operating systems, we refer to the func-  This bit allows R2 to handle a call from system space
tions in the interposed interface agscalls(unless ex- to a function that is a syscall; if a syscall is called from
plicitly specified, all syscalls mentioned below are R2 system space then it must be executed without record-
syscalls instead of OS syscalls). Syscalls may registeing anything (e.g., a call teocket from system space).
callback functions, which we calipcalls, that are issued  Similarly, if a syscall is called from system space and it
later into replay space by system space runtime. Witthas a function argument, then R2 will not generate an
these terminologies, we can describe the spaces as falpcall stub for that argument. It also allows R2 to apply

Figure 3: R2 overview. The user space is split into two
spaces: R2 runtime that intercepts syscalls and under!
ing libraries are running in R2 system space; the applica
tion executes in R2 replay space.

2.3 Isolation



different policies to different spaces (e.g., allocate mem down might not show up (e.g., invalid valuedb- >buf
ory in a separate pool for code in replay space). will not be reproduced if a differentb is returned in

For functions that have state that straddles the bound~igure 1 because the program crashes before it reaches
ary between system and replay space (egr,no in  the buggy state). But, during replay, functions in system
libc), the developer may be able to adjust the interfacespace that calledal | oc during recording will not be
to avoid such state (see Section 2.2) or may be able toalled during replay, and swal | oc during replay is
duplicate the state by linking a static library (e.g., libc) likely to return a different value.

in each space. To ensure faithful replay application must have an
) identical trace ofral | oc/f r ee invocations to ensure
2.4 Execution Control that addresses during recording and replay are the same.

The separation in replay space and system space allow32 uses separate memory allocators for replay and sys-
R2 to handle anonymous threads and threads that, for efém space. A call toral | oc allocates memory from
ample, the operating system creates to deliver events t& dedicated pool if it is called in replay space (i.e., the
the application. mode bit of the current thread is of replay space mode),

R2 starts as follows. When a user invokes R2 withwhile it delegates the call to the original libc implemen-
the application to be recorded, R2’s initial thread startstation if it is called in system space.
in system space. It loads the application’s executable and Memory addresses returned in system space may
treats the main entry as an upcall (i.e., tre n func-  change due to inherent differences between record and
tion is turned into an upcall by generating an upcall stub)replay, but those addresses are not observable in replay
The stub sets the replay/system mode bit of the currengpace so they will not impose any problems during re-
thread to replay space mode, and invokes n. R2 as-  play.
signs the thread a deterministic tag, which the stubs will A challenge is addresses allocated in system space
also record. By this means, R2 puts the functions in théout returned to replay space. For example, a syscall
call graph starting frommai n till the syscall interface to get cwd( NULL, 0) to get working directory path-
into replay space. name may caliral | oc internally to allocate memory in

Anonymous threads that do not interact with the ap-System space and return its address to replay space. To
plication will be excluded from replay. These threads will ensure replay faithfulness R2 allocates a shadow copy in
not call syscalls and upcalls and thus do not generate loghe dedicated pool for replay space and returns it to the
entries during recording and are not replayed. Howeverapplication instead. R2 uses the annotatipainter de-
if a thread started by the operating system performs ascribed in Section 3 to annotate such functions.
upcall (e.g., to trigger an application registered Ctrl-C ~ Similar to Jockey [28], threads that may execute in
handler on Windows), then the upcall stub will set thereplay space have an extra stack allocated from the re-
mode bit; the thread will enter replay space, and its acplay’s memory pool, and R2 switches the two stacks on
tions will be recorded. an upcall or syscall. This ensures that the memory ad-

During replay, R2 will replay this upcall, but the dresses of local variables are the same during recording
thread for the upcall may not exist during replay. R2and replay.
solves this problem by creating threads on demand. Be- Like all other library-based replay tools, R2 does not
fore invoking an upcall, R2 will first look up if the current protect against a stray pointer in the application with
thread is the one that ran the upcall during recording (bywhich the application accidentally overwrites memory
comparing the deterministic tag assigned by R2). If not,in system space. Such pointers are usually exposed and
R2 will create the thread. fixed early in the development cycle.

For faithful replay, R2 must replay all syscalls and  Resources other than memory (e.g., files, sockets) do
upcalls in the same order as during a record run. In mulhot pose the same challenges as memory, as long as the
tithreaded programs (and single-threaded programs witdeveloper has chosen the interposed interface well. R2
asynchronous 1/0O) there may be dependencies betweetpes not have to allocate these resources during replay,
syscalls and upcalls. Section 4 introduces a few annotadecause the execution in replay space will touch these

tions that allow R2 to preserve a correct order. resources only via syscalls, which R2 records. Memory
in contrast is changed by machine instructions, which R2
2.5 Memory Management cannot record.

If a developer choosesal | oc andf r ee as syscalls,
R2 must ensure that addresses returneatedyl oc dur- 2.6 Stubs, Slots and Code Templates

ing recording are also returned during replay. If the ad- R2 generates stubs from code templates. We have de-
dresses returned byal | oc during replay are different, veloped code templates for recording, replay, etc., but de-
then during replay the bug that the developer is trackingvelopers can add code templates for other operations that



1int recv ( 1 BOOL
2 [in] SOCKET s, 2 [prepare(lpOverlapped, |pBuffer)]
3 [out, bsize(return)] char *buffer, 3 ReadFi |l eEx (
4 [in] int len, 4 [in] HANDLE hFile,
5 [in] int flags ); 5 [out] LPVO D | pBuffer,
6 [in] DWORD nNunber Of Byt esToRead,
7 in] LPOVERLAPPED | pOver | apped,
(a) annotated syscall/upcall prototype 8 %i n], cal | back] P PP
L

1 BEG N_SLOT(record_<?=$f - >nane?>, <?=$f->nanme?>)

POVERLAPPED_COVPLETI ON_ROUTI NE conpl eti onCb) ;

2 | ogger << <?=$f->name?>_signature 11 typedef void

3 << current_thr_tag; 12 [commit (| pOverl apped, cbTransferred)]
4 <?if(is_syscall ($f)) {?> 13 (* Fil el OConpl etionRoutine) (

5 | ogger << return_val ; <?}?> 14 [in] DWORD dwerror Code,

6 <?$direction = is_syscall ($f) ? "out’:’in’;?> 15 [in] DWORD chTransferred,

7 <?foreach($f->paranms as $p) { 16 [in] LPOVERLAPPED | pOverl apped );
8 if ($p->has($direction)) { 17

9 if ($p->has(’bsize’)) {?> 18 BOOL

10 I'ogger. write(<?=$f->name?>, 19 [commit (I pOverl apped, cbTransferred)]
11 <?=$p->val (' bsi ze') ?>); 20 Get Over | appedResul t (

12 <?} else {?> 21 [in] HANDLE hFile,

13 | ogger << <?=$f - >nanme?>; 22 [in] LPOVERLAPPED | pOver | apped,
14 <?}}}7?> 23 [out] LPDWORD cbTransferred,

15 END_SLOT 24 [in] BOOL bWait );

(b) record slot function template

1 BEGIN_SLOT(record_recv, recv) Figure 5. Asynchrony annotationsprepare indicates

2 :ogger << recv_si gnlature << current_thr_tag; that ReadFi | eEx issues an asynchronous I/O request
3 ogger << return_val; . .

4 logger.wite(buffer, return_val); !(eyed_ byl pQ/erl apped’ the Compl_etlon of \_thh

5 END_SLOT is notified as eitheri | el oConpl eti onRout i ne

or Get Over | appedResul t ; commit indicates the re-
quest keyed by pOver | apped is completed and the

Figure 4: Templates (in PHP [2]) and Slots. R2 usestransferred data size &b Tr ansferred.
record (and others like replay) code templates (e.g., (b))
to generate corresponding slot functions (e.g., (c)).

(c) generated record slot function

Direction annotationsdefine the source and destina-
tion of a data transfer. In Figure 4, keywardon s and
| en indicates that they are read-only and transfer data

they would like stubs to perform. To allow for this exten- . . : o
into functionr ecv, while out onbuf f er indicates that

sibility, a stub is made of a number of slots, with each ) .
r ecv fills the memory region abuf f er and transfers

slot containing a function that performs a specific oper- . Co
9 P P P data out of the function. The return value of a function is

ation. For example, there is a slot for recording, one for, licitl tated "
replay, etc. implicitly annotated asuit.

Figure 4 provides an overview of how a record slot Buffer annotations define how R2 should serialize
function is generated for theecv syscall. Developers and deserialize data being transferred for record and re-

annotate the prototype ofecv with keywords from Ta-  Play. Forbuf f er ina contiguous memory region in Fig-
ble 1; forr ecv this step will result in the prototype in Uré 4. which is frequently seen in systems code, key-
Figure 4(a). (On Windows the developer does not haveV0rd bsize specifies the size, (e.gbsize(return)), so
to do any annotation forecv, because R2 reuses the that R2 can then automatically serialize and deserial-
SAL annotations.) R2 uses a record template (see Fi

ize the buffer. For other irregular data structures such as
ure 4(b)) to process the annotated prototype and producd@ked lists (€.g.st ruct host ent, the return type of
the record slot function (see Figure 4(c)).

get host bynane), R2 requires developers to provide
customized serialization and deserialization via operato
3 DATA TRANSFERS overloading on streams, which is a common C++ idiom.
] ) Asynchrony annotationsdefine asynchronous data
R2 provides a set of keywords to define the data transgansfers that finish in two calls, rather than in one.
fer at syscall and upcalls boundaries. These keywordg, example, in Figure SReadFi | eEx issues an
help R2 isolate the replay and system space. This Se&synchronous 1/0 request keyed bpOver | apped,
tion presents the data transfer annotations and discussgsich we call arequest key Developers use keyword
how R2 uses them to ensure replay faithfulness. prepare to annotate the syscall with the request key
. and the associated buffépBuf f er . The completion
3.1 Annotations of the request will be notified via either an upcall to
The annotations for data transfers fall into the following Fi | el oConpl et i onRout i ne (line 13) or a syscall
three categories. to Get Over | appedResul t (line 20), when the as-



sociated buffer has been filled in system space. In ei-, F)éynnc(hwm ex)]
ther case, developers use keywardmmit to anno- 3 ReleaseMitex (
tate it with the request key and transferred buffer size: '™ HANDLE ivitex )
cbTr ansf err ed. R2 can then matchpBuf f er with 6 DWORD
. . . 7 [sync(hMit ex)]
its sizecbTr ansf er r ed via the request key for record i t For si ngl echj ect (
and rep|ay_ 9 [in] HANDLE hMuitex,
As mentioned in Section 2.5, some syscalls allocate” [Tn) DVORD cwh 11 seconds )
a buffer in system space and the application may use the

buffer in replay space. R2 provides the keywgpdinter  Figure 6: Syscall-syscall causality annotations using
to annotate this buffer, and will allocate a shadow bUﬁerwnc_ R2 serializes the Sysca” events with the same sync
in replay space for the application, at both record andkey hMut ex to obtain an event order, and the causali-

replay time. Data are copied to the shadow buffer fromtjes between these events are implicitly held by the event
the real buffer in system space during recording, andequence.

from logs during replay. While data copy may add some

overhead during recording, this kind of syscalls is infre-

quently used in practice. lenges. For multithreaded programs that run on multipro-
Most such syscalls allocate new buffers locally andcessors, recording the right order is more challenging,

usually have paired “free” syscalls (e.get cwd and  because syscalls and upcalls can happen concurrently,

free, getaddrinfo andfreeaddrinfo). Some butdependencies between syscalls and upcalls executed

others without paired “free” functions may return thread- by different threads must be maintained. R2 provides de-

specific or global data, such get host bynane and  velopers with two annotations to express such dependen-

Get CommandLi ne. They should be annotated with cies. This section describes how R2 handles the record-

xpointer (thread) andxpointer (process), respectively. ing and replay execution order.

3.2 Code Generation 4.1 Event Definition

Figure 4 illustrates the record slot code template and thén R2 there are three events: syscalls, upcalls, and causal-
final record slot function for ecv. The record slot func- ities. R2 uses the causality events to enforce the happens-
tions log all the data transmitted from R2 system spacehefore relation between events executed by different
to R2 replay space. The slot template (Figure 4(b)) genthreads. Consider the following scenario: one thread uses
erates code for recording the return value only when proa syscall to put an object in a queue, and later a second
cessing R2 syscalls (line 4). When scanning the paramethread uses another syscall to retrieve it from the queue.
ters, it will record the data transfer according to the evenDuring replay the first syscall must always happen before
type and annotated direction keywords (line 6 and 8)the second one; otherwise, the second syscall will receive
Specifically for upcalls, the input parameters and upcallan incorrect result. Using annotations, these causalities
function pointers are recorded so that R2 can executare captured irrausality events A causality event has
the same callback with the same parameters (includin@ source everd; and a destination evee$, which cap-
memory pointers) during replay. turese; < &. R2 generates a slot function that it stores
For prototypes annotated withrepare, the record in bothe; andey’s stubs, which will cause the causality
slot template will skip recording the buffer. Instead, R2 event to be replayed when R2 replaysande,.
uses another slot template to generate two extra record R2 captures two types of causality events:
and replay slots for each prototype. One is for recording
the buffer (including the buffer pointers), and the otheris ® syscall-syscall: a syscall depends on an earlier one,
for replaying the buffer, which reads the recorded buffer ~ €.9., signal and wait;
pointers and fills them with the recorded data. These two
slots will be plugged into stubs for prototypes labeled
with commit at the record and replay phases, respec-
tivelly. This approac;h ensures that the memory addre_sses To capture syscall-syscall causality, R2 provides the
durlng.replay are identical to the ones returned duringeeyword sync to annotate syscalls that operate on the
recording for asynchronous /O operations. same resource. Figure 6 presents an example, where a
call to Wai t For Si ngl eObj ect that acquires a mu-
4 EXECUTION ORDERS tex depends on an earlier call Rel easeMut ex that
For faithful replay, R2 must replay all syscalls and up-releases it. Developers can then annotate them with
calls in the same order as during a record run. For singlesync(hMut ex). We call the mutehiMut ex async key.
threaded programs asynchronous I/O raises some chdR2 creates causality events for syscalls with the same

e syscall-upcall: a syscall registers a callback that is
executed later as an upcall.



HANDLE Cr eat eThr ead

1 ( . . .

2 [in] LPSECURI TY_ATTRI BUTES | pThreadAttributes, causality event, which invokes RDATECLOCKUPON-

3 {? n] Sl |Z|EET g}f\fs}_c’;%%g StaRT AE oSt art Ch EVENT with the causality event as argument. This will

4 in, ca ac ) ~RQU pStart Ch, .

. [in] LPVOD I pParameter, cause the clpck of thg causality event to be propagated to
6 [in] DWORD dwCreationFlags, the thread (line 7 in Figure 8).

7

t] LPDWORD | pTh did); . .
[out] PThreadid ) There are several possible execution orders that pre-

serve the happens-before relation, as we discuss next.
Figure 7: A syscall-upcall causality annotation us- )
ing callback. R2 converts the callback argument 4.3 Replaying Event Order

| pStart Cb into an upcall stub; when the upcall is de- R can use two different orders to record and replay
livered, the syscall-upcall causality will be captured.  gyents: total-order and causal-order. Total-order execu-
tion can faithfully replay the application, but may slow
down multithreaded programs running on a multiproces-
sor, and may hide concurrency bugs. Causal-order exe-

1. > C(to) —0
2: procedure UPDATECLOCKUPONEVENT(€)

3 If e.type = cAusALITY EVENT then cution allows true concurrent execution, but may replay
4 c(t) « max(c(e.source), c(t)) +1 incorrectly if the program has race conditions.

5: c(e) «— c(t)

6:  else 4.3.1 Total-Order Execution

7: c(t) «—c(t)+1

a: c(e) — c(t) Like liblog [10], in total-order execution mode, R2
o end if uses a token to enforce a total order in replay space, in-
10: end procedure cluding execution slices that potentially could be exe-

cuted concurrently by different threads. During record-

Figure 8: Algorithm for calculating event clocks. The ing when a thread enters replay space (i.e., returning

procedure is invoked when processing every event.  from a syscall or invoking an upcall), it must acquire
the token first and calculate a timestamp if an upcall is

present. When a thread leaves replay space (i.e., invoking
sync key. In addition to mutexes, a sync key can bea syscall), R2 assigns a timestamp to the syscall and then
any expression that refers to a unique resource. Foreleases the token. On a token ownership switch R2 gen-
asynchronous I/O operations (see Figure 5), R2 usesrates a causality event to record that the token is passed
| pOver | apped as the sync key. from one thread to another. This design serializes execu-

For syscall-upcall causality, developers can use theion in replay space during recording, although threads

keywordcallback to mark the dependency, as illustrated executing in system space remain concurrent. The result
in Figure 7. R2 generates a causality event for the syscalk a total order on all events.

to Cr eat eThr ead and the upcall té pSt ar t Cb. During replay, R2 replays in the recorded total or-
_ der. As it replays the events, R2 will dynamically create
4.2 Recording Event Order new threads for events executed by different threads dur-

dng recording (as described earlier in Section 2.4). It will
uses that timestamp to replay. It assigns each thread ensure that these threads execute in the same order as

clockc(t) and each everga clockc(e). Figure 8 shows enforced_ by the token during recording. Th_e reason to
R2’s algorithm to calculate the Lamport clock for each US€ multiple threads, even though the execution in replay
event. space has been serialized, is that developers may want
During recording, R2 first sets the clock of the main to pause a replay and use a_standard debugger to inspect
thread to O (line 1). Then, when an event is invoked rothe local variables of a particular thread to understand
calculates the clock for that event using the procedurd!oW the program reached the state it is in. In addition,
UPDATECLOCKUPONEVENT. For non-causality events, USINg multlple threads during replay ensures that thread-
R2 simply increases the current thread's clock by onePecific storage works correctly.
(line 7) and then assigns that value to the event (line 8). .
For a causality event, R2 updates the current thread’é"s'2 Causal-Order Execution
clock to the greater value of itself and the clock fromthe  Causal-order execution, however, allows threads to
source event of the causality (note tleat- e.source < execute in parallel in both replay and system space. R2
e.destination), and increases it by one (line 4). R2 also does not impose a total order in replay space, it just cap-
assigns this value to the causality event (line 5). tures the causalities of syscall-syscall and syscalldipca
When a thread invokes the destination event of aTherefore the application will achieve the same speedup
causality event, R2 first runs the slot function for thein causal-order execution.

R2 uses a Lamport clock [18] to timestamp all events an



. . i nt
To implement causal-order execution, R2 reuses the, | o epare(request, buf)]
replay facility for total-order execution. R2 processes th s Ml _Irecv E) LS 4 but
causal-order event log before replay, uses a log convertef [ 7+, 3 2 WPt St ze(type, count))] vord xbuf,

to translate the event sequences into any total order that MPI _Dat atype type,

[in]
- . i int
preserves all causalities, and replays using the totarord | [i1 (o foor
execution. If the program has an unrecorded causality [in] MPI_Conm conm
[out] MPI _Request xrequest );

(e.g., data race), R2 cannot guarantee to replay thesé
causalities faithfully in causal-order execution. We have: int
not fully implemented the log converter yet, since our fo- 5, {o0 vy ' (%!

cus is replaying distributed applications and total-orders ~ [in] MPl_Request xrequest,

execution has been good enough for this purpose. 1 [out] WM _Status status);

5 DEFINING YOUR OWN SYSCALLS Figure 9: Example of asynchrony annotations on MPI
functions. The size of the returned buffercatnmit is by

We have annotated a large set of Win32 API calls for ; ; "
default the registerebsize at preparein MPI _I r ecv.

R2 to support most Windows applications without any
effort from developers, including those required to be . :

X K i 1int sqlite3_prepare (
annotated withxpointer, prepare, commit, and sync. 2 [in] sqglite3 « db,
Sometimes developers may want to define their own? H 2} ﬁg;‘f; char « zSal,
syscalls, either to enclose nondeterminism in syscallss [out] sqlite3_stnt ** ppStnt,
(e.g.,rdtsc, spin lock cases in Section 2.2) or to re- ¢ [out] const char «x pzTail )
duce recording overhead. In this section we use MPl and; int sqlite3_col um_int (
SQLite as examples to explain how to do this in general.’ H 2} o ‘f?—“ mox pstmt,

51 MPI

MPI is a communication protocol for programming par-
allel computing applications. An MPI library usually has

nqndetermiqism that cannot be captured by interceptinqhe outputs of SQLite API, and avoid recording file op-
Win32 functlons (e_.g., MPICH [4] uses S.har?d'memoryerations issued by the SQLite library in system space.
and spinlocks for interprocess communication). To re- In certain scenarios, recording at the SQLite API

play MPI applications, this nondeterminism must be en- . .
yer can dramatically reduce the log size, compared
capsulated by R2 syscalls. Therefore, we annotate all : )
with recording at the Win32 layer. For example, some

MPI function lIs, making the entire MPI librar ;
U ctions as syscals, ma gt ce ! e b Y SeLECT gueries may scan a large table but return only
run in system space. Since the MPI library is well encap- : ;
small portion of matched results. For these queries,

sulated by these MPI functions, doing this ensures thaf . , . e
. . e recording only the final results is more efficient than
both rules in Section 2.2 are satisfied.

. . . recording all data fetched from database files. Section 8.4

Annotating MPI functions is an easy task. Most func- , .
. : ) . shows the performance benefits of this approach.
tions only require thein and out annotations at pa- Figure 10 shows two annotated SQLite functions:
rameters. Several “non-blocking” MPI functions (e.g., | i? 3 or re andsal i te3.col umm.i nt ar '
MPI _I recv and MPI _I| send) use asynchronous data tsqi I? *En ep?re am |T|?1 € ,rco nl’('j ; :[ri vina € |
transfer, which is easily captured using tpespare ynﬁr??es%lljts fgsoegt(i)velp g aqueryandretrieving co
and commit annotations. Figure 9 shows the annotated”  Tesp Y-
MPI I recv and MPI Wi t, which issue an asyn-
chronous receive and wait for the completion notifica-6 ~ANNOTATIONS FOR OPTIMIZATION

tion, respectively. These functions are associated basgf thjs section, we introduce two additional annotation
on therequest parameter by the annotations. Sec- keywords to optimize R2's performance.

tion 8.2 presents the number of annotations needed. Cache annotation By inspecting logs we find that

59 SOLj a few syscalls are invoked much more frequently than
' QLite others—more than two orders of magnitude. Also, most
SQLite [3] is a widely-used SQL database library. A of them return only a status code that does not change
client accesses the database by invoking the SQLite APfrequently (e.g.Get Last Err or on Windows returns
Using Win32 level syscalls, R2 can faithfully replay zero in most cases). To improve recording performance
SQLite client applications. Additionally, developers can R2 introduces keywordache to annotate such syscalls.
add the SQLite API to R2 syscalls so that R2 will record Every time a syscall annotated withchereturns a status

Figure 10: Example of annotated SQLite functions.



Manually Coded Modules kloc Category Software Package
annotation parser & code generator 4.1 web server Apache, lighttpd, Null HTTPd
core (interception, isolation, slot) 1.3 database SQLite, Berkeley DB, MySQL
upcall callback) 0.7 distributed system libtorrent, Nyx, PacificA
causality éync) 1.9 virtual machine Lua, Parrot, Python

aio (prepare/commit) 1.3 network client cURL, PuTTY, Wget
record-replay (memory, data, event) 10.2 misc. zip, MPICH

Total 19.5

Table 3: Software packages successfully replayed.

Automatically Generated Modules  kloc

callback.Win32 3.6 During replay R2 may still fail because of some un-
causality.Win32 2.9 recorded non-determinisms, e.g., data races not enclosed
aio.Win32 1.9 by R2 syscalls. Since non-determinisms usually lead to
R2.Win32 102.0 different control flow choices thus different syscall invo-
R2.app.specific - cation sequences, R2 records the syscall signature (e.g.,
Total 110.2 name) and checks it during replay (check whether the
current invoked syscall has the same signature with that
Table 22 R2 modules. from the log). By this means, R2 can efficiently detect the

mismatch at the first time when R2 gains control after the

code, R2 compares the value with the cached one fror{:aeviation. When a mismatch is found, R2 reports the cur-

the same syscall; only when it changes will R2 record thd Nt Lamport clock and the mismatch. The develaper can

new value in the log and update the cache. An Apachéhen replay the application again with a breakpoint set at

experiment in Section 8.5.1 shows that this optimization.the Lamport clock value minus one. When the breakpoint

reduces the log size by a factor of 17.66% is hit, the developer can then examine how the program

Reproduce annotation Some application data can reached a diﬁefe”‘_ state d_uring repla_y, and fix the prob-
be reproduced at replay timéthout recording. Consider lem (e.g., by adjusting the interposed interface). We have

a BitTorrent node that receives data from other peers anBOund that this approach works well to debug the R2 in-

writes them to disk. It also reads the downloaded datéerface.

from disk .and sends them to c_)ther peers. It. is safe tcg EVALUATION

record all input data for replay, i.e., both receiving from

network and reading from disk. However, R2 need notWe have used R2 to successfully replay many real-
record the latter. Developers can use keyweatoduce world applications. Table 3 summarizes an incomplete
to annotate file 1/O syscalls in this case. R2 then generlist. Most of the applications are popular system ap-
ates stubs from a specific code template, to re-execute giications, such as multi-threaded Apache and MySQL
simulate 1/O operations, instead of recording and feedservers, which we believe R2 is the first to replay. Nyx [7]
ing. Network 1/O, such as intra-group communicationsis @ social network computation engine for MSN and
of an MPI application, can be reduced similarly [33]. PacificA [19] is a structured storage system similar to
Section 8.5.2 and 8.5.3 show that this optimization carGoogle Bigtable [6], both of which are large, complex
reduce log sizes ranging from 13.7% to 99.4% for Bit- distributed systems and have used R2 for replay debug-

Torrent and MPI experiments. ging. The implementation of these applications requires
addressing the challenges mentioned in Section 2.
7 |IMPLEMENTATION This section answers the following questions.

R2 is decomposed into a number of reusable modules. ¢ How much effort is required to annotate the syscall-

Table 2 lists each module and lines of code (loc). In sum, upcall interface?

we have manually written 19 kloc; 110 kloc are gener-

ated automatically for R2's Win32 layer implementation. ® How important are annotations to successful replay
We have annotated more than one thousand Win32  ©f applications?

API calls (see statistics in Table 4). Although this well

covers commonly-used ones, Win32 has a much wider

interface, and we may still have missed some used by ap-

plications. Therefore, we have built an API checker that e How effective are custom syscall layers and anno-

scans the application’s import table and symbol file to tations €ache andreproduce) in reducing log size

detect missing API calls when an application starts. and optimizing performance?

e How much does R2 slowdown applications during
recording?



Interface | #func in| out | bsize | cb | xptr | pr | ci | sync | cache | reproduce | #serial| kloc
Win32 1,301| 1,100| 631 | 168| 53| 11|17| 4| 30 2 3 7 | 110.2
MPI 191 | 171 150 20| 6 4| 61| 4 1 0 4 5| 222
SQLite 153 | 150| 16 4119 3] 0|0 7 0 0 0| 157

Table 4. Information about annotations and code generation. Catuwith annotation keywords show the number
of functions for each keyword. Keywordsllback, xpointer, prepare, commit, are abbreviated tab, xpr, pr, ci,
respectively. The last two columns list the number of fumtsithat require customized (de)-serialization, and lofes
automatically generated code, respectively.

Similar to previous replay work, we do not evalu- Configuration| Request#/s Slowdown | Log rate
ate the replay performance, because replay is usually native 124223 - -
an interactive process. However, the replayed applica- stub only 1241.75 0.04% -
tion without any debugging interaction runs much faster |og 1125.58 1.34% 0.760
than when recording (e.g., a replay run of BitTorrent file causal-order 1197.52 3.60% 1.114
downloading is 13x faster). total-order 1129.94 9.04% 0.781
8.1 Experimental Setup Table 5. Apache performance under different R2 con-

All experiments are conducted on machines with 2.ofigurations (cache on). Log rate is measured in KB/req.
GHz Xeon dual-core CPU, 4 GB memory, two 250 GB, Client concurrency level is 50 and the download file size
7200 /s disks, running Windows Server 2003 Servicels 64 KB.

Pack 2, and interconnected via a 1 Gbps switch. Unless

explicitly specified, the application data and R2 log filesfor R2: without them it would have been a tedious and

are kept on the same disk; the record run uses total-order ) )
o Lo . error-prone job to manually write so many stubs.
execution; all optimizations (i.e., cache and reproduce)

are turned off.
8.3 Performance

8.2 Annotation Effort We measure the recording performance of R2 using
We annotated the first set (500+ functions) of the Win32the Apache web server 2.2.4 with its default configura-
syscall interface within one person-week, and then anngtion (250 threads) and the standard ApacheBench client,
tated as needed. We reused out, bsize, andcallback ~ which is included in the same package.
from the Windows Platform SDK, and manually added  Table 5 shows the reduction in request throughput
the other annotations (i.expointer, prepare, commit, and the log overhead under different R2 configurations.
sync); we manually annotated only 62 functions. We use ApacheBench to mimic 50 concurrent clients, all
We found that once we decided how to annotateof which download 64 KB static files (which is a typical
a few functions for a particular programming conceptweb page size). Each configuration in the table executes
(e.g., asynchronous 1/O, or synchronization), then web00,000 requests. As we can see, the stub, the logger, and
could annotate the remaining functions quickly. For ex-the causal-order execution have little performance im-
ample, after we annotated the file-related asynchronougact; the total-order execution imposes a slowdown up to
I/0 functions, we quickly went through all the socket re- 9.04%, which we believe to be acceptable for the purpose
lated asynchronous I/O functions. of debugging. The log produced for each request is ap-
For the two other syscall interfaces, MPI and SQLite proximately 0.8 KB, slightly bigger for causal-order ex-
(discussed in Section 5), we spent two person-days arecution mode since it needs to log more causality events.
notating each before R2 could replay MPI and SQLite  Figure 11 shows the results for total-order and causal-
applications. The first four keyword&( out, bsize, and  order configurations, with a varied number of concurrent
callback) are trivial and cost us little time, and we mainly clients and file size. We see that when the download file
spent our time on other annotations and writing cus-s larger, the slowdown is smaller. This is because the
tomized (de)-serialization functions. larger file size means that the execution in replay space
Table 4 lists for the three syscall interface the anno-costs less CPU time, and the slow down imposed by total
tations used, how many functions used them, the numbesrder execution is less. For the smallest size of 16KB we
of functions that needed customized (de)-serializationfested, the average slowdown for all concurrency levels
and the lines of code auto generated (approximately 14& 11.2% under total-order configuration and 4.9% under
kloc). The table shows that the annotations are importantausal-order configuration.



3000 o 16K/native Cached Syscalls Call#| Miss#| Hit Ratio

2500 —— 16K/co-log

o e e i m— Get Last Error 618,01599,948 83.82%
g 2000 - e Q oseHand e 150,016 2| 99.99%
- —y I set sockopt 150,003 1| 99.99%
g 1000 — e GaK/to-log Fi ndd ose 100,147 2| 99.99%
500 256K/native Wi t For Si ngl etbj ect | 100,014 4] 99.99%

0 256K/co-log Total 1,118,19599,957 91.06%

10 20 30 40 50 80 100 256K/to-log
Client Concurrency Table 6: Apache cached syscalls with cache miss and hit

) ) statistics. Client concurrency level is 50 and download
Figure 11: Apache performance using total-order andgq size is 64 KB.

causal-order configurations, with a varied number of

concurrent clients and file size.
ther configuration, recording at the Win32 interface pro-

1000 = win32 60 B win32 duces much larger logs (890 MB and 35 MB), compared

_ sqlite 'f]‘;'t'ltfe to recording at the SQLite interface (only 3 MB). The
g 100 - = slowdown factors of recording at the two interfaces are
8 g 126.3% and 9.6% under FILE, 17.8% and 7.3% under

® 10 - = MEM, respectively.

l Note that the recording at the SQLite interface pro-
1 : duces the same size of log for the two configurations,
file mem file mem because the SQL layer does not involve file /0O and the

log size is not effected by the configurations.
Figure 12: SQLite log size and execution time at Win32  From these results we can see that recording at the
and SQLite interfaces using FILE and MEM configura- SQLite layer can reduce log overhead and improve per-
tions. formance, if for a query SQLite must perform 1/O fre-
quently.

In addition to Apache, we havg also n?easured.the&S Optimization Annotations
performance of many other applications while recording.
The slowdown for most cases is moderate (e.g., 9% oS discussed in Section 6, R2 introduces two annotation
average for the standard MySQL benchmark [12]). Therékeywords to improve its performance. We evaluate them
are exceptions, such as the SQLite case below. The pel? this section.
formance of these exceptions, however, can be improve

using either customized syscall layer or optimization an- 5.1 The cache Annotation

notations. We use the Apache benchmark again to evaluate the
) cache annotation. The experiment runs R2 in total-order
8.4 Customized Syscall Layers execution mode. The client’s concurrency level is 50 and

This section evaluates the performance of R2 for SQLitehe file downloaded is 64 KB. Profiling Apache shows
using two Sysca" |ayerS, i.e., Win32 and SQLite, which that 5 out of 61 SySCE\”S contribute more than 50% of
was discussed in Section 5.2. syscall. We use the cache annotation for these syscalls.

We adopted a benchmark from Nyx [7], which cal- Table 6 shows how many times these syscalls were in-
culates the degree distribution of user connections in ¥oked and did not hit the cache in one test run. We see
social network graph. The calculation is expressed adhat the return values of these syscalls were mostly in the
a query: SELECT COUNT(*) FROM edge GROUP cache, and that the average hit ratio is 91.06%. This re-
BY src_ui d. We perform the query 10 times, and mea- duced the log size from 21.99 MB to 18.1 MB (approx-
sure log size as well as execution time. The data set corimately 17.66% reduction). We applied the cache opti-
tains 156,068 edges and is stored in SQLite; the file sizénization to only five syscalls, but we could gain more
is approximately 3 MB. benefits if we annotated more syscalls.

By default SQLite stores temporary tables and in- .
dices in files; it can store them in memory by setting an8'5'2 Reproduced File 1/0
option. We use FILE and MEM to name the two config-  As discussed in Section 6, when the reproduce anno-
urations. Other options are default values. tation is used for file I/O when recording BitTorrent, the

Figure 12 shows log size and execution time forfile content that is read from a disk is not recorded, and
recording at the two syscall layers, respectively. In ei-the related file syscalls are re-executed during replay.



—o—native ). w/o opt (MB) w/ opt (MB) Ratio
0 g record / node 0| node 1| node 0| node 1
GE 55.3 55.3 47.7 47.7 | 86.3%
PU 45| 1170.0 57 1.7 0.6%

record (reproduce)

finish time (s)
~
8

Table 7: Reproduced network 1/O optimization on MPI.

= __ “Ratio” is the log size with this optimization compared

[ e ————— i - < v . . .

el that without. The other fields are R2 log size on each
1 2 3 4 5 6 7 8 9 10 nOde'

nodes (sorted)

) o ) ) R2 to them in more detail.
Figure 13: Finish time of 10 BitTorrent nodes in runs of | ijraryhased replay. Several replay tools use a library-
native, record without and with reproduced I/O optimiza- p55aq approach. The closest work is Jockey [28] and li-
tion. blog [10], where a runtime user-mode library is injected
into a target application for record and replay. We bor-

We use a popular C++ BitTorrent implementation FoW many ideas from thgse tools (e.g., using a token to
libtorrent [1] to measure the impact of this annotation. €nsure total-order execution) but extend the library-tiase
The experiment was conducted on 11 machines, with on@PProach to a wider range of applications using stricter
seed and 10 downloaders. The seed file size was 4 GBsolation (inspired by operating system kernel ideas), by
the upload bandwidth was limited to 8 MB/s. R2 ran in flexible customization of the record and replay interface,
total-order mode with cache optimization off. by annotations, and automatic generation of stubs.

The average log sizes of the recording run with- ~R2 also isolates the application from the tool in a
out and with the reproduce annotation are 17.1 GB andlifferent way. For example, Jockey tries to guarantee
5.4 GB, respectively. The optimization reduces the logthat the application behaves the same with and without
size by 68.2%. Relative to the 4 GB file size, the tworecord and replay, and liblog shares the same goal. Con-
cases introduce 297.5% and 26.4% log size overhead, réequently, they both send the memory requests from the
spectively. tool to a dedicated memory region to avoid changing

Figure 13 presents the finish time of the 10 down-the memory footprint of the application. As discussed in
loaders for a native run, as well for recorded runs with-Section 1, R2 aims for replay faithfulness instead, and it
out and with the reproduce annotation. On average, th§1anages memory requests from épplication.
slowdown factors of recording without and with the an- ~ Jockey and liblog have a fixed interface for record
notation are 28% and 3%, respectively. We can see thand replay (a mix of system and libc calls); any nonde-
the reproduce annotation is effective when recording 1/0 terminism that is not covered will cause replay to fail.
intensive applications, reducing both the log and perfor-R2 enables developers to annotate such cases using key-

mance overhead. words on functions of higher-level interfaces to enclose
nondeterminism.
8.5.3 Reproduced Network 1/0 On the implementation side, both Jockey and Ii-

: )
We use the MPI syscall layer to evaluate the bene-blog have manually implemented many stubs (100+);

) . R2’s more automatic approach makes it easier to sup-
fit of the reproduce annotation for network 1/0. The ex- .

. . . rt a wider ran f lIs. For exampl k
periment was conducted in our MPI-replay project [33],po tawider range of syscalls. For example, Jockey does

: . 'n rt multithreading; libl I n r
which uses R2. We annotated MPI functions using ot support multithreading; liblog also does not support

the reproduce annotation so that the messages are noffil synchronous 1/O and other funct_lt_)ns.

recorded but reproduced during replay. Table 7 shows the RchIay [25] cgptgres cgu;ghﬂes among threat;ls by
effectiveness for two typical MPI benchmarks: GE [14] fracking synchronization primitives. R2 uses that idea
and PU [11]. We see that the client process of PU gainéoo’ but a|SO. paptures other causalities (e.g., sysqall-
much benefit from this keyword; the log size is reducedupcall causalities). RecPlay uses a v_ector clock during
by more than 99.4%. For GE, it also results in a log Sizereplay and can detect data races. This feature could be

reduction, but of about 13.7%. useful to R2 t.oo. )
Another library-based approach but less related is

Flashback [29], which modifies the kernel and records
the input of the application at system call level. Since it

R2 borrows many techniques from previous replay toolsjs implemented as a kernel driver, it is less easy to deploy
in particular from library-based ones. This section redate and use than R2.

9 RELATED WORK



Domain-specific replay. There are a large number of ages transitions between replay and system space at the
replay tools focusing on applications using restrictedsyscall interface, and isolates resources (e.g., threatls a
programming models, such as distributed shared menmemory) within a space.

ory [27] or MPI [26], or in specific programming lan- The annotations also allow R2 to generate syscall
guages such as Standard ML [30] or Java [17]. This apand upcall stubs from code templates automatically,
proach is not suitable for the system applications that Rand make it easy for developers to choose different
targets. In fact, we built a replay tool before [21], which syscall/upcall interfaces (e.g., MPI or SQLite). It also
relies on the programmers to develop their applicationsllows developers to enclose nondeterminism and avoid
using our own home-grown API. The limitation of this shared state between replay and system space. Annota-

work propelled us to design and build R2. tions for optimizations can reduce the record log size and
Whole system replay.A direct way to support legacy improve performance.
applications is to replay thehole system, including the By using these ideas R2 extends recording and replay

operating system and the target applications. A set of reto applications that state-of-the-art library-based agpl
play tools aim at this target, either using hardware suptools cannot handle. R2 has become an important tool for
port [32, 24, 23] or virtual machines [8, 16, 5]. They debugging applications, especially distributed ones, and
can replay almost every aspect of an application’s envia building block for other debugging tools, such as run-
ronment faithfully, including scheduling decisions irsid time hang cure [31], distributed predicate checking [20],
the operating system, which makes them suitable to detask hierarchy inference [22], and model checking.

bug problems such as race conditions. They can achieve

similar performance as R2; ReVirt [8], for instance, hasACKNOWLEDGMENT

a slowdown of 8% for rebuilding the kernel or running \we thank Alvin Cheung, Evan Jones, John McCullough,
S.pecWeb99 benc.hmarks. However, they can be inconvezghert Morris, Stefan Savage, Alex Snoeren, Geoffrey
nient and expensive to deploy. For example, developergoe|ker, our shepherd, David Lie, and the anonymous
must create a virtual machine and install a copy of theeyiewers for their insightful comments. Thanks to our

operating system to record and replay an application. ¢q|leagues Matthew Callcut, Tracy Chen, Ruini Xue, and
Annotations. Annotations on functions are widely used | jgong Zhou for valuable feedback.

in many fields. For example, a project inside Mi-
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