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Abstract
Relational program logics have been used for mechanizing for-
mal proofs of various cryptographic constructions. With an eye to-
wards scaling these successes towards end-to-end security proofs
for implementations of distributed systems, we present RF?, a rela-
tional extension of F?, a general-purpose higher-order stateful pro-
gramming language with a verification system based on refinement
types. The distinguishing feature of RF? is a relational Hoare logic
for a higher-order, stateful, probabilistic language. Through care-
ful language design, we adapt the F? typechecker to generate both
classic and relational verification conditions, and to automatically
discharge their proofs using an SMT solver. Thus, we are able to
benefit from the existing features of F?, including its abstraction
facilities for modular reasoning about program fragments. We eval-
uate RF? experimentally by programming a series of cryptographic
constructions and protocols, and by verifying their security proper-
ties, ranging from information flow to unlinkability, integrity, and
privacy. Moreover, we validate the design of RF? by formalizing
in Coq a core probabilistic λ-calculus and a relational refinement
type system and proving the soundness of the latter against a deno-
tational semantics of the probabilistic λ-calculus.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory—Semantics; D.2.4 [Soft-
ware Engineering]: Software/Program Verification.

Keywords program logics; probabilistic programming

1. Introduction
Many fundamental notions of security go beyond what is express-
ible as a property of a single execution of a program. For example,
non-interference [2525], the property underlying information-flow se-
curity, relates the observable behaviors of two program executions.
Recognizing the importance to computer security of such hyper-
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properties [2020], researchers have developed a range of program
analyses and verification tools for proving relations between two
or more programs, or two or more executions of the same pro-
gram. For instance, Benton’s relational Hoare logic [1111] general-
izes Hoare logic to reason about properties of two programs.

In addition, security properties must often account for proba-
bilistic behaviors. For instance, in cryptography, simulation- and
indistinguishability-based notions of security are specified in terms
of the probability that an adversary wins in some probabilistic ex-
periment. Starting from Kozen’s seminal work [3030], many logics
for reasoning about probabilistic programs have been developed.

Recently, these two lines of work have been combined into a
relational program logic called pRHL for reasoning about prob-
abilistic imperative programs [77]. This logic can justify common
patterns of probabilistic reasoning about hyperproperties used in
cryptographic proofs, including observational equivalence, equiv-
alence up to failure and reductionist arguments. pRHL forms the
backbone of EasyCrypt [88], a tool-assisted framework which has
been used for verifying the security of encryption and signature
schemes, modes of operation for block-ciphers, and hash function
designs in the computational model. These advances, among oth-
ers, raise the prospect of a new class of verifiably secure systems:
those that are proven secure based on standard computational as-
sumptions (such as the existence of one-way functions) and whose
verification encompasses all aspects of the system implementation.

RF?: end-to-end security of cryptographic implementations In
an effort to scale logics like pRHL towards end-to-end security
proofs of system implementations, this article presents a new lan-
guage called RF?, building on F? [4545], a dependently typed di-
alect of ML. F?, and its predecessor F7 [1212], make use of refine-
ment types to verify implementations scaling to tens of thousands
of lines of code, including the Transport Layer Security Internet
standard (TLS) [1313], multi-party sessions, web-browser extensions,
zero-knowledge protocols, and the F? typechecker itself.

RF? integrates within F? an expressive system of relational
refinements to support fine-grained reasoning about probabilistic
computations. Through careful language design, we are able to use
the relational features of RF? in smooth conjunction with the exist-
ing features of F?, allowing the large corpus of already-verified F?

code to be reasoned about effectively when used in a relational con-
text. As such, our work opens the door to semi-automated security
verification through relational refinement types, instead of a some-
what inflexible combination of parametricity and type safety (as in
F7), or through detailed tactic-based interactive proofs (as in Easy-
Crypt), as a basis for certifying the security of critical pieces of
Internet infrastructure, such as a reference implementation of TLS.

Technically, this paper makes three broad contributions:



1. A relational logic for higher-order stateful probabilistic pro-
grams: we formalize in the Coq proof assistant λp, a lambda
calculus with references, random sampling, and unbounded re-
cursion. We develop a relational refinement type system for λp
and prove it sound with respect to a denotational interpretation
of judgments as relations over pairs of store-passing probabilis-
tic functions. To our best knowledge, λp is the first relational
logic for higher-order stateful probabilistic programs. (§33)

2. The design and implementation of RF?: λp forms the basis of
the design of RF?, an extension of F?. We show how to encode
relational refinement types within a new relational state monad,
RDST. We provide a type inference algorithm for RDST, in the
form of a weakest pre-condition calculus that computes rela-
tional verification conditions. Proofs of these verification con-
ditions can be discharged automatically by the RF? typechecker
and the Z3 [2121] SMT solver. (§44)

3. An experimental evaluation of RF?: we demonstrate the expres-
siveness of RF? through a representative set of examples, start-
ing from simple (non-probabilistic) information flow, and grad-
ually moving towards more advanced cryptographic models and
systems. To date, we have used RF? to automatically verify a to-
tal of around 1,400 lines of code for a variety of relational prop-
erties, ranging from termination-insensitive non-interference to
various indistinguishability-based properties for encryption, be-
sides others. Several examples make essential use of higher-
order and stateful features of RF?, emphasizing the utility of
the λp logic for practical security verification. (§22 and §55)

The λp theory formalized in Coq, the RF? compiler, and all the
example programs mentioned in this paper are available online
from http://research.microsoft.com/fstarhttp://research.microsoft.com/fstar.

2. Programming with relational refinements
We start by describing RF? informally through a series of examples,
beginning with a brief introduction to F? itself, and then focusing
on the main new feature in RF?, i.e., relational refinement types.

2.1 From classic to relational refinements. F? is a call-by-value
higher-order programming language with primitive state and ex-
ceptions, similar to ML, but with a more expressive type system
based on dependent refinement types. Refinement types are written
x:t{φ} where φ is a logical formula. For instance, the code frag-
ment below defines a refined type for non-negative integers, then
for integers modulo some number p:

type nat = n:int { 0 ≤ n }
type mod p = n:nat { n < p }
let p = 97
let n : mod p = 73

Typechecking F? programs involves logical proof obligations,
which are delegated to the Z3 SMT solver. For instance, to check
that n has type mod p, the F? typechecker emits the proof obliga-
tion p = 97 =⇒ 0 ≤ 73 < p, which is easily discharged by Z3. Type
safety means that, whenever an expression e with type x:t{φ} re-
duces to a value v, this value v satisfies the formula φ[x := v]. The
type system provides structural subtyping. For instance, nat is a
subtype of int, and mod p is a subtype of mod q when p ≤ q. These
subtyping relations are automatically proved and applied by F?.

Refinements can be combined with dependent function types,
written x:t→ t’, where the formal parameter x:t is in scope in
the result type t’. We also use dependent pairs, written x:t * t’,
where the variable x of the first component is in scope in the
type t’ of the second component. For instance, we may write and
typecheck addition modulo as follows (where the refinement braces
bind tighter than the arrow):

val add: p:nat→ x:mod p→ y:mod p→ z:mod p { z = (x + y) % p }
let add p x y = let s = x + y in if s < p then s else s − p

F? also provides primitive support for programming with state.
For example, one may write let incr i = i := !i + 1. By combining re-
finements with references, one can express invariants on the pro-
gram state, e.g., ref nat is the type of mutable locations that contain
non-negative integers. To describe more precise properties of ef-
fectful programs, F? provides more advanced mechanisms, includ-
ing a monadic mode [4646], where one can reason about programs
using variants of the Hoare state monad of Nanevski et al. [3434]
together with McCarthy’s select/update theory for modeling the
heap [3232]. For example, one can give incr a specification of the
form i:ref nat→ ST (λh.True) unit (λ h () h’.h’=Upd h i (1 + Sel h i)),
where ST pre t post can be understood as the state-passing func-
tion type h:heap{pre h} → (x:t * h’:heap{post h x h’}) although, in
reality, F? provides primitive support for state. That is, the type
of incr states a trivial pre-condition on the input heap h, and a
post-condition indicating that the final heap h’ differs from h at the
location i, which is incremented. F? provides type inference in the
form of a higher-order weakest pre-condition calculus to help ease
the burden of writing such precise specifications [4646].

RF? extends F? with relational refinements: a type can (also) be
decorated with a relational formula, placed within double braces
{|. . . |}, that specifies a joint property on pairs of values. Relational
formulas can independently refer to the left and right values of ev-
ery program variable in scope, using the projections L and R, re-
spectively; projections extend naturally to arbitrary formulas. Intu-
itively, for deterministic programs, type safety means that, when-
ever we obtain two results vL and vR by evaluating an expression
e: x:t{|φ|} in two contexts that provide well-typed substitutions for
e’s free variables, then the formula φ[L x := vL][R x := vR] is
valid. More generally, instead of considering two executions of the
same program e, RF? allows proving relations between the results
of two programs, i.e., we relate e0 and e1 at a (relationally refined)
type using e0 ∼ e1 : t. We write e : t as a shorthand for e ∼ e : t.

We start with a few simple examples. Take the expression e
to be z − z; we can give e the type x:int{|L x = R x|}, mean-
ing that for any pair of substitutions σL and σR, evaluating
σLe yields the same result as evaluating σRe. Similarly, we
have x + x ∼ 2*x : z:int {| L x = R x =⇒ L z = R z |}, stating a simple
equivalence between two integer expressions evaluated with the
same value for x.

Relational refinements can also be used to describe proper-
ties beyond equivalence. For example, we can express the type
of monotonic integer functions as x:int→ y:int {| L x ≤ R x =⇒
L y ≤ R y |} and the type of k-sensitive integer functions, for some
metric dist, as x:int→ y:int {| dist (L y) (R y) ≤ k * dist (L x) (R x) |}.
RF? can automatically check (by subtyping) that a function such as
fun x→ k * x is both monotonic and k-sensitive for any k ≥ 0.

Relational refinements are strictly more expressive than plain
refinements: one can encode any plain refinement { φ } as the re-
lational refinement {| L φ ∧ R φ |} that independently specifies left
and right properties. For instance, the type nat above is automat-
ically desugared to n:int {| 0 ≤ L n ∧ 0 ≤ R n |}. Pragmatically, this
enables us to mix property refinements and relational refinements
in our concrete syntax, and to import any refinement-typed F? li-
brary in relational mode by applying the encoding. When authoring
programs with specific relational properties in mind, one need is-
sue only a single compiler directive (aka a pragma) to switch the
verifier to relational mode. We contend that the resulting language,
RF?, brings relational program verification out of the domain of
tools applied to small fragments of pseudocode with interactive
proofs, to a practical programming language suitable for small- to
medium-scale systems implementations.

http://research.microsoft.com/fstar


2.2 Information flow. Relational refinements can be systemati-
cally used to give a semantic characterization of termination-insen-
sitive non-interference [4141]. Whereas standard type-based informa-
tion flow controls resort to security labels and ad hoc syntactic
mechanisms to conservatively determine when the observable out-
puts of a program may depend on its secret inputs, RF? can directly
verify the corresponding equivalences, as illustrated below.

Recall that non-interference means that public results do not
depend on secrets. If an expression e with base type a that
computes over some secret information can be given the type
type eq a = x:a{|L x = R x|}, then its result can be safely published,
since the execution of e reveals no information about the secrets.

Capturing the intuition from labelled information flow type
systems with “high” and “low” confidentiality levels, we use the
type eq a (the type of values that are “equal on both sides”) for
low-confidentiality values, also written low a. In contrast, we use
the type a (the type of unrelated left and right values) for high-
confidentiality values, writing hi a as an alias for a. As usual, low a
is a subtype of hi a, meaning that public values can be treated as
secret, but not the converse.

Using these type abbreviations, we can write programs such
as fun (x,y)→ (x + y, y + 1) and give them information flow types
such as hi int * low int→ hi int * low int. More interestingly, we can
supplement these types with relational refinements that capture
more flexible information-flow policies. For example, a plausible
confidentiality policy for credit card numbers conceals all but their
last four digits, as specified and implemented below.

val last4: n:hi int→ s:string{|(L n%10000 = R n%10000)=⇒ L s = R s|}
let last4 n = "********" ˆ int2string (n % 10000)

Tracking leaks via control dependencies (aka implicit flows) is
a characteristic feature of information flow type systems. To il-
lustrate how RF? reasons about implicit flows, consider the pro-
gram fun b→ if b then e else e′. Assuming that b is secret, flow-
insensitive type systems would conservatively give this program
the type hi bool→ hi a. To give this program the more precise type
hi bool→ low a, we need to analyze four cases that arise from ap-
plying this function twice to arbitrary boolean arguments L b and
R b, and prove that the results in all cases are the same. The four
typechecking goals are

• e:low a, assuming L b = R b = true;
• e′:low a, assuming L b = R b = false;
• e ∼ e′:low a, assuming L b = true and R b = false; and
• e′ ∼ e:low a, assuming L b = false and R b = true.

Anticipating on the next section, our proof rules for relating two
values v0 and v1 are relatively simple. Proving v0 ∼ v1 : x:t{| φ |}
involves first proving v0 ∼ v1 : t (which for base types involves
simply showing that both v0 and v1 have type t), and then proving
φ[L x,R x := v0, v1]. So, RF? can easily prove, for instance,

(fun b→ if b then 0 else 0) : hi bool→ low int and
(fun x→ if x=0 then x else 0) : hi int→ low int

even though, syntactically, those functions branch on confidential
values. For expressions, particularly those that have side effects,
the problem is more complex. Our strategy is to adapt the Hoare
monad ST pre t post provided by F? to a relational version called
RST, where RST pre t post can be seen as the type shown below:

h:heap{| pre (L h) (R h) |}
→ (x:t * h’:heap{| post (L h) (R h) (L x) (R x) (L h’) (R h’)|})

This is the type of pairs of functions that, when run in a pair of input
heaps L h and R h satisfying the 2-place relational pre-condition
predicate pre, may diverge, but if they both converge, yield results

L x and R x and output heaps L h’ and R h’ that satisfy the 6-place
relational post-condition predicate post.

Using the RST monad and its associated weakest pre-condition
calculus, we can type the following program, which branches on a
confidential value and then performs matching public side-effects:

val f: x:ref int→ b:bool→RST (λ . True) unit post
where post h0 h1 h0’ h1’ = L x=R x ∧ h0=h1=⇒ h0’=h1’

let f x b = if b then x := 1 else x := 1

RF? infers a weakest pre-condition predicate transformer for this
program, then checks that it is consistent with any programmer
supplied annotation (the annotation is optional for loop-free pro-
grams). In our example, the pre-condition of f states that it can be
run in any pair of heaps, while its post-condition ensures that, if
f is applied twice to the same references in the same heaps, then
regardless of its boolean argument, the resulting heaps are also the
same, i.e., the type reveals that f does not leak information despite
having side-effects guarded by a secret boolean.

More complex programs, for example those that may leak infor-
mation via side-effects based on aliasing, can be verified similarly:

val g: x:ref int→ y:ref int→ b:bool→RST (λ . True) unit post
where post h0 h1 h0’ h1’ = L x6=L y ∧ R x6=R y

=⇒ Sel h0’ (L y)=Sel h1’ (R y)
let g x y b = if b then x := 1; y := 1 else y := 1; x := 0

The type of g states that, if x and y are not aliased, then the final
contents of the reference y are the same.

Thus, the expressiveness of RF?, combined with its ability to
use Z3 to discharge proof obligations, enables automated reasoning
in the style of a relational Hoare logic for proving non-interference
properties of higher-order stateful programs.

2.3 Sampling, chosen-plaintext security, and one-time pads.
We introduce probabilistic relational reasoning in RF? using sym-
metric encryption schemes. Our goal is to communicate encrypted
messages between a sender and a receiver without leaking any in-
formation about their content. (From an information flow view-
point, ciphertexts are public, whereas plaintexts are secret.) For
simplicity, we assume that messages range over byte arrays with
a fixed size n (called blocks) and we do not consider active attack-
ers. Padding and authentication against chosen-ciphertext attacks
can be easily added, but would complicate our presentation (see §55
for a description of our model for chosen-ciphertext security).

We assume that the sender and the receiver share a secret key k
(also a block), sampled uniformly at random by calling the prim-
itive function sample. We model this assumption by writing a sin-
gle program where both parties are within the scope of this key.
The simplest secure encryption scheme is the one-time pad, imple-
mented, for instance, using bitwise XOR: to encrypt the message p,
compute c = k ⊕ p; to decrypt c, compute p = k ⊕ c.
type block = b:bytes { Length b = n }
let encrypt k p = xor k p
let decrypt k c = xor k c

Next, we explain how to specify and prove that an encryption
scheme is secure. In cryptography, confidentiality is usually stated
as resistance against chosen-plaintext attacks (CPA) and encoded
as a decisional game in which an adversary chooses two plaintexts,
receives the encryption of one of them under a fresh key, and must
guess which of the two plaintexts was encrypted. (Decryption plays
no role in this simple game; still, we may typecheck that it undoes
encryption using classical refinements and properties of XOR.)
This game may be coded in RF? as follows:

let cpa b p0 p1 = let p = if b then p0 else p1 in encrypt (sample n) p

where b is private and p0, p1, and the result are public. We thus
express (perfect) CPA security relationally with the following type:



val cpa: b:bool→ eq block→ eq block→ eq block

stating that the encryption of one of the two chosen-plaintext blocks
p0 or p1 depending on b does not leak any information about b,
hence does not help the adversary to win the game.

In fact, viewing CPA security from an information flow perspec-
tive, a simpler formulation is possible. Instead of reasoning about
two messages selected by b, we just need to show that the function
let cpa’ p = encrypt (sample n) p has the type block→ eq block. This
is the best type we can hope for encryption, treating the plaintext
as private and the ciphertext as public. This more compact typing
property subsumes the first one.

To prove secrecy for the one-time pad, some probabilistic rea-
soning is called for. Indeed, operationally, calling sample n twice
does not usually return the same value. However, relying on our
formal semantics, we show that it is permissible to give sample n a
more specific relational type that allows us to complete the proof.
In particular, as explained below, we can type the call to sample n
in a way that depends on the plaintext p and give it the type

m:block {| xor (L p) (L m) = xor (R p) (R m) |}

From this type, RF? automatically proves cpa’: block→ eq block.
Intuitively, this relational refinement is sound inasmuch as the dis-
tribution of the resulting ciphertext is independent of the plaintext.

In programs that contain sample, the interpretation of assertions
in the RST monad becomes probabilistic. We formalize this in §33,
but provide some intuition for their meaning here. If we can give the
type RST (λ . True) t Q to e0 ∼ e1, then our logic guarantees that
if Q is an equivalence relation partitioning t in a set of equivalence
classes S, and if running e0 in a heap h0 reduces to v0 and e1 in
h1 reduces to v1, then for any S ∈ S, the probability that v0 ∈ S
is equal to the probability that v1 ∈ S. Similar conclusions can
be drawn in general. For example, if Q h0 h1 x0 x1 h0’ h1’ implies
P0 x0 =⇒ P1 x1, then the validity of the above assertion implies
that Pr[P0 v0] ≤ Pr[P1 v1].

From this interpretation, one should be able to see that the re-
lational refinement on the result of sample in RF? is not specific to
XOR. More generally, sample can be given a specification to state
that any two calls to it return a pair of values related by any given
one-to-one function on its range. Intuitively, relational refinements
in RF? capture relations between the distribution over values gener-
ated by probabilistic programs, rather than between values obtained
in specific executions. The relational typing of sample is valid since
applying a one-to-one function to a value uniformly chosen from a
discrete set does not change its distribution.

To reflect these general properties of uniform sampling, our
library provides a polymorphic, typed variant of sample, that takes
as additional ghost parameter F, a binary predicate on sampled
values of type block, whose refinement states that it must be an
injective function (or, equivalently, a bijection). This parameter has
kind block⇒ block⇒ E, where E is the kind of ghost refinements
in F? (types in E are erased at runtime). In the RF? standard library,
sample is typed as follows

type Function F = ∀a.∃ b.F a b ∧ ∀a b1 b2.F a b1 ∧ F a b2 =⇒ b1=b2
type Injective F = Function F ∧ ∀a1 a2 b. F a1 b ∧ F a2 b =⇒ a1=a2
val sample: ∀F. len:nat{Injective F} → b:block len{| F (L b) (R b) |}

In our one-time pad example, when calling sample n in cpa’, we
instantiate F to λ b0 b1. xor (L p) b0 = xor (R p) b1, which is indeed
injective. In §55, we describe security proofs of more realistic en-
cryption schemes based on variants of the above typing for sample.

2.4 Implicit flows and passport linkability. Before justifying
our typing rules, notably for sample, we present a concrete pro-
tocol for RFID-equipped passports, implemented in RF?, and we
discuss a linkability attack against this protocol recently uncovered

Passport Tag (physically sharing k) Reader

sample nt

decrypt
verify MAC
verify nt
sample kt

s = kt⊕ kr

sample nr, kr

decrypt
verify MAC
verify nr
s = kt⊕ kr

nt

{nt ‖ nr ‖ kr}k

{nr ‖ nt ‖ kt}k

exchange data

Figure 1. Basic Access Control protocol for passports

by Chothia and Smirnov [1919]. We refer to their work for a detailed
discussion. This attack is representative of common weaknesses in
cryptographic implementations due to implicit flows in the han-
dling of errors while processing decrypted data.

Following the ICAO specification for machine-readable travel
documents, all recent European passports embed RFID tags featur-
ing the Basic Access Control protocol, outlined in Fig. 11. The pro-
tocol has two roles, a passport tag and a reader, exchanging mes-
sages using short-distance wireless communications. The goal of
the protocol is to establish a shared session key for accessing bio-
metric data on the passport. Each passport tag has a unique key k;
the reader derives this key from information obtained by scanning
the passport. (In reality, there is a negligible chance of two pass-
ports having the same key, because the key is derived from a hash
of this information.)

The passport first samples a 64-bit nonce nt and sends it as a
challenge to the reader. The reader samples its own nonce nr and
some keying materials kr, then encrypts the concatenation of these
three values using k. Concretely, the protocol implements authen-
ticated encryption as triple-DES encryption concatenated with a
plaintext Message Authentication Code (MAC). The passport de-
crypts, recomputes and checks the MAC to ensure that the message
has not been tampered with, then compares the received nonce nt
with the challenge, to confirm that the reader responded correctly.
If both checks succeed, it generates its own keying materials kt,
appends them to the concatenation of the two nonces (in a different
order than before), and computes the session key s = kt⊕ kr. The
reader then similarly decrypts the received ciphertext, checks the
MAC, and computes s.

The code the tag uses for handling the encrypted message of the
reader is shown below; encrypt and decrypt provide authenticated
encryption; concat and split convert between triples of 64-bit values
and their concatenation.

let tag1 k nt c = match decrypt k c with
| Some p→ let (nt’,nr,kr) = split p in

if nt = nt’ then encrypt k (concat nr nt (sample kt()))
else nonceError

| None→ decryptError

The code either produces an encrypted message, or it returns an
error code. As written, it enables the following linkability attack:

1. The attacker eavesdrops any run of the protocol between a
target passport and an honest reader, and records their second
message.

2. Later, to test the local presence of this passport, the attacker
runs the protocol (as the reader), replays the recorded message,
and observes the response: although the protocol always fails to
establish a key, the tag returns a nonceError if the two passports
are the same, and a decryptError otherwise.

Experimentally, French passports reliably return different error
messages, whereas other European passports return the same er-



ror message, but with measurably different timings. Although our
approach does not directly catch timing attacks, those attacks can
be conservatively analyzed by treating error codes produced at dif-
ferent code locations as distinct.

We interpret the above attack as an implicit flow of information
from the key used to decrypt to the error message. Indeed, if
we type the key k as high confidentiality and the nonce nt and
the cipher c with eq refinements (since they are exchanged on a
public network), relational typechecking fails on the body of tag1.
The result of the decryption is (a priori) not the same on both
sides, so the cross-cases involve proving, for instance that when
decryption returns Some p on the left and None on the right, the two
resulting expressions are equal, which fails on the proof obligation
nonceError = decryptError.

By ensuring that the same error messages are returned in both
cases (i.e., by requiring that nonceError = decryptError) this case is
prevented, but this alone is not sufficient for verifying the code.
Naı̈vely, the cross-cases that arise when verifying the nested condi-
tionals require proving, under a suitable relational path condition,
that the encryption on the third line is indistinguishable from the er-
ror messages—which is patently false. However, by reflecting sev-
eral cryptographic assumptions into detailed typing invariants in
the protocol implementation, we can prove that such problematic
cross-cases never actually arise (i.e., the path conditions guarding
these cases are infeasible) and we can verify that this code pre-
serves unlinkability. Specifically, we assume that the encryption is
CPA, key-hiding, and CTXT (all specified by typing) and that there
are no nonce collisions (the probability of a collision is less than
q22−64 where q is the number of sessions observed by the adver-
sary). Arapinis et al. [55] also analyze the corrected protocol, using
the applied π-calculus, essentially proving unlinkability in a more
abstract, symbolic model of cryptography. Please refer to our online
materials for a full listing and further discussion of the specification
and implementation of tag1.

3. Formal development
We formalize a core of RF? in the Coq proof assistant by devel-
oping λp, a minimal higher-order language with (statically allo-
cated) references, probabilistic assignments, and unbounded recur-
sion. The formalization is based on the SSREFLECT extension [2626],
and on the ALEA library for distributions [66]. Overall, the formal-
ization comprises over 2,500 lines of code excluding the aforemen-
tioned libraries.

The formalization is built in two steps. First, we consider a sim-
ply typed system G `e e : T for λp. Simple types T are extended
to relational refinement types C where one can add relational pre-
and post-conditions to function types. This allows us to define a
relational type system G ` e0 ∼ e1 : C that relates a pair of ex-
pressions e0 and e1 in the type C under the relational context G.

We then give a denotational semantics for well-typed judg-
ments. Simple types are given a cpo interpretation JTK in the stan-
dard way. Judgments G `e e : T are interpreted as the elements of
the form LeMI , where I is any valuation for the context G. Taking
into account that λp is a language with references and probabilis-
tic assignments, the denotation LeMI of e is defined as a function
from memories (equivalently, states or heaps) to distributions over
pairs composed of a memory and an element of JTK; we denote by
M(JTK) this function space. Relational types C are interpreted as a
binary relation 〈|C|〉 over M(JTK), where T is the simple type de-
rived from C by erasing all refinements. This allows us to interpret
(Theorem 11) a valid judgment G ` e0 ∼ e1 : C by all the pairs of
the form (LeMIL , LeMIR) ∈ 〈|C|〉 for any pair of valuations (IL, IR)
for the erasure G of G.

x : T ∈ G τ ∈ {L,R}
G | G′ ` xτ : T

x : T ∈ G′

G | G′ ` x : T

r : ref B τ ∈ {L,R}
G | G′ ` rτ : B

G | G′ ` vi : T

G | G′ ` v1 = v2

G | G′, y : B ` φ
G | G′ ` ∀y : B. φ

Figure 2. Well-formed relational formulas (excerpt)

3.1 λp: syntax. λp is a simply typed λ-calculus with references
and probabilistic assignments. For simplicity, we only consider two
forms of probabilistic assignments: assigning a uniformly sampled
boolean to a boolean variable (flip), and assigning an integer value
sampled uniformly in a non-empty interval [i, j] to an integer vari-
able (pickji ). Formally, the sets of types, contexts, values and ex-
pressions are given by the following grammars:

type T ::= B | T→ T
ctxt. G ::= [] | G, [x : T]
value v, u ::= c | x | o(v1, . . . , vn) | fun x : T→ e

expr. e ::= v | e v | !r | r := v | flip | pickji | let x = e1 in e2
| letrec f x = e1 in e2 | if v then e1 else e2

where x ranges over a set var of variables, r ranges over a set ref of
references and o ranges over a set O of B-sorted operators, whose
signature is of the form B1 × · · · × Bn → B0. We assume that
B contains the unit type (unit) along with the types of Booleans
(bool) and integers (int). Their associated constructors are •, true,
false and n for n ∈ N. We implicitly assume that each reference
has an ambient base type, and write r : ref B to denote that r is
a reference with base type B. The dynamic semantics is defined
in the standard way as the compatible closure (for a call-by-value
convention) of the βιµδ-contraction.

3.2 λp: typing. As usual, a typing context is a sequence of bind-
ings x : T such that the bound variables are pairwise distinct.
The typing rules for deriving valid judgments G `v v : T and
G `e e : T, in a simply typed setting, are standard and omitted.
RELATIONAL REFINEMENT TYPES. Relational assertions are for-
mulas over tagged variables xL or xR and tagged references rL
or rR; informally, tags determine whether the interpretation of x
or r will be taken w.r.t. the left or right projection of a relational
valuation. In order to interface with automated first-order provers,
relational assertions are first-order B-sorted formulas built from
operators in O and predicates taken from a set of B-sorted predi-
cates that includes at least the equality predicates for all the base
types. Note that tagged variables always occur free in assertions,
and only logical variables can be bound. For instance, the relational
assertion ∀y : int. xL ≤ y ⇒ xR ≤ y + rR is well-formed under
any context G such that x : int ∈ G, assuming that r : ref int.

Formally, relational assertions are defined using a first-order
type system with judgments of the form G | G′ ` Φ for formulas
(resp. G | G′ ` v : T for values) where G (resp. G′) is a
context for relational variables (resp. for non-relational variables
introduced by quantifiers). Figure 22 shows the typing rules for
variables, references, equality, and universal quantification. We say
that an assertion Φ is well-formed in context G iff G | ∅ ` Φ
(written G ` Φ).

Refinement types are either relational types (denoted by T ,U ,V),
which will be used for relational typing of values, or computation
types (denoted by C), used for relational typing of expressions.



They are defined by the following grammar:

T ,U ,V := B | (x : T )→ C C := {Φ}x : T {Ψ}

where Φ and Ψ are relational assertions. By convention, x is bound
in (x : T ) → C and {Φ}x : T {Ψ}, and can be free in C or Ψ.
However, the type system enforces that x occurs in C and Ψ only if
T is a base type. In other cases, we write T → C and {Φ}T {Ψ}.

A relational context G is a sequence of bindings x : T such that
the bound variables are pairwise distinct. The refinement type T is
a refinement of T under G, written G ` T / T , if T is the result
of erasing all pre- and post-conditions occurring in T and if any
assertion Φ that appears in T is well-formed in G augmented by
the local context of Φ in T . This relation is extended to relational
contexts: G /G is the smallest relation such that [] / [] and if G /G
and G ` T / T then G, x : T / G, x : T .
RELATIONAL TYPING. Figure 33 gives a significant subset of the
rules that define the relational typing judgments G ` v1 ∼ v2 : T
for values and G ` e1 ∼ e2 : C for expressions. In the figure,
e[x := e0, e1] stands for e[xL := e0][xR := e1]. The full set of
rules appear in the accompanying Coq formalization.

A judgment of the form G ` e1 ∼ e2 : {Φ}x : T {Ψ} is
valid when, for any pair of valuations IL, IR for G and any pair
of states m1,m2 satisfying the pre-condition Φ, the distributions
over values and states obtained by executing e1 in IL,m1 and e2
in IR,m2 are related by the lifting of the post-condition Ψ to
distributions.

The formal notion of lifting a relation to distributions is given
below. We anticipate that although assertions in relational refine-
ments are first-order formulas that do not mention probabilities,
the definition of lifting is such that valid typing judgments can be
used to prove relations between probability quantities. For instance,
when Ψ denotes an equivalence relation on T , [] � e1 ∼ e2 :
{true}x : T {Ψ} implies that Pr[e1 ∈ S] = Pr[e2 ∈ S], for any
equivalence class S of Ψ. Intuitively, observing to which equiva-
lence class the results belong does not help in distinguishing the
two expressions. As sketched in §2.32.3, we are not limited to sim-
ply proving probabilistic equivalences; other kinds of probabilistic
assertions (e.g., inequalities) can also be expressed.

The rules come in two flavors: double-sided or single-sided.
Double-sided rules allow us to relate programs with the same head
symbol. For instance, rules [LET] and [APP] are double-sided. They
work by relating sub-expressions pairwise, composing pre- and
post-conditions using the implicit order of evaluation. Rule [LET]
emphasizes this, with the post-condition of the let-bound expres-
sion being the pre-condition of the body.

It is not always possible to progress using double-sided rules.
For instance, one may want to show that the two expressions
(if b then v else v) and v are related by a suitable post-condition.
The two expressions having different head symbol, no double-sided
rule can apply. Single-sided rules allow us to overcome this limita-
tion. Rule [IF-LEFT], which permits to relate an if-expression to an
arbitrary expression, is an example of a single-sided rule.

All the single-sided rules come in pairs: one variant (tagged
[*-LEFT]) where the progression is done on the left expression, and
one (tagged [*-RIGHT]) where the progression is on the right. Instead
of showing both cases explicitly, we give a general rule [SYM] that
transforms any [*-LEFT] rule into its [*-RIGHT] counterpart.

Rules for reference assignment ([REF], [REF-LEFT]), which come
in two flavors too, make use of the ability to write assertions about
the resulting memory. For example, the two expressions r := v0
and r := v1 are related by a post-condition Ψ when Ψ, after
replacing all occurrences of rL (resp. rR) with v0 (resp. v1), holds
as a pre-condition.

So far, we only considered rules for expressions headed by non-
probabilistic constructions. Rules for random sampling ([FLIP] and

[SAMPLE]) are double-sided and require the existence of a bijection f
between the support of the two distributions, ensuring a one-to-one
correspondence between related values. In the case of [FLIP], we
explicitly give the only two existing bijections from bool to bool.

3.3 λp: denotational semantics.
BACKGROUND. The denotational semantics of well-typed expres-
sions is based on the sub-probability monad over sets [66, 3737] and
its generalization to complete partial orders (cpos); recall that a cpo
is a partial order in which every ascending chain has a supremum.
The unit interval [0, 1] has a cpo structure w.r.t. the natural order
on reals; moreover, every set can be lifted to a flat cpo by adding a
bottom element, and the set of functions A → B between a set A
and a cpoB can be given the structure of a cpo. A function between
two cpos is monotonic if it is order-preserving, and it is continuous
if it is monotonic and preserves suprema. Given two cposA andB,
we letA m→ B andA c→ B denote the set of monotonic and contin-
uous functions from A to B respectively. By Kleene’s fixed point
theorem, every continuous function f on a cpo has a least fixed
point fix f . A discrete sub-distribution over a set X is a continu-
ous functional µ : (X

c→ [0, 1])
c→ [0, 1] that satisfies axioms of

linearity, compatibility with inverse, and discreteness. In particular,
the latter axiom states that the support supp(µ) of µ, consisting of
all elements x ∈ X such that µ δx > 0, is discrete—where δx
denotes the Dirac function for x: i.e., δx(x) = 1 and δx(y) = 0 if
x 6= y. We letD(X) be the set of discrete sub-distributions overX .
D(X) has the structure of an ω-complete partial order. Moreover,
sub-distributions can be given the structure of a monad; the unit and
composition operators are denoted by unit and bind respectively.

The relational interpretation of types rests on an operator ·]
that lifts relations over A × B into relations over D(A) × D(B);
the operator is inspired from early works on probabilistic bisim-
ulations [2828], and is used in CertiCrypt [77] and EasyCrypt [99]
to interpret relational judgments. Formally, let µ1 ∈ D(A) and
µ2 ∈ D(B); then R] µ1 µ2 iff:

∃µ : D(A×B). π1(µ) = µ1 ∧ π2(µ) = µ2 ∧ supp(µ) ⊆ R
where π1 and π2 are the projections for distributions over pairs, i.e.

π1(µ) = bindµ (λ(x, y). unit x)
π2(µ) = bindµ (λ(x, y). unit y)

A fundamental property of this lifting operator is that given
f : A

c→ [0, 1] and g : B
c→ [0, 1] such that

∀a ∈ A, b ∈ B. R a b⇒ f a = g b

then R] µ1 µ2 implies that µ1 f = µ2 g, i.e., the expected values
of f in µ1 and g in µ2 coincide. Note that events can be viewed
as {0, 1}-valued functions, and in this case expectation coincides
with probability.
INTERPRETATION. We first provide a non-relational interpretation
of valid judgments. We assume each base type B is interpreted as
a (flat) cpo JBK, and that each constructor c belonging to the base
type B is given a denotation B(c) ∈ JBK. We define the set of
semantical values as

⋃
BJBK, and then the setM of states as the

set of well-typed mappings from references to semantical values.

M = {m : ref→
⋃
B

JBK | ∀r : ref B.m(r) ∈ JBK}

Then we extend the interpretation to functional types by setting

JT1 → T2K = JT1K
c→ M(JT2K)

where M(X)
4
=M→D(X ×M).

A valuation I is a function that maps every declaration x : T
to a semantical value. A valuation I is well-formed for G, written
I � G, if I maps every declaration x : T inG to an element of JTK.



[CONSTR]
G `v v0 : B G `v v1 : B G / G

G ` v0 ∼ v1 : B
[VAR]

G / G x ∈ dom(G)

G ` x ∼ x : G(x)

[FUN-BASE]
G, x : B ` e0 ∼ e1 : C G / G

G ` fun x : B→ e0 ∼ fun x : B→ e1 : (x : B)→ C [FUN]
G, x : T ` e0 ∼ e1 : C G / G x /∈ C
G ` fun x : T → e0 ∼ fun x : T → e1 : T → C

[BASE-VALUE]
G ` v0 ∼ v1 : B G / G G, x:B ` Φ

G ` v0 ∼ v1 : {Φ[x := v0, v1]}x : B{Φ} [VALUE]
G ` v0 ∼ v1 : T G / G G ` Φ

G ` v0 ∼ v1 : {Φ}T {Φ}

[REF]
r : ref B ∈ G G ` v0 ∼ v1 : B G / G G, x:B ` Φ

G ` r := v0 ∼ r := v1 : {Φ[x := v0, v1]}unit{Φ[x := r]} [REF-LEFT]

r : ref B ∈ G G / G G `v v : B
G ` e0 ∼ e1 : C[xL := v]

G ` r := v; e0 ∼ e1 : C[xL := rL]

[APP-BASE]
G ` e0 ∼ e1 : (x : B)→ C G ` v0 ∼ v1 : B

G ` e0 v0 ∼ e1 v1 : C[x := v0, v1]
[APP]

G ` e0 ∼ e1 : T → C G ` v0 ∼ v1 : T
G ` e0 v0 ∼ e1 v1 : C

[LET]
G ` e0 ∼ e1 : {Φ}x : T {Ξ} G, x : T ` e′0 ∼ e′1 : {Ξ}y : U{Ψ} x /∈ FV(U ,Ψ)

G ` let x = e0 in e′0 ∼ let x = e1 in e′1 : {Φ}y : U{Ψ}

[LET-LEFT]
G / G G ` T /T G ` e ∼ e : T G, x : T ` e0 ∼ e1 : {Φ}y : U{Ψ} x /∈ FV(U , e1,Ψ)

G ` let x = e in e0 ∼ e1 : {Φ}y : U{Ψ}

[LETREC]

f, x /∈ FV(V,Ψ)
G, f : (x : T )→ {Φ}U{Φ}, x : T ` e0 ∼ e1 : {Φ}U{Φ} G, f : (x : T )→ {Φ}U{Φ} ` e′0 ∼ e′1 : {Ξ}y : V{Ψ}

G ` letrec f x = e0 in e′0 ∼ letrec f x = e1 in e′1 : {Ξ}y : V{Ψ}

[IF-LEFT]
G / G G `v v : bool G ` e1 ∼ e : {Φ1}x : T {Ψ} G ` e2 ∼ e : {Φ2}x : T {Ψ}

G ` if v then e1 else e2 ∼ e : {(vL ⇒ Φ1) ∧ (¬vL ⇒ Φ2)}x : T {Ψ}

[IF]
G / G G `v v : bool G ` e1 ∼ e′1 : {Φ1}x : T {Ψ} G ` e2 ∼ e′2 : {Φ2}x : T {Ψ}

G ` if v then e1 else e2 ∼ if v then e′1 else e′2 : {(vL ⇐⇒ vR) ∧ (vL ⇒ Φ1) ∧ (¬vL ⇒ Φ2)}x : T {Ψ}

[FLIP]

G / G G, x:bool ` Φ
f = x 7→ x or f = x 7→ ¬x

G ` flip ∼ flip : {∀y : bool.Φ[x := y, f(y)]}x : bool{Φ}
[SAMPLE]

G / G G, x:int ` Φ
f ∈ N→ N, bijective from [i..j] to [i..j]

G ` pickji ∼ pickji : {Φ[x := y, f(y)]}x : int{Φ}

[RED-LEFT]
e1

βιµδ−→ e2 G ` e1 ∼ e : C
G ` e2 ∼ e : C

[SYM]

G ` e1 ∼ e2 : C
·∗ is the operator swapping ·L and ·R

G∗ ` e2 ∼ e1 : C∗

Figure 3. Relational typing rules

Let I be a valuation and m be a memory. The interpretations LvMI
of a value v and LeMmI of an expression e are defined in Figure 44. If
I is a well-formed valuation for G, and G `v v : T is derivable,
then LvMI ∈ JTK. Likewise, if G `e e : T is derivable then
λm. LeMmI ∈ M(JTK).

We now turn to giving a relational interpretation of valid judg-
ments. A well-formed relational valuation I for G, written I �
G, is a pair of well-formed valuations for G. If I = (IL, IR),
we write π1(I) (resp. π2(I)) for IL (resp. IR), and I(x) for
(IL(x), IR(x)). We assume given a relational interpretation for
formulas, written 〈|Φ|〉I , such that for any formula Φ well-formed
under G, for any relation valuation I � G, 〈|Φ|〉I is a binary rela-
tion onM. This relation is defined as usual, using the left/right val-
uation (resp. left/right memory argument) for interpreting variables
on the left/right (resp. references on the left/right). Figure 55 defines
the interpretation of relational types, written 〈|G ` T / T|〉I , and
computation types, written 〈|G ` C / T|〉I , w.r.t. a relational val-
uation I. A relational valuation I is well-formed w.r.t a relational

context G, written I � G, if for any context G such that G /G, and
every variable x declared in G, I(x) ∈ 〈|G ` G(x) / G(x)|〉I .

Finally, we define the semantic validity of judgments: we say
that two values v1 and v2 are semantically related in T under G,
written G � v1 ∼ v2 : T , if G / G, and G ` T / T , and

∀I � G, (Lv1Mπ1(I), Lv2Mπ2(I)) ∈ 〈|G ` T /T|〉I
We say that two expressions e1 and e2 are semantically related in
C under G, written G � e1 ∼ e2 : C, if G / G, and G ` T / T , and

∀I � G, (λm. Le1Mmπ1(I), λm. Le2M
m
π2(I)) ∈ 〈|G ` C /T|〉I

The following theorem states that all judgments of the logic are
sound w.r.t. their interpretation; it implies that typing can be used
to verify probabilistic claims, thanks to the properties of lifting.

Theorem 1 (Soundness).
• If G ` v1 ∼ v2 : T , then G � v1 ∼ v2 : T ,
• If G ` e1 ∼ e2 : C, then G � e1 ∼ e2 : C.



LcMI =B(c)
LxMI = I(x)
Lfun x : T→ eMI =λd. λm. LeMmI[x:=d]
LvMmI = unit (LvMI ,m)
Le vMmI = bind LeMmI (λf. λm. f LvMIm)
Llet x = e1 in e2MmI = bind Le1MmI (λd. λm. Le2MmI[x:=d])
Lletrec f x = e1 in e2MmI

= bind (fix F ) (λd. λm. Le2MmI[f :=d])
L!rMmI = unit (m(r),m)
Lr := eMmI = bind LeMmI (λd. λm. (•,m[r := d]))
LflipMmI = bind UB (λb. (b,m))
Lpickji M

m
I = bind U[i,j] (λn. (n,m))

where F = λdf . λdx. λm. LMMmI[f :=df ][x:=dx]

Figure 4. Interpretation of values and expressions

Technically, we prove the soundness of each rule as a lemma,
directly from the semantics. It allows us to fall back to the full gen-
erality of Coq whenever reasoning outside of the logic is required.

4. Encoding λp in RF?

We now discuss our language design and implementation. There
are two key ideas behind our encoding of λp in RF?. First, as
shown in §2.32.3, we introduce probabilistic computations into F?

axiomatically, by providing a sample primitive at the appropriate
type. Programmers can instantiate sample at runtime by providing a
suitable source of randomness. Next, as discussed in §2.22.2, we adapt
the Hoare state monad ST to a monad RST for computations with
relational pre- and post-conditions. We provide here more details
about our encodings, in particular the style we adopt to compute
relational VCs for the RST monad, and the manner in which we
reuse classical specifications.

4.1 Representing λp types. To implement λp, we begin with a
translation of its types into F? augmented with a relational state
monad. To stay close to λp, our translation uses a monad RST0,
which we then adapt to the monad RST of §22. Like in λp, post-
conditions in RST0 only relate the output values and heaps, not
the initial heaps. Specifically, the type RST0 pre a post can be in-
terpreted in RF? as a store-passing function (over a primitive heap)
with the signature shown below:

RST0 pre a post = h:heap{|pre (L h) (R h)|}
→ (x:a * h’:heap{| post (L x) (R x) (L h’) (R h’) |})

The type translation is homomorphic on most of λp’s typing
constructs, with the interesting cases mainly on the computation
types, where [[{Φ}y:T {Ψ}]] is RST0 [[Φ]] [[T ]] (λy0y1.[[Ψ]]).

4.2 A monad of predicate transformers for VC generation.
Next, to provide type inference for RF?, rather than writing re-
lational Hoare triples in RST0, we write specifications using
predicate transformers. This style is adapted from the Dijkstra
state monad, previously introduced for inferring classical (non-
relational) verification conditions for stateful F? programs [4646]. In
particular, we introduce the relational Dijkstra state monad, RDST,
and show its signature below. (We write polymorphic types implic-
itly assuming their free type variables are prenex quantified.)

type RDST a wp = ∀p. RST0 (wp p) a p
val return : x:a→RDST a (Λp. p (L x) (R x))
val bind: RDST a wp1→ (x:a→RDST b (wp2 x))
→RDST b (Λp.λh0 h1. wp1 (λx0 x1 h0’ h1’.

(∀ x. L x=x0 ∧ R x=x1 =⇒ wp2 x p h0’ h1’)) h0 h1)

The type RDST t wp is an abbreviation for the RST0 monad that
is polymorphic in its post-condition. Specifically, RDST t wp is the

type of computation which for any relational post-condition p on ts
and heaps, the pre-condition on the input heaps is given by wp p.

Unlike the Hoare-style RST0 monad, the RDST monad yields
a weakest pre-condition calculus by construction. As indicated by
the signature of bind, when composing computations in the RDST
monad, we simply compute a pre-condition for the computation by
composing the predicate transformers of each component. A slight
complication arises from the need to constrain the formal parameter
x:a of wp2 relationally. In general, wp2 will have free occurrences
of L x and R x. We relate these to the result of the first computation
using the guard L x=x0 and R x=x1, before composing wp1 and wp2.

Additionally, by exploiting the post-condition parametricity
of RDST, we can recover the expressiveness of a 6-place post-
condition relation in the RST monad that we use in our examples.
We show the definition of RST below.

type RST pre a post = RDST a (Λp.λh0 h1. pre h0 h1
∧ ∀x0 x1 h0’ h1’. post h0 h1 x0 x1 h0’ h1’ =⇒ p x0 x1 h0’ h1’)

4.3 Lifting classical specifications. To promote reuse of existing
verified F? code in RF?, we provide combinators to lift specifica-
tions written with classical predicate transformers into the RDST
monad. To illustrate our approach, we show the RF? specifications
of primitive operations on references—the same combinators apply
to arbitrary classically verified code.

type lift wp0 wp1 p h0 h1 =
wp0 (λx0 h0’. wp1 (λx1 h1’. p x0 x1 h0’ h1’) h1) h0

type Rd x p h = p (Sel h x) h
val (!) : x:ref a→RDST a (lift (Rd (L x)) (Rd (R x)))

type W x v p h = p () (Upd h x v)
val (:=): x:ref ’a→ v:’a→RDST unit (lift (W (L x) (L v)) (W (R x) (R v)))

The combinator lift takes two classical predicate transformers
wp0 and wp1 and composes them by, in effect, “running” them sep-
arately on the heaps h0 and h1 and relating the results and heaps
using the relational post-condition p. The types given to derefer-
ence and assignment should be evident—these are simply the rela-
tional liftings of the standard, classical weakest pre-condition rules
for these constructs (Rd and W, respectively).

4.4 Computing relational VCs. We repurpose the bulk of F?’s
type-checking algorithm to RF?. Although the relational typing
rules of Fig. 33 generally analyze a pair of programs e0 ∼ e1, for
the most part, we are concerned with proving relational properties
of multiple executions of a single program. Thus, in the special
symmetric case where we are analyzing e ∼ e, the two-sided rules
of Fig. 33 degenerate into the standard typing rules for monadic F?

(which is parametric in the choice of monad, so configuring it to
use RDST is easy).

The main subtlety in computing relational VCs arises when
analyzing the cross-cases of conditional expressions—for this we
implement the single-sided rules in the judgment, and we attempt to
revert to the symmetric case as soon as we detect that the program
fragments are indeed the same. For example, the rule [IF] allows us
to relate if b then e else e′ ∼ e, by generating subgoals for e ∼ e and
e′ ∼ e, where at least the former can be handled once again by the
symmetric rules.

The rules [RED-LEFT] and [RED-RIGHT] of Fig. 33 are impossi-
ble to implement in full generality—they permit reasoning about
stateful programs after arbitrary reductions of open terms. Instead,
these rules are approximated by the RF? typechecker for terms that
can be given classical predicate transformer specifications. In par-
ticular, when trying to relate e0 ∼ e1, if we can use the sym-
metric judgments and type e0 ∼ e0 : RDST t (lift wp0 ), and
e1 ∼ e1 : RDST t (lift wp1), then we type e0 ∼ e1 at type



f1, f2 ∈ JTK→M→ D(JUK×M) ∀t1, t2 ∈ 〈|G ` T /T|〉I . (f1 t1, f2 t2) ∈ 〈|G ` C /U|〉I[x:=(t1,t2)]

(f1, f2) ∈ 〈|G ` (x : T )→ C /T→ U|〉I

(d1, d2) ∈ JBK2

(d1, d2) ∈ 〈|G ` B /B|〉I
µ1, µ2 ∈M→ D(JUK×M) ∀m1,m2 ∈M. 〈|Φ|〉I(m1,m2)⇒ P ] (µ1 m1) (µ2 m2)

(µ1, µ2) ∈ 〈|G ` {Φ}y : U{Ψ} /U|〉I
where P = λ((u1,m

′
1), (u2,m

′
2)). (u1, u2) ∈ 〈|G ` U /U|〉I ∧ 〈|Ψ|〉I[y:=(u1,u2)](m

′
1,m

′
2)

Figure 5. Interpretation of relational refinement types

RDST t (lift wp0 wp1). In effect, by making use of classical pred-
icate transformers on either side, we approximate the reduction re-
lation for stateful terms used by [RED-LEFT] and [RED-RIGHT].

All these measures for handling the asymmetric cases are still
incomplete. When trying to prove a relation between f v0 ∼ g v1 in
a context G with relational types for f and g that cannot be decom-
posed into a pair of classical specifications, it becomes impossible
to complete the derivation. In such cases, RF? emits False as the
VC (guarded by a relational path condition). Nevertheless, it may
still be possible to discharge the VC, if the path condition is infea-
sible. This is the case, for example, when trying to relate the result
of encrypt with errorNonce in the passport example of §2.42.4.

4.5 Proving VCs using Z3. Once a VC has been computed, we
ride on an existing encoding of VCs for the classic Dijkstra monad
within Z3. We rely on a theorem from Swamy et al. [4646] which
guarantees that, despite the use of higher-order logic when com-
puting VCs, once a predicate transformer is applied to a specific
first-order post-condition, so long as there is no inherent use of
higher-order axioms in the context, a first-order normal form for
the VC can always be computed.

5. Applications
Table 55 summarizes our experimental evaluation of RF?. For each
program, we give the Makefile target name in the F? distribu-
tion, the number of lines of code and type annotations (exclud-
ing comments), and the typechecking time in seconds, which is
mostly dominated by the time spent solving VCs in Z3. All exper-
iments were conducted on a 3GHz HP Z820 32-core workstation
with 32GB of RAM (although the verifier makes use of only one
core). For lack of space, most of these examples are only briefly de-
scribed, with a more detailed discussion of the last two programs,
counter in §5.15.1 (a cryptographic construction) and meter in §5.25.2 (a
privacy protocol).
INFORMATION FLOW. The first five programs provide many infor-
mation flow examples, such as those of §2.22.2, and test cases for
single-sided rules using several variations of the RDST monad con-
struction of §44.
PASSPORT UNLINKABILITY. The sixth program, passport illus-
trates the verification of the Basic Access Control protocol for
RFID-equipped passports, presented in §2.42.4. It establishes pass-
port unlinkability for the modified protocol that returns the same
error message in all failure cases. (As can be expected, the original
protocol yields a typechecking error.) Its verification illustrates the
use of single-sided rules for nested tests (see tag1 in §2.42.4) and also
involves modelling key-hiding symmetric encryption.
RANDOM ORACLES. The program ro provides an idealized imple-
mentation of a cryptographic hash function in the random oracle
model. In this model, widely used in applied cryptography, the hash
function is assumed to be indistinguishable from a uniformly ran-
dom function. Thus, knowledge of the hash function values on a
subset of its domain yields no a priori information about its values
outside this subset, and protocols that share the hash function with
an adversary can treat those values as secret as long as they use

disjoint subsets of its domain. The purpose of ro is to capture this
reasoning pattern in a library that enables type-based verification
of protocols in the random oracle model.

Our implementation lazily samples (and memoizes) the random
function, using a mutable reference holding a table mapping hash
queries made by both honest participants H and adversaries A. To
verify the program, this table carries several invariants, including
that the tables grow monotonically; that in every pair of executions,
the tables agree on the fragments corresponding to queries made
by A; and that on the fragments corresponding to queries by H ,
the sampled entries are related by an injective function that ensures
they have indistinguishable distributions. The interface of ro is de-
signed to allow the full use of relational sample on the H fragment,
and to account for failure events (e.g., returning a value to A that
collides with one that was already provided to H), allowing for its
modular use in a context that must bound their probability.
CCA2 ENCRYPTION. Resistance to adaptive chosen-plaintext and
chosen-ciphertext attacks (CCA2) is a standard cryptographic secu-
rity assumption for public key encryption schemes. To verify proto-
cols relying on this assumption, we program an ideal, stateful func-
tionality for CCA2 encryption that maintains a log of prior oracle
encryptions, similar to those proposed by Fournet et al. [2424], but
with a more convenient relational interface. Using the F7 type sys-
tem with only classic refinements, they require that all code that op-
erates on secrets be placed in a separate module that exports plain-
texts as an abstract type. Using instead relational types for secrets,
in the style of §2.32.3, we lift this restriction, enabling us to verify
protocol code that uses encryption without restructuring. Our code
is essentially higher-order; it simulates ML functors using a depen-
dently typed record of functions.
NONCE-BASED AUTHENTICATION. Exploiting the modularity of
our CCA2 implementation, we program and verify simplenonce, a
protocol that illustrates a common authentication pattern based on
fresh random values, or nonces, formalizing the intuition that, if A
encrypts a fresh nonce using the public key ofB, and later decrypts
a response containing that nonce, then the whole response must
have been sent by B.
PRIVATE AUTHENTICATION. Further extending simplenonce, and
relying on a key-hiding variant of CCA2, we implement a protocol
for private authentication, proposed by Abadi and Fournet [11], that
allows two parties to authenticate one another and to initiate private
communications without disclosing their presence and identities to
third parties. Although the protocol has been studied symbolically
in the applied pi calculus, to our knowledge we provide its first
verification in a computational model of cryptography.
ELGAMAL ENCRYPTION. The chosen-plaintext security (CPA) of
ElGamal encryption by reduction to the decisional Diffie-Hellman
assumption is a classic example of cryptographic proof. We verify
it in RF?, building on an axiomatic theory of cyclic groups.
SECURITY “UP TO BAD”. The program uptobad illustrates a com-
mon pattern to prove refinement formulas of the form ϕ ∨ Bad
where ϕ is the property we are interested in and Bad captures con-
ditions that may cause the program to ‘fail’, usually with a small
probability (e.g. when the adversary guesses a private key). To



NAME LOC TC(S) DESCRIPTION
arith 43 4.5 Information flow with arithmetic
pure1 35 1.7 Information flow & inference
pure2 33 1.7 Information flow & inference (variant)
st 52 3.6 Information flow with state
singlesided 111 14.2 Information flow using single-sided rules
passport 97 44.2 Unlinkability for RFID passport protocol
ro 73 21.2 Random-Oracle hash function
cca2 88 6.5 Idealized CCA2 encryption
simplenonce 108 42.5 Nonce-based Authentication protocol
privateauth 175 81.4 Private authentication protocol
elg 217 124.5 ElGamal encryption
uptobad 15 1.4 Up-to-failure reasoning
counter 106 24.1 Counter mode encryptions using AES
meter 182 79.8 Commitments & smart meter protocol
Total 1,378 451.3

Table 1. Summary of experiments

avoid polluting all our specifications with this disjunction, we de-
fine an up-to-bad variant of the RDST monad, where all pre- and
post-conditions, and all heap invariants, are enforced only as long
as a distinguished boolean memory reference is false. Intuitively,
this adds an implicit ‘∨ Bad’ to every refinement.

Our encoding proceeds in two steps. First, we define mref a p,
the type of monotonic references r to an a-value whose contents
can be updated only when the update condition p holds. That is,
when p is a reflexive transitive binary a-predicate, given two heaps
h and h’, if h’ is a successor of h then p (Sel h r) (Sel h’ r) holds.
We give below the resulting specification of mwrite, requiring the
update condition p as a pre-condition.

private type mref a (p:a⇒ a⇒ E ) = ref a
val mwrite: a::? → p::a⇒ a⇒ E → r:mref a p→ v:’a
→RST (λh0 h1. p (Sel h0 (L r)) (L v) ∧ p (Sel h1 (R r)) (R v)) unit

(λh0 h1 () () h0’ h1’. h0’=Upd h0 (L r) (L v)
∧ h1’=Upd h1 (R r) (R v))

Next, we define UpTo bad requires a ensures as an alias for the
RST monad, with pre-condition requires, result type a, and post-
condition ensures, unless the reference bad is set to true in the left or
right heap, in which case both pre- and post-conditions are trivial:

type Bad b h0 h1 = Sel h0 (L b)=true ∨ Sel h1 (R b)=true
type UpTo (bad:mref bool (λb b’. b=true =⇒ b’=true))

(requires:heap⇒ heap⇒ E) (a::? )
(ensures::heap⇒ heap⇒ a⇒ a⇒ heap⇒ heap⇒ E) =

RST (λh0 h1. requires h0 h1 ∨ Bad bad h0 h1) a
(λh0 h1 x0 x1 h0’ h1’. ensures h0 h1 x0 x1 h0’ h1’
∨ Bad bad h0 h1)

Independently, we can compute (or bound) the probability of
bad being set to true; for passport, for instance, we set bad to true
as we detect a collision between two sampled nonces, and bound
its probability with q2/264 where q is the number of sessions.

5.1 Pseudo-random functions and counter-mode. Resuming
from the one-time pad example (§2.32.3), we implement a more use-
ful symmetric encryption scheme based on a block cipher, such
as triple-DES or AES. Blocks are just fixed-sized byte arrays, e.g.
16 bytes for AES. Block ciphers take a key and a plaintext block,
and produce a ciphertext block. A common cryptographic security
assumption is that the block cipher is a pseudo-random function
(PRF): for a fixed key, generated uniformly at random, and used
only as input to the cipher, the cipher is computationally indis-
tinguishable from a uniformly random function from blocks to
blocks. We first present our sample scheme, then formalize the
pseudo-random assumption, and finally explain how we verify it
by relational typing.
ENCRYPTING IN COUNTER MODE. The purpose of symmetric en-
cryption modes is to apply the block cipher keyed with a sin-

gle, short secret in order to encrypt many blocks of plaintexts. In
counter mode, to encrypt a sequence of plaintext blocks pi, we use
a sequence of index blocks ii, obtained for instance by increment-
ing a counter. We independently apply the block cipher to each ii to
obtain a mask mi; and compute the ciphertext block ci as pi ⊕mi,
effectively using the masks as one-time pads. A practical advantage
of this construction is that both encryption and decryption are fully
parallelizable, and that the sequence of masks can be pre-computed.
The blocks i need not be secret, but they must be pairwise-distinct.
Otherwise, from the two ciphertexts p ⊕mi and p′ ⊕mi, one triv-
ially obtains p ⊕ p′, which leaks a full block of information.

For simplicity, we keep the block cipher key implicit, writing
f for the resulting pseudo-random function; we focus on the func-
tions for processing individual plaintext blocks, rather than lists of
blocks; and we attach the (public) index to every ciphertext block.
First, assume there is a single encryptor, that counts using an inte-
ger reference and uses toBytes to format the integer as a block.

let n = ref 0;
let encrypt (p:block) = let i = toBytes !n in n := !n + 1; (i, xor (f i) p)
let decrypt i c = xor (f i) c

To enable independent encryptions of plaintext blocks, we can
remove the global counter and instead sample a block i for each en-
cryption, as follows. This random block i is called the initialization
vector (IV) for the encryption.

let encrypt’(p:block) = let i = sample 16 in (i, xor (f i) p)

Much as for the one-time pad, we show that encrypt and encrypt’
can be typed as block→ eq (block * block), the type of functions
from (private) blocks to pairs of public blocks, under suitable cryp-
tographic assumptions. More general combinations of sampling
and incrementing can also be used for independent multi-block en-
cryptions; for instance, the usual counter mode is programmed as:

let encrypt counter mode (ps:list block) =
let iv = sample 16 in let i = ref iv in
iv::List.map (fun p→ incrBytes i; xor (f !i)) ps

PSEUDO-RANDOM FUNCTIONS. To study the security of protocols
using a block cipher, we program and type it as a random function
from blocks to blocks. (To test our encryption, we also implement
it concretely by just calling AES.) If we can prove the security of
a protocol using this ideal random-function implementation, then
the same protocol using the concrete block cipher is also secure
under the pseudo-random-function assumption (with a probability
loss bounded by the probability of distinguishing between the two
ciphers). We implement the function f using lazy sampling: when
called, f first looks up for a previously-sampled mask in its log;
otherwise, f samples a fresh mask. As for the one-time pad, we
pass the plaintext block p as a ghost parameter, and take advantage
of sampling to generate a mask with a relational refinement to
specifically hide p. Of course, this fails if the mask has already
been sampled, so we type f for encryption with a pre-condition that
depends on the current log and requires that i does not occur in the
log yet. (We use the same code with a different type for decryption,
requesting that i occurs in the log.)

val f: i:index→ p:block→ iRST pre block post
where pre h0 h1 = (* Requires: i not in the log yet *)

not (In (L i) (Domain (Sel h0 (L log))))
∧ (L i = R i) ∧ (Seqn (L i) < Sel h0 (L n))

and post h0 h1 m0 m1 h0’ h1’ = (* Ensures: log extended with (i,p,m) *)
Mask (L p) (R p) m0 m1 (* and sampled m’s related by injectivity *)
∧ h0’ = Upd h0 (L log) ((Entry (L i) (L p) m0)::Sel h0 (L log))
∧ h1’ = Upd h1 (R log) ((Entry (R i) (R p) m1)::Sel h1 (R log))

let f p i = match assoc i !log with
| Some( ,m)→m (* unreachable *)
| None→ let m = sample p in

log := (Entry i p m)::!log; m



When using a single counter (function encrypt), typechecking
relies on a joint invariant on the counter n and the content of the log
that states that all entries in the log have an index block i formatted
from some n’ < n. It also involves excluding counter overflows and
assuming that toBytes is injective. This enables us to prove that our
encryption is secure with no loss in the reduction: the advantage of
a CPA adversary against our code is the same as the advantage of
some adversary against the PRF assumption.

When using instead a fresh random block (function encrypt’),
the situation is more complex, as there is a non-null probability that
two different encryptions sample the same index i. Our construction
is secure as long as no such collisions happen. We capture this event
using the ‘up to bad’ approach presented above, for a Fresh module
that silently detects collisions and sets the bad flag accordingly.
Concretely, the probability of having a collision when sampling
q blocks of 16 bytes each is bounded by q2/2128. By typing, we
prove that encryption, and any program that may use it, leaks
information only once bad is true. Thus, we prove the concrete
security of encrypt’ with a loss of q2/2128 in the reduction to PRF.

5.2 Privacy-preserving smart metering & billing. We finally
implement and verify the “fast billing” protocol of Rial and Danezis
[4040], which involves recursive data structures and homomorphic
commitments. The protocol has three roles:

• a certified meter that issues private, signed, fine-grained elec-
tricity readings (say one reading every 10 minutes);

• a utility company that issues public, signed rates (for the same
time intervals, depending on some public policy); and

• a user, who receives both inputs at the end of the month to
compute (and presumably pay) his electricity bill.

The two security goals of the protocol are to guarantee (1) integrity
of the monthly fee paid to the utility company; and (2) privacy of
the detailed readings, which otherwise leak much information on
the user’s lifestyle. The protocol relies on Pedersen commitments
[3636] and public-key signatures. Next, we explain how we prove per-
fect, information-theoretic privacy (entirely by relational typing)
and computational integrity by reduction to the discrete log prob-
lem (by typing using ‘up-to-bad’).
HOMOMORPHIC PEDERSEN COMMITMENTS. We first implement
typed commitments, parameterized by some multiplicative group
of prime order p. We outline their interface and review their main
security properties.

type pparams = eq public param
type opening (pp:pparams) (x:text) =

o:opng {| Eq ((trap (L pp) * L x) + L o) ((trap (R pp) * R x) + R o) |}

val sample: pp:pparams→ x:text→ opening pp x
val commit: pp:pparams→ x:text→ r:opening pp x→

c:eq elt { c = Commit pp x r }
let commit pp x r = pp.g ˆ x * pp.h ˆ r
let verify pp x r c = (c = pp.g ˆ x * pp.h ˆ r)

The public parameters pp consist of the prime p and two distinct
group generators g and h (possibly chosen by the utility). Texts and
openings range over integers modulo p. A commitment to x with
opening o is a group element c = gxho. Although assumed hard
to compute, there exists α (known as the trapdoor for these pa-
rameters) such that g = hα. Accordingly, we use α = trap pp for
specification purposes, in refinement formulas but not in the pro-
tocol code. We use α in particular to specify an injective function
for randomly sampling the opening o (modulo p) so that it per-
fectly hides x: the relational refinement type opening in the post-
condition of sample records that α*(L x) + (L o) = α*(R x) + (R o),
which implies gLxhLo = gRxhRo and enables us to type the result
of commit as public (eq elt). Intuitively, every commitment can be

opened to any x′, for some hard-to-compute o′, so the commitment
itself does not leak any information about x as long as o is ran-
domly sampled and kept secret. At the same time, given x and o, it
is computationally hard to open the commitment to any x′ 6= x.

Commitments can be multiplied: gxho ∗ gx
′
ho

′
= gx+x

′
ho+o

′

and exponentiated: (gxho)p = gxphop to compute commitments to
linear combinations of their exponents without necessarily know-
ing them. These operations are used below to compute the bill; their
(omitted) types show that they preserve eq and opening relational
refinements.

Next, we show some typed code for each role of the protocol.
METER. We have abstract predicates Readings and Rates to specify
authentic lists of readings and rates. We rely on a signature scheme
to sign a list of commitments to private readings; this scheme is
assumed resistant against existential forgery attacks; as explained
in [2424], we express this property using (non-relational) refinements.
For simplicity, we keep the signing and verification keys implicit.

type Signed (pp:pparams) (cs:list elt) =
∃xrs. Readings (fsts xrs) ∧ cs = Commits pp xrs

val sign: pp:pparams→ cs:eq (list elt){Signed pp cs} → eq dsig
val verify meter signature: pp:pparams
→ cs:eq (list elt)→ eq dsig→ b:eq bool{ b=true =⇒ Signed pp cs }

The Signed predicate above states that the commitments have been
computed from authentic readings; it is a pre-condition for signing
(at the meter) and a post-condition of signature verification (at the
utility). It uses a specification function fsts that takes a list of pairs
and returns the list of their first projections.

Given authentic readings xs, the meter function below calls
commits, a recursive function that maps sample and commit (speci-
fied above) to every element of xs and returns both a list of pairs of
readings and openings xt, ot for the user and a public list of com-
mitments ct for the utility. These commitments are then signed,
yielding a public signature. From their eq types, we can already
conclude that the data passed from the meter to the utility (that is,
the list of commitments and its signature) does not convey any in-
formation about the readings.

val meter: pp:pparams→ xs:list int{ Readings xs } →
xrs:(list (x:int * opening pp x)) { xs = fsts xrs } *
cs:eq list elt * eq dsig{ Commits pp xrs = cs }

let meter pp xs = let xrs,cs = commits pp xs in (xrs, cs, sign pp cs)

USER. Given a list of pairs xt, ot from the meter and a list of rates
pt from the utility, the user calls make payment to compute two
scalar products: the fee

∑
t xtpt, and a fee opening

∑
t otpt, and

pass them to the utility.

val make payment: pp:pparams
→ xrs: (list (x:text * opening pp x)) { Readings (fsts xrs) }
→ ps:eq (list text){| Rates (L ps) ∧ Rates (R ps) ∧

SP (fsts (L xrs)) (L ps) = SP (fsts (R xrs)) (R ps) |}
→ (eq text * eq opng)

let make payment pp xrs ps = let x,r = sums xrs ps in (x,r)

The relational pre-condition on the 4th line (SP...) is a declassifica-
tion condition, capturing the user’s intent to publish the fee, com-
puted as the scalar product SP of the detailed readings and rates, by
requiring that the ‘left’ and ‘right’ fees be equal. By typing the code
of the double scalar product sums, we get the same equation for the
openings, showing that the fee opening is then also public. The re-
sult type of make payment tells us that those two scalars reveal no
further information on any readings leading to the same fee.

More explicitly, we can use the types of the meter and the user
to typecheck a ‘privacy game’ whereby the adversary chooses a list
of rates and two lists of readings leading to the same fee; obtains
the list of commitments, its signature, the fee, and the fee opening
computed by the meter and user code for one of the two readings



(each selected at random with probability 1/2); and attempts to
guess which of the two readings was used. Typing guarantees
that the adversary guess does not depend on the random selection
of readings, hence that the guess is correct with probability 1/2.
Interestingly, this privacy property is information-theoretic, and
does not rely on any computational assumption.
UTILITY. The utility verifies the signature on the commitments ct;
uses the rates pt to compute the product of exponentials∏

t ct
pt =

∏
t(g

xthot)pt =
∏
t g
xtpthotpt = g

∑
t xtpth

∑
t otpt

and compares it to the commitment gxho computed from the fee
x and fee opening o presented by the user. Unless the user can
open a commitment to several values x (which can be further
reduced to the discrete log problem), this confirms that x is the
correct payment. To type the verifier code, we write classic (but
non-trivial) refinements, using ghost scalar products to keep track
of its computation.

val verify payment: pp:pparams
→ ps:eq (list int){Rates ps}
→ cs:eq (list elt)→ s:eq dsig (* from the meter *)
→ x:eq text→ r:eq opng (* from the user *)
→ b:eq bool{ b=true =⇒ ∃xs. Readings xs ∧ x=SP xs ps }

let verify payment pp ps cs s x r =
verify meter signature pp cs s ∧
verify commit pp x r (scalarExp pp cs ps)

6. Related work and conclusions
Our work spans semantics of higher-order probabilistic programs,
relational program verification, and cryptographic protocol verifi-
cation, enabling us to verify the security of protocol implementa-
tions under computational assumptions by relational typing.
REASONING ABOUT PROBABILISTIC PROGRAMS. The semantics
of RF? is based on the monadic representation of probabilities used
in [66, 3737]. Our semantics is confined to discrete sub-distributions;
for some applications, such as robotics and machine learning, it is
however essential to support continuous distributions. Higher-order
programs over continuous distributions are considered in [1515, 3535].
An alternative approach is to embed probabilistic programming in a
general purpose language, as done e.g. by Kiselyov and Shan [2929].

Reif [3838], Kozen [3030], and Feldman and Harel [2323] were among
the first to develop logics for reasoning about probabilistic pro-
grams. Similar logics were later developed by McIver and Morgan
[3333] and more recently by Chadha et al. [1717]. Hurd [2727] provides a
formalization of the framework of McIver and MorganMcIver and Morgan in the HOL
proof assistant. All these logics are non-relational, and do not allow
directly proving relations between probabilities.
RELATIONAL PROGRAM VERIFICATION. Relational Hoare Logic
was first introduced for a core imperative program to reason about
the correctness of program optimizations and information flow
properties [1111]. It was later extended to probabilistic procedural
programs with adversarial code, and used to formally verify reduc-
tionist security proofs of cryptographic constructions [77] and dif-
ferential privacy of randomized algorithms [1010]. Relational Hoare
Type Theory (RHTT) is an extension of Hoare Type Theory, used
to reason interactively about advanced information flow policies of
higher-order stateful programs with real world data structures [4242];
RHTT does not consider probabilistic computations, which are es-
sential to reason about cryptographic protocols. RHTT is fully for-
malized as a shallow embedding in the Coq proof assistant. The
formalization is restricted to programs with first-order store, but in
principle it could be extended to programs with higher-order store
using an axiomatic extension of Coq [4444]. In contrast, we formalize
in Coq a core fragment of RF?, and rest on the F? infrastructure to
verify large programs. Our formalization is restricted to programs

with first-order store; as we adopt a deep embedding, our formal-
ization could in principle be extended to higher-order store using
recent developments in step-indexed semantics [44]. Beyond RHTT
and HTT, there have been many efforts to develop and sometimes
machine-check program logics for higher-order stateful programs;
see [3939] for an account of the field.

Relational logics can also be used to reason about continu-
ity [1818]. Naturally, numerous program analyses and specialized re-
lational logics enforce 2-properties of programs.

COMPARISON WITH EasyCrypt. EasyCrypt [88] is a framework
for proving the security of cryptographic constructions in the com-
putational model. The core of EasyCrypt is a probabilistic Rela-
tional Hoare Logic (pRHL) that is able to capture common pat-
terns of reasoning in cryptographic proofs, including observational
equivalence, equivalence up to failure, and reductionist arguments.
The relational refinement type system of RF? is inspired from
pRHL, but it also incorporates concerns of compatibility with F?

and automation. In contrast to EasyCrypt, RF? offers only lim-
ited support to carry relational reasoning about structurally differ-
ent programs, and to reason about probabilities of postconditions—
the latter is achieved in EasyCrypt using a probabilistic (but non-
relational) Hoare Logic, which has no counterpart in RF?. As a
consequence, some cryptographic constructions whose formaliza-
tion in EasyCrypt requires interactive game-based proofs and com-
plex probabilistic arguments cannot be verified in RF?; on the other
hand, verification in RF? is fully automatic.

Moreover, EasyCrypt is not primarily designed for building,
verifying and deploying large systems. Recent work [33] explores
how EasyCrypt can be used to verify C implementations of well-
known cryptographic constructions, and through verified compila-
tion derive guarantees about x86 executables. However, this ap-
proach does not scale to verifying detailed protocol implementa-
tions. In contrast, RF? allows programmers to combine relational
and non-relational refinements freely, so that relational reasoning
steps can take advantage of program invariants embedded in non-
relational refinements. This distinctive ability of RF? is essential to
verify system implementations that rely on cryptography.

PROTOCOL VERIFICATION. Blanchet’s recent account of the field
of protocol verification provides a panorama of existing tools and
major achievements [1414]. Most of the literature focuses on veri-
fying protocol specifications, or protocol implementations through
model extractors [22]; alternatives include generating implementa-
tions from verified models [1616]. Our work is most closely related to
approaches that reason directly about implementations in the sym-
bolic [1212, 2222] or computational models [1313, 2424, 3131].

MODULAR TYPE-BASED CRYPTOGRAPHIC VERIFICATION [2424].
Type systems usefully apply to many notions of security. In the con-
text of computational cryptography, Fournet et al.Fournet et al. rely on F7 typed
interfaces to encode classic game-based security definitions, such
as CPA and CCA2, using a combination of type refinements for
authenticity and type abstraction for integrity and confidentiality.

In comparison, RF? enables both probabilistic and relational
reasoning, letting us typecheck constructions previously out of
reach. In their reference implementation of TLS [1313], for exam-
ple, the security of several intricate cryptographic constructions is
specified by typing, but justified by handwritten proofs; the corre-
sponding code is trusted, rather than typechecked. (This is the case,
e.g. for the MAC-Encode-then-Encrypt construction in the record
layer, somewhat similar to our counter mode encryption example
in §5.15.1.) We intend to carry over their 7,000 lines of code to RF?,
reusing their detailed, classic refinements unchanged, and making
use of relational typing to verify additional cryptographic libraries.

CONCLUSIONS AND PROSPECTS. Our work on RF? represents a
significant first step towards our goal of building software whose



security has been verified down to core cryptographic assumptions.
On the theory side, we have shown how to generalize prior prob-
abilistic relational logics to a higher-order language, which pro-
vides a formal basis for the use of high-level abstractions in system
implementations. Practically, through careful language design, our
extension of F? towards RF? paves the way for carrying out proba-
bilistic relational verification in a semi-automated manner using re-
finement types and SMT solvers. Still, much remains to be done. As
immediate next steps, we anticipate extending our theory to account
for dynamic allocation and local state. Toward improving our tools,
on the empirical side, we plan to port an existing reference imple-
mentation of TLS [1313] to RF?. We expect that RF?’s more flexi-
ble idioms, better support for type inference, and its self-certified
kernel [4343] will ease verification and allow us to push towards ob-
taining a high-performance implementation of the Internet standard
with certified security.
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