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Abstract—This paper presentsMercury; a system for real-time we limit the query answer td microblogs, deemed most
support of top-k spatio-temporal queries on microblogs, where relevant to the querying user based on a ranking funciion

users are able to browse recent microblogs near their locations. that combines the time recency and the spatial proximity of
With high arrival rates of microblogs, Mercury ensures real-time . .
each microblog to the querying user.

query response within a tight memory-constrained environment. . o
Mercury bounds its search space to include only those microblogs Uselrs of our proposed spatio-temporal queries include news
that have arrived within certain spatial and temporal boundaries, agencies (e.g., CNN and Reuters) to have a first-hand knowl-
in which only the top-k microblogs, according to a spatio- edge on events in a certain area, advertising services e ser
temporal ranking function, are returned in the search results. geo-targeted ads to their customers based on nearby events,

Mercury employs: (a) a scalable dynamic in-memory index o . .
structure that is capable of digesting all incoming microblogs, or individuals who want to know what is currently going on

(b) an efficient query processor that exploits the in-memory iN @ certain area. For example, in April 2013, Los Angeles
index through spatio-temporal pruning techniques that reduce Times reported [4] how people rush to Twitter for real-time

the number of visited microblogs to return the final answer, preaking news about Boston Marathon explosions. Such users
(c) anindex size tuning module that dynamically finds and adjusts may not know the appropriate keyword or hash tag to search

the minimum index size to ensure that incoming queries will
be answered accurately, and (d) doad shedding technique that for. Instead, they want to know what are the recently posted

trades slight decrease in query accuracy for significant storage Microblogs in a certain particular area. Thus, our goal liere
savings. Extensive experimental results based on a real-time not to replace the traditional keyword search in microb)dgs
Twitter Firehose feed and actual locations of Bing search queries rather to provide another important search option for iaeal
show that Mercury supports high arrival rates of up to 64K \icroplogs. The answer of our spatio-temporal queries @n b
microblogs/second and average query latency of 4 msec. - . .
fed to other modules for further processing, which may idelu

|. INTRODUCTION event detection, keyword search, entity resolution, st

analysis, or visualization.

Microblogs, e.g., tweets, Facebook comments, and :
o We presentMercury. a system for real-time support of
Foursquare check-in's, are among the most popular web_ . " .
: ; ... Spatio-temporal queries on microblogslercury faces two
services nowadays. For example, Twitter has 140+ Milliort . o . X
ain challenges: high arrival rates of microblogs and the

active users who generate 400+ Million daily tweets [38 eed for real-time query response. Both challenges call for

while Facebook has 1+ Billion users who post 3.2+ Billion ", . ;
. . ; relying ononly in-memory data structures to index and query
daily comments [12]. Combined with the advances in ; . .
. L : . Incoming microblogs, where memory is a scarce resource.
wireless communication and GPS-equipped handheld devices . ; .
. . ence, Mercury employs an in-memory partial pyramid in-
microblogs have entered a new era where locations can (Pee

attached to each posted microblog to indicate the Whereabo?uP Zc[jl]a,ltﬁ/guIciz)e?lleds;\),\lli:[tri]ngmgsgt Ig;i'/( ::r;slle ﬁ%?éigglkoﬂzmo
g:);gﬁsrg'fcl?gggnlscshtéirl'(_ﬁgn;:[g:?w#grgi(;?:%znagg ?: atthat make the index able to digest the high arrival rates of
nearby location of their status messages, Twitter autaaubti Incoming microblogs. Incoming queries efficiently expltie

captures the GPS coordinates from mobile devices, Whie-memory index through spatio-temporal pruning techagu

: . . i at minimize the number of visited microblogs to return the
Foursquare is a microblog service that is all around the : .
o . : Ihal answer.Mercury bounds its search space byspatial

location information and the whereabouts of its users. .
. . . _.boundary R as a search area around the user location of
In this paper, we aim to take advantage of the combinatio .
interest and @emporalboundaryT" as the search past time

of location |nformat|o_n with mlcroblogs to support spatl_o- orizon. Within R and 7", a ranking functionf" is employed
temporal search queries on microblogs, where users ane inte

ested ingetting a set of recent microblogs (within the |ast rce)csezocre t((a)acrr; dﬂtéiﬁf?&priﬁirc:fb; pz;u:ls ?JSXITE? grr:gvcler?e
time units) and within a certain spatial regioBue to the large Y. 1o p 9 query '

. . . . Mercury is optimized for a preset default values 9% R,
numbers of microblogs that can satisfy the given cons'samg/lnd k. Queries with less values than the default can still be

§The work of these authors is partially supported by the dvati Science  Satisfied with the same Performance- Yet, queries with hlighe
Foundation, USA, under Grants 11S-0952977 and 11S-1218168 values may encounter higher cost as they may need to visit a



secondary storage. This goes along with the design chofces o Il. RELATED WORK

major web services, e.g., Bing and Google return, by default ) )

the topk (k=10) most related search results, while Twitter DU€ 10 its widespread use, recent research efforts have
gives the most recerit tweets to a user upon logging on. ifexplored various research directions related to micrablog

a user would like to get more thanresults, an extra query 1NiS goes along the way of the system stack starting from
response time will be paid. logging [18] and machine learning techniques [21] to in-

. . . . . dexing [5], [7], [42], [43] and designing a SQL-like query
'A.‘ Q|rect way to ensure that all Incoming quenes will b‘?ﬁnguage interface [24]. In addition, several efforts hfwe
satisfied from in-memory contents is to store and index al ; ; L .

cused on analyzing microblog data, which include semantic

incoming m|croblogs_ from the last defa@ttlme units. HQW- and sentiment analysis [3], [28], [30], decision making, [6]
ever, that may require a very large main memory, which can

be prohibitively expensive. Hence, we propose two effecti news extraction [35], event and trend detection [1], [12F][

memory optimization techniques: (1) We develogiraex size \f34], [37], understanding the characteristics of micrgpmsts

tuningtechnique that achieves significant memory savings (l?nd search queries [22], [33], microblogs ranking [11],]{39

to 50%) without sacrificing the query answer quality (mora%d recommending users to follow or news to read [14],

than 99% accuracy). The main idea is to exploit the diversif32]' Meanwhile, recent work [35], [40] exploited microlge

. . ; "SI 0ntents to extract location information that is used toaize
of arrival rates per regions, e.g., city centers have higher.

arrival rates than suburban areas. Hence, the:toperoblogs microblog posts on a map [25], [26] and model the relatigmshi

. L between user interests, locations, and topics [15].
would have arrived more recently in city centers than sudnirb . . i .
With such rich work in microblogs, up to our knowledge,

areas. We maintain only the items that may appear in user . . . . :
queries, delete items that are dominated by others. (2) ﬁE?re Is no existing work that address real-time indexing an

scarce memory configurations, we develop a parameteriiélfnerylng microblogs locations; which is the_ main focus &6 th
load sheddingtechnique that trades significant reduction ifpaper. However, the tv_vo most rt_elated topics to our work are
the memory footprint (up to 75% less storage) for a Smam!croblog search querlgandspatlg—temporal streams

loss in query accuracy (up to 5% accuracy loss). The idealicroblog Search Queries.Real-time search on microblogs

to expel from memory a set of victim microblogs that are Ies%ﬁen refers to keyword search [], [7], _[42]’ [_43]' _The eiff
likely to contribute to a query answer. ence of one technique over the other is mainly in the query

; type, accuracy, ranking function, and memory management.
We evaluate the system experimentally based on a r%?g y 9 Yy g

svstem deplovment d¥ercury and using a real-time feed of ne of these work have addressed the case of location-
UyS tweets?vi;/ access to Twi)':ter Firehogse) and actual loast aware search. On the other hand, spatial keyword search is

. . well studied on web documents and web spatial objects [9],
of Bing web search queries. Our measurements showthat

cury supports arrival rates of to 64K microblogs/secon 0, [20], [41], [44]. However, they use offline disk-based
ury supp v up 1o © : 9 . _Oata partitioning indexing, which cannot scale to supplogt t
average query latency of 4 msec, minimal memory footprin

ta . . .

: Ynamic nature and arrival rates of microblogs [5], [8].

and a ve_r)./ high query ac_curacy of 99%. o Spatio-temporal Streams.Microblogs can be considered as
In addition to introducingMercury as well as providing 5 gpatio-temporal stream with very high arrival rates, wher

a crisp definition for spatio-temporal search queries OVg{gre exist a lot of work for spatio-temporal queries overda

microblqgs (Section 1), the contributions of this papee a gtreams [16], [23], [29], [31], [45]. However, the main facu

summarized as follows: of such work is on continuous queries over moving objects.

1) We propose efficient spatio-temporal indexing/expgllinln Such case, a query is registered first, then its answer is
techniques that are capable of inserting/deleting mqomppsed over time fr_om the Incoming data stream. Such
croblogs with high rates (Section IV). techniques are not applicable to spatio-temporal searehiegu

2) We introduce an efficient spatio-temporal query proce@ Microblogs, where we retrieve the answer from existing
sor that minimizes the number of visited microblogs t§tored objects that have arrived prior to issuing the query.
return the final answer (Section V). Mercuryshares with microblogs keyword search its environ-

3) We introduce arindex size tuningnodule that dynam- ment (i.e., queries look for existing data, in-memory iridgx

ically adjusts the index contents to achieve significa"d the need for efficient utilization of the scarce memory
memory savings without sacrificing the query answdFSOUrce), et it is different from keyword search in terms
quality (Section V). of the functionality it supports, i.e., spatio-temporaleges.

4) We introduce aload sheddingtechnique that trades In the mean timeMercury shares similar functionality with

significant reduction in memory footprint for a S“ght{spatlo—temporal queries over data streams, yet it is eiffer

decrease in query accuracy (Section VII). in terms of the environment it supports, i.e., query answer i
retrieved from existing data rather than from new incoming

Section VIII gives experimental evidence, based on real sydate to arrive later. FinallyMercury shares with both key-
tem prototype, microblogs, and queries, showing Matcury word search and spatio-temporal queries the need to support
is scalable and accurate with minimal memory consumptioimcoming data with high arrival rates and the need to support
Finally, Section IX concludes the paper. real-time search query results.



In-memory Index B. Supported Queries

Mercury users (or applications) issue queries on the form:
“Retrieve a set of recent microblogs near this locdtion
Internally, four parameters are added to this query:i{lthe
number of microblogs to be returned, (2) a rangearound
the user location, where any microblog located outsitiées
considered too far to be relevant, (3) a time sfggnwhere

Microblog
Stream

Fig. 1. Mercury system architecture. ' any microblog that is issued more thdhtime units ago is
considered too old to be relevant, and (4) a spatio-temporal
IIl. SYSTEM OVERVIEW ranking functionF,, that employs a parameter to combine
This section gives an overview dfercury system architec- the temporal recency and spatial proximity of each micrgblo
ture, supported queries, and ranking function. to the querying user. Then, the query answer consists of

microblogs posted withirkR andT', and top ranked according
to F,. Formally, our query is defined as follows:

Figure 1 givesMercury system architecture with three mainpefinition: Given &, R, T, and F,, a microblog spatio-
modules around an in-memory index, namel§gotagging temporal search query from user; located atu.loc, finds k
update andquery modules, described briefly below: microblogs such that: (1) The microblogs are posted in the
Geotagging module. This module receives the incoming|ast 7 time units, (2) The (center) locations of thenicroblogs
stream of microblogs, extracts the location of each mi@obl gre within rangeR around u.loc, and (3) Thek microblogs
and forwards each microblog along with its extracted l@eati 5re the top ranked ones according to the ranking function
to theupdate modulsvith the form:(ID, location, timestamp,  Qur query definition is a natural extension to traditional
content)that presents the microblog identifier, location, issuingpatia| range and-nearest-neighbor queries, used extensively
time, and textual contents. Location is either a pretasieude i spatial and spatio-temporal databases [17], [36]. A eang
andlongitudecoordinates (if known) or a Minimum Boundingquery finds all items within certain spatial and temporal
Rectangle (MBR). We extract the microblog locations thfougyoundaries. With the large number of microblogs that can
one or more of the following: (1Exact locationsif already make it to the result, it becomes natural to limit the resizi s
associated with the microblog, e.g., posted from a GPgsj and hence a ranking functidn, is provided. Similarly, a
enabled device. (AYser locations extracted from the issuing k-nearest-neighbor query finds thlsestk items to the user
user profile. (3)Content locationsby parsing the microblog |gcation. As the relevance of a microblog is determined by
contents to extract location information. If the microblegds poth its time and location, we change the techosestto be
up to be associated with more than one location, we outgybst relevanthence we define a ranking functidf, to score
multiple versions of it as one per each location. If no lamati each microblog within our spatial and temporal boundaries.
information can be extracted, we set the microblog MBR to the ypon initialization, a system administrator sets defaalt v
whole space. As we use existing software packages and publi& for parameters, R, T, anda. Users may still change the
datasets for geocoding and location extraction, this n®@dujzjues of the default parameters, yet a query may have less
will not be discussed further in this paper. performance if the new parameters present larger searcle spa
Update module. The updatemodule ensures that all incom-than the default ones. This goes along with the design choice
ing queries can be answered accurately from indexed & major web services. For example, web search engines, e.g.
memory contents with the minimum possible memory comsing and Google, return the tdpmost related search results
sumption. This is done through three main tasks: (1) Insgrtiwhere & is 10 by default. Similarly, Twitter gives the most
newly coming microblogs into the in-memory index structurgecentk tweets to a user upon logging on or in a keyword
(2) Smartly deciding on the set of microblogs to expire fror§earch result. If a user would like to get more tharesults,

memory without sacrificing the query answer quality, ang extra query response time will be paid.
(3) In cases of very tight memory, a load shedding module

is triggered to smartly trade slight decrease in query amyur C- Ranking Function

with significant savings in memory consumptions. Details of Given a useru, located atu.loc, a microblog M, issued
index operations, index size tuning, and load shedding aetime M.time and associated with locatiof/.loc, and a
discussed in Sections 1V, VI, and VII, respectively. parametei) < « < 1, Mercury employs the following ranking
Query module. Given a location search query, theerymod- function F,,(u, M) that gives the relevance score &f to u,
ule employs spatio-temporal pruning techniques that redughere lower scores are favored:

the number of visited microblogs to return the final answer. ) .

As the query module just retrieves what is there in the index, Fa(u, M) = a x Spatial Dist(M.loc, u.loc)

it has nothing to do in controlling its result accuracy, whic + (1-a)xTemporalDist(M.time, NOW)

is mainly determined by the decisions taken at thmlate «=1 indicates that the user cares only about the spatial
module on what microblogs to expire from the in-memorproximity of microblogs, i.e., query result includes tite
index. Details of thequerymodule are described in Section V .closest microblogs issued in the |asttime units.a=0 gives

A. System Architecture



To this endMercuryemploys a partial pyramid structure [2]
(Figure 2) that decomposes the space idttevels. For a given
level h, the space is partitioned intt* equal area grid cells.

Intermediate 7 = -. —Leaf Cells

.Ce”s At the root, one grid cell represents the entire geograpigia,a
id._tme level 1 partitions the space into four equi-area cells, amd s
1337 forth. Dark cells in Figure 2 present leaf cells, which could

lie in any pyramid level, light gray cells indicate non-leaf
cells that are already decomposed into four children, while
white cells are not actually maintained, and just presefded
illustration. We favor the pyramid structure over quacesras
it involves storing data in non-leaf nodes, which signifityan
helps in query processing. Each maintained pyramid@dlas
a list of microblog M _List that have arrived within the cell
Fig. 2. Main memory pyramid index structure in Mercury. boundary in the lasT' time units, ordered by their timestamps.
A microblog with location coordinates is stored in the leaf
the k most recent microblogs within range. A compromise ce|| containing its location, while a microblog with MBR is
between the two extreme values gives a weight of importanggyred in the lowest level enclosing cell, which could be-non
for the spatial proximity over the temporal recency. leaf. The pyramid index is spatio-temporal, where the whole
TemporalDistance(M.time,NOW) SpatialDistance(M.loc, space isspatially indexed (partitioned) into cells, and within

u.loc) is any normalizedmonotonicfunction in the range each cell, microblogs areemporallyindexed (sorted) based
[0,1], applied only for microblogs in the last' time units on timestamp.

and within areaR, where smaller values indicate more recent Though it is most suitable tMercury, existing pyramid in-
(closer) microblogs. The largest possible value 1 takeseplagex structures [2] are not equipped to accommodate the needs
when M is posted exactlyf” time units ago (on the boundaryfor high-arrival insertion/deletion rates of microblogo

of region R). For simplicity, we employ the following func- sypport high-rate insertions, we furnish the pyramid stmec
tions, yet, other functions can be accommodated as I0ng 884 bulk insertionmodule that efficiently digests incoming

microblog .
list 7

they are monotonic: microblogs with their high arrival rates (Section IV-A) and
Temporal Distance(M.time, NOW) = a speculative cell splittingmodule that avoids skewed cell
NOWM.ti . splitting (Section IV-B). To support high-rate deletionse
{ e NOW - Mitime <T provide abulk deletionmodule that efficiently expels from the
N/A NOW - M.time > T pyramid structure a set of microblogs that will not conttéu
, , to any query answer (Section IV-C) andazy cell merging
Spatial Distance(M.loc,u.loc) = module that decides on when to merge a set of cells together
{ Distu’r]z;;é%j(o];;u.loc) M.loc insid_eR to minimize the system overhead (Section IV-D).
N/A M loc outsideR A. Bulk Insertion

Distance(M.loc-u.loc)s the Euclidian distance between two Inserting a microblogM (with a point location) in the
points whereM.loc andu.loc are either precise location coor-pyramid structure can be done traditionally [2] by travegsi
dinates or center points of their minimum bounding rectesgl the pyramid from the root to find the leaf cell that includels
location. If M has an MBR location instead of a point location,
we do the same except that we may end up inseihgn a

We have two main objectives to satisfy in olercury non-leaf node. Unfortunately, such insertion procedureois
indexing. First, the employed index has to be able to digempplicable to microblogs due to its high arrival rates. While
high arrival rates of incoming microblogs. Second, the enmserting a single item, new arriving items may get lost a&s th
ployed index should be able to expel (delete) microblogsfrorate of arrival would be higher than the time to insert a €ngl
its contents with the same rate as the arrival rate. This willicroblog. This makes it almost infeasible to insert incogni
ensure that the index size is fixed in a steady state, and hengeroblogs, as they arrive, one by one. To overcome thigissu
all available memory is fully utilized. The need to supponve employ abulk insertionmodule as described below.
high arrival rates immediately favors space-partitionimdex The main idea is to buffer incoming microblogs in a memory
structures (e.g., quad-tree [13] and pyramid [2]) over dathuffer B, while maintaining a minimum bounding rectangle
partitioning index structures (e.g., R-tree). This is hseathe Bj,;pr that encloses the locations of all microblogs fh
shape of data-partitioning index structures is highly@t#d by Then, the bulk insertion module is triggered evertime
the rate and order of incoming data, which may trigger a largmits to flush all microblogs inB to the pyramid index.
number of cell splitting and merging with a sub performancehis is done by traversing the pyramid structure from the
compared to space-partitioning index structures that amemroot to the lowest cellC' that enclosesBygr. If C is a
resilient to the rate and order of insertions and deletions. leaf node, we append the contents Bfto the top of the

IV. SPATIO-TEMPORAL INDEXING



list of microblogs inC (C.M_List). This still ensures that cell a set of split bits $plitBit§ as a four-bits variable; one
M _List is sorted by timestamp as the oldest microblog iper cell quarter (initialized to zero). We use t8plitBitsas a
B is more recent than the most recent entry ih_List. proxy for non-expensive checking on the second condition.
On the other hand, i is a non-leaf node, we: (a) extract After each bulk insertion operation in a cell, we first
from B those microblogs that are presented by MBRs aruheck if C is over capacity. If this is the case, we check for
cannot be enclosed by any 6f's children, (b) append the the second condition, where there could be only two cases for
extracted MBRs to the list of microblogs i (C.M_List), SplitBits (1) Case 1The four SplitBits are zerosn this case,
(c) distribute the rest of microblogs if3, based on their we know thatC has just exceeded its capacity during this
locations, to four quadrant buffers that correspond(is insertion operation. So, for each microblog @ we check
children, and (d) execute bulk insertion recursively fockea which quadrant it belongs to, and set its corresponding bit
child cell of C using its corresponding buffer. in SplitBitsto one. Once we set two different bits, we stop
The parametet is a tuning parameter that trades-off inscanning the microblogs and split the cell as we now know
sertion overhead with the time that an incoming microblotipat the cell contents will span more than one quadrant. If we
becomes searchable. A microblog is searchable (i.e., aamd up scanning all microblogs i@ with only one set bit,
appear in a search result), only if it is inserted in the pydamwe decide not to spli’ as we are sure that a split will end
structure. So, the larger the value bthe more efficient is up having all entries in one quadrant. (2) Casée of the
the insertion, yet, an incoming microblog may be held in th®plitBits is one In this case, we know thaf’ was already
buffer for a while before being searchable. A typical valuever capacity before this bulk insertion operation, yeétwas
of ¢ is a couple of seconds, which is enough to have femot split as all its microblogs belong to the same quadrant
thousands microblogs insid8. Since a typical arrival rate in (the one with aSplitBits one). So, we only need to scan
Twitter is 4K+ microblogs/second, setting= 2 means that the new microblogs that will be inserted @ and set their
each two seconds, we will insert 8,000 microblogs in theorrespondingSplitBits Then, as in Case 1, we split only
pyramid structure, instead of inserting them one by one #dwo different bits are set. In both cases, when splittingve
they arrive. Yet, a microblog may stay for up to two secondsgset itsSplitBits create four new cells with zei®plitBits and
after its arrival to be searchable, which is a reasonable.timdistribute microblogs inC' to their corresponding quadrants.
Bulk insertion significantly reduces insertion time aséast This shows that we would never face a case where two (or
of traversing the pyramid for each single microblog, we groumore) of theSplitBitsare zeros, as once two bits are set, we
thousands of microblogs into MBRs and use them as owmmediately split the cell, and reset all bits to zeros.
traversing unit. Also, instead of inserting each single mi- Using SplitBits significantly reduces insertion and query
croblog in its destination cell, we insert a batch of micagfdl processing time as: (a) we do not have dangling skewed tree
by attaching a buffer list to the head of the microblog list. branches, and (b) we avoid the expensive checking step for
whether cell contents belong to the same quadrant or not, as
the check is now done infrequently on a set of bits. In the
Each pyramid index cell has a maximum capacity; set as arean time, maintaining the integrity &plitBitsin each cell
index parameter. If a leaf cell' has exceeded its capacity, a8 comes with very little overhead. First, as long@ss under
traditional cell splitting module would split’ into four equi- capacity, we do not read or set the valueSplitBits Second,
area quadrants and distributecontents to the new quadrantseleting entries fronC' has no effect on itSplitBits unless
according to their locations. Unfortunately, such tramil C becomes empty, where we reset all bits to zero.
splitting procedure may not be suitable to microblogs. The i
main reason is that microblog locations are highly skeweff; Bulk Deletion
where several microblogs may have the same exact locationAs we have finite memoryMercury needs to delete older
e.g., microblogs tagged with a hot-spot location like aistad microblogs to give room for newly incoming ones. Deleting
Hence, when a cell splits, all its contents may end up goingam item M from the pyramid structure can be done in a
the same quadrant and another split is triggered. The spijt ntraditional way [2] by traversing the pyramid from its rodt t
continue forever unless with a limit on the maximum pyramidell C' that encloses\/, and then removing// from C's list.
height, allowing cells with higher capacity at the lowestele Unfortunately, such traditional deletion procedure carstale
This gives a very poor insertion and retrieval performanee dup for Mercury needs. Since we need to keep index contents
to highly skewed pyramid branches with fat cells at the Idwet only objects from the lasi’ time units, we may need to
level. keep pointers to all microblogs, and chase them one by one
To avoid long skewed tree branches, we emplogpacu- as they become out of the temporal wind@y which is a
lative cell splittingmodule, where a pyramid cedl’ is split prohibitively expensive operation. To overcome this issue
into four quadrants only if two conditions are satisfied: (1) employ abulk deletionmodule where all deletions are done
exceeds its maximum capacity, and (2) If split, microblogs bulk. We exploit two strategies for bulk deletion, namely
in C will span at least two quadrants. While it is easy tpiggybackingand periodic bulk deletions, described below.
check the first condition, checking the second condition Riggybacking Bulk Deletion. The idea is to piggyback the
more expensive. To this end, we maintain in each pyramikkletion operation on insertion. Once a microblog is iregbrt

B. Speculative Cell Splitting



in a cell C, we check ifC has any items older thaf time V. QUERY PROCESSING

units in its microblog list {/_List). As M_List is ordered  Thjs section discusses the query processing module, which
by timestamp, we use binary search to find its most recggleives a query from userwith spatial and temporal bound-
item M that is older tharY'. If M exists, we timM_List by aries, R and T', and returns the top-microblogs according
removing everything from it starting from/. Piggybacking to a spatio-temporal ranking functiofi,, that weights the
deletion on insertion saves significant time as we share tf‘h?portance of spatial proximity and time recency of each
pyramid traversal and cell access with the insertion operat microblog tou. A simple approach is to exploit the pyramid
Periodic Bulk Deletion. With piggybacking bulk deletion, a jndex structure to compute the ranking score for all micogsl

cell C' may still have some microblogs that should have begfithin R and7” and return only the top-ones. Unfortunately,
deleted, yet, they are still there as there is no recenttinssr such approach is pr0h|b|t|ve|y expensive due to the |arge
in C'. To avoid such cases, we trigger a light-weight periodigumber of microblogs withi? andT'. Instead Mercury uses
bulk deletion process evef’ time units (we us€” = 0.57).  the ranking function to prune the search space and minimize
In this process, we go through each c€l] and only check the number of visited microblogs through a two-phase query
for the first (i.e., most recent) ite/ € C.M_List. It M processor. Thehnitialization phase (Section V-B) finds an
has arrived more thaif’ time units ago, we wipe the cell by injtial set of x microblogs that form a basis of the final answer.
deleting |tS]\/[_LZSt and Setting its number of items to ZeroThe pruning phase (Section V_C) keeps on t|ghten|ng the

If M has arrived within the last’ time units, we do nothing injtial boundariesk and 7' to enhance the initial result and
and skipC'. It may be the case that still has some expired reach to the final one.

items, yet we intentionally overlook them in order to make th
deletion light-weight. Such items will be deleted soonitm A Query Data Structure
the next insertion or in the next periodic bulk deletion e The query processor employs two main data structures; a
Deleted microblogs are moved from our main pyramitieap priority queue of cells and a sorted list of microblogs:
structure to another similar index structure of larger sizéleap priority queue of cells H: A heap priority queue of all
stored in a lower storage tier. Deleted microblogs will beells that overlap with query spatial boundaky A cell in H
retrieved only if an issued query has a time boundary largeas the form €, index BestScorg whereC is a pointer to the
thanT, which is an uncommon case, as most of our incomirggll, indexis the position of the first non-visited microblog in
gueries use the defadlt value. C (initialized to one), andestScoras the best (i.e., lowest)
possible score, with respect to user that any non-visited
microblog inC may have. Cells are inserted i ordered by
BestScorecomputed as:
After deletion, if the total size of® and its siblings is less
than the maximum cell capacity, a traditional cell mergingBestScore(u,C) = a x MinSpatial Distance(C, u.loc)
algorithm would mergeC with its siblings into one cell.  + (1 -a) x Temporal Distance(C.M_List[index].time, NOW)

However, with the high arrival rates of microblogs, we mayere MinSpatialDistance(C,u.locjs the minimum distance
end up in spending most of the insertion and deletion overhegenweeny and C' and C.M_List[index] is the most recent
in splitting and merging pyramid cells, as the children of g4 yisited microblog inC'.
newly split cell may soon merge again after deleting few 8eMmgqrteq list of microblogs AnswerSet: A sorted list of k
To avoid such overhead, we employlazy mergingstrategy, microblogs of the formNIID, Score, as the microblog id and
where we merge four sibling cells into their parent only ifcore sorted on score. Upon completion of query processing
three out of the four quadrant siblings are empty. AnswerSetontains the final answer.

The idea is that once a cell becomes empty, we check its o
siblings. If two of them are also empty, we move the contens The Initialization Phase
of the third sibling to its parent, mark the parent as a leaf The initialization phase gets an initial set & microblogs
node, and remové’ and its siblings from the pyramid index.that form the basis of pruning in the next phase. One approach
This is lazy merging, where in many cases it may happénto get the most recerit microblogs from the pyramid cell
that four siblings include few items that can all fit into theiC that includes the user location. Yet, this is inefficient as:
parent. However, we avoid merging in this case to providd) C' may contain less thak microblogs within 7', and
more stability for our highly dynamic index. Hence, once &) Other microblogs outsidé€’ may provide tighter bounds
cell C is created, it is guaranteed to survive for at le@st for the initial & items, which leads to faster pruning later.
time units before it can be merged again. This is bec&iseMain Idea. The main idea is to consider all cells within
will not be empty, i.e., eligible for merging, unless there ao the spatial boundan® in constructing the initial set ok
insertions inC' within 7" time units. Although the lazy merging microblogs. We initialize the heafi by one entry for each cell
causes underutilized cells, this has a slight effect onagtr C within R. Entries are ordered based on best scores computed
and query processing, compared to saving 90% of redundastdiscussed in Section V-A. Then, we take the top cell entry
split‘/merge operations (which is measured practicallygt thC in H as our strongest candidate to contribute to the initial
leads to a significant reduction in index update overhead. top-k list. We removeC' from H and check on its microblogs

D. Lazy Cell Merging



Algorithm 1 Query Processor

1: Function Query Processor (u, k, T, R, &)
2. H < ¢; AnswerSet < ¢; MIN < oo, R\« R; T' « T

C. The Pruning Phase

The pruning phase takes thAnswerSefrom theinitializa-

3: for each leaf cell C overlaps withR do tion phase and enhances it contents to reach the final

4 BestScore— o PUHEenC) 4 (1q) NOWECMZEILINE iy deg Thepruningphase keeps on tightening the original
2 en:jn?;rt €1 BestScor)alnto H search boundarie® and T to new boundariesR’ < R and

7. TopH < Get (and remove) first entry il T’ < T, till all microblogs within the tightened boundaries are
8: while TopH is not NULL andTopH.score < MIN do exhausted. Microblogs outside the tightened boundaries ar
9:  Score« TopH.scorg M « TopH.C.M List{ TopH.indek early pruned without looking at their scores. The idea is to
10:  NextScore- score of current top entry i/ maintain a thresholIN as the score of théth element in

E Wr}'flej\%gcrei; S'I\ijeexztsﬁrmndM is not NULL do AnswerSetFor a microblogM to be included inAnswerSet

13: Score« o ListlwlocMloc) 4 () _ o) NOW_M.time M has to have a lower score thdfiN, i.e.,:

14: if Score< MIN then

15: Insert (M,Scorg in AnswerSet Dist(u.loc, M.loc) NOW - M. time

16: if [AnswerSet| > k then o R +(1- a)# <MIN

17: Trim AnswerSet size tok

18; y&]\;gfgstﬁ:g%t@ﬂi R This formula is used for spatial and temporal boundary tight
20: if MIN < (1-a) then 7% MIN o ening as follows: (1}Spatial boundary tightenin_g&ssume that
21: end if M has the best possible temporal score, Metjime = NOW

22: end if In order for M to make it to AnswerSetwe should have:
23: end if _ _ , o DistlulocMloc) o NfTN, ie., M has to be within distance
;g ij\/[ z\; t';‘;);t 3;332';9,[?;0%{ f’,{l\ﬂﬁm MIN R from the user. Hence, we tighten our spatial boundary
26 end while to R’ = Min(R, XIX R). (2) Temporal boundary tightening.
27:  if M # NULL then Insert (C, index(/), BestScorgin H Assume thatM has the best possible spatial score, i.e.,
28:  TopH « Get (and remove) first entry il Dist(u.loc,M.loc)= 0. In order forM to make it toAnswerSet

29: end while

NOW-M .time i
30: Return AnswerSet we should have(1-a) T <MIN,ie., M has to

be issued within the Iaé*f—T time units. Hence, we tighten
our temporal boundary t&" = Min(T, 22T,

Pruning steps.Based on our bound tightening and the values
one by one in their temporal order. For each microbldg of A/7N ande«, thepruning phase goes through three pruning
we compare its score against the best score of the current &ps in order: (1No Pruning When MIN > Max(c,1 —
cell C"in H. If M has a smaller (better) score, we insgft «), then we search within our original boundari&sand 7.
in our initial top+ list, and check on the next microblog in(2) One-dimensional PruningWhen MIN lies betweena
C. Otherwise, (a) we conclude that the next cell er@fyin  and (1 - a), we start to employ eithespatial or temporal
H has a stronger chance to contribute to tos0 we repeat pruning, based on the value of If a > (1 -«), we only
the same procedure far’, and (b) If M is still within the apply spatial pruning, otherwise, we go faemporalpruning.
temporal boundary’, we insert a new entry af’ into H with  (3) Spatio-temporal PruninghenMIN < Min(a,1 - «), we
a new best score. We continue doing so till we colleiems  tighten bothspatial and temporalboundaries till we exhaust
in the top# list. all microblogs in the tightened boundaries.

Algorithm. Algorithm 1 starts by populating the hed@p with  Algorithm. Line 16 in Algorithm 1 is the entry point for

an entry for each cell’ that overlaps with the query boundarythe pruning phase, where we already ha¥emicroblogs in

R. Each cell entry has its pointer, the index of the first norAnswerSetWe first setMIN to the minimum score il\nswer-
visited microblog as one, and the best score that any entrySet Then, we check if we can apply spatial and/or temporal
C can have (Lines 2 to 6). Then, we remove the top entpruning based on the valuesiN and« as described above.
TopH from H, and keep on retrieving microblogs from thePruning and bound tightening are continuously applied with
cell TopH.C and insert them into our initial answer set till anyevery time we find a new microblod/ with a lower score

of these three stopping conditions take place: (1) We dollecthanMIN, where we inserf/ into AnswerSeand updatéviIN
items, where we conclude theitialization phase at Line 16, (Lines 14 to 22). The algorithm then continues exactly as in
(2) The next microblog inC' is either outsidel’ or does not the initialization phase by checking if there are more entries
exist, where we set/ to NULL (Line 25) and retrieve a new in the current cell or we need to get another cell from the
top entryTopH from H (Line 28), or (3) The next microblog heap. The algorithm concludes and returns the final answer
M in C is within T, yet it has a higher score than the curreriist if any of two conditions takes place (Line 8): (a) He&p

top entry inH. So, we insert a new entry 6f with a new score is empty, which means that we have exhausted all microblogs
and current index of\/ in H, and retrieve a new top entryin the boundaries, or (b) The best score of top entryHof
TopH from H (Lines 27 to 28). The conditions at Lines 8s larger thanMIN, which means all microblogs i cannot
and 14 are always True in this phaseMN is set toco. make it to the final answer.




VI. INDEX SIZE TUNING to get the firstk microblogs that arrive within celC’ and

Our discussion so far assumed that all microblogs post@faR. SinceAr is the rate of microblog arrival ik, i.e.,
in the last7 time units are stored in the in-memory pyramidVe receive one microblog eacflg time units, then we need
structure. Hence, a query with any temporal boundar§ 7k = 3 time units to receive the first microblogs.
guarantees to find all its answer in memory. In this section, Finally, we compute the maximum time interval that a
we introduce théndex size tuningnodule that takes advantagemicroblog A/ within cell C' and areal? can make it to the
of the natural skewness of data arrival rates over differelft of top-k microblogs according to our ranking functidn
pyramid cells to achieve its storage saving§q% less stor- In order for M to make it to the tope list, M has to have
age) without sacrificing the query accuracy (accura@9%). a better (i.e., lower) score than the microbldg, that has
Our index size tunings motivated by two main observationsithe kth (i.e., worst) score of the initial top; i.e., F'(M) <
(1) The topk microblogs in areas with high microblog arrivalF'(M}.). To be conservative in our analysis, we assume that:
rates can be obtained from a much shorter time than areaga@f}M has the best possible spatial score: zero, Aehas the
low arrival rates, e.g., top-microblogs in downtown Chicago Same location as the user location. In this case)M) will
may be obtained from the last 30 minutes, while it may nedgly only on its temporal score, i.e(M) = (1-a) 2, where
couple of hours to get them in a suburb area. {2plays a 1:= NOW - M .time indicates the search time horiz@h that
major role on how far we need to go back in time to look fowe are looking for, and (b} has the worst possible spatial
microblogs. Ifa = 1, top+ microblogs are the closest onesind temporal scores among the initlabnes. While the worst
to the user locations, regardless of their time arrival imith Spatial score would be one, i.€\;, lies on the boundary of
T. If a =0, top+ microblogs are the most recent ones posted, the worst temporal score would take placeMf, arrives
within R, so, if we look back only for the time needed to issuék time units ago. So, the score 6f;, can be set ask'(My)

k microblogs. Then, for each cefl, we find the minimum = « + (1 - a)x%%. Accordingly, to satisfy the condition that
search time horizoff,, < T such that an incoming query © F(M) < F(My), the following should hold:

finds its answer in memory. Section VI-A derives the values of

T., for each cellC', while Section VI-B discusses the impact of (1- a)g <a+(1- a)L (1)
the index size tuningnodule on variou$lercury components. T ArT

A. Reducing the Cell Size This means that in order fab/ to make it to the answer

. ) . . list, T should satisfy:
This section aims to find the valu@. for each cellC such
that only those microblogs that have arrivedGhin the last ! k

T, time units are kept in memory. Per the following Lemma, I.< 1_ aT + A\r

T, is computed based on the default valuesipfR, T', and By substituting the value of, and boundingZ, by the

«, and uses the microblog arrival rake for each cellC. We value of T, as we cannot go further back in time than the

assume that the locations of incoming microblogs are umifor . .
. . - maximum value off. would be:
within each cell boundary, yet they are diverse across wario

cells, hence each cdll' has its own microblog arrival rat®.

. . k
Lemma 1: Given query parameterk, R, T', and «, and the T.=Min|T, 1 S — rea(®)
average arrival rate of microblogs in cell’, \., the spatio- - MW(A,,W(C)J) X Ae
temporal query answer from cell can be retrieved from those -

microblogs that have arrived in the la%t. time units, where: ) ) )
Lemma 1 means that in order for a microbldg in cell

o k C to make it to the tops answer,M has to arrive within the
T.=Min|T, 1 aT e rea(®) last T, time units, wherel, < T. Therefore, we save memory
Min ( Arca(C)’ 1) X Ac space by storing fewer microblogs.

Proof: The proof is composed of three steps: First, we cons. |mpact on Mercury Components
pute the value ok as the expected arrival rate of microblogs
to query areaR, among the microblogs in cell' with arrival
rate A\.. This depends on the ratio of the two area®a(R)
and Area(C). If Area(R) < Area(C), then \p = ’::ZZEQ A,
otherwise, all microblogs frond’ will contribute to R, hence
Ar = Ac. This can be put formally as:

This section discusses the impact of employing fhe
values orMercury components, namely, index structure, index
operations, index maintenance, and query processing.
Index Structure. Each pyramid cell” will keep track of two
additional variables: (1)\.; the arrival rate of microblogs in
C, which is continuously updated with new microblog arrivals

Area(R) and (2)T,; the temporal boundary in cefl' computed from
AR = Min (—, 1) Ae Lemma 1, and updated with every update)of
Area(C) Index Operations. Insertion in the pyramid index will have

Second, we compute the shortest tiffieto form a set ofc  the following two changes: (1) For all visited cells in the
microblogs as an initial answer. This corresponds to the tinmsertion process, we update the values\otindT,, (2) If T,



is updated with a new value, we will have one of two caseA. Storage Savings

(a) The value off is decreased. In this case, microblogs that starting from Equation 2, in order for a microbldg to
were posted in the time interval between the old and ngywake it to the answer listl, 5 should satisfy:

values of T, are immediately deleted. (b) The value ©f

is increased. In this case, we have a temporal gap between a(l—ﬁ)T+ k.

the new and old values df., where there are no microblogs 1-a AR

there. However, with the rate of updates’f such gap will By substituting the value ok, and boundingl}, s by the

be filled up soon, and hence would have very little impaghjye of 7', the maximum value of, 5 would be:
on query answer. On the other side, deletion module deletes ’

Tcﬁ <

microblogs from each cell’ based on the value df, rather a(1-B) i
than based on one valig for all cells. Tep=Min|T, 1 T — rea(R) (3)
Index Maintenance. When a cellC' splits into four quadrant e Min (m» 1) X AR

cells, the value of\. in each new child cell’; is set based  per Equation 37, 5 gives a tighter temporal coverage for
on the ratio of microblogs from cell’ that goes to celC;. each cell asl. 3 < T.. Depending on the values of query
As Mercury employs a lazy merging policy, i.e., four cells argyarametersk, R, T', anda, storage savings ranges from 0 to
merged into a parent cedl’ only if three of them are empty, 3, j.e., if 3= 0.3, we achieve up to 30% storage savings. This
the value of)\. at the parent cell is set to the arrival rate means that storage Saving goes linear VﬁthBased on our
of its only non-empty child. extensive experiments in Section VIII, we have experimnta
Query Processor.The query processor module is left intactound that we always achieve storage savingofiith much

as it retrieves its answer from the in-memory data regasdléetter accuracy than the theoretical bound discussed below

of the temporal domain of the contents. B. Accuracy Loss

Given the less conservative assumption in Equation 2, there
is a chance to miss microblogs that could have made it to

Even with theindex size tuningmodule, there could be the final result. In particular, there is an aref in the
cases where there is no enough memory to hold all microblogpatio-temporal space that is not covered by our analysis. A
from the last7, time units in each cell, e.g., very scarcdnicroblog M in area A, satisfies two conditions: (1) The
memory or time intervals with very high arrival rates. Alsogpatial score of/ is less thar8, and (2) The temporal distance
some applications are willing to trade slight decrease irgu of M is betweenl. s andT.. We measure the accuracy loss
accuracy with a large saving in memory consumption. In suéh terms of the ratio of the area covered Hy to the whole
casesMercury triggers aload sheddingmodule that smartly spatio-temporal area covered ByandT, i.e., R x T'. This is
selects and expires a set of microblogs from memory such tiagasured by multiplying the ratios of thé,’s temporal and
the effect on query accuracy is minimal. The main idea of tigpatial dimensionsl’..:, and R,.q+4,, to the whole space. The
load sheddingnodule is to use less conservative analysis thd@mporal ratiol’...;, can be measured as:
that of theindex size tuningnodule, discussed in Section VI.

VIl. L OAD SHEDDING

In particular, Equation 1 was very conservative in assuming Te-Tep (ﬁTJr ,\LR) - (%TJF ALR)
that there is a microblog/ that lies exactly on the same ratio = T T (=T + £

. . . -« )\R
location of the querying user, and hentEhas a spatial score o 1
of zero. Thdoad sheddlngnpdule relaxes this ass_umpnon and This leads to - Tratio = B x —1=2 — <8
assumes thal/ has a spatial score @f < 5 < 1 (instead of =T+ s

zero), and hence Equation 1 will be re-formulated as: This means that the temporal ratio is boundedsby

For the spatial ratio, consider thdt, and R are represented
a6+(1—a)% <a+(l-a) k @) by circular areas around the querying user location with
T ART radius Radius(d,) and Radius). Since a microblogM/ at
distanceRadiusd,) has spatial score g while a microblog

. Wehus_e th? temTCHB ink;teahd OfThC lto ijndirc]:aéz_the sgalrch at distanceRadius) has spatial score of 1, thétadius@,)
Flme orizon for each cell-w gnt €load sheddingnoaule  _ 8 Radius). Hence, the ratio of the spatial dimension is:
is employed.3 acts as a tuning parameter that trades-off

significant savings of storage with slight loss of accuracy. Area(A,) mRadius(Ay)?  B?Radius(R)? )
B =0 means that there is no load shedding, hence no stor%etio " Area(R) ~ mRadius(R)?2  Radius(R)? ’
savings over théndex size tuningnodule (o = T;). On the Hence. the accuracy loss can be formulated as:
other hand 3 = 1 means that the memory is barley enough to ' y '
hold only the most recent microblogs per cell. As will be

y gs p AccuracyLossg = Tratio % Rratio < 5° 4)

shown below and in our experiments, a storage saving of
results in accuracy loss @f°. For example, if3 = 0.3, a 30% This shows a cubic accuracy loss in termssofe.g., if 8 =
saving of storage is traded with only 2.7% of accuracy losd).3, we have 2.7% loss in accuracy for 30% storage saving.
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VIIlI. EXPERIMENTAL RESULTS _ 100 . .
. . . . . g\_c/ 90 MT —e—
This section provides experimental evaluationMércury 3 8 MST —%—
. . . . MLS-0.3 —6—
based on an actual system implementation. With lack of tlire€ & LSBT —o—

competitors, see Section Il, we evaluate various versidns © iog
Mercury to show the effectiveness of its components. AIE T3
experiments are based on a real deploymentefcury and © 0

using a real-time feed of US tweets (via access to Twittee-Fir ~ ° ® 2 Tt
hose) and actual locations of web search queries from Bing.
We have stored 340+ million tweets and one million Bing
search queries in files. Then, we have read and timestamped
them to simulate an incoming stream of real microblogs addnis is mainly because bothLS and MST reduce the index
queries. Unless mentioned otherwise, the default valug ofSize, and hence less cells are visited in bulk insertion.

is 100, microblog arrival rate\ is 1000 microblogs/second, Figure 3(b) gives the same experiment with varyingom
rangeR is a 30 milesT is 6 hoursa is 0.2, 3 is 0.3, and cell 10 to 100. The performance is stable for all alte.rnat|ve$1'W|t
capacity is 150 microblogs. The default values of cell citpac 28, 12, and 10 msec fodT, MST, andMLS, respectively. This

a, andp3 are selected experimentally and show to work best f§POWS the practical dominance of the first terffi(T') in the
query performance and result significance, respectivefylew €duations ofl. andT, s over the term that contains
default \ is the effective rate of US geotagged tweets. As Figure 3(c) gives the bulk insertion time with varying
microblogs are so timely that Twitter gives only the modfom O to 1.MT has a stable performance asloes not affect
recent tweets (i.e.a=0), we seta to 0.2 as the temporal ItS Storage. On thg other side, Ipwerval'uesym‘.trc'mgly favors
dimension is more important than spatial dimension. AlISTandMLSas it plays a major role in deciding the values
results are collected in the steady state, i.e., after ngwni®f Zc and 7.5, and hence the storage consumed. With the
the system for at least’ time units. We use an Intel CorelNcreasinga, MST and MLS degenerate to be equivalent to
i7 machine with CPU 3.40GHZ and 64GB RAM. Our meaMT ata = 0.5 and 0.6, respectively. Figure 3(d) shows that
sures of performance include insertion time, storage §jsvinincreasingR significantly enhances.the performgnce of both
query accuracy, and response time. The rest of this sectt®T and MLS The reason is that increasing gives more
evaluates index maintenance (Section VIII-A), load shegdi S€arch space to look for the result, hence, no need to look
(Section VIII-B), and query processing (Section VIII-C).  Much back in time which needs less storage.

B. Load Shedding

Figure 3 gives the performance bfercury insertion time, In this section, we evaluate the impact of_load shedding
on storage savings and query accuracy. Storing all the 340+

which entails piggypacked/bulk deletion, cell splittingnd . ° X
cell merging, if needed. We compare three alternatives fBP”'O” Iweets consumes more than 8GB fram memory Just

Mercury index: (a) storing all microblogs of lagt time units o store tweet id qnd latitude/longitude coordin{:\tes while
(denoted asMT), (b) using theindex size tuningmodule encounters much higher storage oyerheai‘ﬁGB, with ;EeXt
(Section VI), denoted a¥IST, and (c) using théoad shedding and .NET framework overhead, yet it guarantees 100% query
module (Section VII), denoted a4LS Figure 3(a) gives the accuracy. WE shdow ':jhe effect of f\lsrﬂﬁﬁg o a?d_ﬂ Ol\r;lsthe
performance when varying the arrival rate from 250 to 64,00%Orage overhead and accuracy of batlex size tuningMST)

micoblogs/second. The figure presents the timeMafrcury andlload shgddmg{MLS). .
bulk insertion every 1 second, i.e., all microblogs thatehav Figure 4 gives the storage overhead ratio and query accuracy

arrived in the last second are inserted in bulk. BethS and of MST and MLS while varying T' from 3 to 12 hours. We

MSTperform much better thaT. While MT is able to digest depict two curves foMLS that correspond to two values 6f

I I I I I 0,
only 32K micorblogs/secondViLS and MST are able to bulk as 0.3 and 0.7, whilMT is depicted in the Figure as 100%
. . . storage overhead and query accuracy. For all valugs dfLS
insert 64K microblogs in less than 0.5 second. For the ctjrren.th _ 0.3 consumes onlv 35% of the storage required b
Twitter rate (4,600 microblogs/secondi)LSandMSTare able with 3 = 0. u y 0 9 qui y

to insert all the incoming 4,600 items in less than 34 mse'\c/lT (Figure 4(2). This takes place with a very high accuracy

of 98% to 99.5% (Figure 4(b)). SimilarlyyILS with 5 = 0.7

Query Accuracy (%)

(a) Storage Overhead (b) Query Accuracy
Fig. 4. Effect ofT" on storage vs. accuracy

A. Index Maintenance



& S O S-G9
MLS-00.4 —%—
MLS-00.9 —6—

S = S =
< L < L
e} g e g
_“:“3 ?? § MLS-a1 —7— § MLS-a0.2 —@—
g 3 MT —e— s 20 E MLS-00.4 —>%—
5 3 2 50 3 MLS-00.9 ——
3 2 MST —x— O 40 < MLS-a1
° = MLS-B0.3 —o— 2 39 N ol —v—
g 5 MLS-B0.7 —— g 20 3
[=} o
@ c 3 18 G
0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1
a B B
(a) Storage Overhead (b) Query Accuracy (a) Storage Overhead (b) Query Accuracy
Fig. 5. Effect ofa on storage vs. accuracy Fig. 6. Effect of 3 on storage vs. accuracy

consumes only 25% of the storage with accuracy 97.5% & Query Evaluation
99.3%.MST consumes 40% of the storage with almost 100% . _ _
In this section, we show the effect of the query processing

accuracy. These practical results confirm our earlier aisly . 0
in Section VII, where we anticipated that a linear reductio}?Chmques’ wher_e we contr Bercury against: (aNoPrun-
Ing, where all microblogs withinR and 7' are processed,

of storage @) will result in a cubic loss of accuracys?).

As shown in the figureMST gives less than 100% accurac .b) InitPhase where only thenitialization phase o_fMe_cury
for T = 3, where we have only 99.2%. TheoreticalMST s employed, (cPruneR where only spatial pruning is em-

should be able to provide 100% accuracy regardless of tﬂlgyed, and (d)Prunel, where only temporal pruning is

parameters values. However, the theoretical model assurri%ig)loyed' Figure 7(a) gives the effect of varyigrom 10 to

spatial uniformity of microblogs within individual pyraehi ~. on the query Igtency. It is clear that vananpsl\bircyry
cells, which is not 100% true. This leads to missing fed Ve order of magnitude performance owoPruning which

microblogs and hence a slight drop MST accuracy shows the effectiveness of the employed strategies. Wigh th
g 9 ' we are not showing any further result MoPruningas it is

Figure 5 gives the effect of varying from 0 to 1 on the (jearly non-competitive. Also|nitPhase gives much worse
storage overhead and query accuracyMBT and MLS with  herformance thaercury, which shows the strong effect of
/=03 and0.7. Figure 5(a) shows that increasingleads the pruning phase. Finally, it is important to note that with
to increasing the storage overhead of bST and MLS ;. _ 1, Mercury gives a query latency of only 3 msec.
While MST storage degenerates to be M3 when «a > 0.5, Figures 7(b) and 7(c) give the effect of varyidgand 7,

MLS still kegps its storage gain til approgches 0.6 and respectively, on the query latency fdtercury, PruneR and
0.8, respec_tlvely for th_e two values . This ShOV_VS that PruneT Both figures show thaMercury takes advantage of
load sheddingstill can find regsongble storage savings evegl,, spatial and temporal pruning to get to its query latency
for large values okv. Meanwhile, Figure 5(b) shows that a"of up to 4 msec for 12 hours and 64 miles ranges. Increasing
alternatives have query accuracy of more than 95%. The wo tand T increases the query latency of all alternatives,

case takes place when = 0, in Wh'Ch the value off does however,Mercury still performs much better when using its
not play any role. For all alternatives, once we have the same pruning techniques. It is also clear tHauneT achieves
storage overhead a4T, we obtain 100% accuracy.

better performance thdruneR i.e., temporal pruning is more
Figure 6 focuses only on the load sheddiM)-§), where it effective than spatial pruning, which is a direct result lné t
studies the effect of varyingg from 0 to 1 on the storage default value ofn=0.2 that favors the temporal dimension.
overhead and query accuracy. Per Figure 6(a), the storaggigure 7(d) gives the effect of varying from 0 to 1 on
overhead saving is linear ii with line slope that dependsine query latency, wherdlercury consistently has a query
on value ofa. The lowera, the lowerT. s, and hence more |atency under 4 msec, whiltnitPhasehas an unacceptable
storage savings can be achieved. The extreme aasel performance that varies from 15 to 35 msec. This shows the
makesMLS runs exactly adMT, while with o = 0.2, we can  gyrong effect of thepruning phase inMercury. Meanwhile,
achieve from 60% to 90% storage saving. with increasingy, the temporal boundary #fruneRincreases
Figure 6(b) shows that the query accuracy is directignd hence it visits more microblogs inside each cell. For low
proportional with the storage overhead for different valuevalues of o (< 0.5), the number of additional microblogs
of 5. With o = 1, T, 3 = T and hence the accuracy isvisited due to increasing the temporal boundary is more than
100% regardless of. The accuracy shown is much highethe number of microblogs that are pruned based on spatial
than the theoretical expectations and has a practical lowguning. This increases the overall latencyRstineR When
bound of 52% accuracy at = 1 with o = 0.9 which has « > 0.5, the number of microblogs thBruneRprunes based
a storage saving of 90% (Figure 6(a)). This happens becaase the spatial pruning becomes larger than the additional
our theoretical model uses very conservative assumptianswisited microblogs due to enlarging the temporal horizon.
spatial and temporal maximum distances. Thus, even wittence, PruneR latency becomes quickly better and beats
significant load shedding, in-memory microblogs can previdPruneT at o > 0.8. This means that for all values af< 0.8,
good quality query answer, which shows the applicability aémporal pruning is still more effective than spatial pngi
Mercury in memory-constrained environments. PruneThas a stable performance with respect to varyingn
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Fig. 7. Average query latency.

all casesMercurytakes advantage of both spatial and temporgo]
pruning to achieve its overall performance of around 4 msec.
IX. CONCLUSION [21]

We have presentellercury, a system for real-time support
of spatio-temporal queries on microblogs, where usersagiqu
a set of recentt microblog near their locationdMercury [23]
works under a challenging memaory-constrained environme[bt‘q
where microblogs arrive with very high arrival ratddercury
employs efficient in-memory indexing to support up to 64K
microblogs/second and spatio-temporal pruning techisiqae [25]
provide real-time query response of 4 msec.

[22]

[26]
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