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a system of reahability onstraints (Ri; si; ti). A speial ase of [simultaneous℄rigid reahability arises when the Ri are symmetri, ontaining for eah rules! t also its onverse t! s. Suh systems arise for example by orienting a setof equations in both diretions. The latter problem was introdued by Gallier,Raatz & Snyder [1987℄ as \simultaneous rigid E-uni�ation" (SREU) in theontext of extending tableaux or matrix methods in automated theorem provingto logi with equality. Rigid reahability was initially studied in the ontext ofseond-order uni�ation [Farmer 1991, Levy 1998℄.Even though the non-simultaneous ase of SREU (rigid E-uni�ation) wasproved NP-omplete by Gallier, Narendran, Plaisted & Snyder [1988℄, SREUin general was shown by Degtyarev & Voronkov [1995℄ to be undeidable. Fur-ther impliations of the latter result are disussed in [Degtyarev, Gurevih &Voronkov 1996℄. In a series of papers, SREU has been studied extensively andseveral sharp boundaries have been laid between its deidable and undeid-able fragments. Most reent developments are disussed by Voronkov [1998℄ andVeanes [1998℄. Rigid reahability was shown undeidable by Ganzinger, Jaque-mard & Veanes [1998℄.The, arguably, most diÆult remaining open problem regarding SREU is thedeidability of \monadi" SREU, or SREU restrited to signatures where allnononstant funtion symbols are unary. The importane of this fragment stemsfrom its lose relation to word equations [Degtyarev, Matiyasevih & Voronkov1996℄, and to fragments of intuitionisti logi [Degtyarev & Voronkov 1996℄.What is known about monadi SREU in general, is that it redues to a non-trivial extension of word equations [Gurevih & Voronkov 1997℄. In the ase ofground rules, the deidability of monadi SREU was established in [Gurevih &Voronkov 1997℄ by reduing it to \word equations with regular onstraints". Thedeidability of the latter problem is an extension of Makanin's [1977℄ result byShulz [1990℄. Conversely, word equations redue in polynomial time to monadiSREU [Degtyarev, Matiyasevih & Voronkov 1996℄. The �rst main result of thispaper (in Setion 3), is that monadi SRR with ground rules is in PSPACE,improving the EXPTIME result in Ganzinger et al. [1998℄. Hene, it is unlikelythat there is a simple redution, if any redution at all, from monadi SREUto monadi SREU with ground rules, or else one would get a onsiderable sim-pli�ation of Makanin's [1977℄ proof. The PSPACE-hardness of monadi SREUwith ground rules was shown by Goubault [1994℄.To obtain the PSPACE result we use an extension of the intersetion non-emptiness problem of a sequene of �nite automata that we prove to be inPSPACE. Moreover, using the same proof tehnique, we an show that simul-taneous rigid reahability with ground rules remains in PSPACE, even whenjust the rules are required to be monadi. Furthermore, in this ase PSPACE-hardness holds already for a single onstraint with one variable, ontrasting thefat that SREU with one variable is solvable in polynomial time [Degtyarev,Gurevih, Narendran, Veanes & Voronkov 1998b℄.Our seond main result onerns (nonmonadi) SRR with ground rules. Insetion 4, we show that SRR with ground rules is EXPTIME-omplete for \bal-



aned" systems of reahability onstraints. Under balaned systems fall for ex-ample systems where all ourrenes of eah variable are at the same depth. Itis possible to obtain undeidability of (nonsimultaneous) rigid reahability withground rules where all but one ourrene of all variables our at the samedepth [Ganzinger et al. 1998℄. Moreover, this result generalizes the deidabil-ity result by Degtyarev, Gurevih, Narendran, Veanes & Voronkov [1998a℄ ofthe largest known deidable fragment of SREU with ground rules and impliesEXPTIME-ompletess of the omplexity of this fragment (whih is left openin [Degtyarev et al. 1998a℄). The key harateristi of solving balaned systemsinvolves �nite tree automata tehniques over produt languages, where it is notneessary to searh for solutions enoding a produt of a term with its propersubterm. This property is also important in deision proedures for \automatawith onstraints between brothers" [see, e.g. Comon, Dauhet, Gilleron, Lugiez,Tison & Tommasi 1998℄.2 PreliminariesRigid Reahability. A reahability onstraint, or simply a onstraint, in a signa-ture �, is a triple (R; s; t) where R is a set of rules in �, and s and t are �-terms.We refer to R, s and t as the rule set, the soure term and the target term, respe-tively, of the onstraint. A substitution � in �, solves (R; s; t) if � is groundingfor R, s and t, and s���!�R� t�: The problem of solving onstraints is alled rigidreahability. A system of onstraints is solvable if there exists a substitution thatsolves all onstraints in that system. Simultaneous rigid reahability or SRRis the problem of solving systems of onstraints. Monadi (simultaneous) rigidreahability is (simultaneous) rigid reahability for monadi signatures.Rigid E-uni�ation is rigid reahability for onstraints (E; s; t) with sets ofequations E. Simultaneous Rigid E-uni�ation or SREU is de�ned aordingly.Finite tree automata. Finite bottom-up tree automata, or simply, tree automata,from here on, are a generalization of lassial automata [Doner 1970, Thather& Wright 1968℄. Using a rewrite rule based de�nition [e.g. Coquid�e, Dauhet,Gilleron & V�agv�olgyi 1994, Dauhet 1993℄, a tree automaton (or TA) A is aquadruple (Q;�;R; F ), where (i) Q is a �nite set of onstants alled states, (ii)� is a �nite signature that is disjoint from Q, (iii) R is a system of rules of theform f(q1; : : : ; qn)! q, where f 2 � has arity n � 0 and q; q1; : : : ; qn 2 Q, and(iv) F � Q is the set of �nal states. The size of a TA A is kAk = jQj+ j�j+kRk.We denote by L(A; q) the set ft 2 T� �� t�!�R qg of ground terms aepted byA in state q. The set of terms reognized by the TA A is the set Sq2F L(A; q).A set of terms is alled reognizable or regular if it is reognized by some TA. Amonadi TA is a TA with a monadi signature.Finite string automata. For monadi signatures, we use the traditional, equiv-alent onepts of alphabets, strings (or words), �nite automata, and regularexpressions. We will identify an NFA A with alphabet � with the set of all rules



a(q) ! p, also written as q�!aA p, where there is a transition with label a 2 �from state q to state p in A, and we denote this set of rules also by A. A monaditerm a1(a2(: : : an(q))) is written, using the reversed Polish notation, as the stringqan : : : a1.Then A aepts a string a1a2 � � �an if and only if, for some �nal state q andthe initial state q0 of A, an(� � � a2(a1(q0)) � � �)�!�A q, i.e.,q0�!Aa1 q1�!Aa2 � � � ��!Aan q:The set of all strings aepted by A is denoted by L(A).Produt automata. Let � be a signature, m a positive integer, and ? a newonstant. We write �? for � [ f?g and �m? denotes the signature onsistingof, for all f1; f2; : : : ; fm 2 �?, a unique funtion symbol hf1f2 � � � fmi with arityequal to the maximum of the arities of the fi's.Let ti 2 T� [ ?, ti = fi(ti1; : : : ; tiki), where ki � 0, for 1 � i � m. Letk be the maximum of all the ki and let tij = ? for ki < j � k. The produtt1 
 � � � 
 tm of t1; : : : ; tm is de�ned by reursion on the subterms:t1 
 � � � 
 tm = hf1f2 � � � fmi(t11 
 � � � 
 t1k; : : : ; tm1 
 � � � 
 tmk) (1)For example:f(; g())
 f(g(d); f(; g())) = hffi(
 g(d); g()
 f(; g()))= hffi(hgi(?
 d); hgfi(
 ;?
 g()))= hffi(hgi(h?di; hgfi(hi; h?gi(?
 )))= hffi(hgi(h?di; hgfi(hi; h?gi(h?i)))We write T m� for the set of all t in T�m? suh that t = t1 
 � � � 
 tm for somet1; : : : ; tm 2 T� [ ?. If s 2 T m� and t 2 T n� , where s = s1 
 � � � 
 sm andt = t1 
 � � � 
 tn, then s 
 t denotes the term s1 
 � � � 
 sm 
 t1 
 � � � 
 tn inT m+n� . Given a sequene t = t1; : : : ; tm of terms in T� [?, we writeN t for theprodut term t1 
 � � � 
 tmGiven two automata A1 and A2 over �m? and �n?, respetively, the produtof A1 and A2 is an automaton A1 
A2 over �m+n? suh thatL(A1 
A2) = L(A1)
 L(A2) = ft1 
 t2 : t1 2 L(A1); t2 2 L(A2)gThe onstrution of A1
A2 is straightforward, with a state q(q1;q2) for all statesq1 in A1 and q2 in A2, [see e.g. Comon et al. 1998℄. In general,Nni=1Ai is de�nedaordingly.We will use the following onstrution of Dauhet, Heuillard, Lesanne &Tison [1990℄ in our proofs.Lemma 1. Let R be a ground rewrite system over a signature �. There is aTA A suh that L(A) = fs 
 t : s; t 2 T� ; s�!�R tg that an be onstruted inpolynomial time from R and �.



3 Monadi SRRWe prove that monadi SRR with ground rules is PSPACE-omplete. Our maintool is a deision problem of NFAs, that we de�ne next. In this setion weonsider only monadi signatures.3.1 Constrained produt nonemptiness of NFAsGiven a signature � and a positive integer m, we want to selet only a er-tain subset from �m through seletion onstraints (bounded by m), these areunordered pairs of indies written as i � j, where 1 � i; j � m, i 6= j. Given asignature � and a set I of seletion onstraints, we write �m⇂I for the followingsubset of �m:�m⇂I = fha1a2 � � � ami 2 �m : (8i � j 2 I) ai = ajgFor an automaton A, let A⇂I denote the redution of A to the alphabet �m⇂I .We write also L(A)⇂I for L(A⇂I). The automaton A⇂I has the same states as A,and the transitions of A⇂I are preisely all the transitions of A with labels from�m⇂I .We onsider the following deision problem, that is losely related to thenonemptiness problem of the intersetion of a sequene of NFAs. Consider analphabet �. Let (Ai)1�i�n, n � 1, be a sequene of (string produt) NFAs overthe alphabets �mi? for 1 � i � n, respetively. Let m be the sum of all the miand let I be a set of seletion onstraints. The onstrained produt nonemptinessproblem of NFAs is, given (Ai)1�i�n, and I , to deide if (Nni=1 L(Ai))⇂I isnonempty. Our key lemma is the following one. Its proof is a straightforwardextension of the inlusion part of Kozen's [1977℄ PSPACE-ompletess result ofthe intersetion nonemptiness problem of DFAs : given a sequene (Ai)1�i�n ofDFAs, is Tni=1 L(Ai) nonempty?Lemma 2. Constrained produt nonemptiness of NFAs (or monadi TAs) is inPSPACE.The proof of Lemma 2 an be extended in a straightforward manner to �nitetree automata. The only di�erene will be that the algorithm will do \universalhoies" when the arity of funtion symbols (letters) in the omponent automatais > 1. This leads to alternating PSPACE, and thus, by the result of Chandra,Kozen & Stokmeyer [1981℄, to EXPTIME upper bound for the onstrainedprodut nonemptiness problem of TAs.Although we will not use this fat, it is worth noting that the onstrainedprodut nonemptiness problem is also PSPACE-hard, and this so already forDFAs (or monadi DTAs). It is easy to see that Tni=1 L(Ai) is nonempty if andonly if L(Nni=1 Ai)⇂fi � i+ 1 : 1 � i < ng is nonempty.



q0 qg qf
qh

h?i hgi hfgihgfihghi hhgi hfhi hhfihhi
hfihggi hffi
hhhiFigure 1: A DFA (or monadi DTA) A that reognizes ff(s) 
 s : s 2 T�g,where � onsists of the unary funtion symbols f , g, and h, and the on-stant . For example A reognizes the string h?ihgihggihhgihfhi, i.e., the termhfhi(hhgi(hggi(hgi(h?i)))) that is the same as f(h(g(g())))
 h(g(g())).3.2 Redution of monadi SRR with ground rules to onstrainedprodut nonemptiness of NFAsWe need the following notion of normal form of a system of reahability on-straints. We say that a system S of reahability onstraints is at, if eah on-straint in S is either of the form{ (R; x; t), R is nonempty, x is a variable, and t is a ground term or a variabledistint from x, or of the form{ (;; x; f(y)), where x and y are distint variables and f is a unary funtionsymbol.Note that solvability of a reahability onstraint with empty rule set is simplyuni�ability of the soure and the target. The following simple lemma is useful.Lemma 3. Let S be a system of reahability onstraints. There is a at systemthat an be obtained in polynomial time from S, that is solvable if and only if Sis solvable.By using Lemma 2 and Lemma 3 we an now show the following theorem,that is the main result of this setion.Theorem 1. Monadi SRR with ground rules is PSPACE-omplete.The ruial step in the proof of Theorem 1 is the onstrution of an automa-ton that reognizes the language ff(s)
s : s 2 T�g. (See Figure 1.) The reasonwhy the proof does not generalize to TAs is that the language ff(s)
s : s 2 T�gis not regular for nonmonadi signatures. The next example illustrates how theredution in the proof of Theorem 1 works.Example 1. Consider a at system S = f�1; �2; �3g with �1 = (R; y; x), �2 =(;; y; f(z)) and �3 = (;; z; g(x)), over a signature � = ff; g; g, where  is a



onstant. (This system is solvable if and only if the onstraint (R; f(g(x)); x) issolvable.)The onstrution in the proof of Theorem 1 gives us the monadi TAs A1,A2 and A3 suh that L(A1) = fs
 t : s�!�R t; s; t 2 T�g;L(A2) = ff(s)
 s : s 2 T�g;L(A3) = fg(s)
 s : s 2 T�g;and a set I = f1 � 3; 5 � 4; 6 � 2g of seletion onstraints. So L(N3i=1 Ai)⇂I isas follows.L(A1 
A2 
A3)⇂I = fs
 t
 f(u)
 u
 g(v)
 v :s; t; u; v 2 T� ; s�!�R tg⇂f1 � 3; 5 � 4; 6 � 2g= fs
 t
 f(u)
 u
 g(v)
 v :s; t; u; v 2 T� ; s�!�R t; s = f(u); g(v) = u; v = tg= ff(g(t))
 t
 f(g(t))
 g(t)
 g(t)
 t :t 2 T� ; f(g(t))�!�R tgSo, solvability of S is equivalent to nonemptiness of L(A1 
A2 
A3)⇂I .3.3 Some deidable extensions of the monadi aseSome restritions imposed by only allowing monadi funtion symbols an be re-laxed, without losing deidability of SRR for the resulting lasses of onstraints.One deidable fragment of SRR is obtained by requiring only the rules to beground and monadi. It an be shown that SRR for this lass is still in PSPACE.Furthermore, an easy argument using the intersetion nonemptiness problem ofDFAs shows that PSPACE-hardness of this fragment holds already for a singleonstraint with one variable. This is in ontrast with the fat that SREU withone variable and a �xed number of onstraints an be solved in polynomial time[Degtyarev et al. 1998b℄.4 A deidable nonmonadi fragmentIn this setion, we onsider general signatures and give a riteria on the soureand target terms of a system of reahability onstraints for the deidability ofSRR when the rules are ground. Moreover, we prove that SRR is EXPTIME-omplete in this ase. Our deision algorithm involves essentially tree automatatehniques. Let � be a signature �xed for the rest of the setion.4.1 Semi-linear sequenes of termsWe say that a sequene of terms (t1; t2; : : : ; tm) of (possibly non ground) �-termsor ? is semi-linear if one of the following onditions holds for eah ti:



1. ti is a variable, or2. ti is a linear term and no variable in ti ours in tj for i 6= j.Note that if ti is ground then it satis�es the seond ondition trivially.Lemma 4. Let (s1; s2; : : : ; sk) be a semi-linear sequene of �-terms. Then thesubset �s1� 
 s2� 
 � � � 
 sk� : � is a grounding �-substitution	 � T m� is reog-nized by a TA the size of whih is in O((ks1k+ k�k)� : : :� (kskk+ k�k)).Proof. Let � and s = s1; s2; : : : ; sk be given. Let Ai be the TA that reognizesfsi� : si� 2 T�g for 1 � i � k. The desired TA is (NAi)⇂I , where I is the setof all seletion onstraints i � j suh that si and sj are idential variables. ⊠We shall also use the following lemma.Lemma 5. Let A = (�;Q;R; F ) be a TA, s 2 T�, and p1; : : : ; pk parallel po-sitions in s. Then there is a TA A0, with kA0k 2 O�kAk2k�, that reognizes theset �s1 
 � � � 
 sk : s1; : : : ; sk 2 T� ; s[p1  s1; : : : ; pk  sk℄ 2 L(A)	4.2 Parallel deomposition of sequenes of termsFor tehnial reasons, we generalize the notion of a produt of m terms byallowing nonground terms. The resulting term is in an extended signature with
 as an additional variadi funtion symbol. The de�nition is the same as forground terms (see (1)), with the additional ondition that if one of the ti's is avariable then t1 
 � � � 
 tm = 
(t1; : : : ; tm):Consider a sequene s = s1; : : : ; sm of terms and let (
(ti))1�i�k be thesequene of all the subterms of the produt termN s whih have head symbol
.The parallel deomposition of s = s1; : : : ; sm or pd (s) is the sequene (ti)1�i�k ,i.e., we forget the symbol 
. We need the following tehnial notion in the proofof Lemma 6: pdp(s) is the sequene (pi)1�i�k, where pi is the position of 
(ti)in N s.The following example illustrates these new de�nitions and lemmas and howthey are used.Example 2. Let s = f(g(z); g(x)) and t = f(y; f(x; y)) be two �-terms, andlet R be a ground rewrite system over �. We will show how to apture allthe solutions of the reahability onstraint (R; s;t) as a ertain regular set of�2?-terms. First, onstrut the produt s
 t.s
 t = f(g(z); g(x))
 f(y; f(x; y))= hffi(g(z)
 y; g(x)
 f(x; y))= hffi(
(g(z); y); hgfi(x
 x;?
 y))= hffi(
(g(z); y); hgfi(
(x; x);
(?; y)))



The preorder traversal of s
 t yields the sequene 
(g(z); y), 
(x; x), 
(?; y).Finally, pd(s; t) is the semi-linear sequene g(z); y; x; x;?; y. (Note that thesequene pdp(s; t) is 1; 21; 22.) It follows from Lemma 4 that there is a TA A1 suhthat L(A1) = �g(z�)
y�
x�
x�
?
y� : � is a grounding �-substitution	.Now, onsider a TA AR that reognizes the produt of �!�R , see Lemma 1,i.e., L(AR) = fu
 v : u�!�R v; u; v 2 T�g: From AR we an, by using Lemma 5,onstrut a TA A2 suh thatL(A2) = �s1 
 s21 
 s22 : s1; s21; s22 2 T 2� ; hffi(s1; hgfi(s21; s22)) 2 L(AR)	Let A reognize L(A1) \ L(A2). We get thatL(A) = L(A1) \ L(A2)= 8<:s1 
 s21 
 s22 : (9x�; y� 2 T�)s1 = x� 
 y�; s21 = x� 
 x�; s22 = ?
 y�;hffi(s1; gf(s21; s22)) 2 L(AR)= f� : hffi(x� 
 y�; gf(x� 
 x�;?
 y�)) 2 L(AR)g= f� : � solves (R; s; t)gHene L(A) 6= ; if and only if (R; s; t) is solvable.The ruial property that is needed in the example to prove the deidability ofthe rigid reahability problem is that the parallel deomposition of the sequeneonsisting of its soure and target terms is semi-linear. This observation leads tothe following de�nition.4.3 Balaned systems with ground rulesA system �(R1; s1; t1); : : : ; (Rn; sn; tn)� of reahability onstraints is alled bal-aned if the parallel deomposition pd(s1; t1; s2; t2; : : : ; sn; tn) is semi-linear. Theproof of Lemma 6 is a generalization of the onstrution in Example 2.Lemma 6. From every balaned system S of reahability onstraints with groundrules, we an onstrut in EXPTIME a TA A suh L(A) 6= ; i� S is satis�able.Theorem 2. Simultaneous rigid reahability is EXPTIME-omplete for balan-ed systems with ground rules.Proof. The EXPTIME-hardness follows from [Ganzinger et al. 1998℄, where wehave proved that one an redue the emptiness deision for intersetion of n treeautomata to the satis�ability of a rigid reahability onstraint �R; f(x; : : : ; x);f(q1; : : : ; qn)�, where R is ground and q1,. . . ,qn are onstants. ⊠The balaned ase embeds the ase where for eah variable x with multipleourrenes in soure and target terms, there exists an integer dx suh that xours only at positions of length dx, e.g. with s1 = f(x; g(y)), t1 = f(f(y; y); x),s2 = g(x) and t2 = g(f(a; z)). Note that this is a strit subase of the balanedase, for instane, the system desribed in example 2, though balaned, does notful�ll this ondition.
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