
Natural Language Enabled Web Applications

Kuansan Wang
Speech Technology Group, Microsoft Research, Microsoft Corporation

One Microsoft Way, Redmond, WA 98052 USA
http://research.microsoft.com/stg

Abstract
This article describes the usage of
XML in a multimodal dialog system
based on the Web architecture. The
motivation behind the work is based
on the observation that Web based
interactions can be viewed as dialog
conducted in an iconic language. Since
the Web architecture accommodates
multiple input/output methods by
abstracting device details, it seems a
straightforward way to weave natural
language (NL) into the Web is to
convert NL semantics into objects
consistent with the Web architecture.
We demonstrate how one can employ
the extensibility of XML to implement
federated understanding in which
multiple sources unbeknownst to one
another may collaborate to resolve and
fulfill user’s commands. We also
demonstrate how the separation of
content and presentation principle of
XML can be used to implement
distributed dialog applications that are
less susceptible to the diversity of Web
accessing devices.

1 Introduction

The rapid adoption of the Web-based client
server architecture has put the distributed
computing into the central stage. As the Web
applications become more sophisticated and the
computers morph into many form factors that do
not have a sizeable display and easy-to-use input
devices, conventional user interface no longer
seems to serve the needs. NL coupled with
speech inputs has emerged as an ideal candidate
that promises a consistent and natural user
experience to interact with the computers. There
is thus a strong demand for technologies that can
seamlessly bring natural language technologies
to the Web-based computing architecture. Many

of them are based on XML, the extensible
markup language, recommended by the World
Wide Web Consortium (W3C).

From a high level point of view, XML is
simply a collection of protocols for representing
structured data in a text format that makes it
straightforward to interchange XML documents
on different computer systems. However, the
strength of XML resides not only on its system
independence, but also on the standardized
extensibility. The idea of extensibility is to allow
new markups, created as an embodiment of new
pieces of technology, to be introduced on
demand. To insure interoperability, however, any
individual must follow the XML convention in
extending the existing markups. As long as the
standard is followed, the new added elements do
not necessarily have to go through a standard
body in order for them to be publicly useful. The
extensibility indeed is probably the most
important feature of XML, especially for use in
rapidly advancing areas like natural language
technologies.

Another key feature in XML’s design goal is
to facilitate the separation of content from
presentation. XML embraces a declarative syntax
that is most suitable for annotating structured
data. The data then can be transformed into
appropriate formats either procedurally through
XML document object model (DOM) (W3C,
2001), or declaratively in XSL or XSLT (W3C,
2001). Separation of content and presentation is
especially critical in the Web environment
because diverse presentation formats are needed
to accommodate various kinds of access devices,
ranging from conventional telephones with
limited display and input capabilities to personal
computers with sophisticated peripherals.

There have been efforts trying to use XML for
natural language applications, most notably the
VoiceXML specification pioneered by the
VoiceXML Forum (2000). VoiceXML aims at
providing a simple telephone-based dialog
framework based on a finite state machine.
VoiceXML models dialog using a form-filling

metaphor, namely, a dialog goal is modeled as a
form with dialog sub-goals as fields on the form.
VoiceXML also defines a form interpretation
algorithm that traverses the fields in the order
they are defined on the form. The default flow
can be modified using procedural flow control
tags such as calling into a subroutine and
conditional or unconditional jump statements.
There are also a set of markups for telephony call
controls such as hanging up and call transfer.

Although VoiceXML incorporates XML as
part of its name, VoiceXML is really not an XML
application other than using XML syntax for the
language. Most notably, VoiceXML adopts a
procedural programming paradigm in describing
the dialog flow. Since much of the XML’s
extensibility lies within the declarative nature of
the language, it is a challenging task to extend
VoiceXML at will as envisioned by the XML
design. Also, as it is designed for telephony
applications that do not use textual or graphical
display in mind, VoiceXML can afford not to
consider the issues of separating content from
presentation. In fact, the ‘content’ of a dialog, i.e.
the dialog goals and sub-goals, is intimately
intertwined with its presentation. To facilitate
more advanced interaction, fields often must be
created ad hoc during design time just for dialog
flow manipulation, even though these fields have
little to do with the task knowledge or semantics
at all. Consequently, one may regard VoiceXML
as not following the spirits of XML in terms of
the extensibility and flexible presentation.

In this paper, we describe a multimodal dialog
system that incorporates the strength of XML and
other Web standards to implement the plan-based
framework (Sadek 1997, Allen 1995, Cohen
1990) known to be more suitable for dialog
purposes. We elaborate how the dynamic schema
principle underscoring the extensibility of XML
is used for distributed NL understanding, and
demonstrate how the separation of content and
presentation principle can be used to facilitate
distributed dialog system that can accommodate
a multitude of diverse accessing devices that pose
drastic differences in UI considerations.

2 Dynamic Schema Principle

In order for XML to be freely extensible by
anyone, individual XML documents must be able
to self-describe the structure of the document. A
specification, called XML schema, describes

what XML elements and attributes are expected
in the document. To avoid name conflicts, one
usually designates a namespace to the extended
elements and attributes meaningful to a specific
domain. Multiple namespaces coexisting in a
single XML document are a common scenario
that serves to highlight the extensibility of XML.

The self-describing nature of XML inspires a
powerful idea known as the dynamic schema
design principle for Web services. It addresses
the problem of versioning and updating XML
schemas published by Web services. Consider,
for example, the services of a credit bureau that
provides credit reports to financial institutes. A
conventional way to structure the Web service is
for the credit bureau to publish the XML schema
for its customers, as illustrated in Fig. 1(a). A
problem for this setup is that, whenever the credit
bureau changes or adds new features to its
services, all its customers are impacted by the
changes in the XML schema. The design
becomes problematic for the Web because many
services have little control on their content
consumers. In lieu of a statically posted schema,

Service
Provider

Client A

Client B

Request A

Request B

Report A

Report B

Service
Provider

Client A

Client B

XML Report
(static schema)

Figure 1(a) Web service using static schema:
All clients receive documents in the same
schema.

Figure 1(b) Web service using dynamic
schema: each client receives a document
formatted to the request.

the credit bureau can publish a protocol, called
meta-schema, for its clients to specify the XML
schema of the desired outcome on a request by
request basis, as illustrated in Fig. 1(b). Since the
clients always get the exact format they are
asking for, the bureau can accommodate a very
diverse clientele with various needs, and can
freely add functionalities into meta-schema
without concerns of adversely affecting its
clients unknowingly. On the other hand, the
clients have the liberty to experiment with new
features at their own pace and choose the data
formats that best serve their needs, rather than
being dictated to one by their service provider.

Two components in our system employ the
dynamic schema principle: speech recognition
and parsing that analyzes surface semantics at the
utterance level, and the discourse manager that
extracts semantics at the discourse level. In both
cases, we use XML as a schema definition
language for meta-schema specification.

2.1 Surface Semantic Analysis
In our system, speech recognition is packaged as
a Web service component that processes speech
waveform. There are two types of recognition
services: a dictation service transcribes speech
into the word string, while a spoken language
understanding (SLU) service further parses the
utterance into a semantic tree. The SLU service
can also receive text as input for the purpose of
semantic parsing.

The semantic tree is represented in XML in a
schema dynamically specified in Microsoft SAPI
text grammar format (STFG), which is an XML
application (Microsoft, 1999). To facilitate tight
integration between speech recognition and
surface semantic parsing, SLU service extends
probabilistic context free grammar (PCFG) used
in speech recognition to semantic parsing. For
SLU, STFG has two major missions: specifying
PCFG rules and output construction rules. The
former governs how the input text stream can be
parsed, and the letter how the resultant semantic
XML can be constructed per a given schema.

2.1.1 PCFG rule specification
Using the XML syntax, each PCFG rule is
declared in STGF using a <rule> element with a
“name” attribute specifying the LHS. The rule
element is composed of mandatory and optional
phrase elements, <p> (or <phrase>) and <o> (or

<option>) tags, respectively, representing the
RHS of the rule. Alternative RHS are contained
in a list element, <list> (or <l>). Non-terminals
are referred to using a <ruleref> element. For
example, the rule for the properties of a meeting
can be specified as

<rule name=”MeetingProperties”/>
 <l>
 <ruleref name=”Date”/>
 <ruleref name=”Duration”/>
 <ruleref name=”Time”/>
 <ruleref name=”Person”/>
 <ruleref name=”Subject”/>
.. ..
 </l>
 <o>
 <ruleref
 name=”MeetingProperties”/>
 </o>
</rule>

With recursion, the above STGF rule can resolve
meeting properties, such as date, time, duration,
attendees of a meeting that may appear in any
order in the utterance. The probability of each
production can be specified by attaching a
“weight” attribute to the corresponding RHS.
STFG also provides two additional pre-terminal
declarations to simplify the implementation of
robust parsing: a <wildcard/> element (or “…”)
matches any filler or garbage word, and a
<dictation/> element (or “*”) that matches any
word from the lexicon implied by a pre-specified
statistical N-gram. For example, the meeting
subject, drawing text from an N-gram, can be
specified as

<rule name=”Subject”>
 <l>
 <p> regarding </p>
 <p> ?with ?the subject </p>
 </l>
 <dictation max=”inf”/>
</rule>

with “max” attribute indicating the maximum
number of words to be drawn from the N-gram.
Note that, although the example is geared
towards semantic parsing, the formalism is rich
enough to include syntactical rules for text
processing. Currently, STGF is evolving more
along the line of a context free grammar, and has
no immediate plan to natively support unification
grammar.

2.1.2 Simple Semantic Tagging

Quite often, the semantics of a phrase manifests
itself as simple text normalization. STGF utilizes

two XML attributes, “propname” and “valstr”,
for simple semantic tagging. When a production
is activated, STGF produces an XML element
node whose name and value are taken from the
propname and valstr, respectively. For example,
a production

<l propname=”DayOfWeek”>
 <p valstr=”Sun”> Sunday </p>
 <p valstr=”Mon”> Monday </p>
 <p valstr=”Mon”> first day </p>

 <p valstr=”Sat”> Saturday </p>
</l>

generates an XML element

when the user says “first day”. The mechanism is
designed to normalize the value of the XML
node, and hence is most useful to represent
factoid phrases or pre-terminal lexical entries
across multiple languages. STGF automatically
retains the exact wordings from the input in the
“text” attribute as shown above.

2.1.3 Generic Semantic XML generation
More advanced semantic representation needs
capability beyond simple semantic tagging. For
example, semantic tagging always produces
outcome as the value of an XML node. What if
the schema requires it to be an attribute? To be
useful for any XML schema, one clearly needs a
more general transformation of the PCFG parse
into the semantic tree. This is particularly true as
a good semantic representation should be able to
normalize as much as possible the linguistic
variations PCFG production rules are designed to
accommodate for user utterance.

STGF uses the general tree transformation
specification defined in W3C XSLT (2001).
XSLT adopts a template based transformation
mechanism. When an XSLT template matches
the input pattern, its content is produced in the
output. If the template content contains further
XSLT directives, they are executed recursively.
The mechanism can be applied to surface
semantic analysis in a straightforward manner by
treating PCFG parsing as a pattern matching
process. Accordingly, each PCFG rule can have
an XSLT template that specifies the appropriate
output when the rule is activated. Using XSLT is
appealing because it is already a well known and
widely adopted standard with strong commercial

backing and supports. STGF introduces an
<output> element to host the XML generation
template for each rule. For example, consider the
following grammar rule for specifying a meeting:
<rule name=”Meeting”>
 <o> <ruleref

name=”StartingPhrases”/>
 </o>
 <p> <ruleref

name=”MeetingProperties”/>
 </p>
 <o> <ruleref name=”EndingPhrases”/>
 </o>
 <output>

 <calendar:meeting>
 <DateTime>

<xsl:apply-templates
 name=”//Date”/>

 <xsl:apply-templates
 name=”//Time”/>

 <xsl:apply-templates
 name=”//Duration”/>

 </DateTime>
 <xsl:apply-templates

name=”//Person”/>

 </calendar:meeting>

 </output>
</rule>

In this example, when the utterance invokes the
“Meeting” rule, the template contains in the
<output> element will be generated and sent to
the output stream. In the case, an XML element
with namespace “calendar” and name “meeting”
is first produced. The first child of this element is
called “DateTime”, whose contents are generated
in the specified order from the templates “Date”,
“Time”, and “Duration,” all of which, in turn, are
defined by some constituents the “Meeting” rule.
The notation “//” means the template can come
from any child node descended from the current
node. In this example, they are from constituents
of the “MeetingProperties.” Per XML generation
standard defined in XSLT, the template specified
by the <output> element of the “Date” rule will
take the place of <xsl:apply-template
select=”//Date”/> in the final outcome, and the
same for the “Time” and others. As shown
previously, the production rules of the meeting
property grammar aim to give users maximal
flexibility in describing meeting properties.
Through the use of the <output> element, the
semantic XML does not have to bear the
complexity induced by the flexibility. The above
example demonstrates that, regardless how a user

<DayOfWeek
 text=”first day”>Mon</DayOfWeek>

might say it, the semantic XML will have the
schema where the meeting properties always
occur in a particular order. For instance, the
semantic XML will always be
<calendar:meeting text=”…”>
 <DateTime text=”…”>
 <Date text=”…”>tomorrow</Date>
 <Time text=”…”>2:00</Time>
 <Duration text=”…”>3600</Duration>
 </DateTime>
 <Person>Kuansan Wang</Person>
</calendar:meeting>
for utterances “Schedule a meeting for one hour
with Kuansan Wang tomorrow at two o’clock”,
or “Invite Kuansan Wang to a one hour meeting
at two o’clock tomorrow”, etc. The normalization
is achieved here through the order in which the
XLST apply-template directives are declared.
This is the same idea widely adopted in general
XML document transformation.

As suggested by the name, XSLT is intended
to be extensible. Early versions of the working
drafts described a method in which the XSLT
processing can be extended using procedural
programs. Although not included in the current
W3C recommendation, many vendors have
included the scripting supports in the commercial
products. For example, Microsoft’s XSLT, as
part of Internet Explorer or freely downloadable
from the Web, allows an XLST template to use
an “eval” element to invoke a program enclosed
by a “script” element. The mechanism is used
here, for example, to carry out numerical
computations and inverse text normalization for
numbers, dates, times, and currencies, as in
“2:00” for “two o’clock” and “3600” (seconds)
for “one hour” above.

We consider the XML usage in STGF abides
by the dynamic schema principle because the
output schema for the recognition/parsing service
is entirely up to the client, not the service
provider. Suppose the calendar application from
another vendor requires a schema that requires
the start time and end time of the meeting instead
of the start time and duration as demonstrated
above. The semantic XML can be composed and
generated by equipping the output template in the
“Meeting” rule with the appropriate script that
computes the end time from the start time and
duration.

More advanced processing not defined by the
standard XSLT can be implemented in scripts
because the DOM is fully accessible inside the
scripts. However, since not all platforms support

the same set of scripting functions, and not all
script interpreters behave identically on the same
statements, heavy usage of scripting is usually
not advisable.

2.2 Federated Understanding
The extensibility of XML, together with dynamic
schema design principle, is a suitable vehicle for
implementing federated understanding, in which
multiple knowledge sources are joined together
to collaborate on a user request. The knowledge
sources are usually Web services themselves and
may be unrelated and otherwise unbeknownst to
each other. For the context of this article, we call
the service that combines all the knowledge
sources a context manager. A context manager is
a personal service that can reside on end user’s
Web access device or be a Web service itself.
The concept is illustrated in Figure 2.

Since the idea of federated understanding is to
dynamically combine relevant Web services to
fulfill a user task, NL plays a critical role in the
user interface design because NL provides an
unsurpassed expressive power in describing a
task. Consider a usage scenario where the user
says “Send driving directions to the dinner guests
tomorrow night.” Upon understanding the user’s
sentence, the context manager can

• Invoke the user’s calendar service,
obtaining information on the dinner event
for the following night, including the
dinner location and invited guests.

• Cross check the guest list with the user’s
contact list, finding out the proper way of
sending a document to each guest.

• Invoke a geo-information service for

Context
Manager

Service
A

Service
B

User

Semantic
schema A

Semantic
schema B

Semantic XML A

Semantic XML B

Figure 2: Federated Understanding. User’s
utterance is parsed into partial semantic XML
and sent to related Web services based on their
semantic schemas. Service A and B do not
have to be designed to work with each other.

computing driving directions to the
dinner location.

• Send the driving direction document to
each invited guest using the messaging
service the user has subscribed to.

Clearly, a user can fulfill all the above steps in a
GUI environment, but probably not before
wading through several pages, windows or
menus with numerous mouse clicks, a laborious,
mechanical, and potentially error prone process.
However, we surmise that the value of SLU is not
to replace GUI but to facilitate federated
understanding that provides a very convenient
and productive means for the users to accomplish
their tasks.

2.2.1 Semantic schema definition
We follow the dynamic schema principle in the
implementation of federated understanding. The
context manager publishes a schema definition
protocol in XML, called semantic definition
language (SDL), for the Web services to register
the schemas of their services (Wang, 2000a). The
collective SDL documents form the basis of the
data model underlying the semantic XML (SML)
for the user utterance. Each domain defines its
own namespace, and hence SML segments from
various domains can be lumped together as
appropriate without conflicts. As an example,
Sec. 2.1.3 shows an instance of SML for the
calendar Web service in which the top node
corresponding to a new meeting service is
included in the “calendar” namespace.

In our system, semantics is represented by
basic meaning-bearing units called the semantic
objects. The role of a semantic schema is to
define how semantic objects are related to each
other, and how compound semantic objects can
be composed of from simple semantic objects.
This role is the same as an XML schema that
describes the structure of an XML document. As
a result, it seems straightforward to represent
semantics in XML in which each semantic object
is simply a node in the SML so that most of the
conventions and standard practices for XML
schema can be directly applied to semantic
schema as well.

There are considerations, however, needed to
be addressed in applying XML for NL purposes,
one of which is the “fluid” nature of NL in
contrast to the precise machine-to-machine
communications for which XML is designed for.
For instance, while the ISO-8601 format is

adequate to represent date/time for machines, it is
more desirable for a NL semantic representation
to allow expressions such as “a week before the
paper is due” or “two hours before the project
review meeting.” The observation that an entity
may be referred to via many semantic objects
leads us to extend the primitive data types in
XML to a more elaborated semantic types for the
semantic representation.

In SDL, each semantic object is associated
with the type of entity it is referring to. In turns,
the composition of a compound semantic object
can be based not only on semantic objects but
also on semantic types alone. Semantic types
have a hierarchy that supports inheritance among
types. When a constituent is declared only with a
semantic type, any object of a compatible type
can be used to instantiate the constituent. In other
words, the type system brings polymorphism into
the semantic representation. Consider, for
example, the semantic schema for sending new
email:
<command type=”email:command”
 name=”email:send”>
 <slot type=”Person”

 maxOccurence=”Infinite”/>
 <slot type=”email:Subject”
 maxOccurence=”1”/>
 <slot type=”email:Body”
 maxOccurence=”1”/>
 <expert server=
 ”http://PIM/email.dll”/>
</command>

The semantic object declares a constituent (using
the “slot” subelement) of type “Person” for mail
recipient. In addition to the standard way of
identifying a person by surname and given name,
one might want to allow the user to specify mail
recipients in a more elaborated way, for example,
“send mail to those receiving the meeting report
last Tuesday.” The semantic object for the mail
recipients here are identified through another
email message, which can be modeled as
<entity type=”Person”
 name=”email:recipient”>
 <slot type=”email:Subject”/>
 <slot type=”DateTime”/>
</entity>

The two schemas dictate that the SML for the
above sentence should be
<email:command text=”send mail…”
 name=”email:send”>
 <Person text=”those receiving…”
 name=”email:recipient”>

 <email:Subject text=”meeting
 report”/>
 <DateTime text=”last Tuesday”>
 <Month>September</Month>
 <Date>25</Date>
 <Year>2001</Year>
 </DateTime>
 </Person>
</email:command>

Polymorphism allows objects from other services
to be integrated in a straightforward manner. The
calendar service, for example, can expose the
attendees of a meeting as a semantic object of
type “Person”:
<entity type=”Person”
 name=”calendar:attendees”>
 <slot type=”calendar:meeting”/>
</entity>

<entity type=”calendar:meeting”>
 <slot type=”DateTime”
 name=”calendar:start”/>
 <slot type=”DateTime”
 name=”calendar:end”/>
 <slot type=”calendar:subject”/>
 …
</entity>

The context manager can merge this schema with
the email schema to accommodate the sentence
that crosses the boundary between these two
domains, e.g., “send email to those in the design
review meeting last Friday.” Though from
independent domains, the two schemas jointly
define a valid SML should be
<email:command name=”email:send”>
 <Person name=”calendar:attendees”>
 <calendar:meeting>
 <DateTime text=”last Friday”
 name=”calendar:start”>

 <Month>…</Month>
 …

 </DateTime>
 <calendar:subject text=”SLU

 design”/>
 </calendar:meeting>

 </Person>
</email:command>

2.2.2 Distributed Execution
The Web service architecture provides a suitable
infrastructure to dissect the task encompassing
multiple domains into executable components
that can be distributed to their respective owners.
We utilize this infrastructure to facilitate domain
collaboration. Each domain that is responsible

for evaluating a semantic object is required to
make itself available as a Web service using Web
Service Description Language (WSDL) being
standardized in W3C (2001).

The context manager follows the declaration
in the semantic schema to invoke the proper Web
services to evaluate the segments of SML. In
SDL, domain Web services are declared using
the “expert” element that specifies the URL of
the Web service, as the email example shown
above. The SML segment is replaced by the
context manager with the result returned by the
domain Web service. In the example above, for
instance, the context manager invokes the
calendar Web service to evaluate the Person
SML node, for which the calendar Web service
returns an XML segment representing the
referred attendees. This XML segment replaces
the original Person node and is passed on to the
email Web services for execution.

The XML document after semantic evaluation
is called a discourse SML, in contrast to the
surface SML describing a user’s utterance. A
discourse SML typically describes the results of
the evaluation, including errors and exceptions.
Since the domain Web service always returns the
result of the same semantic type, discourse SML
has the same schema as the surface SML defined
in SDL. In addition to maintaining discourse
semantic XML and coordinating the semantic
evaluation among relevant domain Web services,
the context manager also manages an entity
memory and implements a reference resolution
algorithm. The details are further described in
(Wang, 2000b).

3 Distributed Dialog Management

As typical in a plan-based dialog framework,
proper dialog actions are naturally implied in the
semantic evaluation results, which in our case,
are represented by the discourse SML. In other
words, discourse SML can be viewed as the
“content” of a dialog for which a “presentation”
shall be generated to illicit user actions. It is
desirable to be able to dynamically adapt the
presentation without having to duplicate all the
components of an application. Again, XML is
suitable because the separation of content from
presentation is a primary design goal for XML.

The principle can be further elaborated in the
following two aspects. On the input side, the user
interface is responsible for capturing user’s

intention in surface SML. As GUI actions can
also generated semantic objects, NL inputs may
be integrated with GUI inputs through semantic
polymorphism to facilitate multimodal dialog
and shield the rest of the system from the device
details. While UI resides on the browser, the rest
of the system, including the context manager, is
located at the Web server to carry out federated
understanding and distributed execution as
described above.

On the generation side, hiding the device
details is crucial for adapting the application to
different interaction styles. For example, devices
with a sizeable display can accommodate many
dialog actions in one turn because several
questions can be asked and rich contents can be
presented to the user simultaneously. Clearly,
more dialog turns are needed if the same
interaction takes place on a less capable device.
In addition to device variation, changes in
interaction styles may also be required due to the
dialog progress or lack thereof. For instance, it is
always advisable to switch from a user initiative
to a system initiative dialog when little progress
is being made. However, when the system
encounters an experienced user, a more user
initiative dialog is often desirable.

Based on the above discussion, we adopt a
dialog management approach in which the dialog
is decomposed into sub-dialogs embodied in
Web pages. Under the page-based proposal, a
page is responsible for generating and managing
dialog actions to fulfill a specific sub-goal. The
server logic inspects the discourse SML and
determines which subgoal to achieve, or
equivalently, which page to be furnished to the
user. Once the flow control is transferred to a
page, the control stays within the page until a
digression occurs or the subgoal is achieved.
There may be multiple pages designed to achieve
the same objective, each has its own with-in page
logic. The within-page logic may implement
different interaction styles (e.g. system vs.
mixed-initiative), or are optimized for different
access devices (e.g. telephone vs. hand-held
computer). The delineation of the overall and the
with-in page logic constitutes the foundation of
the page-based distributed dialog system. Note
that, since domains unbeknownst to each other
can be teamed up dynamically, the pages are
usually well encapsulated within their domain
boundary, manifesting themselves as “reusable”
dialog components.

4 Summary

In this paper, we describe our implementation of
a plan-based multimodal dialog system using the
Web architecture and XML. Core Web design
principles play a critical role in the system. The
dynamic extensibility of XML and Web service
architecture give rise to a NL understanding
framework where multiple knowledge domains
can be pooled together dynamically to fulfill a
user’s request. XML’s separation of content and
presentation principle enables dialog interactions
to take place on diverse Web access devices,
including NL enabled or GUI media. As these
technologies mature, we believe NL is ready for
Web adoption and usher in an era of natural user
interface.

References
World Wide Web Consortium (W3C), 2001.

http://www.w3c.org.
VoiceXML Forum, 2000. VoiceXML

Specification, http://www.voicexml.org.
Sadek M.D., Bretier P., and Panaget F., 1997.

“ARTIMIS: Natural Dialogue Meets Rational
Agency,” Proc. IJCAI-97.

Allen J.F., 1995. Natural Language
Understanding, 2nd Ed., Benjamin-Cummings,
Redwood City CA.

Cohen P.R., Morgan J., and Pollack M.E.,
1990. Intentions in Communications, MIT Press,
Cambridge MA.

Bradshaw J.M. (Ed.), 1996. Software Agents,
AAAI/MIT Press, Cambridge MA.

Microsoft, 1999. Microsoft Speech
Application Interface (SAPI) Software
Developers Kit (SDK), http://www.microsoft.
com/speech.

Wang K., 2000a. “Implementation of a
multimodal dialog system using extended
markup language,”in Proc. ICSLP-2000, Beijing,
China.

Wang K., 2000b. “A plan-based dialog
system with probabilistic inferences”, in Proc.
ICSLP-2000, Beijing China.

