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Abstract—This paper presentsMercury; a system for real-time
support of top-k spatio-temporal queries on microblogs, where
users are able to browse recent microblogs near their locations.
With high arrival rates of microblogs, Mercury ensures real-time
query response within a tight memory-constrained environment.
Mercury bounds its search space to include only those microblogs
that have arrived within certain spatial and temporal boundaries,
in which only the top-k microblogs, according to a spatio-
temporal ranking function, are returned in the search results.
Mercury employs: (a) a scalable dynamic in-memory index
structure that is capable of digesting all incoming microblogs,
(b) an efficient query processor that exploits the in-memory
index through spatio-temporal pruning techniques that reduce
the number of visited microblogs to return the final answer,
(c) an index size tuning module that dynamically finds and adjusts
the minimum index size to ensure that incoming queries will
be answered accurately, and (d) aload shedding technique that
trades slight decrease in query accuracy for significant storage
savings. Extensive experimental results based on a real-time
Twitter Firehose feed and actual locations of Bing search queries
show that Mercury supports high arrival rates of up to 64K
microblogs/second and average query latency of 4 msec.

I. I NTRODUCTION

Microblogs, e.g., tweets, Facebook comments, and
Foursquare check-in’s, are among the most popular web
services nowadays. For example, Twitter has 140+ Million
active users who generate 400+ Million daily tweets [38],
while Facebook has 1+ Billion users who post 3.2+ Billion
daily comments [12]. Combined with the advances in
wireless communication and GPS-equipped handheld devices,
microblogs have entered a new era where locations can be
attached to each posted microblog to indicate the whereabouts
of the microblog issuer. Consequently, Facebook added the
options of location check-ins andnear where users can state a
nearby location of their status messages, Twitter automatically
captures the GPS coordinates from mobile devices, while
Foursquare is a microblog service that is all around the
location information and the whereabouts of its users.

In this paper, we aim to take advantage of the combination
of location information with microblogs to support spatio-
temporal search queries on microblogs, where users are inter-
ested ingetting a set of recent microblogs (within the lastT

time units) and within a certain spatial region. Due to the large
numbers of microblogs that can satisfy the given constraints,
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we limit the query answer tok microblogs, deemed most
relevant to the querying user based on a ranking functionF

that combines the time recency and the spatial proximity of
each microblog to the querying user.

Users of our proposed spatio-temporal queries include news
agencies (e.g., CNN and Reuters) to have a first-hand knowl-
edge on events in a certain area, advertising services to serve
geo-targeted ads to their customers based on nearby events,
or individuals who want to know what is currently going on
in a certain area. For example, in April 2013, Los Angeles
Times reported [4] how people rush to Twitter for real-time
breaking news about Boston Marathon explosions. Such users
may not know the appropriate keyword or hash tag to search
for. Instead, they want to know what are the recently posted
microblogs in a certain particular area. Thus, our goal hereis
not to replace the traditional keyword search in microblogs, but
rather to provide another important search option for localized
microblogs. The answer of our spatio-temporal queries can be
fed to other modules for further processing, which may include
event detection, keyword search, entity resolution, sentiment
analysis, or visualization.

We presentMercury: a system for real-time support of
spatio-temporal queries on microblogs.Mercury faces two
main challenges: high arrival rates of microblogs and the
need for real-time query response. Both challenges call for
relying ononly in-memory data structures to index and query
incoming microblogs, where memory is a scarce resource.
Hence,Mercury employs an in-memory partial pyramid in-
dex [2], equipped with efficient bulk insertion, bulk deletion,
speculative cell splitting, and lazy cell merging operations
that make the index able to digest the high arrival rates of
incoming microblogs. Incoming queries efficiently exploitthe
in-memory index through spatio-temporal pruning techniques
that minimize the number of visited microblogs to return the
final answer.Mercury bounds its search space by aspatial
boundaryR as a search area around the user location of
interest and atemporal boundaryT as the search past time
horizon. WithinR andT , a ranking functionF is employed
to score each microblog, per its spatial proximity and time
recency, to produce the top-k microblogs as the query answer.
Mercury is optimized for a preset default values ofT , R,
and k. Queries with less values than the default can still be
satisfied with the same performance. Yet, queries with higher
values may encounter higher cost as they may need to visit a



secondary storage. This goes along with the design choices of
major web services, e.g., Bing and Google return, by default,
the top-k (k=10) most related search results, while Twitter
gives the most recentk tweets to a user upon logging on. If
a user would like to get more thank results, an extra query
response time will be paid.

A direct way to ensure that all incoming queries will be
satisfied from in-memory contents is to store and index all
incoming microblogs from the last defaultT time units. How-
ever, that may require a very large main memory, which can
be prohibitively expensive. Hence, we propose two effective
memory optimization techniques: (1) We develop anindex size
tuning technique that achieves significant memory savings (up
to 50%) without sacrificing the query answer quality (more
than 99% accuracy). The main idea is to exploit the diversity
of arrival rates per regions, e.g., city centers have higher
arrival rates than suburban areas. Hence, the top-k microblogs
would have arrived more recently in city centers than suburban
areas. We maintain only the items that may appear in user
queries, delete items that are dominated by others. (2) For
scarce memory configurations, we develop a parameterized
load sheddingtechnique that trades significant reduction in
the memory footprint (up to 75% less storage) for a small
loss in query accuracy (up to 5% accuracy loss). The idea is
to expel from memory a set of victim microblogs that are less
likely to contribute to a query answer.

We evaluate the system experimentally based on a real
system deployment ofMercury and using a real-time feed of
US tweets (via access to Twitter Firehose) and actual locations
of Bing web search queries. Our measurements show thatMer-
cury supports arrival rates of up to 64K microblogs/second,
average query latency of 4 msec, minimal memory footprints,
and a very high query accuracy of 99%.

In addition to introducingMercury as well as providing
a crisp definition for spatio-temporal search queries over
microblogs (Section III), the contributions of this paper are
summarized as follows:

1) We propose efficient spatio-temporal indexing/expelling
techniques that are capable of inserting/deleting mi-
croblogs with high rates (Section IV).

2) We introduce an efficient spatio-temporal query proces-
sor that minimizes the number of visited microblogs to
return the final answer (Section V).

3) We introduce anindex size tuningmodule that dynam-
ically adjusts the index contents to achieve significant
memory savings without sacrificing the query answer
quality (Section VI).

4) We introduce aload sheddingtechnique that trades
significant reduction in memory footprint for a slight
decrease in query accuracy (Section VII).

Section VIII gives experimental evidence, based on real sys-
tem prototype, microblogs, and queries, showing thatMercury
is scalable and accurate with minimal memory consumption.
Finally, Section IX concludes the paper.

II. RELATED WORK

Due to its widespread use, recent research efforts have
explored various research directions related to microblogs.
This goes along the way of the system stack starting from
logging [18] and machine learning techniques [21] to in-
dexing [5], [7], [42], [43] and designing a SQL-like query
language interface [24]. In addition, several efforts havefo-
cused on analyzing microblog data, which include semantic
and sentiment analysis [3], [28], [30], decision making [6],
news extraction [35], event and trend detection [1], [19], [27],
[34], [37], understanding the characteristics of microblog posts
and search queries [22], [33], microblogs ranking [11], [39],
and recommending users to follow or news to read [14],
[32]. Meanwhile, recent work [35], [40] exploited microblogs
contents to extract location information that is used to visualize
microblog posts on a map [25], [26] and model the relationship
between user interests, locations, and topics [15].

With such rich work in microblogs, up to our knowledge,
there is no existing work that address real-time indexing and
querying microblogs locations; which is the main focus of this
paper. However, the two most related topics to our work are
microblog search queriesandspatio-temporal streams.
Microblog Search Queries.Real-time search on microblogs
often refers to keyword search [5], [7], [42], [43]. The differ-
ence of one technique over the other is mainly in the query
type, accuracy, ranking function, and memory management.
None of these work have addressed the case of location-
aware search. On the other hand, spatial keyword search is
well studied on web documents and web spatial objects [9],
[10], [20], [41], [44]. However, they use offline disk-based
data partitioning indexing, which cannot scale to support the
dynamic nature and arrival rates of microblogs [5], [8].
Spatio-temporal Streams.Microblogs can be considered as
a spatio-temporal stream with very high arrival rates, where
there exist a lot of work for spatio-temporal queries over data
streams [16], [23], [29], [31], [45]. However, the main focus
of such work is on continuous queries over moving objects.
In such case, a query is registered first, then its answer is
composed over time from the incoming data stream. Such
techniques are not applicable to spatio-temporal search queries
on microblogs, where we retrieve the answer from existing
stored objects that have arrived prior to issuing the query.

Mercuryshares with microblogs keyword search its environ-
ment (i.e., queries look for existing data, in-memory indexing,
and the need for efficient utilization of the scarce memory
resource), yet, it is different from keyword search in terms
of the functionality it supports, i.e., spatio-temporal queries.
In the mean time,Mercury shares similar functionality with
spatio-temporal queries over data streams, yet it is different
in terms of the environment it supports, i.e., query answer is
retrieved from existing data rather than from new incoming
date to arrive later. Finally,Mercury shares with both key-
word search and spatio-temporal queries the need to support
incoming data with high arrival rates and the need to support
real-time search query results.
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III. SYSTEM OVERVIEW

This section gives an overview ofMercurysystem architec-
ture, supported queries, and ranking function.

A. System Architecture

Figure 1 givesMercurysystem architecture with three main
modules around an in-memory index, namely,geotagging,
update, andquerymodules, described briefly below:
Geotagging module. This module receives the incoming
stream of microblogs, extracts the location of each microblog,
and forwards each microblog along with its extracted location
to theupdate modulewith the form:(ID, location, timestamp,
content)that presents the microblog identifier, location, issuing
time, and textual contents. Location is either a preciselatitude
andlongitudecoordinates (if known) or a Minimum Bounding
Rectangle (MBR). We extract the microblog locations through
one or more of the following: (1)Exact locations, if already
associated with the microblog, e.g., posted from a GPS-
enabled device. (2)User locations, extracted from the issuing
user profile. (3)Content locations, by parsing the microblog
contents to extract location information. If the microblogends
up to be associated with more than one location, we output
multiple versions of it as one per each location. If no location
information can be extracted, we set the microblog MBR to the
whole space. As we use existing software packages and public
datasets for geocoding and location extraction, this module
will not be discussed further in this paper.
Update module.The updatemodule ensures that all incom-
ing queries can be answered accurately from indexed in-
memory contents with the minimum possible memory con-
sumption. This is done through three main tasks: (1) Inserting
newly coming microblogs into the in-memory index structure,
(2) Smartly deciding on the set of microblogs to expire from
memory without sacrificing the query answer quality, and
(3) In cases of very tight memory, a load shedding module
is triggered to smartly trade slight decrease in query accuracy
with significant savings in memory consumptions. Details of
index operations, index size tuning, and load shedding are
discussed in Sections IV, VI, and VII, respectively.
Query module.Given a location search query, thequerymod-
ule employs spatio-temporal pruning techniques that reduce
the number of visited microblogs to return the final answer.
As thequerymodule just retrieves what is there in the index,
it has nothing to do in controlling its result accuracy, which
is mainly determined by the decisions taken at theupdate
module on what microblogs to expire from the in-memory
index. Details of thequerymodule are described in Section V.

B. Supported Queries

Mercury users (or applications) issue queries on the form:
“Retrieve a set of recent microblogs near this location”.
Internally, four parameters are added to this query: (1)k; the
number of microblogs to be returned, (2) a rangeR around
the user location, where any microblog located outsideR is
considered too far to be relevant, (3) a time spanT , where
any microblog that is issued more thanT time units ago is
considered too old to be relevant, and (4) a spatio-temporal
ranking functionFα that employs a parameterα to combine
the temporal recency and spatial proximity of each microblog
to the querying user. Then, the query answer consists ofk

microblogs posted withinR andT , and top ranked according
to Fα. Formally, our query is defined as follows:
Definition: Given k, R, T , and Fα, a microblog spatio-
temporal search query from useru, located atu.loc, findsk
microblogs such that: (1) Thek microblogs are posted in the
lastT time units, (2) The (center) locations of thek microblogs
are within rangeR around u.loc, and (3) Thek microblogs
are the top ranked ones according to the ranking functionFα.

Our query definition is a natural extension to traditional
spatial range andk-nearest-neighbor queries, used extensively
in spatial and spatio-temporal databases [17], [36]. A range
query finds all items within certain spatial and temporal
boundaries. With the large number of microblogs that can
make it to the result, it becomes natural to limit the result size
to k, and hence a ranking functionFα is provided. Similarly, a
k-nearest-neighbor query finds theclosestk items to the user
location. As the relevance of a microblog is determined by
both its time and location, we change the termclosestto be
most relevant, hence we define a ranking functionFα to score
each microblog within our spatial and temporal boundaries.

Upon initialization, a system administrator sets default val-
ues for parametersk, R, T , andα. Users may still change the
values of the default parameters, yet a query may have less
performance if the new parameters present larger search space
than the default ones. This goes along with the design choices
of major web services. For example, web search engines, e.g.,
Bing and Google, return the top-k most related search results
where k is 10 by default. Similarly, Twitter gives the most
recentk tweets to a user upon logging on or in a keyword
search result. If a user would like to get more thank results,
an extra query response time will be paid.

C. Ranking Function

Given a useru, located atu.loc, a microblogM , issued
at time M.time and associated with locationM.loc, and a
parameter0 ≤ α ≤ 1, Mercury employs the following ranking
functionFα(u,M) that gives the relevance score ofM to u,
where lower scores are favored:

Fα(u,M) = α × SpatialDist(M.loc, u.loc)
+ (1 − α) × TemporalDist(M.time,NOW )

α=1 indicates that the user cares only about the spatial
proximity of microblogs, i.e., query result includes thek
closest microblogs issued in the lastT time units.α=0 gives
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the k most recent microblogs within rangeR. A compromise
between the two extreme values gives a weight of importance
for the spatial proximity over the temporal recency.

TemporalDistance(M.time,NOW)( SpatialDistance(M.loc,
u.loc)) is any normalizedmonotonic function in the range[0,1], applied only for microblogs in the lastT time units
and within areaR, where smaller values indicate more recent
(closer) microblogs. The largest possible value 1 takes place
whenM is posted exactlyT time units ago (on the boundary
of regionR). For simplicity, we employ the following func-
tions, yet, other functions can be accommodated as long as
they are monotonic:

TemporalDistance(M.time,NOW ) =
{ NOW−M.time

T
NOW −M.time ≤ T

N/A NOW −M.time > T

SpatialDistance(M.loc, u.loc) =
{ Distance(M.loc−u.loc)

Radius(R)
M.loc insideR

N/A M.loc outsideR

Distance(M.loc-u.loc)is the Euclidian distance between two
points whereM.loc andu.loc are either precise location coor-
dinates or center points of their minimum bounding rectangles.

IV. SPATIO-TEMPORAL INDEXING

We have two main objectives to satisfy in ourMercury
indexing. First, the employed index has to be able to digest
high arrival rates of incoming microblogs. Second, the em-
ployed index should be able to expel (delete) microblogs from
its contents with the same rate as the arrival rate. This will
ensure that the index size is fixed in a steady state, and hence
all available memory is fully utilized. The need to support
high arrival rates immediately favors space-partitioningindex
structures (e.g., quad-tree [13] and pyramid [2]) over data-
partitioning index structures (e.g., R-tree). This is because the
shape of data-partitioning index structures is highly affected by
the rate and order of incoming data, which may trigger a large
number of cell splitting and merging with a sub performance
compared to space-partitioning index structures that are more
resilient to the rate and order of insertions and deletions.

To this end,Mercuryemploys a partial pyramid structure [2]
(Figure 2) that decomposes the space intoH levels. For a given
level h, the space is partitioned into4h equal area grid cells.
At the root, one grid cell represents the entire geographic area,
level 1 partitions the space into four equi-area cells, and so
forth. Dark cells in Figure 2 present leaf cells, which could
lie in any pyramid level, light gray cells indicate non-leaf
cells that are already decomposed into four children, while
white cells are not actually maintained, and just presentedfor
illustration. We favor the pyramid structure over quad-trees as
it involves storing data in non-leaf nodes, which significantly
helps in query processing. Each maintained pyramid cellC has
a list of microblogM List that have arrived within the cell
boundary in the lastT time units, ordered by their timestamps.
A microblog with location coordinates is stored in the leaf
cell containing its location, while a microblog with MBR is
stored in the lowest level enclosing cell, which could be non-
leaf. The pyramid index is spatio-temporal, where the whole
space isspatially indexed (partitioned) into cells, and within
each cell, microblogs aretemporally indexed (sorted) based
on timestamp.

Though it is most suitable toMercury, existing pyramid in-
dex structures [2] are not equipped to accommodate the needs
for high-arrival insertion/deletion rates of microblogs.To
support high-rate insertions, we furnish the pyramid structure
by a bulk insertionmodule that efficiently digests incoming
microblogs with their high arrival rates (Section IV-A) and
a speculative cell splittingmodule that avoids skewed cell
splitting (Section IV-B). To support high-rate deletions,we
provide abulk deletionmodule that efficiently expels from the
pyramid structure a set of microblogs that will not contribute
to any query answer (Section IV-C) and alazy cell merging
module that decides on when to merge a set of cells together
to minimize the system overhead (Section IV-D).

A. Bulk Insertion

Inserting a microblogM (with a point location) in the
pyramid structure can be done traditionally [2] by traversing
the pyramid from the root to find the leaf cell that includesM

location. IfM has an MBR location instead of a point location,
we do the same except that we may end up insertingM in a
non-leaf node. Unfortunately, such insertion procedure isnot
applicable to microblogs due to its high arrival rates. While
inserting a single item, new arriving items may get lost as the
rate of arrival would be higher than the time to insert a single
microblog. This makes it almost infeasible to insert incoming
microblogs, as they arrive, one by one. To overcome this issue,
we employ abulk insertionmodule as described below.

The main idea is to buffer incoming microblogs in a memory
buffer B, while maintaining a minimum bounding rectangle
BMBR that encloses the locations of all microblogs inB.
Then, the bulk insertion module is triggered everyt time
units to flush all microblogs inB to the pyramid index.
This is done by traversing the pyramid structure from the
root to the lowest cellC that enclosesBMBR. If C is a
leaf node, we append the contents ofB to the top of the



list of microblogs inC (C.M List). This still ensures that
M List is sorted by timestamp as the oldest microblog in
B is more recent than the most recent entry inM List.
On the other hand, ifC is a non-leaf node, we: (a) extract
from B those microblogs that are presented by MBRs and
cannot be enclosed by any ofC ’s children, (b) append the
extracted MBRs to the list of microblogs inC (C.M List),
(c) distribute the rest of microblogs inB, based on their
locations, to four quadrant buffers that correspond toC ’s
children, and (d) execute bulk insertion recursively for each
child cell of C using its corresponding buffer.

The parametert is a tuning parameter that trades-off in-
sertion overhead with the time that an incoming microblog
becomes searchable. A microblog is searchable (i.e., can
appear in a search result), only if it is inserted in the pyramid
structure. So, the larger the value oft the more efficient is
the insertion, yet, an incoming microblog may be held in the
buffer for a while before being searchable. A typical value
of t is a couple of seconds, which is enough to have few
thousands microblogs insideB. Since a typical arrival rate in
Twitter is 4K+ microblogs/second, settingt = 2 means that
each two seconds, we will insert 8,000 microblogs in the
pyramid structure, instead of inserting them one by one as
they arrive. Yet, a microblog may stay for up to two seconds
after its arrival to be searchable, which is a reasonable time.

Bulk insertion significantly reduces insertion time as instead
of traversing the pyramid for each single microblog, we group
thousands of microblogs into MBRs and use them as our
traversing unit. Also, instead of inserting each single mi-
croblog in its destination cell, we insert a batch of microblogs
by attaching a buffer list to the head of the microblog list.

B. Speculative Cell Splitting

Each pyramid index cell has a maximum capacity; set as an
index parameter. If a leaf cellC has exceeded its capacity, a
traditional cell splitting module would splitC into four equi-
area quadrants and distributeC contents to the new quadrants
according to their locations. Unfortunately, such traditional
splitting procedure may not be suitable to microblogs. The
main reason is that microblog locations are highly skewed,
where several microblogs may have the same exact location,
e.g., microblogs tagged with a hot-spot location like a stadium.
Hence, when a cell splits, all its contents may end up going to
the same quadrant and another split is triggered. The split may
continue forever unless with a limit on the maximum pyramid
height, allowing cells with higher capacity at the lowest level.
This gives a very poor insertion and retrieval performance due
to highly skewed pyramid branches with fat cells at the lowest
level.

To avoid long skewed tree branches, we employ aspecu-
lative cell splittingmodule, where a pyramid cellC is split
into four quadrants only if two conditions are satisfied: (1)C

exceeds its maximum capacity, and (2) If split, microblogs
in C will span at least two quadrants. While it is easy to
check the first condition, checking the second condition is
more expensive. To this end, we maintain in each pyramid

cell a set of split bits (SplitBits) as a four-bits variable; one
per cell quarter (initialized to zero). We use theSplitBitsas a
proxy for non-expensive checking on the second condition.

After each bulk insertion operation in a cellC, we first
check if C is over capacity. If this is the case, we check for
the second condition, where there could be only two cases for
SplitBits: (1) Case 1:The four SplitBits are zeros. In this case,
we know thatC has just exceeded its capacity during this
insertion operation. So, for each microblog inC, we check
which quadrant it belongs to, and set its corresponding bit
in SplitBits to one. Once we set two different bits, we stop
scanning the microblogs and split the cell as we now know
that the cell contents will span more than one quadrant. If we
end up scanning all microblogs inC with only one set bit,
we decide not to splitC as we are sure that a split will end
up having all entries in one quadrant. (2) Case 2:One of the
SplitBits is one. In this case, we know thatC was already
over capacity before this bulk insertion operation, yet,C was
not split as all its microblogs belong to the same quadrant
(the one with aSplitBits one). So, we only need to scan
the new microblogs that will be inserted inC and set their
correspondingSplitBits. Then, as in Case 1, we splitC only
if two different bits are set. In both cases, when splittingC, we
reset itsSplitBits, create four new cells with zeroSplitBits, and
distribute microblogs inC to their corresponding quadrants.
This shows that we would never face a case where two (or
more) of theSplitBits are zeros, as once two bits are set, we
immediately split the cell, and reset all bits to zeros.

Using SplitBits significantly reduces insertion and query
processing time as: (a) we do not have dangling skewed tree
branches, and (b) we avoid the expensive checking step for
whether cell contents belong to the same quadrant or not, as
the check is now done infrequently on a set of bits. In the
mean time, maintaining the integrity ofSplitBits in each cell
C comes with very little overhead. First, as long asC is under
capacity, we do not read or set the value ofSplitBits. Second,
deleting entries fromC has no effect on itsSplitBits, unless
C becomes empty, where we reset all bits to zero.

C. Bulk Deletion

As we have finite memory,Mercury needs to delete older
microblogs to give room for newly incoming ones. Deleting
an item M from the pyramid structure can be done in a
traditional way [2] by traversing the pyramid from its root till
cell C that enclosesM , and then removingM from C ’s list.
Unfortunately, such traditional deletion procedure cannot scale
up for Mercury needs. Since we need to keep index contents
to only objects from the lastT time units, we may need to
keep pointers to all microblogs, and chase them one by one
as they become out of the temporal windowT , which is a
prohibitively expensive operation. To overcome this issue, we
employ abulk deletionmodule where all deletions are done
in bulk. We exploit two strategies for bulk deletion, namely,
piggybackingandperiodic bulk deletions, described below.
Piggybacking Bulk Deletion. The idea is to piggyback the
deletion operation on insertion. Once a microblog is inserted



in a cell C, we check ifC has any items older thanT time
units in its microblog list (M List). As M List is ordered
by timestamp, we use binary search to find its most recent
itemM that is older thanT . If M exists, we trimM List by
removing everything from it starting fromM . Piggybacking
deletion on insertion saves significant time as we share the
pyramid traversal and cell access with the insertion operation.
Periodic Bulk Deletion. With piggybacking bulk deletion, a
cell C may still have some microblogs that should have been
deleted, yet, they are still there as there is no recent insertions
in C. To avoid such cases, we trigger a light-weight periodic
bulk deletion process everyT ′ time units (we useT ′ = 0.5T ).
In this process, we go through each cellC, and only check
for the first (i.e., most recent) itemM ∈ C.M List. If M

has arrived more thanT time units ago, we wipe the cell by
deleting itsM List and setting its number of items to zero.
If M has arrived within the lastT time units, we do nothing
and skipC. It may be the case thatC still has some expired
items, yet we intentionally overlook them in order to make the
deletion light-weight. Such items will be deleted soon either in
the next insertion or in the next periodic bulk deletion process.

Deleted microblogs are moved from our main pyramid
structure to another similar index structure of larger size,
stored in a lower storage tier. Deleted microblogs will be
retrieved only if an issued query has a time boundary larger
thanT , which is an uncommon case, as most of our incoming
queries use the defaultT value.

D. Lazy Cell Merging

After deletion, if the total size ofC and its siblings is less
than the maximum cell capacity, a traditional cell merging
algorithm would mergeC with its siblings into one cell.
However, with the high arrival rates of microblogs, we may
end up in spending most of the insertion and deletion overhead
in splitting and merging pyramid cells, as the children of a
newly split cell may soon merge again after deleting few items.
To avoid such overhead, we employ alazy mergingstrategy,
where we merge four sibling cells into their parent only if
three out of the four quadrant siblings are empty.

The idea is that once a cellC becomes empty, we check its
siblings. If two of them are also empty, we move the contents
of the third sibling to its parent, mark the parent as a leaf
node, and removeC and its siblings from the pyramid index.
This is lazy merging, where in many cases it may happen
that four siblings include few items that can all fit into their
parent. However, we avoid merging in this case to provide
more stability for our highly dynamic index. Hence, once a
cell C is created, it is guaranteed to survive for at leastT

time units before it can be merged again. This is becauseC

will not be empty, i.e., eligible for merging, unless there are no
insertions inC within T time units. Although the lazy merging
causes underutilized cells, this has a slight effect on storage
and query processing, compared to saving 90% of redundant
split/merge operations (which is measured practically) that
leads to a significant reduction in index update overhead.

V. QUERY PROCESSING

This section discusses the query processing module, which
receives a query from useru with spatial and temporal bound-
aries,R and T , and returns the top-k microblogs according
to a spatio-temporal ranking functionFα that weights the
importance of spatial proximity and time recency of each
microblog tou. A simple approach is to exploit the pyramid
index structure to compute the ranking score for all microblogs
within R andT and return only the top-k ones. Unfortunately,
such approach is prohibitively expensive due to the large
number of microblogs withinR andT . Instead,Mercury uses
the ranking function to prune the search space and minimize
the number of visited microblogs through a two-phase query
processor. Theinitialization phase (Section V-B) finds an
initial set ofk microblogs that form a basis of the final answer.
The pruning phase (Section V-C) keeps on tightening the
initial boundariesR and T to enhance the initial result and
reach to the final one.

A. Query Data Structure

The query processor employs two main data structures; a
heap priority queue of cells and a sorted list of microblogs:
Heap priority queue of cellsH: A heap priority queue of all
cells that overlap with query spatial boundaryR. A cell in H

has the form (C, index, BestScore); whereC is a pointer to the
cell, index is the position of the first non-visited microblog in
C (initialized to one), andBestScoreis the best (i.e., lowest)
possible score, with respect to useru, that any non-visited
microblog inC may have. Cells are inserted inH ordered by
BestScore, computed as:

BestScore(u,C) = α ×MinSpatialDistance(C,u.loc)
+ (1 − α) × TemporalDistance(C.M List[index].time,NOW )

where MinSpatialDistance(C,u.loc)is the minimum distance
betweenu and C and C.M List[index] is the most recent
non-visited microblog inC.
Sorted list of microblogs AnswerSet: A sorted list of k
microblogs of the form (MID, Score), as the microblog id and
score, sorted on score. Upon completion of query processing,
AnswerSetcontains the final answer.

B. The Initialization Phase

The initialization phase gets an initial set ofk microblogs
that form the basis of pruning in the next phase. One approach
is to get the most recentk microblogs from the pyramid cell
C that includes the user location. Yet, this is inefficient as:
(1) C may contain less thank microblogs within T , and
(2) Other microblogs outsideC may provide tighter bounds
for the initial k items, which leads to faster pruning later.
Main Idea. The main idea is to consider all cells within
the spatial boundaryR in constructing the initial set ofk
microblogs. We initialize the heapH by one entry for each cell
C within R. Entries are ordered based on best scores computed
as discussed in Section V-A. Then, we take the top cell entry
C in H as our strongest candidate to contribute to the initial
top-k list. We removeC from H and check on its microblogs



Algorithm 1 Query Processor
1: Function Query Processor (u, k, T , R, α)
2: H ← φ; AnswerSet← φ; MIN ←∞; R′ ← R; T ′ ← T
3: for each leaf cellC overlaps withR do
4: BestScore← α

Dist(u.loc,C)

R
+ (1-α) NOW−C.M List[1].time

T

5: Insert (C, 1, BestScore) into H
6: end for
7: TopH ← Get (and remove) first entry inH
8: while TopH is not NULL andTopH.score <MIN do
9: Score← TopH.score; M ← TopH.C.M List[TopH.index]

10: NextScore← score of current top entry inH
11: while Score< NextScoreandM is not NULL do
12: if M.loc insideR′ then
13: Score← α

Dist(u.loc,M.loc)

R
+ (1 − α) NOW−M.time

T

14: if Score<MIN then
15: Insert (M ,Score) in AnswerSet
16: if ∣AnswerSet∣ ≥ k then
17: Trim AnswerSet size tok
18: MIN ← AnswerSet[k].score;
19: if MIN < α then R′ ← MIN

α
×R′

20: if MIN < (1 − α) then T ′ ← MIN

1−α
× T ′

21: end if
22: end if
23: end if
24: M ← Next microblog inTopH.C.M List
25: if M.time outsideT ′ then M ← NULL
26: end while
27: if M ≠ NULL then Insert (C, index(M ), BestScore) in H
28: TopH ← Get (and remove) first entry inH
29: end while
30: Return AnswerSet

one by one in their temporal order. For each microblogM ,
we compare its score against the best score of the current top
cell C ′ in H. If M has a smaller (better) score, we insertM

in our initial top-k list, and check on the next microblog in
C. Otherwise, (a) we conclude that the next cell entryC ′ in
H has a stronger chance to contribute to top-k, so we repeat
the same procedure forC ′, and (b) If M is still within the
temporal boundaryT , we insert a new entry ofC into H with
a new best score. We continue doing so till we collectk items
in the top-k list.

Algorithm. Algorithm 1 starts by populating the heapH with
an entry for each cellC that overlaps with the query boundary
R. Each cell entry has its pointer, the index of the first non-
visited microblog as one, and the best score that any entry in
C can have (Lines 2 to 6). Then, we remove the top entry
TopH from H, and keep on retrieving microblogs from the
cell TopH.C and insert them into our initial answer set till any
of these three stopping conditions take place: (1) We collect k
items, where we conclude theinitialization phase at Line 16,
(2) The next microblog inC is either outsideT or does not
exist, where we setM to NULL (Line 25) and retrieve a new
top entryTopH from H (Line 28), or (3) The next microblog
M in C is within T , yet it has a higher score than the current
top entry inH. So, we insert a new entry ofC with a new score
and current index ofM in H, and retrieve a new top entry
TopH from H (Lines 27 to 28). The conditions at Lines 8
and 14 are always True in this phase asMIN is set to∞.

C. The Pruning Phase

The pruning phase takes theAnswerSetfrom the initializa-
tion phase and enhances it contents to reach the finalk.
Main Idea. Thepruningphase keeps on tightening the original
search boundariesR and T to new boundaries,R′ ≤ R and
T ′ ≤ T , till all microblogs within the tightened boundaries are
exhausted. Microblogs outside the tightened boundaries are
early pruned without looking at their scores. The idea is to
maintain a thresholdMIN as the score of thekth element in
AnswerSet. For a microblogM to be included inAnswerSet,
M has to have a lower score thanMIN, i.e.,:

α
Dist(u.loc,M.loc)

R
+ (1 − α)NOW −M.time

T
<MIN

This formula is used for spatial and temporal boundary tight-
ening as follows: (1)Spatial boundary tightening.Assume that
M has the best possible temporal score, i.e.,M.time = NOW.
In order for M to make it to AnswerSet, we should have:
α

Dist(u.loc,M.loc)
R

<MIN , i.e., M has to be within distance
MIN

α
R from the user. Hence, we tighten our spatial boundary

to R′ = Min(R, MIN
α

R). (2) Temporal boundary tightening.
Assume thatM has the best possible spatial score, i.e.,
Dist(u.loc,M.loc)= 0. In order forM to make it toAnswerSet,
we should have:(1−α) NOW−M.time

T
<MIN , i.e.,M has to

be issued within the lastMIN
1−α

T time units. Hence, we tighten
our temporal boundary toT ′ = Min(T, MIN

1−α
T ).

Pruning steps.Based on our bound tightening and the values
of MIN andα, thepruningphase goes through three pruning
steps in order: (1)No Pruning: When MIN > Max(α,1 −
α), then we search within our original boundariesR andT .
(2) One-dimensional Pruning: When MIN lies betweenα
and (1 − α), we start to employ eitherspatial or temporal
pruning, based on the value ofα. If α > (1 − α), we only
apply spatial pruning, otherwise, we go fortemporalpruning.
(3) Spatio-temporal Pruning: WhenMIN < Min(α,1−α), we
tighten bothspatial and temporalboundaries till we exhaust
all microblogs in the tightened boundaries.
Algorithm. Line 16 in Algorithm 1 is the entry point for
the pruning phase, where we already havek microblogs in
AnswerSet. We first setMIN to the minimum score inAnswer-
Set. Then, we check if we can apply spatial and/or temporal
pruning based on the values ofMIN andα as described above.
Pruning and bound tightening are continuously applied with
every time we find a new microblogM with a lower score
thanMIN, where we insertM into AnswerSetand updateMIN
(Lines 14 to 22). The algorithm then continues exactly as in
the initialization phase by checking if there are more entries
in the current cell or we need to get another cell from the
heap. The algorithm concludes and returns the final answer
list if any of two conditions takes place (Line 8): (a) HeapH
is empty, which means that we have exhausted all microblogs
in the boundaries, or (b) The best score of top entry ofH

is larger thanMIN, which means all microblogs inH cannot
make it to the final answer.



VI. I NDEX SIZE TUNING

Our discussion so far assumed that all microblogs posted
in the lastT time units are stored in the in-memory pyramid
structure. Hence, a query with any temporal boundary≤ T

guarantees to find all its answer in memory. In this section,
we introduce theindex size tuningmodule that takes advantage
of the natural skewness of data arrival rates over different
pyramid cells to achieve its storage savings (∼50% less stor-
age) without sacrificing the query accuracy (accuracy∼99%).
Our index size tuningis motivated by two main observations:
(1) The top-k microblogs in areas with high microblog arrival
rates can be obtained from a much shorter time than areas of
low arrival rates, e.g., top-k microblogs in downtown Chicago
may be obtained from the last 30 minutes, while it may need
couple of hours to get them in a suburb area. (2)α plays a
major role on how far we need to go back in time to look for
microblogs. Ifα = 1, top-k microblogs are the closest ones
to the user locations, regardless of their time arrival within
T . If α = 0, top-k microblogs are the most recent ones posted
within R, so, if we look back only for the time needed to issue
k microblogs. Then, for each cellC, we find the minimum
search time horizonTc ≤ T such that an incoming query toC
finds its answer in memory. Section VI-A derives the values of
Tc, for each cellC, while Section VI-B discusses the impact of
the index size tuningmodule on variousMercurycomponents.

A. Reducing the Cell Size

This section aims to find the valueTc for each cellC such
that only those microblogs that have arrived inC in the last
Tc time units are kept in memory. Per the following Lemma,
Tc is computed based on the default values ofk, R, T , and
α, and uses the microblog arrival rateλc for each cellC. We
assume that the locations of incoming microblogs are uniform
within each cell boundary, yet they are diverse across various
cells, hence each cellC has its own microblog arrival rateλc

Lemma 1: Given query parametersk, R, T , andα, and the
average arrival rate of microblogs in cellC, λc, the spatio-
temporal query answer from cellC can be retrieved from those
microblogs that have arrived in the lastTc time units, where:

Tc =Min
⎛⎜⎝T,

α

1 − α
T +

k

Min(Area(R)
Area(C)

,1) × λc

⎞⎟⎠
Proof: The proof is composed of three steps: First, we com-
pute the value ofλR as the expected arrival rate of microblogs
to query areaR, among the microblogs in cellC with arrival
rate λc. This depends on the ratio of the two areasArea(R)
and Area(C). If Area(R) < Area(C), then λR = Area(R)

Area(C)
λc,

otherwise, all microblogs fromC will contribute toR, hence
λR = λc. This can be put formally as:

λR =Min(Area(R)
Area(C) ,1) × λc

Second, we compute the shortest timeTk to form a set ofk
microblogs as an initial answer. This corresponds to the time

to get the firstk microblogs that arrive within cellC and
areaR. SinceλR is the rate of microblog arrival inR, i.e.,
we receive one microblog each1

λR

time units, then we need
Tk =

k
λR

time units to receive the firstk microblogs.
Finally, we compute the maximum time intervalTc that a

microblog M within cell C and areaR can make it to the
list of top-k microblogs according to our ranking functionF .
In order forM to make it to the top-k list, M has to have
a better (i.e., lower) score than the microblogMk that has
the kth (i.e., worst) score of the initial top-k, i.e., F (M) <
F (Mk). To be conservative in our analysis, we assume that:
(a)M has the best possible spatial score: zero, i.e.,M has the
same location as the user location. In this case,F (M) will
rely only on its temporal score, i.e.,F (M) = (1−α)Tc

T
, where

Tc = NOW−M.time indicates the search time horizonTc that
we are looking for, and (b)Mk has the worst possible spatial
and temporal scores among the initialk ones. While the worst
spatial score would be one, i.e.,Mk lies on the boundary of
R, the worst temporal score would take place ifMk arrives
Tk time units ago. So, the score ofMk can be set as:F (Mk)
= α + (1 − α) k

λRT
. Accordingly, to satisfy the condition that

F (M) < F (Mk), the following should hold:

(1 − α)Tc

T
< α + (1 − α) k

λRT
(1)

This means that in order forM to make it to the answer
list, Tc should satisfy:

Tc <
α

1 − α
T +

k

λR

By substituting the value ofλR, and boundingTc by the
value ofT , as we cannot go further back in time thanT , the
maximum value ofTc would be:

Tc =Min
⎛⎜⎝T,

α

1 − α
T +

k

Min(Area(R)
Area(C)

,1) × λc

⎞⎟⎠
∎

Lemma 1 means that in order for a microblogM in cell
C to make it to the top-k answer,M has to arrive within the
lastTc time units, whereTc ≤ T . Therefore, we save memory
space by storing fewer microblogs.

B. Impact on Mercury Components

This section discusses the impact of employing theTc

values onMercurycomponents, namely, index structure, index
operations, index maintenance, and query processing.
Index Structure. Each pyramid cellC will keep track of two
additional variables: (1)λc; the arrival rate of microblogs in
C, which is continuously updated with new microblog arrivals,
and (2)Tc; the temporal boundary in cellC computed from
Lemma 1, and updated with every update ofλc.
Index Operations. Insertion in the pyramid index will have
the following two changes: (1) For all visited cells in the
insertion process, we update the values ofλc andTc, (2) If Tc



is updated with a new value, we will have one of two cases:
(a) The value ofTc is decreased. In this case, microblogs that
were posted in the time interval between the old and new
values ofTc are immediately deleted. (b) The value ofTc

is increased. In this case, we have a temporal gap between
the new and old values ofTc, where there are no microblogs
there. However, with the rate of updates ofTc, such gap will
be filled up soon, and hence would have very little impact
on query answer. On the other side, deletion module deletes
microblogs from each cellC based on the value ofTc rather
than based on one valueT for all cells.
Index Maintenance. When a cellC splits into four quadrant
cells, the value ofλc in each new child cellCi is set based
on the ratio of microblogs from cellC that goes to cellCi.
As Mercuryemploys a lazy merging policy, i.e., four cells are
merged into a parent cellC only if three of them are empty,
the value ofλc at the parent cellC is set to the arrival rate
of its only non-empty child.
Query Processor.The query processor module is left intact
as it retrieves its answer from the in-memory data regardless
of the temporal domain of the contents.

VII. L OAD SHEDDING

Even with the index size tuningmodule, there could be
cases where there is no enough memory to hold all microblogs
from the lastTc time units in each cell, e.g., very scarce
memory or time intervals with very high arrival rates. Also,
some applications are willing to trade slight decrease in query
accuracy with a large saving in memory consumption. In such
cases,Mercury triggers aload sheddingmodule that smartly
selects and expires a set of microblogs from memory such that
the effect on query accuracy is minimal. The main idea of the
load sheddingmodule is to use less conservative analysis than
that of theindex size tuningmodule, discussed in Section VI.
In particular, Equation 1 was very conservative in assuming
that there is a microblogM that lies exactly on the same
location of the querying user, and henceM has a spatial score
of zero. Theload sheddingmodule relaxes this assumption and
assumes thatM has a spatial score of0 ≤ β ≤ 1 (instead of
zero), and hence Equation 1 will be re-formulated as:

αβ + (1 − α)Tc,β

T
< α + (1 − α) k

λRT
(2)

We use the termTc,β instead ofTc to indicate the search
time horizon for each cellC when theload sheddingmodule
is employed.β acts as a tuning parameter that trades-off
significant savings of storage with slight loss of accuracy.
β = 0 means that there is no load shedding, hence no storage
savings over theindex size tuningmodule (Tc,0 = Tc). On the
other hand,β = 1 means that the memory is barley enough to
hold only the most recentk microblogs per cell. As will be
shown below and in our experiments, a storage saving ofβ

results in accuracy loss ofβ3. For example, ifβ = 0.3, a 30%
saving of storage is traded with only 2.7% of accuracy loss.

A. Storage Savings

Starting from Equation 2, in order for a microblogM to
make it to the answer list,Tc,β should satisfy:

Tc,β <
α(1 − β)
1 − α

T +
k

λR

By substituting the value ofλR, and boundingTc,β by the
value ofT , the maximum value ofTc,β would be:

Tc,β =Min
⎛⎜⎝T,

α(1 − β)
1 − α

T +
k

Min(Area(R)
Area(C)

,1) × λR

⎞⎟⎠ (3)

Per Equation 3,Tc,β gives a tighter temporal coverage for
each cell asTc,β ≤ Tc. Depending on the values of query
parameters,k, R, T , andα, storage savings ranges from 0 to
β, i.e., if β = 0.3, we achieve up to 30% storage savings. This
means that storage saving goes linear withβ. Based on our
extensive experiments in Section VIII, we have experimentally
found that we always achieve storage saving ofβ

2
with much

better accuracy than the theoretical bound discussed below.

B. Accuracy Loss

Given the less conservative assumption in Equation 2, there
is a chance to miss microblogs that could have made it to
the final result. In particular, there is an areaAx in the
spatio-temporal space that is not covered by our analysis. A
microblog M in areaAx satisfies two conditions: (1) The
spatial score ofM is less thanβ, and (2) The temporal distance
of M is betweenTc,β andTc. We measure the accuracy loss
in terms of the ratio of the area covered byAx to the whole
spatio-temporal area covered byR andT , i.e.,R × T . This is
measured by multiplying the ratios of theAx’s temporal and
spatial dimensions,Tratio andRratio, to the whole space. The
temporal ratioTratio can be measured as:

Tratio =
Tc − Tc,β

Tc

=
( α
1−α

T + k
λR

) − (α(1−β)
1−α

T + k
λR

)
( α
1−α

T + k
λR

)
This leads to ∶ Tratio = β ×

α
1−α

T

α
1−α

T + k
λR

≤ β

This means that the temporal ratio is bounded byβ.
For the spatial ratio, consider thatAx andR are represented

by circular areas around the querying user location with
radius Radius(Ax) and Radius(R). Since a microblogM at
distanceRadius(Ax) has spatial score ofβ while a microblog
at distanceRadius(R) has spatial score of 1, thenRadius(Ax)
= β Radius(R). Hence, the ratio of the spatial dimension is:

Rratio =
Area(Ax)
Area(R) =

πRadius(Ax)2
πRadius(R)2 =

β2Radius(R)2
Radius(R)2 = β2

Hence, the accuracy loss can be formulated as:

AccuracyLossβ = Tratio ×Rratio ≤ β
3 (4)

This shows a cubic accuracy loss in terms ofβ, e.g., ifβ =
0.3, we have 2.7% loss in accuracy for 30% storage saving.
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Fig. 3. Index insertion time.

VIII. E XPERIMENTAL RESULTS

This section provides experimental evaluation ofMercury
based on an actual system implementation. With lack of direct
competitors, see Section II, we evaluate various versions of
Mercury to show the effectiveness of its components. All
experiments are based on a real deployment ofMercury and
using a real-time feed of US tweets (via access to Twitter Fire-
hose) and actual locations of web search queries from Bing.
We have stored 340+ million tweets and one million Bing
search queries in files. Then, we have read and timestamped
them to simulate an incoming stream of real microblogs and
queries. Unless mentioned otherwise, the default value ofk

is 100, microblog arrival rateλ is 1000 microblogs/second,
rangeR is a 30 miles,T is 6 hours,α is 0.2,β is 0.3, and cell
capacity is 150 microblogs. The default values of cell capacity,
α, andβ are selected experimentally and show to work best for
query performance and result significance, respectively, while
default λ is the effective rate of US geotagged tweets. As
microblogs are so timely that Twitter gives only the most
recent tweets (i.e.,α=0), we setα to 0.2 as the temporal
dimension is more important than spatial dimension. All
results are collected in the steady state, i.e., after running
the system for at leastT time units. We use an Intel Core
i7 machine with CPU 3.40GHZ and 64GB RAM. Our mea-
sures of performance include insertion time, storage savings,
query accuracy, and response time. The rest of this section
evaluates index maintenance (Section VIII-A), load shedding
(Section VIII-B), and query processing (Section VIII-C).

A. Index Maintenance

Figure 3 gives the performance ofMercury insertion time,
which entails piggypacked/bulk deletion, cell splitting,and
cell merging, if needed. We compare three alternatives for
Mercury index: (a) storing all microblogs of lastT time units
(denoted asMT), (b) using the index size tuningmodule
(Section VI), denoted asMST, and (c) using theload shedding
module (Section VII), denoted asMLS. Figure 3(a) gives the
performance when varying the arrival rate from 250 to 64,000
micoblogs/second. The figure presents the time ofMercury
bulk insertion every 1 second, i.e., all microblogs that have
arrived in the last second are inserted in bulk. BothMLS and
MSTperform much better thanMT. While MT is able to digest
only 32K micorblogs/second,MLS andMST are able to bulk
insert 64K microblogs in less than 0.5 second. For the current
Twitter rate (4,600 microblogs/second),MLSandMSTare able
to insert all the incoming 4,600 items in less than 34 msec.
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Fig. 4. Effect ofT on storage vs. accuracy

This is mainly because bothMLS and MST reduce the index
size, and hence less cells are visited in bulk insertion.

Figure 3(b) gives the same experiment with varyingk from
10 to 100. The performance is stable for all alternatives with
28, 12, and 10 msec forMT, MST, andMLS, respectively. This
shows the practical dominance of the first term (α

1−α
T ) in the

equations ofTc andTc,β over the term that containsk.
Figure 3(c) gives the bulk insertion time with varyingα

from 0 to 1.MT has a stable performance asα does not affect
its storage. On the other side, lower values ofα strongly favors
MSTandMLS as it plays a major role in deciding the values
of Tc and Tc,β , and hence the storage consumed. With the
increasingα, MST and MLS degenerate to be equivalent to
MT at α = 0.5 and 0.6, respectively. Figure 3(d) shows that
increasingR significantly enhances the performance of both
MST and MLS. The reason is that increasingR gives more
search space to look for the result, hence, no need to look
much back in time which needs less storage.

B. Load Shedding

In this section, we evaluate the impact of load shedding
on storage savings and query accuracy. Storing all the 340+
million tweets consumes more than 8GB from memory just
to store tweet id and latitude/longitude coordinates while
encounters much higher storage overhead,∼56GB, with text
and .NET framework overhead, yet it guarantees 100% query
accuracy. We show the effect of varyingT , α, andβ on the
storage overhead and accuracy of bothindex size tuning(MST)
and load shedding(MLS).

Figure 4 gives the storage overhead ratio and query accuracy
of MST and MLS while varying T from 3 to 12 hours. We
depict two curves forMLS that correspond to two values ofβ
as 0.3 and 0.7, whileMT is depicted in the Figure as 100%
storage overhead and query accuracy. For all values ofT , MLS
with β = 0.3 consumes only 35% of the storage required by
MT (Figure 4(a)). This takes place with a very high accuracy
of 98% to 99.5% (Figure 4(b)). Similarly,MLS with β = 0.7
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Fig. 5. Effect ofα on storage vs. accuracy

consumes only 25% of the storage with accuracy 97.5% to
99.3%.MSTconsumes 40% of the storage with almost 100%
accuracy. These practical results confirm our earlier analysis
in Section VII, where we anticipated that a linear reduction
of storage (β) will result in a cubic loss of accuracy (β3).
As shown in the figure,MST gives less than 100% accuracy
for T = 3, where we have only 99.2%. Theoretically,MST
should be able to provide 100% accuracy regardless of the
parameters values. However, the theoretical model assumed
spatial uniformity of microblogs within individual pyramid
cells, which is not 100% true. This leads to missing few
microblogs and hence a slight drop inMST accuracy.

Figure 5 gives the effect of varyingα from 0 to 1 on the
storage overhead and query accuracy ofMST and MLS with
β = 0.3 and 0.7. Figure 5(a) shows that increasingα leads
to increasing the storage overhead of bothMST and MLS.
While MST storage degenerates to be asMT when α ≥ 0.5,
MLS still keeps its storage gain tillα approaches 0.6 and
0.8, respectively for the two values ofβ. This shows that
load sheddingstill can find reasonable storage savings even
for large values ofα. Meanwhile, Figure 5(b) shows that all
alternatives have query accuracy of more than 95%. The worst
case takes place whenα = 0, in which the value ofβ does
not play any role. For all alternatives, once we have the same
storage overhead asMT, we obtain 100% accuracy.

Figure 6 focuses only on the load shedding (MLS), where it
studies the effect of varyingβ from 0 to 1 on the storage
overhead and query accuracy. Per Figure 6(a), the storage
overhead saving is linear inβ with line slope that depends
on value ofα. The lowerα, the lowerTc,β , and hence more
storage savings can be achieved. The extreme caseα = 1

makesMLS runs exactly asMT, while with α = 0.2, we can
achieve from 60% to 90% storage saving.

Figure 6(b) shows that the query accuracy is directly
proportional with the storage overhead for different values
of β. With α = 1, Tc,β = T and hence the accuracy is
100% regardless ofβ. The accuracy shown is much higher
than the theoretical expectations and has a practical lower
bound of 52% accuracy atβ = 1 with α = 0.9 which has
a storage saving of 90% (Figure 6(a)). This happens because
our theoretical model uses very conservative assumptions on
spatial and temporal maximum distances. Thus, even with
significant load shedding, in-memory microblogs can provide
good quality query answer, which shows the applicability of
Mercury in memory-constrained environments.
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Fig. 6. Effect ofβ on storage vs. accuracy

C. Query Evaluation

In this section, we show the effect of the query processing
techniques, where we contrastMercury against: (a)NoPrun-
ing, where all microblogs withinR and T are processed,
(b) InitPhase, where only theinitialization phase ofMecury
is employed, (c)PruneR, where only spatial pruning is em-
ployed, and (d)PruneT, where only temporal pruning is
employed. Figure 7(a) gives the effect of varyingk from 10 to
100 on the query latency. It is clear that variants ofMercury
give order of magnitude performance overNoPruning, which
shows the effectiveness of the employed strategies. With this,
we are not showing any further result toNoPruningas it is
clearly non-competitive. Also,InitPhase gives much worse
performance thanMercury, which shows the strong effect of
the pruning phase. Finally, it is important to note that with
k = 100, Mercury gives a query latency of only 3 msec.

Figures 7(b) and 7(c) give the effect of varyingR andT ,
respectively, on the query latency forMercury, PruneR, and
PruneT. Both figures show thatMercury takes advantage of
both spatial and temporal pruning to get to its query latency
of up to 4 msec for 12 hours and 64 miles ranges. Increasing
R and T increases the query latency of all alternatives,
however,Mercury still performs much better when using its
two pruning techniques. It is also clear thatPruneTachieves
better performance thanPruneR, i.e., temporal pruning is more
effective than spatial pruning, which is a direct result of the
default value ofα=0.2 that favors the temporal dimension.

Figure 7(d) gives the effect of varyingα from 0 to 1 on
the query latency, whereMercury consistently has a query
latency under 4 msec, whileInitPhasehas an unacceptable
performance that varies from 15 to 35 msec. This shows the
strong effect of thepruning phase inMercury. Meanwhile,
with increasingα, the temporal boundary ofPruneRincreases
and hence it visits more microblogs inside each cell. For low
values of α (< 0.5), the number of additional microblogs
visited due to increasing the temporal boundary is more than
the number of microblogs that are pruned based on spatial
pruning. This increases the overall latency ofPruneR. When
α ≥ 0.5, the number of microblogs thatPruneRprunes based
on the spatial pruning becomes larger than the additional
visited microblogs due to enlarging the temporal horizon.
Hence, PruneR latency becomes quickly better and beats
PruneT at α > 0.8. This means that for all values ofα < 0.8,
temporal pruning is still more effective than spatial pruning.
PruneThas a stable performance with respect to varyingα. In
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Fig. 7. Average query latency.

all cases,Mercurytakes advantage of both spatial and temporal
pruning to achieve its overall performance of around 4 msec.

IX. CONCLUSION

We have presentedMercury; a system for real-time support
of spatio-temporal queries on microblogs, where users request
a set of recentk microblog near their locations.Mercury
works under a challenging memory-constrained environment,
where microblogs arrive with very high arrival rates.Mercury
employs efficient in-memory indexing to support up to 64K
microblogs/second and spatio-temporal pruning techniques to
provide real-time query response of 4 msec.

.
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