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ABSTRACT
Web servers provide content to users, with the requirement of pro-
viding high response quality within a short response time. Meet-
ing these requirements is challenging, especially in the event of load
spikes. Meanwhile, we observe that a response to a request can be
adapted or partially executed depending on current resource avail-
ability at the server. For example, a web server can choose to send a
low or medium resolution image instead of sending the original high
resolution image under resource contention.

In this paper, we exploit partial execution to expose a trade off
between resource consumption and service quality. We show how
to manage server resources to improve service quality and respon-
siveness. Specifically, we develop a framework, called Quota-based
Control Optimization (QACO). The quota represents the total amount
of resources available for all pending requests. QACO consists of
two modules: (1) A control module adjusts the quota to meet the
response time target. (2) An optimization module exploits partial
execution and allocates the quota to pending requests in a manner
that improves total response quality. We evaluate the framework us-
ing a system implementation in the Apache Web server, and using
a simulation study of a Video-on-Demand server. The results show
that under a response time target, QACO achieves a higher response
quality than traditional techniques that admit or reject requests with-
out exploiting partial execution.

Categories and Subject Descriptors
D.4.1 [Process Management]: Scheduling

General Terms
Algorithms, Experimentation, Performance

Keywords
Feedback control, Optimization, Partial execution, Quality, Quality
profile, Response time, Scheduling, Web server

1. INTRODUCTION
Content servers such as web servers and Video-on-Demand (VoD)

servers are an important part of our web infrastructure. Such servers
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operate under stringent response time requirements in order to attract
and keep users, as large response times cause user dissatisfaction and
revenue loss [14]. In addition, servers need to provide high quality
responses. For example, users may stop using a VoD service if the
video quality is unsatisfactory.

Prior research has focused on satisfying response time require-
ments in web servers. For example, a common approach to meet
a response time target is to set a limit on the length of the incoming
request queue: when the queue is full, new requests are dropped upon
arrival. However, choosing a static queue length limit in admission-
control mechanisms [33] leads to several undesirable situations, such
as dropping too many requests and causing inconsistent user expe-
riences. Moreover, although well-designed web servers can effec-
tively avoid being persistently overloaded (e.g., by dynamically scal-
ing server provisioning), turning servers back to normal states takes
time [22] and hence, transient periods of overloads are inevitable due
to unexpected bursty load spikes [29].

These factors suggest the need for self-managed systems that can
adapt to the workload changes for timely responses. Feedback con-
trol has been successfully applied for satisfying response time re-
quirements in [1,17]. For example, prior work [6,8,24,25,31] adjusts
the queue length limit dynamically (or request drop rate) according
to the feedback on response time: decrease the queue length limit for
admission control when the measured response time exceeds the tar-
get, and vice versa. While this type of dynamic admission control is
effective for the classic “binary” request model (i.e., the server either
processes the request by returning a complete response or drops it
with a null response), it fails to exploit partial execution that many
web servers support.

With partial execution, a request may have several partial results
with different qualities depending on the amount of the received re-
sources. For example, a web server can employ content adaptation
(e.g., text-only, low-resolution image, and high-resolution image) to
cope with varying workloads. A VoD server can also support partial
execution by streaming videos of different qualities to users. Par-
tial execution provides the flexibility of trading more processing re-
sources for a better quality, but it presents new challenges in man-
aging server resources: The resource manager needs to dynamically
decide the amount of processing resources for each request, unlike
simply “accepting” or “rejecting” a request.

To exploit partial execution, we propose a quota-based control op-
timization (QACO) framework to improve response quality while sat-
isfying response time requirements for web servers. The quota is de-
fined as the total execution time (which is a proxy of the total amount
of processing resources) for all pending requests, and it is dynami-
cally adjusted based on the workload. To quantify the response qual-
ity, we use a monotonically-non-decreasing discrete quality function
that maps the allocated processing resources to a quality value in-
dicating how “well” the request is served (see Section 2.1 for more



details). The QACO model consists of two components: A control
module to adapt the quota so the system can meet its desired response
time, and an optimization module that decides the execution time of
each request (subject to the given quota) to improve the total response
quality.

For the control module, we use a feedback controller to dynami-
cally adjust the quota. We employ an integral controller to have zero
steady-state error with low runtime overhead. When the measured
response time is larger than the desired target, we decrease the quota
so requests would get shorter processing times, and thus their waiting
time and response time decrease. Similarly, when the measured re-
sponse time is smaller than the desired target, we increase the quota
so that requests get more processing time and improve their response
quality.

Designing an optimization module in this environment is challeng-
ing: The discreteness of quality functions requires combinatorial op-
timization to maximize the total response quality given a quota. We
develop two optimization modules for two different types of schedul-
ing scenarios. (1) When a scheduler does not know the service de-
mand of all waiting and running requests, we develop a heuristic al-
gorithm (QACO-U) that exploits the shape of the quality function, re-
serving time for all requests to complete at least an initial version that
yields the highest quality gain per unit processing time. (2) When
a scheduler knows the service demand of all pending requests, the
optimal scheduling problem is NP-hard, and we present an efficient
algorithm (QACO-K) that achieves a total quality arbitrarily close to
the optimal.

We demonstrate the practical feasibility of QACO by implement-
ing and evaluating it in the Apache web server. Here, the Apache
web server does not know the service demand of all pending requests,
therefore we apply QACO-U. Our experimental results show signif-
icant benefits of using quota-based control over queue-length-based
control. In particular, QACO meets the desired response time target
and achieves the highest service quality.

Furthermore, we perform a simulation study for a VoD server to
evaluate QACO-K as service demand of all video requests is known
in advance, and the server can choose at which bit-rate of the re-
sponse on a per request basis. In our simulation study, we observe
consistent findings: QACO outperforms the queue-based approach
with improved service quality. Moreover, we show that, besides
mean response time, QACO can also effectively bound high-percentile
response time to meet the target. The high-percentile response time
guarantees consistently fast response, and many commercial services
specify their Service Level Agreement (SLA) using both the mean
and high-percentile response time [9]. In addition, we compare QACO-
K and QACO-U to demonstrate how the scheduler exploits the knowl-
edge of service demands to make better decisions.

The contributions of this work are the following: (1) We pro-
pose QACO, a quota-based control optimization framework for web
servers with partial execution. (2) We introduce a control module
to meet the response time requirements, and two optimization mod-
ules to improve response quality with known and unknown service
demands. (3) We implement QACO in a web server and we show
the benefits experimentally. (4) We conduct a simulation study to
evaluate QACO in a VoD server.

The paper is organized as follows. Section 2 discusses workload
characteristics. Section 3 describes the QACO framework and its two
components: the control and the optimization modules. Section 4
describes the implementation and experimental evaluation in a web
server. Section 5 presents the results of a simulation study using a
VoD server. We discuss related work in Section 6 and present our
conclusions in Section 7.

2. WORKLOAD CHARACTERIZATION
In this section, we present a key feature of web servers, i.e., partial

execution, and then formulate the scheduling problem.

2.1 Partial Execution
Partial execution enables the flexibility of trading more processing

resources for better results. Many applications, such as web search,
webpage browsing, and video streaming, support partial execution.
For example, a web search engine receives queries from clients and
returns the matched documents within a short deadline. A search
query has multiple acceptable answers. With more processing time,
the search engine will match and rank more web pages, producing
a progressively better response [15]. Content adaptation (or content
fidelity) provides another form of partial execution by providing mul-
tiple service quality options that can be adaptively selected (either by
the servers or by clients) [2]. For example, YouTube provides differ-
ent video streaming qualities such as 360p, 480p and 720p that can
be chosen based on congestion level at the server side and/or Internet
speeds (where “p” stands for “progressive”).

With partial execution, the service quality of a request is quan-
tified by a function, referred to as quality function, in terms of the
amount of processing resources used to process the request. While
various types of system resources (e.g., memory, CPU) are required
to process a request, we use processing time as a proxy of the consoli-
dated processing resources. Thus, mathematically, a quality function
f : R+ → R+ maps the used processing time to a quality value
gained by executing the request. Although in general different ap-
plications have different quality functions, a typical quality function
satisfies the following three properties.

• Monotonicity: It is natural that quality function is monotoni-
cally non-decreasing: service quality of a request always improves
or stays the same with more processing resources.

• Discreteness: Quality functions associated with many best-effort
web applications are discrete (e.g., a staircase shape), since a request
can only be processed by exploring a finite number of algorithms
or data sets, thereby leading to discrete quality values. For exam-
ple, a VoD server typically streams videos with a small number of
different resolutions; a web server may return web pages with a lim-
ited number of choices (such as text only, low-resolution image and
high-resolution image).

• Diminishing returns: In many applications, quality function
exhibits diminishing returns: allocating more processing time to a
request leads to a decreasing quality improvement. In other words,
the quality improvement is significant when we start to process a re-
quest, while it gradually becomes diminishing during the processing,
as can be explained by considering the example of VoD servers us-
ing scalable video coding (a popular video encoding technique used
in H.264/MPEG-4 AVC standard): sending higher-rate bitstreams in-
creases the video quality but the quality increment gradually dimin-
ishes [34]. Diminishing returns are also common in a variety of al-
ternative domains, notably in game theory for defining continuously
concave utility functions [28].1 In fact, with continuous extension,
quality function in our study also becomes continuous and concave,
and for this reason, we say that the quality function is a concave-type
discrete function.

We illustrate two examples of quality functions in Figure 1(a) and
(b) where the y-axis is the quality value (or reward value) that rep-
resents the amount of satisfaction of users and the x-axis is the nor-
malized processing time (i.e., the ratio of actual processing time to
the maximum processing time required for returning the full-quality
webpage). In Figure 1(a), users fully satisfy (quality value 1) when

1Discrete utility functions that exhibit diminishing returns are called
submodular functions under some mild conditions [19, 28]



0 0.5 1
0

0.2

0.4

0.6

0.8

1

Normalized Processing Time

Q
u
a
lit

y
 V

a
lu

e

0 0.5 1
0

0.2

0.4

0.6

0.8

1

Normalized Processing Time

Q
u
a
lit

y
 V

a
lu

e

(a) Web Server. (b) VoD Server.

Figure 1: Example of Response Quality Function.

they receive a full-quality webpage with high-quality images from
the web sever, while they only get some satisfaction (e.g., quality
value 0.2) when they receive text-only reply.

Now, we briefly explain the benefits of partial execution while the
detailed algorithm is presented in the next section. Without partial
execution, a scheduler can either fully process a request or reject it.
For example, YouTube servers may not handle all the requests for
high-resolution videos in the event of overloading and, as a conse-
quence, user requests are either buffered for a long time prior to being
processed or rejected. By contrast, with partial execution, it could be
desirable to return lower-resolution videos but to satisfy all the users
under overloading such that total quality of responses is higher and
on average, users receive better service (because partially processing
two requests results in a higher total quality than fully processing
one request and dropping the other, due to the concave-type qual-
ity functions). Therefore, given limited resources and response time
constraint, partial execution opens new opportunities to improve re-
sponse quality.

2.2 Problem Formulation
We first present the scheduling problem formulation as follows.

We denote the set of pending requests (or jobs) by J = {Ji|i =
1, 2, . . . , N}. Each job Ji ∈ J is characterized by its service de-
mand (a.k.a. total work) wi and supported set of processing times
Ai = {ai,m|m = 1, 2, . . . ,Mi}, where 0 = ai,1 < ai,2 < . . . <
ai,Mi = wi and 0 represents zero processing time (i.e., rejecting a
request). We consider the mean response time constraint. Thus, the
request does not have a deadline, and the arrival time for each re-
quest is not required when making scheduling decisions, although it
is needed for monitoring the response time.

Let pi ∈ Ai denote the processing time that job Ji receives be-
fore being returned to the user. For notational convenience, we also
use the vectorial expression p = (p1, p2, . . . , pN ). Without loss of
generality, job Ji has a quality function fi : R+ → R+ that maps
the job completion ratio (i.e., pi/wi) to a quality value gained by
processing the job. The objective of the scheduler is to maximize the
total quality of all the jobs, i.e., maxp

∑N
i=1 fi(pi/wi), by optimally

choosing processing times for the jobs subject to the mean response
time constraint. This is a combinatorial optimization problem even
though the service demand of each job is known, since each job only
supports a discrete set of processing times.

3. QUOTA-BASED CONTROL
OPTIMIZATION FRAMEWORK

This section presents the quota-based control optimization frame-
work (QACO in short) for delay-sensitive web services with partial
execution. QACO consists of two integrated modules: (1) control
module, which applies feedback control to adjust the quota (defined

as the total processing time) to meet the mean response time con-
straint, and (2) optimization module, which is a scheduling algo-
rithm exploiting partial execution to maximize total response quality
for a given quota. The quota-based framework facilitates the sys-
tem design by decomposing the two major goals of a web server
system (i.e., satisfying response time constraint and achieving high
service quality) into the control and optimization module, such that
each module can be managed separately given the output of the other
module. Next, we provide details of designing the control and opti-
mization modules.

3.1 Control Module
In this subsection, we describe the control module that controls the

quota, i.e., the total processing time (or total amount of processing
resources) that we plan to allocate to all the pending requests.

The control module takes the observed mean response time as its
feedback and then adjusts the quota value accordingly in order to
meet the response time target. While there are various types of con-
trollers (e.g., model predictive control), we consider in this paper
an effective and well-known control mechanism — integral control,
which adjusts the value of control variable based on the difference
between the observed output and the reference output. The control
function is expressed as follows:

u(k) = u(k − 1) +KIe(k),

where k ∈ N represents the time step at which we update the quota
(e.g., after processing each request); u(k) is the output of the integral
controller (which is also the control variable of the system) at time
step k. The tracking error e(k) is the difference between the observed
output and the reference output, i.e., e(k) = yref −y(k−1), and the
controller parameter KI defines the control value adjustment relative
to to the tracking error. In our system, the control variable u is the
quota, and the output y is the mean or high-percentile response time
depending on our control objective.

We apply integral control because of its two key advantages. First,
it has a zero steady-state error, which allows the system to meet
its desired SLA when the system becomes stabilized. Second, it is
computationally efficient, which is an important property in delay-
sensitive web systems, as the integral controller incurs a negligible
overhead allowing recalculation of the quota upon the arrival or de-
parture of each request. While in theory the convergence rate of in-
tegral control may be slow for certain initial values, we observe in
almost all of our experiments that the integral control yields a stabi-
lized quota within a few seconds, which is quick enough to adapt to
traffic spikes in practical systems.

3.2 Optimization Module
The optimization module is a scheduling algorithm that takes as in-

puts a set of pending requests as well as the quota determined by the
control module, and then assigns a processing time to each request
with the objective of maximizing total response quality. The design
of the optimization module depends on the request quality function
and other application specific constraints. We do not intend to enu-
merate all optimization modules to cover all scenarios. Instead, we
present two optimization modules for jobs with concave-type dis-
crete quality functions (as described in Section 2.1), because they
are popular in practice and used by many applications such as web
servers and VoD servers. In particular, the two optimization modules
consider the cases where the service demand of a job is unknown and
known, respectively.

3.2.1 Unknown service demand
We first present an optimization algorithm with discrete concave-

type quality functions and with unknown service demand in Algo-



rithm 1 (called QACO-U). Web server is an example application with
discrete concave-type quality function (Figure 1). Moreover, web
server does not know the service demand of all waiting requests in
advance.2 QACO-U takes the following data as inputs: (1) quota,
defined as the amount of processing time available for all ready re-
quests in the queue, (2) queue length, (3) expected service demand of
requests – although precise service demand of a request is unknown
before job execution, we can compute expected service demand of
requests based on execution history, and (4) the supported set of the
processing times for the running request.

QACO-U processes requests in the FIFO order and decides the as-
signed processing time of the first job in the FIFO queue based on the
load and the quota. To improve total response quality, the scheduler
prefers running the part of requests with a higher quality improve-
ment. Given a concave-type quality function, processing the early
portion of a request has a higher quality gain than its later portion.
Therefore, the key idea of QACO-U is to prevent jobs at the begin-
ning of the queue from consuming the entire quota and starving later
requests, such that each request has a fair opportunity to be processed
(at least for the high-return part). To achieve this goal, QACO-U ap-
plies two techniques. (1) Equi-Partitioning (EQ): When the system
is heavily loaded, QACO-U performs EQ to reserve a fair share of
processing time for waiting requests (in Line 2). With a concave-
type quality function, giving each job a fair chance to complete at
least its high-return part improves the overall quality. (2) Reserva-
tion (RESV): In a lightly loaded case, QACO-U performs RESV to
reserve the expected service demand for the queuing requests and
allocates the remaining time to the current running job (in Line 3).
RESV gives the long requests a chance to finish if they will not im-
pact short ones. Note that QACO-U does not use precise information
on the quality function of all requests to make a scheduling decision,
because, when request service demand is unknown, its quality func-
tion is unknown in advance either. QACO-U only requires the quality
function to be concave-type as it exploits the benefits of concavity.
Nonetheless, QACO-U implicitly assumes that all the jobs share the
same concave-type quality function, because it is not feasible to dif-
ferentiate jobs without knowing their service demand.

QACO-U does not need a load threshold to decide if it should use
the result from EQ or RESV. During light loads, we want to estimate
the processing time using RESV, and its processing time is larger
than the one produced by EQ. During heavy loads, we want to use
EQ, and its processing time is larger than the one produced by RESV.
Therefore, selecting the larger between these two gives the assigned
processing time (in Line 4). Based on the assigned processing time,
QACO-U returns the size of the request with the highest quality while
requiring processing time less than or equal to the assigned process-
ing time (in Line 4 - Line 8).

In summary, QACO-U considers partial execution and concave-
type quality function by seamlessly combining EQ and RESV to im-
prove response quality. Moreover, it possesses three desirable prop-
erties. It does not require precise information on the service demand
and quality function of requests. It does not incur preemption over-
head. And, it is computationally efficient with the computational
complexity O(1), independent of the number of ready jobs. We fur-
ther evaluate its performance in Apache web server in Section 4.

3.2.2 Known service demand
We now develop an efficient algorithm to maximize the total re-

sponse quality with known service demand in Algorithm 3 (called
QACO-K). Leveraging branch-and-bound techniques [4], QACO-K

2Although service demand of a request is known once the server
starts to process a request, a web server does not know the service
demand of the waiting requests.

Algorithm 1 QACO-U: optimization algorithm with unknown ser-
vice demand
Inputs:
J = {Ji|i = 1, . . . , N}: set of pending jobs
T : quota (total processing time for pending jobs)
w̄: mean service demand of jobs
J1: first job in the queue
A1: the supported set of possible processing times for J1 Pseudo
code:
1: qLen = |J | {queue length}
2: EQ = T/qLen {Equi-partitioning}
3: RS = T − (qLen− 1)× D̄ {Reservation}

{assign processing time for the first job J1 at ready queue}
4: p1 = max(EQ,RS)

{discretize the processing time p1 of job J1}
5: for all w ∈ W do
6: p1 = max{a1,m|a1,m ≤ p1, a1,m ∈ A1}
7: end for
8: return p1

Algorithm 2 Greedy
Inputs:
J = {Ji|i = 1, . . . , N}: set of pending jobs
T : quota (total processing time for pending jobs)
wi: service demand of job Ji
fi: quality function of job Ji
Ai: supported set of partial processing times of Ji Pseudo
code:
1: Initialize pi = wi, for Ji ∈ J
2: while p ̸= 0 and Constraint (2) is not satisfied do
3: Ω← {Ji | Ji ∈ J , pi > 0}
4: ∆pi ← argmaxp∈Ai

(p < pi), ∀Ji ∈ Ω
5: i = argmini∈Ω {f(pi/wi)− f(∆pi/wi)}
6: pi ← ∆pi
7: end while
8: return p∗ = p

is computationally-efficient and can assign a close-to-optimal pro-
cessing time to each pending request subject to the quota constraint.

Given a quota T determined by the control module, we first for-
mulate the problem of optimally assigning processing time for each
request as follows.

OPT-K: max
p

∑
Ji∈J

fi(pi/wi) (1)

s.t.,
∑
Ji∈J

pi ≤ T, (2)

pi ∈ Ai,∀Ji ∈ J , (3)

where (2) is the quota constraint, and Ai is the supported set of (dis-
crete) partial processing times for job Ji.

Because of the discrete processing time constraint (3), OPT-K falls
into combinatorial optimization, for which the computational com-
plexity increases exponentially with the number of requests [5]. A
simple approach to solving OPT-K is: (1) by replacing “pi ∈ Ai”
with pi ∈ [0, wi] (where wi is the service demand for job Ji) and
continuously extending the quality functions for all Ji ∈ J to refor-
mulate OPT-K as a convex problem, we apply standard techniques
(e.g., interior methods [5]) to solve the relaxed problem, denoted
by OPT-RLX; and (2) we round the obtained continuous process-
ing time p∗i ∈ [0, wi] to the closest value in Ai that is no greater
than p∗i , for Ji ∈ J . While this approach automatically satisfies the
quota constraint, the response quality may be far from the global op-
timum. Below, we propose an efficient branch-and-bound algorithm
in the following four steps to yield an arbitrarily close-to-optimal so-
lution. With the flexibility of adjusting the accuracy and complexity,



the algorithm can be easily embedded in various systems (e.g., web
or VoD servers) while incurring a small overhead.

1) Decomposition. We first decompose OPT-K into M1 = |A1|
sub-problems, indexed by OPT-K1,OPT-K2, · · · ,OPT-KM1 . Each
sub-problem OPT-Km is expressed as follows:

OPT-Km : max
p

∑
Ji∈J

fi(pi/wi) (4)

s.t.,
∑
Ji∈J

pi ≤ T, (5)

pi ∈ Ai,∀Ji ∈ J and i ̸= 1, (6)
p1 = a1,m, (7)

where we fix p1 = a1,m as the m-th supported processing time for
job i and maximize the total response quality over p\{p1}.3 Af-
ter solving all the M1 sub-problems, we can select one sub-problem
(say, OPT-Km) that yields the maximum response quality and then,
combined with p1 = a1,m, we obtain the optimal processing times
p∗. Each sub-problem itself is an combinatorial problem and can be
further decomposed into multiple smaller problems by fixing the pro-
cessing time for another request. Thus, the original problem can be
solved recursively, which serves as the basis for applying the branch-
and-bound technique.

2) Lower and upper bounds. By relaxing the processing time
constraint “pi ∈ Ai” with pi ∈ [0, wi] for all Ji ∈ J and solving
the relaxed problem OPT-RLX using convex standard optimization
techniques [5], the resulting response quality is an upper bound on
that of problem OPT-K (i.e., the maximum response quality in OPT-
K is no greater than that obtained by solving the relaxed problem
with “pi ∈ [0, wi] for all Ji ∈ J ” as the processing time constraint).

To find a lower bound on the maximum response quality in OPT-K,
we propose a greedy algorithm, as described in Algorithm 2, which
never outperforms the optimal solution to OPT-K in terms of the total
response quality. In the greedy algorithm, all the processing times
are initially chosen to be their maximum values (i.e., pi = wi, for
Ji ∈ J ). If the quota constraint

∑
Ji∈J pi ≤ T is not satisfied,

we greedily decrease the processing time such that the total quality
decrease is minimum (i.e., Line 3–6 in Algorithm 2). Repeat this
process until all the processing times decrease to zero or the quota
constraint is satisfied.

Next, we define the following notations that facilitate the descrip-
tion of our branch-and-bound algorithm.

DEFINITION 1. UB(P) is the maximum quality obtained by solv-
ing OPT-RLX with the constraint P as its additional input. LB(X )
is the total quality obtained by using the proposed greedy algorithm
(i.e., Algorithm 2) with the additional constraint P as its additional
input.

We explain Definition 1 using an example. If P = {p1 = a1,m}
where a1,m ∈ A1, we compute UB(X ) by solving OPT-RLX with
an additional constraint of p1 = a1,m. The variation of OPT-RLX
with additional constraints specified by P is still convex and can be
efficiently solved using standard convex optimization techniques [5].
Similarly, we compute LB(X ) using the proposed greedy algorithm
with an additional constraint of p1 = a1,m. We use UB(∅) and
LB(∅) to represent the total quality obtained by solving the orig-
inal problem OPT-RLX and by using the greedy algorithm without
additional constraints, respectively.

3) Fixing rule. A core component of branch-and-bound algo-
rithms is the “fixing” rule, which determines the next decision vari-
able to be fixed. We define the “fixing” rule as follows.

3We can also fix the processing time for any job other than J1.

Algorithm 3 QACO-K: optimization algorithm with known service
demand
Inputs:
J = {Ji|i = 1, . . . , N}: set of pending jobs
T : quota (total processing time for pending jobs)
wi: service demand of job Ji
fi: quality function of job Ji
Ai: supported set of partial processing times of Ji
Pseudo code:
1: Initialize: t← 0, P0 ← ∅, set of leaves of a single-node treeA ← P0

2: Compute lower and upper bounds: L0 = LB(P0) and U0 = UB(P0)
3: while Ut − Lt > ϵ or t < IterateMax do
4: Choose the splitting node: P∗ = argmaxP∈A UB(P)
5: Choose the request index to fix: i = next(P∗)
6: Generate Mi new constraint sets:

P1
t+1 = P∗ ∪ {pi = ai,1}, · · · ,PMi

t+1 = P∗ ∪ {pi = ai,Mi
}

7: Update the set of leaves:
A ← (A\{P∗}) ∪ {P1

t+1} ∪ · · · ∪ {P
Mi
t+1}

8: Compute upper and lower bounds for Mi new constraint sets:
LB(P1

t+1), · · · , LB(PMi
t+1), UB(P1

t+1), · · · , UB(PMi
t+1)

9: Update global upper and lower bounds:
Lt+1 = minP∈A LB(P) and Ut+1 = maxP∈A UB(P)

10: t← t+ 1
11: end while
12: Choose the best constraint set thus far:
P̄ = maxP∈A LB(P)

13: return p∗ achieved by the greedy algorithm (i.e., Algorithm 2) with P̄
as the constraint

DEFINITION 2. next(P) is the index of the request that the pro-
posed greedy algorithm selects next to update the processing time
given the constraint set P as the input.

In essence, we select and fix the processing time for a request
which, if decreased to the next smaller value out of the supported
partial processing times, results in the minimum quality decrease.

4) Algorithm. We describe our branch-and-bound algorithm in
Algorithm 3. The parameter IterateMax is the maximum number
of iterations selected based on the desired accuracy and the problem
scale. The algorithm generates a tree, where each node represents
a constraint set and all the leaf nodes are stored in the set A. The
algorithm begins with an empty constraint set P0 = ∅ as the parent
node of the tree. In each iteration, we choose a leaf node and split
it into new leaf nodes, each of which represents a new constraint set
with an additional processing time pi fixed to be one of the permis-
sible values in Ai. In the splitting process (i.e., Line 4–7), we split
the node that corresponds to the constraint set resulting in the maxi-
mum response quality (obtained by solving OPT-RLX with an addi-
tional constraint specified by the node to be split). The reason behind
our splitting process is that after splitting this node, the global upper
bound will likely be decreased, while splitting any other node keeps
the global upper bound unchanged and hence the algorithm does not
shrink the gap between the global upper and lower bounds. Besides
the maximum number of iterations, another stopping criterion is the
difference between the global upper and lower bounds. Specifically,
if Ut − Lt is no greater than a sufficiently small positive number ϵ,
it is guaranteed that the solution obtained using the greedy algorithm
with an appropriate constraint set is close-to-optimal. Therefore, by
increasing IterateMax and using a sufficiently small positive num-
ber ϵ, QACO-K yields an arbitrarily close-to-optimal solution, while
the global optimality is achieved at the expense of increasing the
computation cost.

Complexity. Although finding the global optimal solution to OPT-
K is NP-hard due to the constraints of discrete processing times, the
beauty of branch-and-bound algorithm is that it typically converges
much faster, especially by setting “Ui − Li ≤ ϵ” rather than strictly



enforcing “Ui−Li = 0”. In fact, with “Ui−Li ≤ ϵ” as the stopping
criterion, the number of iterations required for convergence is upper
bounded, and in practice, the actual number of iterations is typically
even much smaller than the upper bound (which is also observed in
our calculations). The analysis of convergence rate is beyond the
scope of our paper, and interested readers are referred to [4] for a de-
tailed treatment. In practice, we can also group the processing times
for the same type of requests that share a common quality function
into one decision to speed up QACO-K. Even if the computational
time is strictly constrained, we can set a looser stopping criterion
such that QACO-K can return a reasonably good solution within a
few iterations. In the extreme case (with a sufficiently large ϵ and
IterateMax = 1), QACO-K reduces to the greedy algorithm de-
scribed in Algorithm 2, whose complexity is comparable to QACO-
U. Therefore, QACO-K can be easily adapted to practical systems
with various computational capabilities.

4. APACHE EXPERIMENTAL EVALUATION
This section presents our implementation and evaluation using the

Apache web server. We use QACO-U because Apache web server
does not know the service demand of the waiting requests in ker-
nel queues. The servers know the request details once it starts pro-
cessing it. Our results show that QACO-U outperforms the existing
Apache scheduling as well as and traditional queue-based schedul-
ing: QACO-U meets the response time target and achieves higher
result quality.

4.1 Implementation
We use an Apache server, servicing HTTP requests for webpages

with varying sizes. To obtain realistic distributions of webpages, we
obtain the size distribution of 100 randomly crawled webpages from
CNN.com and generate a workload following the same distribution
as shown in Figure 2. We implement our techniques using Apache
version 2.2.19 on Windows. Specifically, we modify the function
ap_parse_uri() to choose the right version of the content depending
on the feedback from the controller and the scheduler when QACO-U
is enabled.
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Figure 2: Size distribution of 100 CNN webpages. The mean is
2.9 MB and the standard deviation is 0.68.

For each webpage, our algorithm supports partial results, e.g., text-
only or with low-resolution images. We consider three versions of
varying size and quality in this evaluation–original, medium, and
small (O, M , and S respectively). We point out that our approach is
not dependent on the number of available response versions. We set
the size of M as 1

10
∗ O and the size of S as 1

50
∗ O, and its quality

to be 8
10

and 2
10

of original requests. As the purpose of this study
is to show the benefit of the algorithms for a given quality function,

we leave a more sophisticated modeling of user satisfaction as fu-
ture work. We also demonstrate that our algorithm is applicable to
different quality functions in Section 5.4.

To generate the server workload, we use Httperf to send HTTP re-
quests for webpages. Our implementation uses release version 0.9.0.
We use an open-loop workload generator for measuring the server
performance, which generates a stream of requests to the server. We
choose to use this over a closed-loop workload generator to avoid
having a fixed population of users [30].

4.2 Experimental Setup
We compare QACO-U to four baseline algorithms: three algo-

rithms based on existing Apache approaches and one queue-based
algorithm, as follows:

• QACO-U estimates possible quota of the server and decides
appropriate partial results without prior knowledge of service
demands of requests.

• Apache models Apache without support for partial results.

• ApacheM models Apache always returning medium size of
partial results.

• ApacheS models Apache always returning small size of partial
results.

• QueueO , which applies feedback control to drop requests (or
send zero replies) when the server is busy. To decide whether
the server is busy or not, we use a moving mean value of re-
quest response time. When the moving mean response time
exceeds the response time target T , QueueO sends zero reply
to reduce the response time of requests.

All experiments are conducted on a server with Intel Core i7-
2600K 3.40GHz CPU and 16GB RAM running the Apache Web
Server on the Windows Server operating system. For the client we
use a computer with an Intel Core i7 930 2.80GHz CPU/24GB RAM
and Debian GNU/Linux 6.0 running Httperf. The client machine is
never the bottleneck in our experiments.

4.3 Results

4.3.1 Comparison to Apache scheduling
We first compare QACO-U to Apache, which is Apache without

support for partial execution. We first warm up the server for 10
seconds, and then client sends a fixed number of requests. We vary
the load from 2 r/s to 220 r/s, and run each load for 2400 seconds.
We compute the quality value and the mean response time at each
load.

First, we observe the response time of QACO-U, to verify that it
can control the response time to meet the response time target T =
500ms over varying load levels.

Figure 3(a) shows the mean response time of Apache and QACO-
U. As the Apache web server does not have a control module for
response time, the response time of Apache starts to increase from 10
r/s. After 10 r/s, the server is overloaded and a new request waits until
Apache finishes processing earlier requests. As a result, the response
time increases up to 4000ms, which significantly exceeds the target
response time. In clear contrast, QACO-U effectively controls the
response time to meet the target T = 500ms by servicing partial
requests of varying sizes depending on the load. We can observe
constant response time around the target in Figure 3(a) for all load
levels.

Next, we observe the goal of ensuring high result quality, balanc-
ing with the goal of controlling response time. We measure the re-
sponse quality for a give load, which is the sum of response qualities
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Figure 3: Apache Web server mean response time and total re-
sponse quality for QACO-U and Apache.

regardless of response time. We point out that this metric tends to un-
der estimate the benefits of our techniques, since a very late response
should have a lower quality.

Figure 3(b) shows the response quality of Apache and QACO-U
at varying loads. At very low load (<10 rps), Apache and QACO-U
have the same quality as they always return the webpages with the
original size. At loads 10-50 rps, Apache achieves slightly higher
quality with a cost of much higher response time than the target. At
high-load, the quality value of Apache plateaus at 70000 (after 30
r/s), as the server becomes overloaded and therefore requests start to
get dropped by the server. In contrast, the quality value of QACO-U
continues to increase as the load level increases, while meeting the
response time targets shown in Figure 3(a). With around 50 rps and
up, QACO-U achieves both higher quality and much lower response
time: The benefits of QACO-U come from exploiting the partial re-
sults and performing better scheduling that exploits the quality func-
tion. When requests are competing for resources and the server is
overloaded, QACO-U maximizes the total result quality by serving
the portion (or versions) of requests with higher quality gain given a
limited amount of processing time. In contrast Apache either serves
a request in full or drops a request, while QACO-U satisfies more re-
quests (a smaller version if needed) to increase the total result quality.

4.3.2 Comparison to other approaches
We next compare QACO-U to other three approaches, ApacheM ,

ApacheS , and QueueO .
First, we focus on response time; Figure 4(a) shows the mean re-

sponse time of each approach at varying loads. We observe that
the response time of ApacheM exceeds our target of 500ms after
35 r/s, while Apache’s response time increases rapidly after 10 r/s.
ApacheM and Apache fail to meet response time target because they
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Figure 4: Apache Web server mean response time and total re-
sponse quality for systems under all approaches.

do not have admission control or other mechanism to meet a re-
sponse time target. Other systems, ApacheS and QueueO , meet the
response time target, though they suffer from a lower quality value
than QACO-U as we show next.

We compare the quality of QACO-U to other approaches. Fig-
ure 4(b) shows the quality of each approach at varying loads. Over-
all, QACO-U performs comparably to the winners over all loads.
Apache and ApacheM have a short period of time offering higher
quality than QACO-U, but at the cost of much longer response time
than the desired target. The quality value of ApacheS and QueueO
is consistently lower than QACO-U. ApacheS’s quality is low be-
cause it always sends S (the small version of a webpage) even when
the system is lightly loaded and has ample resources to send higher
quality results. QueueO effectively meets the response time target by
using feedback control, however, QACO-U outperforms QueueO on
quality because QACO-U exploits partial execution. At high load,
QueueO may serve one request in O but reject other requests, while
QACO-U decides a version for each request based on their quality
values, their processing demand and the total load, which increases
total response quality given the available resource constraints.

In summary, QACO-U is the only approach that shows adaptive
behaviors that balance the dual goals of controlling response time
and achieving high result quality. It successfully exploits partial ex-
ecution and meets response time targets for a wide range of load.

5. SIMULATION OF VOD SERVER
This section reports the results of a simulation study on a VoD

server which receives requests for video segments, and services them
with low response time and high quality under a limited server band-
width. Since the service demand of each request is known in a VoD
server storing pre-coded videos, we apply QACO-K. We also include



the results of QACO-U for comparison. The simulation results show
the following: (1) QACO-K and QACO-U consistently achieve a
higher quality than queue-based approaches while meeting the re-
sponse time target more accurately. (2) QACO-K achieves an even
higher quality than QACO-U by exploiting the additional informa-
tion on service demand. (3) QACO can also effectively bound the
high-percentile response time (rather than the mean response time)
while achieving a high response quality. (4) QACO-K and QACO-U
perform consistently well with different quality functions.

5.1 Simulation Setup
VoD server services requests with the given limited bandwidth. As

requests compete for the server bandwidth, the scheduling algorithms
can exploit partial execution by sending a lower-definition videos to
trade quality for response time. The simulation parameters, include
server bandwidth, video bit rates and target response time are listed in
Table 1, following the convention of similar simulation studies [15].

Table 1: Model Parameters for VOD Server.
Parameter Value

Server Bandwidth 1GBps
Video rate 10MBps (O), 5MBps (M), 2MBps (S)

Target Response Time 5secs

We use an open-loop workload generator to drive the VoD server,
sending requests from 2 r/s to 1500 r/s. For each load, we run a sim-
ulation for 600 seconds to obtain the results of a single experiment.
We run the simulation three times for each point and compute aver-
age values. Each video supports three different quality levels, e.g.,
high- , medium- and low-definition, which we denote as original O,
medium M , and small S, respectively. We set the bit rate of M as
1
2
∗O and the bit rate of S as 1

5
∗O. We use two sets of quality values

for full and partial results: (set 1) 1 for O, 0.7 for M , and 0.3 for S;
and (set 2) 1 for O, 0.8 for M , and 0.4 for S.

We compare QACO-K and QACO-U to the following three queue-
based approaches: (1) QueueO sends high-definition videos, and it
uses an integral controller to control the queue-length and rejects re-
quests when queue is full. (2) QueueM and (3) QueueS apply the
same feedback control mechanism, while they send medium- and
low- definition videos, respectively.

5.2 Mean Response Time Results
We consider both known and unknown service demands – QACO-

K knows the service demands of pending requests in the queue and
their quality function, while QACO-U has no such knowledge.

The goal of this evaluation is to verify whether different approaches
can control the response time to meet the mean response time target
of 5s over varying load levels. Figure 5(a) shows the response time of
each approach over varying loads. All five approaches return replies
to meet the desired response time target. However, the queue-base
approaches, by executing either in full or none, show a drastic in-
crease in response time at certain load points: In Figure 5(a), we
observe that, at 200 r/s, QueueO increases to 5s, and also similarly
at 400 r/s for QueueM and at 1100 r/s for QueueS . In contrast, the
mean response times of QACO-K and QACO-U increase gracefully,
as their optimization space is expanded to include partial executions.

Figure 5(b) shows the corresponding quality value. At low loads,
the total quality value of all approaches increases as load increases.
However, when the load is high the mean response time reaches the
target and the queue-based approaches start to drop requests and suf-
fer a decrease in quality. In contrast, both QACO-K and QACO-U are
able to find an appropriate partial execution by exploiting concave-

type quality functions, and as a result, achieve a higher quality value
than the three queue-based approaches, for all loads that we used.

We also observe that QACO-K consistently outperforms QACO-
U in terms of the quality value because QACO-U may under- or
over-estimate service demands of requests in the queue. QACO-U
does not have the precise information and can only estimate using
an mean/expected value. In contrast, QACO-K, knowing the service
demands of all pending requests, estimates the possible processing
times of given requests more precisely. QACO-K successfully ex-
ploits the knowledge of the service demands and offers better re-
sults than QACO-U. Both algorithms outperform the queue-based
approach by exploiting concave-type quality functions even when the
service demands of pending request are unknown.

5.3 99-Percentile Response Time Results
To offer a desired user experience, VoD servers often need to guar-

antee stringent responsiveness, expressed as high-percentile response
time (which is widely considered in the literature [10]). A commonly-
used metric is 99-percentile response time, i.e., 99% of the requests
need to satisfy that response time requirement. We show that QACO
can also bound the high-percentile response time while improving
the total quality. Figures 5 (c) and (d) show the 99-percentile re-
sponse time and quality results of the five algorithms with varying
loads, given a 99-percentile response time requirement of 6 seconds.
The results show that, while both quota-based and queue-based ap-
proaches effectively bound the 99-percentile response time to the de-
sired value, both QACO-U and QACO-K consistently offer a higher
quality than the traditional queue-based approaches, demonstrating
the effectiveness of exploiting partial execution and concave-type
quality function for quality improvement.

5.4 Sensitivity Analysis
Figures 5 (e) and (f) report the same set of results on controlling

the mean response time for a different quality function: Set 2 with
quality 1 for O, 0.8 for M , and 0.4 for S. We observe that the re-
sponse time (Figure 5 (a) and (e)) and quality graphs (Figure 5 (b)
and (f)) are similar. We also did additional sensitivity analyses using
different quality functions: Set 3 with quality 1 for O, 0.9 for M ,
and 0.5 for S, and Set 4 with quality 1 for O, 0.8 for M , and 0.5
for S. The results are consistent with the results in Figures 5 (a) and
(b). This suggests that our approach is applicable to various concave
quality functions.

6. RELATED WORK
Feedback control theory has been widely used to achieve perfor-

mance guarantees in computer systems with many applications such
as multimedia streaming, real-time computing, transaction process-
ing, and many others [1, 17]. In this section, we focus on server sys-
tems using feedback control to meet response time guarantees, and
applications that use partial execution.

6.1 Controlling Server Systems for Response
Time

The prior work along this line focuses on three main scenarios:
(1) Control for relative response time. For example, feedback con-

trol loop for an Apache web server has been used [26] to enforce
desired relative response time among different service classes via
connection scheduling and process reallocation.

(2) Control elastic resources. In these prior works [20, 21, 25,
31, 35], systems acquire and release resources in response to dy-
namic workload to meet response time target. There are various types
of resources to adapt: For example, adding or removing a storage
node [21], altering CPU allocation [35], changing processing speed
through dynamic voltage and frequency scaling [20].
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Figure 5: VoD server mean and 99-percentile response time, and total response quality using simulation.

(3) Control to prevent overloading. While a well-designed system
should not be persistently overloaded, transient periods of overload
are often inevitable, since the load is external to the server system and
requests arrive according to a stochastic process, leading to transient
overload and underload periods at the server. Such transient periods
are inevitable and difficult to predict [29]. Many prior works [6, 8,
24] apply feedback control to cope with transient overload, deciding
when to drop requests in order to meet response time target.

The above prior works [6,8,20,21,24–26,31,35] use control theory
to achieve response time guarantees, however, none of them consider
partial execution of requests. As in many prior works [13,36] on ad-
mission control, they either serve a request in full or reject a request
completely. By contrast, QACO is designed for servers that support
partial evaluation and it optimizes the scheduling based on request
quality function. We show that exploiting partial evaluation offers
better response function.

6.2 Partial Execution
Employing partial execution and approximate/imprecise computa-

tions is an active area of research. For example, web content adap-
tation [7, 11] offers different versions of the content for the same
request. Loop perforation [18] offers compiler and runtime support
for partial execution and has been applied to audio and video codecs.
Baek and Chilimbi [3] develop a general framework to support ap-
proximated computation of different applications to trade quality for
lower energy. Montez and Fraga [27] similarly differentiate the re-
quests into a discrete number of classes, e.g., depending on fees paid.
However, they cannot support multiple levels of partial execution and
evaluate with only one level, costing 20% of response time and 0.2 of
the quality. These prior works [3,7,11,18,27] offer important insights
on how to adapt execution for different applications. They focus on

partial execution mechanism that enables individual requests to pro-
duce partial results. They do not, however, consider server environ-
ments where servers proactively enable partial execution to resolve
resource competition among multiple requests with response time
and quality targets. Imprecise computation techniques [23] also ex-
plore partial execution to address overloads and share some similarity
with our proposal, but they are intended for hard real-time systems
with deadline-constrained tasks and do not apply to our considered
web servers in which average or high-percentile response time is of
importance.

In video streaming applications, rate adaptation (or equivalently
partial execution in our terminology) enabled by scalable video cod-
ing [34] uses mechanisms that exploit network conditions: sending
lower-quality videos (e.g., only base layer in scalable video coding)
to users with worse network connections or worse channel condi-
tions in wireless networks [12, 32]. In contrast, QACO proposes to
perform partial execution based on the system load at the server side,
which is a complementary technique to the existing rate adaptation
mechanisms [34]. Moreover, QACO can also be extended to incor-
porate the network condition for each request by imposing a con-
straint that requests with worse network conditions can only support
a smaller subset of supported processing times. The simulation re-
sults in Section 5 demonstrate the significant quality improvement
by solely using QACO at the server for partial execution, pointing
to a potential research direction that combines both load-based and
network-based partial execution mechanisms for further quality im-
provement in video streaming, which we leave as future work.

6.3 Systems with Content Adaptation
Prior work [15, 16] exploits partial execution in a different en-

vironment or for different objective. [15] uses partial execution to



improve total response quality of jobs while meeting job deadline.
Their work to bound deadline is different from this work that bounds
mean/percentile response time: average/percentile response time is
accumulative statistics of multiple jobs, where feedback control is
often applied to effectively monitor the performance metric and offer
the desired guarantees, while deadline is imposed on each job, thus
meeting deadline constraints rarely uses feedback control. Moreover,
both [15] and [16] focus on the applications with continuous smooth
quality functions instead of servers with discrete quality functions.
Discrete quality functions increases the complexity of optimization
modules: when request quality functions are continuous and con-
cave, optimal solution can be obtained efficiently using convex opti-
mization with known service demands; however, when quality func-
tions are discrete, it becomes an NP-hard combinatorial optimization
problem, which is notably difficult to solve. In this work, we de-
velop an optimization module using a branch-and-bound technique
to achieve an efficient solution and validate its effectiveness in both
simulation and experimental studies.

The closest prior work to ours is controlling web servers that sup-
port partial execution. Abdelzaher and Bhatti [2] propose to resolve
the overloading problem of web servers by adapting web content to
load conditions. To meet the desired server utilization, they control
the ratio between the requests offering degraded content versus all
the requests. Although that work uses partial execution to meet their
control target, it significantly differs from our work: It does not con-
sider maximizing overall response quality for all requests as a goal,
nor does it consider request quality function as an analytical guidance
to improve the scheduling decision.

7. CONCLUSION
Web servers can exploit partial execution to meet response time

requirements while providing higher quality responses. To exploit
partial execution, we develop a scheduling framework that consists
of two components. First, a control module dynamically determines
a quota of resources of all pending requests, with the objective of
meeting the response time requirements. Second, an optimization
module assigns processing to each request in a manner that improves
overall response quality. We implement the framework in the Apache
Web server and evaluate its benefits empirically. We also conduct a
simulation study and show how the proposed techniques improve the
quality of a Video-on-Demand server. Our experimental and simu-
lation results show that exploiting partial results improves response
quality while meeting response time requirements.
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