
Horton+: A Distributed System for Processing Declarative
Reachability Queries over Partitioned Graphs

Mohamed Sarwat1 Sameh Elnikety2 Yuxiong He2 Mohamed F. Mokbel1

1Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, USA
2Microsoft Research, Redmond, WA, USA

ABSTRACT
Horton+ is a graph query processing system that executes declar-
ative reachability queries on a partitioned attributed multi-graph.
It employs a query language, query optimizer, and a distributed
execution engine. The query language expresses declarative reach-
ability queries, and supports closures and predicates on node and
edge attributes to match graph paths. We introduce three algebraic
operators,select, traverse, andjoin, and a query is compiled into an
execution plan containing these operators. As reachability queries
access the graph elements in a random access pattern, the graph is
therefore maintained in the main memory of a cluster of servers to
reduce query execution time. We develop a distributed execution
engine that processes a query plan in parallel on the graph servers.
Since the query language is declarative, we build a query optimizer
that uses graph statistics to estimate predicate selectivity. We ex-
perimentally evaluate the system performance on a cluster of 16
graph servers using synthetic graphs as well as a real graph from
an application that uses reachability queries. The evaluation shows
(1) the efficiency of the optimizer in reducing query execution time,
(2) system scalability with the size of the graph and with thenum-
ber of servers, and (3) the convenience of using declarativequeries.

1. INTRODUCTION
Graphs are widely used in many application domains, includ-

ing social networking [31], software collaboration [4], geo-spatial
road networks [37], interactive gaming [44], among others [13, 27].
For example in a social network graph, a node represents a person,
photo, video, location, event, or group. An edge representsa binary
relation between two persons such as friendship, family or work re-
lations such as “advisor of” and “manager of”. An edge shows that
a person is tagged in a photo, is attending an event or is member
of a group. Common queries include “finding Alice’s photos taken
in Singapore”, “finding Bob’s friends of friends”, and “finding all
people advised directly or indirectly by Prof. Carol”.

Several emerging applications, e.g., Facebook Graph
Search [16], allow users to issue interactive queries over a
graph. In such applications, graph nodes and edges have several

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 39th International Conference on Very Large Data Bases,
August 26th - 30th 2013, Riva del Garda, Trento, Italy.
Proceedings of the VLDB Endowment, Vol. 6, No. 14
Copyright 2013 VLDB Endowment 2150-8097/13/14...$ 10.00.

attributes, and users query the modelled entities and theirrela-
tionships. Such queries can be expressed as graph paths, and
we call this query classreachability queries over an attributed
multi-graph. These applications introduce the following require-
ments: (1)Usability: A query should be declarative, rather than
procedural. (2)Low latency: As applications are interactive, they
require low query execution time. (3)Scalability: The employed
graphs may not fit on a single server, motivating a distributed
system design.

To motivate the need for a new system, we briefly discuss the
existing categories of graph processing systems: (1) Relational
database systems are not efficient in handling graph reachability
queries because these queries are recursive and may containclo-
sures. SQL needs to be extended with recursion to execute such
queries. (2) Semi-structured data management systems, e.g. [36,
45], provide query languages such as SPARQL [43] to query
RDF data, and XML query languages to query XML documents.
SPARQL-based systems target a different class of queries, graph
pattern matching rather than reachability. XML querying tech-
niques [45] manage tree-structured data instead of graphs.(3) Cen-
tralized graph platforms, e.g. Grace [34] and GraphChi [20], re-
quire the graph to fit on one server. (4) Distributed graph platforms,
such as Pregel [30], Giraph [19], Trinity [39] and PowerGraph [29],
accept procedural programs to be computed over the graph. Such
systems focus on graph computations rather than graph querying,
and they assume the users to be expert programmers.

In this paper, we present the design, implementation and eval-
uation of Horton+, a distributed system for processing declarative
reachability queries over a partitioned graph. Horton+ employs a
declarative query language that uses regular language reachability
to express reachability queries over an attributed multi-graph. We
introduce three algebraic graph operators,select, traverse, andjoin,
and use them to execute a query plan.

Executing graph reachability queries generates a random access
pattern to the memory system; Horton+, therefore, manages the
graph in themain memoryof a cluster of servers. We build a dis-
tributed execution engine that executes the three graph operators in
parallel and batches messages among the graph servers.

Since the query language is declarative, rather than procedural,
there are multiple ways to execute a query. Horton+ is equipped
with a query optimizer that reduces the query execution latency.
The system maintains a set of graph statistics that are used by the
optimizer. Among a rich space of possible query plans, the opti-
mizer employs a cost model and selectivity estimation techniques
to estimate the cost of executing each plan. The optimizer selects
the execution plan that minimizes the expected number of visited
graph nodes and reduces communication among the graph servers.

Horton+ is the first distributed query processor for processing

Alice Bob
Friend

Ta
g Tag

Photo1
{Year=2012}

Ta
g

CarolDan
{Age=25}

Tag

F
ri
e
n
d

Partition B

Partition A

Manages

M
a
n
a
g
e
s

Query: 'Alice'-Friend-Person
Answer paths:
Alice-Friend-Bob
Alice-Friend-Dan

Query: 'Alice'(-Manages>-Person)*
Answer paths:
Alice-Manages>-Bob
Alice-Manages>-Bob-Manages>-Carol

Graph:
Alice is a friend of both Bob and Dan.
Dan' s age is 25.
Photo1 is taken in year 2012.
Photo1 tags Alice, Bob, Carol, and Dan.
Alice is the manager of Bob.
Bob is the manager of Carol.

Figure 1: Small fragment of a social graph.

reachability queries over an attributed multi-graph. We implement
Horton+ and evaluate it experimentally to show its scalability and
efficiency in executing graph reachability queries using both real
and synthetic graphs on a cluster of 16 graph servers. We also
compare Horton+ with the Giraph [19] system to highlight benefits
of Horton+ and its declarative query language and optimizer. An
early version of the system, called Horton was demonstrated[38].
Horton+ introduces major additions, including the graph operators,
query optimization, and different query plan and executionmodel
with a formal query language.

In summary, the contributions of this paper are the following:
(1) Horton+ as a full-fledged system for distributed processing of
graph reachability queries. (2) A formal graph query language that
supports reachability queries over an attributed multi-graph (Sec-
tion 2.2). (3) A distributed query processor that executes query
plans over multiple graph servers (Section 3). (4) A query op-
timizer, equipped with cost and selectivity estimation techniques
(Section 4), that optimizes the issued query. (5) An experimen-
tal evaluation on a cluster of servers using both real and synthetic
graphs and a comparison with Giraph (Section 5).

2. GRAPH MODEL & QUERY LANGUAGE
In this section, we give an overview of the graph model in Sec-

tion 2.1, and describe the query language in Section 2.2.

2.1 Graph Model
We use a general graph model; an attributed multi-graphG =
{V, E} has a set of nodesV and a set of edgesE . A node represents
an entity with a primary key (id), a categorical type (e.g., person,
photo or event), and a set of arbitrary attributes. An edge isa binary
relationship between two nodes, and it has a categorical type (e.g.,
friend-of or tagged-in), and a set of arbitrary attributes (e.g., edge
direction and edge weight). Multiple edges may link two nodes,
representing several relationships.

Figure 1 shows a fragment of a social graph as an example. There
are two node types: Person (Alice, Bob, Carol, Dan) and Photo
(Photo1), and three edge types: Friend, Tag and Manages. A node
may have attributes, e.g., age of Dan is 25. The figure also shows
two queries and their answers. The graph is partitioned: Nodes
Carol and Dan are in partitionA, and nodes Alice, Bob, and Photo1
are in partitionB.

Horton+ manages both directed and undirected graphs in main
memory with pointer-based representation. In the case of a directed

Query ::= NodePred
Query-EdgePred-Query
(Query OR Query)
Query (-EdgePred-Query)∗

(Query-EdgePred-)∗ Query
Query (-EdgePred-Query)+

(Query-EdgePred-)+ Query
NodePred ::= Id | NodeType | NodeType{(AttrPred)+}

(NOT NodePred)
(NodePred AND NodePred)
(NodePred OR NodePred)

EdgePred ::= EdgeType | EdgeType{(AttrPred)+}
(NOT EdgePred)
(EdgePred AND EdgePred)
(EdgePred OR EdgePred)

AttrPred ::= Operand BinaryOperator Operand
Operand ::= AttributeName | AttributeValue

NodeType ::= Node | TypeId
EdgeType ::= Edge | TypeId

Figure 2: Abstract syntax of the graph query language.

graph, each node stores both inbound and outbound edges to allow
queries to traverse both directions.

2.2 Query Language
The objective of the query language is to express graph reach-

ability queries declaratively, rather than in a proceduralmanner,
making developers more productive and allowing query optimiza-
tion. The query language specifies relationships between entities
as graph paths. Figure 2 depicts the abstract syntax of the lan-
guage. The non-terminalQuery is the start symbol, and a query
starts with a node predicate and possibly followed by a sequence of
edge and node predicate pairs. Closures specify paths of arbitrary
length, and they are supported using Kleene star “∗” (zero or more)
and Kleene plus “+” (one or more).

A node predicate specifies a node id, a node type such asPhototo
match nodes of type photo, orNodeto match any node type. A node
predicate may contain predicates on node attributes, e.g.,photos
that are black and white taken this year (Photo{color=‘B&W’
AND year=2013}). Node predicates can be composed. For ex-
ample, the predicate(Photo OR Video), which matches nodes
of type photo or video, is composed of two predicates. Simi-
larly, an edge predicate specifies an edge type. For instance, a
Tag, Friend, or Edgematches a tag edge, friend edge, any edge,
respectively. An edge predicate can also specify multiple predi-
cates on edge attributes, e.g., a friendship relation sincelast year
(Friend{year=2012}). We use the"<" and">" symbols to
represent edge directions in a directed graph.

Q1 ‘Alice’-Tag>-Photo-Tag<-‘Bob’

Q2 Photo-Tag<-Person-Friend-‘Alice’

Q3 ‘Alice’-Tag>-Photo-Tag<-Person-Friend-‘Alice’

Q4 ‘Alice’(-Advice>-Person)∗-Coauthor-‘Bob’

Table 1: Query examples.

Example. Table 1 shows four example queries.Q1 finds all
photos in which both Alice and Bob are tagged.Q1 has three node
predicates and two edge predicates: The first node predicatespec-
ifies the node id (‘Alice’). The second node predicate provides
the node type (Photo), and the third node predicate specifies the
node id. The two edge predicates specify edge type (Tag). Simi-
larly, Q2 retrieves all photos in which a friend of Alice is tagged,
andQ3 finds all photos in which Alice is tagged with one of her
friends.Q4 finds whether Prof. Alice or her academic descendants

Node.id = ‘Bob’ Node.id = ‘Alice’

S0 S1 S2 S3 S4 S5

S0 S1 S2 S3 S4 S5

S0 S1 S2 S3 S4 S5

S0 S1 S2 S3
JOIN

Q Query Plan

1

2

3

Edge.type

= Tag

Node.type

= Photo

Edge.type

= Tag

Edge.type

= Friend

Edge.type

= Tag

Edge.type

= Tag

Edge.type

= Tag

Node.type

= Photo

Node.type

= Photo

Node.type

= Person

Node.type

= Person

Node.type

= Person

Edge.type

= Friend

Node.id = ‘Alice’

Node.id = ‘Alice’

Node.id = ‘Alice’

4
S0 S1 S2 S3 S4

Edge.type

 = Advise

Edge.type =

CoAuthor
Node.type

= Person
Node.id = ‘Bob’

Node.id = ‘Alice’

Figure 3: Query execution plan forQ1, Q2, Q3, andQ4.

have co-authored a paper with Bob.Q4 is recursive with a closure
((-Advice>-Person)∗) over a pair of predicates.

3. DISTRIBUTED QUERY PROCESSOR
The query processor receives an input query and returns the

matched results. The input query is compiled into a query plan,
which can be executed directly, or first optimized and subsequently
executed. We introduce three algebraic graph operators,select, tra-
verse, and join. Employing these operators is important: (1) The
query processor becomes a composition of a few basic building
blocks. Each operator has clearly defined functionality andefficient
implementation. (2) The query optimizer builds a cost modelfor
each operator using graph statistics to explore cost-efficient ways
to combine them to answer a query. For clarity of presentation,
we first describe the operators assuming a centralized environment,
and we next present the distributed implementation.

3.1 Compilation into an Execution Plan
An input query is compiled into a plan containing one or more

deterministic finite state automata (DFA) and graph operators. The
query plan has a recursive tree structure: Each tree node is either a
leaf node containing a DFA, or an intermediate node containing the
join operator and two trees where each is a query plan.

Example. Figure 3 shows four execution plans for queriesQ1,
Q2, Q3, andQ4. The plan forQ1 is a leaf node containing a DFA
that has six states (S0 to S5). S0 is the starting state, andthe set
of starting nodesfor the query are the nodes which satisfy the first
node predicate (Node.id=‘Bob’) on the transition fromS0 to S1.
The plan ofQ3 includes a join between two query plans, andQ4’s
plan contains a loop because the query contains a Kleene star.

3.2 Algebraic Graph Operators
To execute the query plan, we introduce the following graph op-

erators: Theselectoperator locates the starting nodes from which
path matching proceeds. Thetraverseoperator traverses a set of
nodes through their edges to a new set of nodes iteratively. The
traversal is conditioned by the DFA transition predicates,and par-
tial graph paths are accumulated. Thejoin operator joins the result
of two query plans to construct longer paths. The query optimizer
introduces the join operator into the query plan, and it rewrites a
DFA into one or several more efficient DFAs. DFA matching is

performed first using the select operator to find the startingnodes,
then a sequence of calls to the traverse operator.

Select Operator.The objective of theselectoperator is to deter-
mine the set of starting nodes efficiently. The operator takes a DFA
and applies the transition predicate from the initial stateon nodes
to select the set of starting nodes. The operator employs a primary
key index if the node primary key (id) is specified, or a hash in-
dex on the node type if node type is specified, and secondary index
structures are exploited to match attribute predicates. Ifno index
is available or predicate selectivity is very low, theselectoperator
applies the predicates on all nodes of the given type.

Traverse Operator. Thetraverseoperator is iterative; it receives
a set of partial paths and the DFA. Initially the set of partial paths
is the set of starting nodes from theselectoperator. In each iter-
ation, the traverse operator matches each partial path intoone or
more longer paths if they satisfy the transition predicatesof the
DFA state. For the graph elements that satisfy the predicates, the
traverseoperator appends them to the partial paths, and the par-
tial paths that are not extended in the iteration are dropped. Upon
reaching anacceptingstate, the partial paths are returned as match-
ing results for the DFA. This processing pattern results in traversing
the graph in breadth-first manner from each starting node.

The complexity of the traverse operator iterations is upper
bounded by the product of the number of start nodes, length ofthe
query, and expected number of edges per node in the graph when
the query has no closures. We discuss a more accurate cost estima-
tion using graph statistics in Section 4.

The termination of the traverse operator iterations is an important
property since the graph may contain cycles, and the DFA may con-
tain loops (corresponding to closures). Each partial path maintains
the DFA state at which each node and edge was matched along the
path. Before a node is visited, the partial path is checked toensure
that the node is not visited again in the same DFA state. All queries
terminate since each node is visited at most once in each state of
the DFA for each constructed path.

Join Operator. The join operator receives two sets of matching
paths from two query plans, and constructs longer paths by join-
ing paths from the two sets. After each query plan is evaluated
independently to produce its resulting paths, the join operation is
performed based on the ids of the last nodes from the first pathset
and the ids of the last nodes of the second path set. For example,
the two DFA’s ofQ3 in Figure 3 are joined based on thePerson
id matched atS5 of the first DFA and atS3 of the second DFA.

3.3 Distributed Execution Engine
We use multiple partition servers (a) to query graphs that donot

fit in the main memory of a single server, and (b) to evaluate each
query in parallel on the partition servers. In this section,we discuss
the architecture of the distributed execution engine and the imple-
mentation of the algebraic graph operators.

Architecture. The graph is partitioned into disjoint partitions,
each managed by apartition serverthat is responsible for manag-
ing its own subset of graph data and associated indexes. Eachedge
is represented at both the source and destination nodes. A remote
edge that connects two nodes in two different partitions specifies
both the id of the remote node and the target partition where the re-
mote node exists. A server is designated as thecoordinator, and is
responsible for query parsing, compilation and optimization. The
coordinator uses adirectory servicethat maintains two mappings:
a mapping from a partition id to a server network address, andan-
other mapping from node id to a partition id. The coordinatoralso
maintains the graph statistics used by the optimizer.

Algorithm 1 Distributed query processing
1: Function EVALUATE (QTree)

/* Case 1: The query tree is a Join */
2: if QTreeis JOIN then
3: L AnswerPaths← EVALUATE (QTree.LeftSubTree)
4: R AnswerPaths← EVALUATE (QTree.RightSubTree)
5: AnswerPaths← JOINOPERATOR(L AnswerPaths, R AnswerPaths)

/* Case 2: The query tree is a DFA */
6: if QTreeis Leaf DFA nodethen
7: for all PartitionP in AllPartitions do
8: StartingNodes[P]←P . SELECTOPERATOR(QTree.DFA)
9: PartialPaths[P] = StartingNodes[P]
10: if StartingNodes[P] 6= ∅ then
11: CurrentPartitions+=P
12: if CurrentPartitions6= ∅ then
13: AnswerPaths← TRAVERSEOPERATOR(QTree.QueryID,

QTree.DFA, CurrentPartitions)
14: return AnswerPaths

An effective graph partitioning algorithm assigns nodes toparti-
tions to preserve locality in graph accesses, and it reducescom-
munication overhead among partitions during query processing.
Graph partitioning is not the focus of our work. Horton+ can,how-
ever, incorporate any existing graph partitioning scheme,including
hashing (which is used by default) or more sophisticated partition-
ing tools [1].

3.3.1 Operators
Select Operator.Theselectoperator determines the set of start-

ing nodes by evaluating the first transition predicate of theDFA.
In the distributed environment, the coordinator invokes the select
operator on all partitions in parallel. A partition replieswith a mes-
sage to the coordinator indicating whether it finds matchingnodes
or not. The coordinator registers the partitions with matches as par-
ticipants in the DFA execution. An important special case iswhen
the DFA transition predicate is a primary key equality, providing
the node id. The coordinator invokes the select operator at the tar-
get partition, determined by the directory service.

Traverse Operator. The traverseoperator starts at each parti-
tion with one or more starting nodes as determined by theselect
operator. It then initiates a bulk synchronous breadth firstsearch
(BFS) [46] among the participant partitions, synchronizedby the
coordinator, to transition from one DFA state to the next while
matching graph elements. The traverse operator iterates through a
sequence of BFS levels that represent the DFA states. At eachDFA
state (BFS level), thetraverseoperator performs three main steps:
(1) Local computationis the step in which each participant partition
runs its own local query execution engine to check on the graph el-
ements that satisfy the current DFA state. If an accepting DFA state
is reached, signaling a matching path, the partition communicates
the path to the coordinator. (2)Global communicationis the step
where graph partitions send messages to each other to prepare for
the next DFA state (which could point to a node in a different parti-
tion). (3)Bulk Synchronizationis the coordination/synchronization
step needed to advance to the next DFA state. The coordinatorim-
plements a barrier, waiting for synchronization messages from all
participant partition servers in order to advance the DFA tothe next
breadth first search level. When a partition cannot advance aDFA
as no match is found, it sends a no-more-matches message to the
coordinator. The distributed evaluation terminates when the coor-
dinator receives all matching paths and no-more-matches messages
from all participating partitions.

Join Operator. The coordinator either runs thejoin operator
locally or assigns it to one of the partition servers with matching
results. We apply a heuristic that selects the least-loadedpartition
server to process the paths matching the two query plans. Thejoin

Algorithm 2 Traverse operator
1: Function TRAVERSEOPERATOR(QueryID, DFA, CurrentPartitions)
2: AnswerPaths←∅ DFACursor←0
3: /* Sequence of Breadth First Search (BFS) levels (DFA states) */
4: while CurrentPartitions6= ∅ do
5: /* STEPS 1 & 2: Local Computation & Global Communication */
6: for all PartitionP in CurrentPartitionsdo
7: PARTITIONEXECUTIONENGINE(P , QueryID, DFA, DFACursor)
8: CurrentPartitions←∅

9: /* STEP 3: Bulk Synchronization/Coordination */
10: PartitionsMsgs= WAITFORPARTITIONS(QueryID, DFA)
11: for all PartitionP in PartitionsMsgsdo
12: AnswerPaths+=P .FullPaths
13: CurrentPartitions+=P .NextPartitions
14: DFACursor← ADVANCECURSOR(DFA, DFACursor)
15: return AnswerPaths

is performed using sort-merge join, which takesO(R log(R) +
S log(S) + R + S) time to run at the coordinator whereR and
S denote the number of paths from the two plans to join.

3.3.2 Algorithm and Communication Patterns
Algorithm 1 shows the workflow of the distributed query execu-

tion using the operators. The algorithm takes the query execution
planQTree as input, and returns the set of matching paths. The
algorithm handles two cases:
Case 1:QTree is a join: The algorithm recursively executes the
left and right trees ofQTree representing two query plans. It then
joins their results using the JOINOPERATOR.

The communication pattern of ajoin operator is as follows: (1)
The coordinator starts the execution by sending the query plans to
the partition servers; it also decides where to run thejoin operator
and informs the partition servers. (2) After the evaluationof the
two trees completes, the partition servers send their matching paths
to the designated server that performs the join operation.

In summary, for ajoin operator, the coordinator sendsP control
messages to start the execution, and the partitions send their results
back to the designated server with at mostP data messages, where
P is the number of graph partitions.
Case 2: QTree is a leaf DFA node: The algorithm runs an ini-
tialization step (lines 6 to 11) where the coordinator broadcasts the
query DFA to all partitions to invoke the select operator, SELEC-
TOPERATOR, to find the starting nodes at each partition. Next,
TRAVERSEOPERATOR(Algorithm 2) is invoked to find the match-
ing paths. Finally, the matched paths are returned as answer.

Algorithm 2 gives the pseudo code of the TRAVERSEOPERA-
TOR. The algorithm takes the following inputs: (1)QueryID: rep-
resents the ID of issued query, (2)DFA: denotes the query DFA, and
(3) CurrentPartitionsrepresents the set of participant graph parti-
tions. TRAVERSEOPERATORinitializes the DFA cursor to the first
DFA state (DFACursor←0). The algorithm iterates over a sequence
of breadth first search (BFS) levels (lines 4 to 14).

STEP 1 & 2: Local Computation & Global Communication
(lines 4 to 8):At each BFS level, the coordinator signals all parti-
tionsP ∈ CurrentPartitionsto advance theDFACursorto the next
DFA state. Each partition receives the partial path matchesfrom
other partitions with the ending nodes belonging to the partition,
and it combines them with its local partial matches. Then, itchecks
for local graph elements to match the current DFA state. Whenthe
next DFA state points to a remote node (located in a differentparti-
tion), the partition server buffers all the partial matchestowards the
same remote partition into a message, and sends the message to the
remote partition. As each partition server sends at most onemes-
sage to all other partitions, the total number of these data messages
at each level of BFS is bounded byP (P − 1).

Q Alternative query execution plans

1

Plan1 : ‘Alice’ Tag Photo Tag ‘Bob’

Plan2 : ‘Bob’ Tag Photo Tag ‘Alice’

Plan3 : (‘Alice’ Tag Photo)1(‘Bob’ Tag Photo)

2

Plan1 : Photo Tag Person Friend ‘Alice’

Plan2 : ‘Alice’ Friend Person Tag Photo

Plan3 : (‘Alice’ Friend Person)1(Photo Tag Person)

3

Plan1 : ‘Alice’ Tag Photo Tag Person Friend ‘Alice’

Plan2 : ‘Alice’ Friend Person Tag Photo Tag ‘Alice’

Plan3 : (‘Alice’ Tag Photo) 1

(‘Alice’ Friend Person Tag Photo)

Plan4 : (‘Alice’ Tag Photo Tag Person) 1

(‘Alice’ Friend Person)

4
Plan1 : ‘Alice’ (Advise Person)∗ Coauthor ‘Bob’

Plan2 : ‘Bob’ Coauthor (Person Advise)∗ ‘Alice’

Table 2: Examples of alternative query plans.

STEP 3: Bulk Synchronization (lines 9 to 14):The coordina-
tor waits for messages from participant partitionsCurrentPartitions
signalling the end of local computation and global communica-
tion steps. The received messagesPartitionsMsgsmay contain two
pieces of information: (1)FullPaths: represent a set of full match-
ing graph paths if found. (2)NextPartitions: represent the set of
partitions that will participate in the next BFS level. The partial
matches are communicated only among partition servers; thecoor-
dinator does not send or receive any intermediate result. The TRA-
VERSEOPERATORterminates when there is no participant partition
at the next level (CurrentPartitions=∅).

In summary, each level of thetraverseoperator incurs (1) at most
2P control messages between the coordinator and the partitions to
signal the start and end of the level, and (2) at mostP (P − 1)
data messages among the partitions to exchange intermediate re-
sults. The size of the control messages is small, and therefore, the
workload of the coordinator is light without requiring any inten-
sive computation or communication. The size of the data messages
depends on each query, and it depends on the size of intermediate
results that are distributed among the partition servers. The total
levels of BFS is bounded by the length of the DFA if it does not
contain a loop.

4. QUERY OPTIMIZATION
The declarative language of Horton+ makes query optimization

possible and important. A declarative language only expresses the
logic of a computation without describing its control flow: the
query optimizer of Horton+ can choose to run a query among many
implementations (or execution plans), preferably the one with the
lowest cost. However, finding such an execution plan is not triv-
ial, which requires an accurate cost model that estimates the cost
of execution plans by taking into account of graph statistics and
a computationally-efficient enumeration algorithm that finds the
lowest-cost solution in a short amount of time. This sectionde-
scribes query optimizer of Horton+, which efficiently finds an op-
timal query execution plan (visiting the fewest number of graph
nodes) for queries without closure operators. Moreover, wede-
velop a heuristic algorithm to perform optimization for queries with
closure operators, and we discuss how the optimizer takes commu-
nication cost into consideration for distributed graphs.

4.1 Space of Query Plans
The query optimizer takes a compiled query plan as input and

outputs an efficient query execution plan. The output plan isrepre-
sented as a tree with DFAs in the leave nodes and join operators as

the intermediate nodes. To produce an efficient plan, the optimizer
enumerates various execution plans, estimates their costsand re-
turns the lowest-cost plan. Here we define the cost of an execution
plan by estimating the total number of nodes it visits. The fewer
the number of visited nodes, the more efficient the executionplan.

For a graph queryQ = 〈N1, E1, · · · , Ni, Ei, Ni+1, · · · , Ek−1,
Nk 〉, with k node predicates andk − 1 edge predicates, Horton+
query optimizer first considersk possible plans as follows: (1) One
plan is to execute the query starting fromN1 to Nk. (2) Another
plan is to execute the query in the reverse order, fromNk to N1.
(3) k − 2 plans as dividingQ at nodeNi, 1< i < k, into two sub-
queries as follows: (a) a subquery that starts fromN1 and ends at
Ni, and (b) a subquery that starts fromNi and ends atNk. The re-
sults from the two subqueries are joined to produce the final answer.
Each of the two subqueries can be recursively optimized by con-
sidering its execution in the forward and reverse order, as well as
further splitting into shorter subqueries. However, for simplicity il-
lustration, we first describe a simple version of the query optimizer
where the first subquery is executed in the forward order fromN1

to Ni while the second subquery is executed in the reverse order,
fromNk toNi. We present the complete recursive query optimizer
in Section 4.6. A query can be executed in the forward or reverse
order because each edge (whether directed or not) can be accessed
from the its two nodes.

Example. Table 2 gives all non-recursive query plans that the
query optimizer considers for queriesQ1 to Q4. For example,
Q3 has four node predicates, and hence four possible plans as fol-
lows: (1) The forward order fromN1 toN4, which finds the graph
node forAlice, then finds photos in whichAlice is tagged.
From these photos, we find all persons tagged in any of these
photos. Among these persons, we find the ones who are friends
with Alice. (2) The reverse order, fromN4 to N1, which finds
the graph node forAlice, then all friends ofAlice. For these
friends, we find all photos in which they are tagged. Among these
photos, we find the ones in whichAlice is tagged. (3) A join at
N2, where we have two subqueries. The first subquery finds all
photos in whichAlice is tagged (the forward order fromN1 to
N2), while the second subquery finds allAlice friends, and then
finds all photos in whichAlice friends are tagged (the reverse
order, fromN4 to N2). The outputs of the two subqueries (set of
photos) are joined to get the intersection. (4) A join atN3, where
we have two subqueries. The first subquery goes fromAlice to
all photos she is tagged in, and then all persons who are tagged in
these photos (the forward order fromN1 to N3), and the second
subquery goes fromAlice to all her friends (the reverse order,
from N4 toN3). The outputs of the two subqueries are joined.

4.2 Graph Statistics
This section outlines four mainstatistics functions, S(Ni),

T (Ni), F (Ni, Ej , Nh), andG(Ni, Ej , Nh) that are used to es-
timate the cost of each considered query plan.
S(Ni) and T(Ni). Given a node predicateNi, S(Ni) estimates the
number of nodes that satisfy predicateNi while T (Ni) estimates
the number of nodes that need to be visited to find the ones satisfy-
ing Ni. HereS(Ni) represents the selectivity of a node predicate
indicating the number of successful matches whileT(Ni) represents
the cost to find the successful matches. We use rules similar to
those used in the query optimizer of relational database systems. If
the node predicate is an id equality, indexed as a primary key, then
S(Ni) = T (Ni) = 1. If the predicate is on a non-indexed field
and one tenth of the nodes in this node type satisfying the predicate,
thenS(Ni) = 0.1m andT (Ni) = m wherem is the total number
of nodes of this node type. If a histogram is maintained, we can get

a better accuracy on estimatingS(Ni), yetT (Ni) depends on the
index availability.
F(Ni, Ej , Nh) and G(Ni, Ej , Nh). Given two node predicates
Ni andNh and an edge predicateEj , F (Ni, Ej , Nh) estimates
the number of nodes that are reachable fromNi through the edge
predicateEj and satisfy the predicateNh while G(Ni, Ej , Nh)
estimates the number of nodes that need to be visited to find these
nodes, i.e., the number of reachable nodes fromNi to the node
type ofNh using the edge predicateEj . Again, F (Ni, Ej , Nh)
is a measure of selectivity indicating the number of successful
matches whileG(Ni, Ej , Nh) measures the cost to find the suc-
cessful matches.G(Ni, Ej , Nh) is computed by utilizing few
statistics maintained for the number of edges of each type con-
nected to each node type. This number is then divided by the selec-
tivity of the predicate at nodeNh to computeF (Ni, Ej , Nh). For
example, ifNi is of idAlice, then, we know that there is only one
node satisfying predicateNi. Then, ifEj is of typeTag, and we
know from our statistics thatAlice is tagged in 20 photos, then,
we say that we will visit 20 nodes matchingNh soF (Ni, Ej , Nh)
= G(Ni, Ej , Nh) = 20. However, if the predicateNh includes only
black & white photos, and we know that only 10% of the photos
are black & white, thenF (Ni, Ej , Nh)=2 while the total number
of visited nodes isG(Ni, Ej , Nh)=20 as we have to visit all of the
20 photos in order to find the black & white ones.
Collecting Statistics.Since the underlying graph is partitioned and
distributed among multiple graph partition servers, collecting the
aforementioned statistics is performed as follows: (1) Thegraph
directory service (DS) sends a statistics collection request to all
graph partition servers. (2) Each graph partition server, in paral-
lel, calculates the graph statisticsS(Ni), T (Ni), F (Ni, Ej , Nh),
andG(Ni, Ej , Nh) for all graph nodes and edges stored locally
on that partition. (3) Then, each partition sends back a message
to the graph directory service reporting its own local graphstatis-
tics. (4) Finally, the graph directory service aggregates the statistics
from the partitions to generate the global graph statistics.

4.3 Objective Function and Cost Model
Given the space ofk query plans for any queryQ with k node

predicates, it is the objective of the query optimizer to findthe plan
with the lowest estimated cost in terms of the number of visited
nodes. Formally, Horton+ aims to minimize the objective function
Cost(Q[1, k]), represented as:

Cost(Q[1, k]) = min
1≤i≤k

(Cost(Q[1, i]) + Cost(Q[k, i]) + Join(Q, i))

whereCost(Q[1, i]) is the cost of executing a subquery ofQ in
the forward order fromN1 to Ni, Cost(Q[k, i]) is the cost of ex-
ecuting a subquery ofQ in the reverse order, fromNk to Ni, and
Join(Q, i) is the cost of joining the results of these two subqueries.
The trivial cases ofi = k andi = 1 correspond to the query plans
with forward and reverse orders, respectively, where no join opera-
tion is involved, i.e.,Join(Q, i) = 0.

Given the functionsS(Ni), T (Ni), F (Ni, Ej , Nh), and
G(Ni, Ej , Nh) (described in Section 4.2),Cost(Q[1, i]),
Cost(Q[k, i]), andJoin(Q, i) can be calculated as follows:
Cost(Q[1,i]). For the case wheni=1, whereCost(Q[1, i]) is set
to zero, corresponding to the execution ofQ in the reverse or-
der, fromNk to N1. For the case wheni > 1, we first need
to visit T (N1) nodes to find theS(N1) nodes that satisfy the
first node predicateN1. Then, for the second nodeN2, the cost
is S(N1) × G(N1, E1, N2), which corresponds to the number
of qualified nodes fromN1 multiplied by the number of nodes
we visit to satisfy the predicateN2. Then, for the third node

N3, we visit a total number of nodesS(N1) × F (N1, E1, N2)
× G(N2, E2, N3), which corresponds to the number of qualified
nodes fromN2, which isS(N1) × F (N1, E1, N2), multiplied by
the number of nodes we need to visit to satisfy the predicateN3,
which is G(N2, E2, N3). The total number of visited nodes for
Q[1, i] is the sum of the number of visited nodes at each predicate
Nj , which is formally presented as:

Cost(Q[1, i]) =

T (N1) + S(N1)×G(N1, E1, N2) +

S(N1)

i
∑

j=2

G(Nj, Ej , Nj+1)

j−1
∏

h=1

F (Nh, Eh, Nh+1)

 i > 1

0 i = 1

Cost(Q[k,i]). Similar to Cost(Q[1,i], but Cost(Q[k,i]) estimates
the cost execution in the reverse order. For the non-trivialcase
of i < k, we start by getting the number of visited nodes of
typeNk asT (Nk). Then, we follow the nodes in the reverse or-
der, e.g., for nodeNk−1, we visitS(Nk) × G(Nk, Ek−1, Nk−1)
nodes. For nodeNk−2, we visitS(Nk) × F (Nk, Ek−1, Nk−1) ×
G(Nk−1, Ek−2, Nk−2), and so on. Formally:

Cost(Q[k, i]) =

T (Nk) + S(Nk)×G(Nk, Ek−1, Nk−1) +

S(Nk)

k−2
∑

j=i

G(Nj+1, Ej , Nj)

k−1
∏

h=j+1

F (Nh+1, Eh, Nh)

 i < k

0 i = k

Join(Q,i). A trivial case is wheni=1 or i=k, whereJoin(Q, i) is
set to zero, indicating that the query plan corresponds to either the
reverse or forward order, respectively. For the non-trivial case (1 <

i < k), Join(Q, i) is computed as the Cartesian product of the two
sets involved in the join. The first set includes the estimated number
of nodes satisfying all the predicates in the forward order fromN1

to Ni, which is: S(N1)
∏i−1

j=1
F (Nj , Ej , Nj+1). Similarly, the

second set includes the estimated number of nodes satisfying all
the predicates in the reverse order fromNk toNi, which isS(Nk)∏k

j=i+1
F (Nj , Ej−1, Nj−1). Formally:

Join(Q, i) =

S(N1)S(Nk)

i−1
∏

j=1

F (Nj, Ej, Nj+1)
k
∏

j=i+1

F (Nj , Ej−1, Nj−1)

1 < i < k

0 i = 1 OR i = k

4.4 Numerical Example
Figure 4-a gives examples of some collected statistics thatare

enough for the query optimizer to decide on the best execution plan
for Q1, Q2, andQ3 of Table 1. For simplicity and ease of illus-
tration, we assume thatT (Ni) andG(Ni, Ej , Nh) are equivalent
to their counterpartsS(Ni) andF (Ni, Ej , Nh). In our example,
S(‘Alice’) is set to one where there is only one node with idAlice.
S(Photo)is set to one million, indicating the number of nodes of
typePhoto in the whole graph.F(‘Alice’, Friend, Person)is set
to 10 asAlice has only 10 friends of typePerson. Statistics are
bi-directional asF(Person, Friend, ‘Alice’)is set to 150 as theaver-
agenumber of friends for each person.F(Person, Tag, Photo)and
F(Photo, Tag, Person)are set to 20 and 3 as theaveragenumber of
“photos per persons” and “persons tagged in a photo”, respectively.

Figure 4-b gives the cost of each query plan forQ1, Q2, Q3

based on the statistics of Figure 4-a. As an example, we describe
the optimal plan ofQ3 as follows:
Q3. Plan 4 (Join at the third nodeN3) has the lowest cost,
computed as the sum of three parts: (a) The cost of going

T(Alice) = S(Alice)

G,F(Alice, Tag, Photo)

G,F(Alice, Friend, Person)

G,F(Bob, Tag, Photo)

G,F(Person, Friend, Alice)

G,F(Person, Tag, Photo)

G,F(Photo, Tag, Alice)

G,F(Photo, Tag, Bob)

G,F(Photo, Tag, Person)

T(Bob) = S(Bob)

T(Photo) = S(Photo)

1

1

1M

10

50

2

150

20

50

2

3

Q P Cost

1 + 1×50 + 1×50×2=151

1 + 1×2 + 1×2×50=103

(1+1×50) +(1+1×2)+1×1×50×2=154

1 + 1×10 + 1×10×20=311

1M + ……..

1M + ……..

1+1×50+1×50×3+1×50×3×150=22701

1+1×10+1×10×20+1×10×20×50=10211

(1+1×50)+(1+1×10+1×10×20)+1×1×50×10×20=10262

(1+1×50+1×50×3)+(1+1×10)+1×1×50×3×10=1712

1

2

3

1

2

3

1

2

3

1

2

3

4

(a) Statistics (b) Query Plan Cost for Q1, Q2, Q3 (optimal plans are shaded)

Figure 4: Example of statistics and cost of query plans.

in the forward order fromN1 to N3 as Cost(1,3)= T (N1) +
S(N1) G(N1, E1, N2) + S(N1) F (N1, E1, N2) G(N2, E2, N3),
which is equivalent to:T(‘Alice’) + S(‘Alice’) G(‘Alice’,Tag,Photo)
+ S(‘Alice’) F(‘Alice’,Tag,Photo) G(Photo,Tag,Person)= 201.
(b) The cost of going in the reverse order, fromN4 to N3, as
Cost(4,3)= T (N4) + S(N4) G(N4, E3, N3), which is equivalent
to: T(‘Alice’) + S(‘Alice’) G(‘Alice’,Friend,Person)= 11. (c) The
cost of joining the results from the two previous parts asJoin(3)
= S(N1) S(N3) F (N1, E1, N2) F (N2, E2, N3) F (N4, E3, N3),
which is equivalent to:S(‘Alice’) S(‘Alice’) F(‘Alice’,Tag,Photo)
F(Photo,Tag,Person) F(‘Alice’,Friend,Person)= 1500. Finally,
the total cost of this plan is the sum of these three costs as
201+11+1500 = 1712.

4.5 Query Optimization Algorithm
Algorithm 3 gives the pseudo code of the query optimizer. The

input to the algorithm is a queryQ with k node predicates andk−1
edge predicates. The output is ajoin pointeron where to split the
query to achieve the best performance in terms of the number of
visited nodes. Ajoin pointervalue ofk or 1 indicates that the best
query plan is the forward or reverse order, respectively, without any
join. A basic algorithm to find the lowest cost would compute the
cost ofk different execution plans individually where each plan can
cost up toO(k2) number of addition and multiplication operations,
which gives a total cost ofO(k3), wherek is the number of nodes in
the input path query. Here, we present an algorithm with a total cost
of only O(k), which exploits common subcomputations to reduce
computational complexity.

The algorithm has three main parts: The first part (Lines 2 to 8)
incrementally fills four arrays,CostF, JoinF, CostR, and JoinR,
each of sizek. An item i > 1 in any of the two arrays,CostF[i],
JoinF[i] , maintains the cost of query evaluation in the forward or-
der fromN1 toNi asCostF[i]= T (N1) + S(N1) G(N1, E1, N2)

+ S(N1)
∑i

j=2
(G(Nj , Ej , Nj+1)

∏j−1

h=1
F (Nh, Eh, Nh+1)),

and if there is a join at nodei, the additional cost isJoinF[i]
= S(N1)

∏i

h=1
F (Nh, Eh, Nh+1). Similarly, an itemi < k

in any of the two arrays,CostR[i], JoinR[i], maintains the cost of
query evaluation in the reverse order, fromNk to Ni, and part of
the join cost should we decide to join at nodei. The second part
of the algorithm (Lines 9 to 14) computes the cost of forward and
reverse execution order ofQ. As the costs are computed incremen-
tally, the forward and reverse order costs are computed by adding
two terms: (1) The cost encountered to reach to nodeNk−1 and
N2, which isCostF[k-1] andCostR[2], respectively, and (2) The
number of nodes to visit to reach toNk andN1, which is com-
puted as the number of paths we have, i.e., join cost, tillNk−1 and
N2 (JoinF[k-1] andJoinR[2]) multiplied by the number of output
nodes of each path to reachNk andN1 (G(Nk−1, Ek−1, Nk) and
G(N2, E1, N1)), respectively. The minimum of the forward and

Algorithm 3 Query optimizer
1: Function QUERYOPTIMIZER(Q = 〈N1, E1, · · · , Ek−1, Nk 〉)
2: JoinF[1]← S(N1); CostF[1]← T (N1);
3: JoinR[k]← S(Nk); CostR[k]← T (Nk);
4: for i = 2 to k − 1 do
5: JoinF[i] ← JoinF[i-1] × F (Ni−1, Ei−1, Ni)
6: CostF[i]← CostF[i-1] + JoinF[i-1] ×G(Ni−1, Ei−1, Ni)
7: JoinR[k-i+1]←JoinR[k-i+2]×F (Nk−i+2,Ek−i+1,Nk−i+1)
8: CostR[k-i+1] ← CostR[k-i+2] + JoinR[k-i+2]

×G(Nk−i+2,Ek−i+1,Nk−i+1)
9: ForwardCost← CostF[k-1]+ JoinF[k-1]×G(Nk−1, Ek−1, Nk)

10: ReverseCost← CostR[2]+ JoinR[2]×G(N2, E1, N1)
11: if ForwardCost< ReverseCostthen
12: MinCost← ForwardCost; JoinPointer← k;
13: else
14: MinCost← ReverseCost; JoinPointer← 1;
15: for i = 2 to k − 1 do
16: TotalCost← CostF[i] + CostR[i] + JoinF[i] × JoinR[i];
17: if TotalCost< MinCostthen
18: MinCost← TotalCost; JoinPointer← i;
19: Return JoinPointer;

reverse order costs is set as the current optimal plan with the join
pointerset ask and 1, respectively. The third part of the algorithm
(Lines 15 to 18) iterates over all nodes to compute the total cost of
joining at each nodei as CostF[i]+CostR[i]+JoinF[i]×JoinR[i].
The value ofi that corresponds to the minimum total cost is re-
turned as ajoin pointer.

For Q1 in Table 1,JoinF={1,50,-}, CostF={1,51,-}, JoinR={-
,2,1}, CostR={-,3,1}, which results inForwardCost= 51 + 50×2
= 151 andReverseCost=3 + 2×50 = 103. The cost of joining at
nodeN2 = 51 + 3 + 50×2 = 154. Hence,join pointer is set to 1.

4.6 Query Plans with Recursive Joins
We have described a simple version of Horton+ query optimizer

that only considers splitting a given query into two subqueries.
However, the full version of Horton+ query optimizer considers re-
cursive splits of subqueries and produces anoptimalexecution plan
based on the graph statistics. More specifically, it takes each sub-
query and recursively considers it for optimization, i.e.,a subquery
can be evaluated in the forward or reverse order, or can be split
again to another two subqueries. The output of the recursivequery
optimization is a query execution plan represented as a tree: Each
leaf node is a DFA representing a traversal of a subquery, andeach
intermediate node is a join operator that joins the results of two
subqueries. DenotingRCost(Q(p, q)) as the cost of a query (or
subquery) using recursive optimization wherep ≤ q, we present
the recursive formulation of the query optimizer:

RCost(Q(p, q)) =

min{SCost(Q(p, q)), SCost(Q(q, p)),

min
p<i<q

{RCost(Q(p, i)) + RCost(Q(i, q)) + Join(Q(p, i), Q(i, q))}}

Here,SCost(Q(p, q)) andSCost(Q(q, p)) are the cost of eval-
uating the queryQ(p, q) in the forward and reverse orders respec-
tively, andJoin(Q(p, i), Q(i, q)) is the cost of joining the sub-
queriesQ(p, i) andQ(i, q). We present their formulation as fol-
lows.

SCost(Q[p, i]) =

T (Np) + S(Np)×G(Np, Ep, Np+1) +

S(Np)
i

∑

j=p+1

G(Nj, Ej , Nj+1)

j−1
∏

h=1

F (Nh, Eh, Nh+1)

 p < i

0 p = i

Join(Q(p, i), Q(i, q)) =

S(Np)S(Nq)

i−1
∏

j=p

F (Nj, Ej, Nj+1)

q
∏

j=i+1

F (Nj , Ej−1, Nj−1)

1 < i < k

0 i = 1 OR i = k

The cost of solvingRCost(Q(1, k)) naively isΩ(k!), wherek
is the number of query node predicates. We use adynamic pro-
grammingframework to solve the problem efficiently: it computes
and stores the optimal solutions for subqueries and uses those to
construct the optimal solution for a bigger problem. Dynamic pro-
gramming effectively reduces the computational cost of obtaining
an optimal execution plan toO(k3), which is rather affordable as
query length is often not that large (even long queries have length
under20 in most cases). Recursive splits can be mostly beneficial
when there are many selective nodes within a long query.

4.7 Closure Operators
Estimating the cost of a query with closure operators is complex

because a query optimizer does not know the number of recursive
steps a query would take to complete without actually running the
query. Thus, we develop a heuristic algorithm: (1) it optimizes the
non-closure part of a query by exploring different traverseorders
and join sequences using the techniques we presented earlier, and
(2) it further exploits the closure part of the query with different
number of recursive steps. This algorithm includes three phases.
While illustrating the phases, we use an example queryN1−E2−
N2 − (E3−N3)

∗−E4−N4−E5−N5, and we assume that we
considerk number of recursive steps wherek = 0, 1, 2, 3.

(1) For each recursive levelk, we remove the closure operator
and expand the query according to the value ofk. For example,
with k = 2, our example query has a form ofQ(k = 2) = N1 −
E2 −N2− (E3 −N3 − E′

3 −N ′

3)− E4 −N4 − E5 −N5. For
the expanded query instance, we compute a good plan, denotedas
plank. The plan is computed similarly as in Section 4.6, however,
we exclude those plans that would perform a join operation inside
the recursive block, e.g.,E3 − N3 − E′

3 − N ′

3 is the recursive
block for Q(k=2). In other words, we treat the recursive block as an
atomic unit: we can execute it in the forward or reverse orderbut we
do not perform any join inside it. For the other parts of the query,
we still consider the join operator based on the cost estimates.

(2) If all the plans, plank for k = 0, 1, 2, 3, have equivalent ex-
ecution sequence, we use this sequence to execute the recursive
query. Here we define two plans have equivalent execution se-
quence if they have join on the same node predicates and have the
same evaluation order for the same subqueries.

(3) However, if for differentk values, their optimized plans have
different execution sequences, we estimate the cost of using each
“local optimal” execution sequence in the recursive query,and
we call this cost TotalCost(plank) for a given plank. Among all
plank wherek = 0, 1, 2, 3, we find the plan with the minimum
TotalCost(plank), and use plank for the recursive query.

Example. We give an example on how to compute
TotalCost(plank). Suppose thatk = 1 and plan1 is to execute the
query from left to right. The total cost of applying plan1 to the
recursive query is as follows:

TotalCost(plan1) = SCost(Q(k = 0)) + SCost(Q(k = 1))

+SCost(Q(k = 2))

−2SCost(N1 − E2 −N2) .

We remove the additional sequential cost of processing the sub-
query Q(N1 −E2 −N2) because this cost is incurred only once in
the recursive execution.

4.8 Optimization for Distributed Execution
Horton+ takes into account the communication cost when opti-

mizing the input query. It distinguishes between: (1) localedge:
two nodes of a local edge reside on the same graph partition, and
(2) remote edge: two nodes of a remote edge are stored on differ-
ent graph partitions. Horton+ can assign higher cost for access-
ing remote edges and lower cost for local edges. We achieve it
by incorporating the local/remote information into graph statistics
thus influencing our cost estimation and final decision. For ex-
ample, as described in Section 4.2,G(Ni, Ej , Nh) estimates the
number of nodes that need to be visited through the edge pred-
icateEj to satisfy the predicateNh. We can revise its cost to
reflect the cost difference of remote and local edge accesseswith
additional statistics P(Ni, Ej , Nh) that defines the probability of
remote edges for edge predicates Ej . Supposing that the cost of
remote and local access isc : 1, the revised cost ofG(Ni, Ej , Nh)
is G′(Ni, Ej , Nh) = c × G(Ni, Ej , Nh) × P (Ni, Ej , Nh) +
G(Ni, Ej , Nh) × (1− P (Ni, Ej , Nh)). By using the new statis-
ticsG′(Ni, Ej , Nh), we apply the same optimization procedure as
described earlier to decide efficient query plan considering commu-
nication costs.

5. EXPERIMENTAL EVALUATION
This section presents an experimental evaluation of Hor-

ton+ [38]. Our objective is to assess three aspects: system ef-
ficiency (query optimization), scalability (distributed execution),
and usability (declarative querying). We also provide a compari-
son with Giraph [19]; a graph processing system built on top of
Hadoop. Horton+ is implemented in C# in 30K lines of code.
The implementation includes the client interfaces, query language
parser and compiler, query optimizer, and distributed query proces-
sor. We use two graph types:

(1) We use areal graph from a software collaboration system,
called Codebook [4], which models software engineers and their
software artifacts, including source code, bug reports, projects, and
their relationships. The graph has 2,910,535 nodes, 13,612,406
edges, 8 node types, and 11 edge types. It is generated by crawl-
ing multiple data sources including source code repositories, and
employee directory and document databases. Each node and edge
is associated with a large number of attributes. The graph data is
represented natively in main memory as C# objects. The memory
footprint of the graph is around 12 GB, including object overheads
and the intermediate results while evaluating queries.

(2) We generatesynthetic graphswith different sizes using the
RMAT graph generator [5] that produces scale-free graphs. The
graph schema including the types and attributes of nodes andedges
are set to mimic the real graph schema. The node and edge types
and attributes are generated using the Zipf distribution which mod-
els the popularity of attribute values, and we set the numberof
edges to five times the number of nodes.
Workload. There is no standard benchmark for reachability
queries. We, therefore, characterize the queries from Codebook,
and classify them into four categories. For each category, we show
one of most frequent queries in Table 3. (1)Short querieshave a
small number of predicates as in queryQ1. Since the query length
is short, the query optimizer searches a small space. (2)Selective
querieshave one or more selective predicates. For example query
Q2 contains two id predicates‘Dave’ and‘Tim’. Due to the
high selectivity, selective queries traverse a small number of paths
to compute the final answer. (3)Report queriesreturn a large result
set, such as queryQ3. Report queries are the most expensive to ex-
ecute. (4)Closure queriesrequire recursive graph traversal. Query

Query Query in Plain English Query in Horton+

Short (Q1) Find the person who committed checkin 400 and the WorkItemRe-
visions it modifies

Person-Committer-Checkin{id=400}- Modifies-WorkItemRevision

Selective (Q2) Find Dave’s checkins that modified a WorkItem create by Tim Person{id=‘Dave’}-Committer-Checkin -Modifies-WorkItem
-CreatedBy-‘Tim’

Report (Q3) For each checkin, find the person (along with his manager) who
committer it as well as all the work items (along with their We-
bURLs that are modified by that checkin)

Person-Manages-Person- Committer-Checkin-Modifies
-WorkItemRevision-Modifies-WorkItem -Links-WebURL

Closure (Q4) Retrieve all checkins that any employee in Dave organizational
chart (working under him) committed.

Person{id=‘Dave’} (-Manages-Person)∗-Checkin

Table 3: The graph queries used in the experiments.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

0.5 1 2 4

T
im

e
 (

s
e
c
)

Graph Size (* 10
6
)

Horton-opt
Horton-non

(a) Short Query.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

0.5 1 2 4

T
im

e
 (

s
e
c
)

Graph Size (* 10
6
)

Horton-opt
Horton-non

(b) Selective Query.

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

0.5 1 2 4

T
im

e
 (

s
e
c
)

Graph Size (* 10
6
)

Horton-opt
Horton-non

(c) Report Query.

 0

 2

 4

 6

 8

 10

 12

 14

 16

0.5 1 2 4

T
im

e
 (

s
e
c
)

Graph Size (* 10
6
)

Horton-non
Horton-opt-norec

Horton-opt

(d) Report Query (recursive).

Figure 5: Impact of query optimization on the query execution time (using the synthetic graphs) on a single server.

Q4 is a closure query and it retrieves the management hierarchyof
a person using Kleene star.
Performance Metrics. Our main performance metric is the query
execution time. We also examine the computation and communi-
cation costs to process the queries.
Experimental Environment. All experiments are run on a cluster
of 16 graph partition servers plus two servers as the coordinator and
client. Each server has an Intel QuadCore 2.9 GHz CPU, 16 GB
RAM, and runs Windows Server 2008. The servers are connected
by a Gigabit Ethernet switch.

5.1 Efficiency (Query Optimization)
In this section, we study the benefits of the query optimizer on

reducing query execution time for a graph deployed first on a sin-
gle server, and then on multiple servers. We run two versionsof
Horton+: Horton-opt is the full version of Horton+ including
its query optimizer.Horton-non represents Horton+ with the
optimizer turned off, i.e., queries are executed in the forward order.
The experimental results demonstrate that optimization reduces the
latency of many queries by a factor of 5 — 15 times. Moreover, the
larger the graph size, the higher the optimization benefits.

5.1.1 Deployment on a Single Graph Server
Short query Q1. Figure 5(a) shows the performance of executing
queryQ1 on synthetic graphs. The X-axis is the size of the syn-
thetic graph (0.5, 1, 2, and 4 million nodes), and the Y-axis is execu-
tion time.Horton-opt outperformsHorton-non for all graph
sizes becauseHorton-opt splitsQ1 at the middle selective node
predicateCheckin{id=400} and processes two subqueries. The
query execution time in bothHorton-non and Horton-opt
becomes higher with increasing graph size because the queryexe-
cution engine visits more graph nodes when the graph size becomes
larger. The benefits of optimization become more significantwith
the increase in graph size.
Selective queryQ2. Figure 5(b) shows the results of running query
Q2. Horton-nonandHorton-optgive the same performance,
as they both execute the forward execution plan. The resultsalso
show that the overhead of running the query optimizer is almost

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

1 2 3 4 5 6 7 8 9 10

T
im

e
 (

s
e
c
)

Number of Servers

Horton-opt
Horton-non

(a) Short Query.

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000
 1100

1 2 3 4 5 6 7 8 9 10

T
im

e
 (

s
e

c
)

Number of Servers

Horton-opt
Horton-non

(b) Report Query.

Figure 6: Impact of optimization on execution time (using the
real graph), number of servers varies from 1 to 10.

negligible, compared with the total query execution time. The op-
timized and non-optimized plans forQ4 are the same with equal
execution time. We omitQ4 as it is similar to Figure 5(b).
Report query Q3. Figure 5(c) shows the performance of query
Q3. The optimizer provides lower execution time, and the benefits
increase with the graph size.
Recursive split for query Q′

3. Figure 5(d) shows in-
teresting results: We changeQ3 into Q′

3 by adding
two predicates to the third (CheckIn{id=390}) and
fourth (WorkItemRevision{id=610}) node predicates.
Horton-opt exploits these predicates to reduce the execution
time by a factor of 13. Horton-opt chooses a query plan
that includes recursive splits at two nodes. First,Horton-opt
splits the query at the third node (CheckIn{id=390}) into
two subqueries. Next for the second subquery,Horton-opt
performs a recursive split, where this second subquery is split
at the fourth node (WorkItemRevision{id=610}). The
recursive split is the main reason behind the impressive per-
formance ofHorton-opt for Q′

3. To measure the benefits
of recursive splits, we run a third version of Horton+, termed
Horton-opt-norec, which uses the same optimizer but
without recursive splits; thus the optimized query plan contains
at most one split. Horton-opt-norec produces a plan for
Q′

3 with a single split at the third node. Figure 5(d) shows that

7 8 10

T
im

e
(s

ec
)

Number of Severs

Computation Cost

9

Communication Cost

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

1 2 3 4 5 6

(a) Short Query.

7 8 10

T
im

e
(s

ec
)

Number of Severs

Computation Cost

9

Communication Cost

 0
 10
 20
 30
 40
 50
 60
 70
 80

1 2 3 4 5

(b) Selective Query.

1 2 3 4 5 6 7 8 9 10

T
im

e
(s

ec
)

Number of Severs

Computation Cost
Communication Cost

 0

 200

 400

 600

 800

 1,000

 1,200

(c) Report Query.

6 7 8 10

T
im

e
(s

ec
)

Number of Severs

Computation Cost

9

Communication Cost

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

1 2 3 4 5

(d) Closure Query.

Figure 7: Query execution time (using the real graph) while varying number of partition servers from 1 to 10.

Horton-opt yields up to 7 times better performance than that of
Horton-opt-norec, which shows the benefits of employing
recursive splits in the query optimizer.

5.1.2 Deployment on Multiple Graph Servers
Figures 6(a) and 6(b) depict the query execution time of

Horton-opt andHorton-non for queriesQ1 andQ3 executed
over the real graph, while varying the number of servers from1 to
10 over the X-axis. We omit the results ofQ2 andQ4 since the
optimized query plans are the same as the non-optimized plans.

For queryQ1, Horton-opt consistently achieves from 12 to
14 times better performance compared withHorton-non be-
cause inHorton-opt the optimizer splitsQ1 at the middle node
predicateCheckIn{id=400} and executes the two subqueries.
The optimized plan is substantially more efficient than the forward
execution ofQ1.

For query Q3, Horton-opt consistently outperforms
Horton-non by a factor of 8 to 10 times asHorton-Opt uses
an optimized plan that splits the query at the middle node predicate
CheckIn. These results show that query optimizer produces good
plans, suitable for deployments both on a single server and on
multiple servers.

5.2 Scalability (Distributed Processing)
We study the performance of distributed query processing intwo

cases. First, we use the real graph which fits in a single server,
and study the distributed execution overhead with the number of
servers. Second, we use a large synthetic graph that does notfit in
a single server to show query processing times.

(1) Real Graph. Since the real graph fits in the main mem-
ory of single server, this constitutes a challenging environment for
evaluating a distributed system: (1) There is no benefit fromthe ag-
gregated main memories of the servers, and (2) the communication
and synchronization inefficiencies are emphasized. A single server
could be more efficient as it incurs no messaging overhead.

We vary the number of partition servers from1 to 10. Fig-
ures 7(a) to 7(d) show the execution time of queriesQ1, Q2, Q3,
andQ4. The query execution time has two components: computa-
tion time and communication time. The computation time is time
used for local computations at the servers, and the communication
time is the time spent in message passing among the servers. The
performance ofQ1, Q2, Q3, andQ4 improves with increasing the
number of servers. The improvement comes from executing the
query in parallel on more servers, reducing the parallel computa-
tion time component as the number of servers increases as depicted
in the figures. More graph partitions lead to a reduction in the num-
ber nodes and edges per partition, further reducing the amount of
local computation per server.

However, the performance gain shows diminishing returns be-
cause the communication time increases with the number of
servers. The communication time is zero for a single server,and

Query Total execution Communication Computation

Short Query(Q1) 47.588 sec 0.723 sec 46.865 sec

Selective Query(Q2) 6.294 sec 0.693 sec 5.601 sec

Table 4: Execution time for 1024 million nodes, 5120 million
edges synthetic graph deployed on 16 partition servers.

it increases as more servers are added because more messages
are exchanged among the graph servers during query execution.
The communication cost is dominated by the messages exchanged
among the graph servers during the global communication step per-
formed by thetraverseoperator. These results show that the system
is efficient, and query execution time improves with the number of
servers even if the graph fits in the memory of one server.

(2) Synthetic Graph. We use a synthetic graph with 1024 mil-
lion nodes and 5120 million edges with an aggregate memory foot-
print of 145 GB, partitioned on a cluster of 16 servers. This experi-
ment shows that Horton+ processes queries over graphs that do not
fit on a single server, and it exploits multiple servers to execute a
single query in parallel.

Table 4 shows the execution time of queriesQ1 andQ2. The ex-
ecution time ofQ1 is approximately48 seconds.Q1 execution plan
splits the query into two subqueries at the (CheckIn{id=400})
node predicate. Both subqueries are executed separately and the
their outputs are joined to form the final answer. Even thoughthe
graph is partitioned on 16 servers, only1.5% of the query execution
time is spent in communication and the remaining98.5% is spent
for local computation. This is in contrast to the findings we observe
in Figures 7(a) and 7(c), where the communication cost is dominant
for only 10 servers. The reason is that with larger graph sizes, parti-
tioning the graph among 16 servers provides enough work for each
server to parallelize query processing.

QueryQ2 shows similar benefits toQ1, as the majority of the
time is spent in computations rather than in communication.The
computation cost comes mainly from traversing the graph elements
at the graph partition servers during the local computationsteps
performed by thetraverseoperator. These results show that Hor-
ton+ efficiently parallelizes execution over a cluster of servers.

5.3 Usability (Declarative Queries)
Writing a procedural program takes more effort compared with

expressing an equivalent declarative query, particularlyfor novice
users. The procedural program is harder to write, debug, andmain-
tain. Moreover, expressing a query directly into a procedural pro-
gram may not lead to an efficient execution, and it is well-known
that procedural programs are hard to optimize automatically.

We support this argument with anecdotal evidence: Figure 9
depicts queryQ3 (from Table 3) in a procedural language (i.e.,
Java) in Giraph. We make two observations: (1) The procedu-
ral program is longer and more complex. (2) Comparable graph
systems such as Giraph [19], Pregel [30], and Trinity [39] require

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11

0.5 1 2 4

T
im

e
 (

s
e
c
)

Graph Size (* 10
6
)

Non-Optimized
Optimized

(a) Short Query.

 5
 10
 15
 20
 25
 30
 35
 40
 45
 50

0.5 1 2 4

T
im

e
 (

s
e
c
)

Graph Size (* 10
6
)

Non-Optimized
Optimized

(b) Selective Query.

 0

 50

 100

 150

 200

 250

 300

 350

0.5 1 2 4

T
im

e
 (

s
e
c
)

Graph Size (* 10
6
)

Non-Optimized
Optimized

(c) Report Query.

 40
 50
 60
 70
 80
 90

 100
 110
 120
 130
 140

0.5 1 2 4

T
im

e
 (

s
e
c
)

Graph Size (* 10
6
)

Non-Optimized
Optimized

(d) Closure Query.

Figure 8: Impact of optimization on execution time inGiraph (using the pseudorandom synthetic graph) on a 10 servers cluster.

public void compute(Iterable<Text> m) throws IOException{
Text message = m.next().get(); int st = getSuperstep();
if (st == 0 && getValue().get() == "Person") {

for (Edge<LongWritable, Text> edge : getEdges())
if (edge.getValue().get() == "Manages")
sendMessage(edge.getTargetVertexId(),formatMsg(m));

} else if (st == 1 && getValue().get() == "Person") {
for (Edge<LongWritable, Text> edge : getEdges())
if (edge.getValue().get() == "Committer")
sendMessage(edge.getTargetVertexId(),formatMsg(m));

} else if (st == 2 && getValue().get() == "Checkin") {
for (Edge<LongWritable, Text> edge : getEdges())
if (edge.getValue().get() == "Modifies")
sendMessage(edge.getTargetVertexId(),formatMsg(m));

} else if (st == 3
&& getValue().get() == "WorkItemRevision") {

for (Edge<LongWritable, Text> edge : getEdges())
if (edge.getValue().get() == "Modifies")
sendMessage(edge.getTargetVertexId(),formatMsg(m));

} else if (st == 4 && getValue().get() == "WorkItem") {
for (Edge<LongWritable, Text> edge : getEdges())
if (edge.getValue().get() == "Links")
sendMessage(edge.getTargetVertexId(),formatMsg(m));

} else if (st == 5 && getValue().get() == "WebURL") {
}
voteToHalt();

}

Figure 9: Giraph Program (Java pseudo code) for QueryQ3.

programmers to write procedural programs with explicit communi-
cation messages for queries likeQ3. The procedural program for
Q3 is likely to have a high execution time, similar to the time ofthe
non-optimized execution plan in Figure 5(c), which is almost an
order of magnitude higher than the optimized plan. Furthermore,
writing an efficient program requires the user to be closely famil-
iar with both the underlying graph and the execution engine;for
example it is challenging for the programmer to split a queryinto
multiple subqueries at the right node predicates and to write code
to join the outputs in the right order. Horton+, on the other hand,
allows users to declaratively express queries, and optimizes them.

5.4 Comparing Horton+ with Giraph
This section compares Horton+ with Apache Giraph, which is a

large-scale graph processing system built on-top of Hadoop. Both
Horton+ and Giraph store the graph in the main memory of a cluster
of servers. Also, both employ the bulk synchronous parallelexe-
cution paradigm to process queries in parallel over the distributed
graph. By default, Giraph loads the graph from the Hadoop HDFS
file system, and then deploys it to the cluster for each submitted
graph processing job. Giraph users write queries as procedural
Java programs which are executed directly without optimization,
whereas Horton+ maintains graph statistics to optimize thequeries.

We write a procedural program for each query in Table 3. For ex-
ample, Figure 9 shows part of the Java code equivalent toQ3. The
actual code is longer, and it contains additional lines for reading
graph data from and writing the results to Hadoop HDFS. In addi-

tion, we use the Horton+ optimizer to generate an optimized query
plan and we write an optimized program in Giraph emulating the
optimized plan.

We study the execution time of these procedural programs on
Giraph. Our objective is not to compare the performance of Giraph
with Horton+ directly because they use different software stacks of
managed and unmanaged components (such as JVM and CLR/.Net
framework) and different communication primitives and libraries.
Instead, our objective is to (1) put Horton+ performance in perspec-
tive, and (2) show that Horton+ optimization strategies canalso be
used to guide writing better procedural programs for Giraph.

We deploy graphs of sizes500K, 1M, 2M, and 4M nodes
(number of edges is five times the number of nodes) gener-
ated using the the pseudorandom synthetic graph benchmark pro-
vided by Giraph, over10 servers in a Hadoop cluster running
hadoop-0.20.203.0 with 30 mappers. Figures 8(a) to 8(d)
show the performance of the procedural programs. We compare
the plain Giraph Java programs (labelledNon-Optimized) with
the Java programs written following the Horton+ optimized plans
(labelledOptimized). Horton+ produces optimized plans dif-
ferent from prior plans because the graph statistics of the pseu-
dorandom synthetic graph are quite different from the statistics of
the prior real and synthetic graphs. TheOptimized programs
outperforms theNon-Optimized for Q1, Q2, Q3 because the
Optimized programs traverse fewer graph nodes and edges, in-
curring less computation and communication overheads. ForQ4,
bothOptimized andNon-optimized achieve the same per-
formance as the optimized plan is equivalent to the forward plan.
These results show that the Horton+ optimization techniques are
general, and its optimizer can provide guidance in writing more
efficient procedural programs for Giraph.

6. RELATED WORK
Graph Query Languages. Graph query languages are based on
either regular expressions [10, 11, 22], SQL-like languages [3, 36,
40], or a procedural languages [23]. Horton+ uses a formal declar-
ative query language to express reachability queries, and more im-
portantly it provides an efficient distributed execution engine to ex-
ecute its declarative queries.
Graph Processing Algorithms. In-memory graph processing al-
gorithms include computationally-intensive algorithms,e.g., graph
mining [32, 42], dense subgraphs [18, 35], and pattern match-
ing [14], where the emphasis is on having reasonable latencyfor
problems that are likely to be NP-complete. Online graph algo-
rithms support simple graph queries, e.g., shortest path queries [17,
47], reachability queries [8, 15, 24], smaller versions of complex
queries, e.g., pattern matching queries [15, 50], or approximate
queries on a streaming environment [2, 49]. Horton+ focuseson
processing reachability queries over a partitioned graph,and pro-
vides a query language, optimizer and distributed execution engine.

Distributed Graph Query Processing. Research in distributed
graph query processing has focused on either leveraging the
MapReduce paradigm [12] to support graph operations [7, 9, 25]
or building distributed computation models for graph queries, e.g.,
Pregel [30], Trinity [39], GraphChi [20], and PowerGraph [29].
Horton+ is different because (1) it supports a declarative query lan-
guage and (2) it optimizes query execution. In contrast, systems
like Pregel provide an API for developers to write procedural pro-
grams, which are harder to write, debug, maintain and optimize.
Graph Query Optimization. Existing graph query optimization
techniques focus on either building index structures [48, 50], or on
developing selectivity estimation modules for certain graph queries
[33, 49]. These techniques are complementary to Horton+, and it
can employ such techniques. Several optimization techniques on
tree structures, such as for XML documents, are not applicable to
graphs, which contain cycles.
Graph Libraries. Graph libraries provide various graph algo-
rithms within a single framework [6, 21, 26, 28, 41]. Horton+
provides a query language rather than a set of graph algorithms.
It consists of multiple components including compiler, optimizer,
and distributed query processor.

7. CONCLUSION
This paper presents the design, implementation and evaluation of

Horton+, a distributed system for processing reachabilityqueries
on a partitioned attributed multi-graph. The system has a declar-
ative query language, distributed query processor, and query opti-
mizer. The query language expresses reachability queries and sup-
ports closures and predicates on the attributes of nodes andedges.
The distributed query processor executes a query plan usingthree
algebraic graph operators,select, traverseandjoin to find paths that
match the user query. The query optimizer employs a cost model
and selectivity estimation techniques to rewrite the queryplan. Ex-
periments on real and synthetic graphs on a cluster of servers show
system the scalability and efficiency.

8. REFERENCES
[1] A. Abou-Rjeili and G. Karypis. Multilevel algorithms for partitioning

power-law graphs. InIPDPS, 2006.
[2] C. C. Aggarwal, Y. Li, P. S. Yu, and R. Jin. On Dense PatternMining in Graph

Streams.PVLDB, 3(1):975–984, 2010.
[3] G. O. Arocena and A. O. Mendelzon. WebOQL: RestructuringDocuments,

Databases, and Webs. InICDE, 1998.
[4] A. Begel, K. Y. Phang, and T. Zimmermann. Codebook: Discovering and

Exploiting Relationships in Software Repositories. InICSE, 2010.
[5] D. Chakrabarti, Y. Zhan, and C. Faloutsos. R-MAT: A Recursive Model for

Graph Mining. InSDM, Apr. 2004.
[6] A. Chan, F. K. H. A. Dehne, and R. Taylor. CGMGRAPH/CGMLIB:

Implementing and Testing CGM Graph Algorithms on PC Clusters and Shared
Memory Machines.IJHPCA, 19(1):81–97, 2005.

[7] R. Chen, X. Weng, B. He, and M. Yang. Large Graph Processing in the Cloud
(Demo). InSIGMOD, 2010.

[8] Y. Chen and Y. Chen. An Efficient Algorithm for Answering Graph
Reachability Queries. InICDE, 2008.

[9] J. Cohen. Graph Twiddling in a MapReduce World.Computing in Science and
Engineering, 11(4):29–41, 2009.

[10] M. P. Consens and A. O. Mendelzon. GraphLog: a Visual Formalism for Real
Life Recursion. InPODS, 1990.

[11] I. F. Cruz, A. O. Mendelzon, and P. T. Wood. A Graphical Query Language
Supporting Recursion. InSIGMOD, 1987.

[12] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on Large
Clusters. InOSDI, 2004.

[13] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On Power-law Relationships of
the Internet Topology. InACM SIGCOMM, 1999.

[14] W. Fan, J. Li, J. Luo, Z. Tan, X. Wang, and Y. Wu. Incremental Graph Pattern
Matching. InSIGMOD, 2011.

[15] W. Fan, J. Li, S. Ma, N. Tang, and Y. Wu. Adding Regular Expressions to
Graph Reachability and Pattern Queries. InICDE, 2011.

[16] Facebook Graph Search.
https://www.facebook.com/about/graphsearch.

[17] J. Gao, R. Jin, J. Zhou, J. X. Yu, X. Jiang, and T. Wang. Relational Approach
for Shortest Path Discovery over Large Graphs.PVLDB, 5(4):358–369, 2011.

[18] D. Gibson, R. Kumar, and A. Tomkins. Discovering Large Dense Subgraphs in
Massive Graphs. InVLDB, 2005.

[19] Giraph.http://incubator.apache.org/giraph/.
[20] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin. GraphChi:

Large-Scale Graph Computation on Just a PC. InOSDI, 2012.
[21] D. Gregor and A. Lumsdaine. The Parallel BGL: A Generic Library for

Distributed Graph Computations. InPOOSC, 2005.
[22] R. H. Güting. GraphDB: Modeling and Querying Graphs inDatabases. In

VLDB, 1994.
[23] H. He and A. K. Singh. Graphs-at-a-time: Query Languageand Access

Methods for Graph Databases. InSIGMOD, 2008.
[24] R. Jin, H. Hong, H. Wang, N. Ruan, and Y. Xiang. ComputingLabel-constraint

Reachability in Graph Databases. InSIGMOD, 2010.
[25] U. Kang, D. H. Chau, and C. Faloutsos. Mining Large Graphs: Algorithms,

Inference, and Discoveries. InICDE, 2011.
[26] U. Kang, H. Tong, J. Sun, C.-Y. Lin, and C. Faloutsos. GBASE: A Scalable and

General Graph Management System. InKDD, 2011.
[27] J. M. Kleinberg, R. Kumar, P. Raghavan, S. Rajagopalan,and A. Tomkins. The

Web as a Graph: Measurements, Models, and Methods. InConference on
Computing and Combinatorics, COCOON, 1999.

[28] D. E. Knuth.The Stanford GraphBase: A Platform for Combinatorial
Computing. Addison-Wesley, 1993.

[29] A. Kyrola, G. Blelloch, and C. Guestrin. PowerGraph: Distributed
Graph-Parallel Computation on Natural Graphs. InOSDI, 2012.

[30] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert, I.Horn, N. Leiser, and
G. Czajkowski. Pregel: A System for Large-Scale Graph Processing. In
SIGMOD, 2010.

[31] M. E. J. Newman, D. J. Watts, and S. H. Strogatz. Random Graph Models of
Social Networks.Proceedings of the National Academy of Sciences of the USA,
99(1):2566–2572, Feb. 2002.

[32] J. Pei, D. Jiang, and A. Zhang. On Mining Cross-graph Quasi-cliques. InKDD,
2005.

[33] Y. Peng, B. Choi, and J. Xu. Selectivity Estimation of Twig Queries on Cyclic
Graphs. InICDE, 2011.

[34] V. Prabhakaran, M. Wu, X. Weng, F. McSherry, L. Zhou, andM. Haridasan.
Managing large graphs on multi-cores with graph awareness.In USENIX ATC,
2012.

[35] S. Ranu and A. K. Singh. GraphSig: A Scalable Approach toMining
Significant Subgraphs in Large Graph Databases. InICDE, 2009.

[36] S. Sakr, S. Elnikety, and Y. He. G-SPARQL: A Hybrid Engine for Querying
Large Attributed Graphs. InCIKM, 2012.

[37] J. Sankaranarayanan and H. Samet. Distance Oracles forSpatial Networks. In
ICDE, 2009.

[38] M. Sarwat, S. Elnikety, Y. He, and G. Kliot. Horton: Online Query Execution
Engine for Large Distributed Graphs (Demo). InICDE, 2012.

[39] B. Shao, H. Wang, and Y. Li. Trinity: A Distributed GraphEngine on a
Memory Cloud. InSIGMOD, 2013.

[40] L. Sheng, Z. M.Özsoyoglu, and G.̈Ozsoyoglu. A Graph Query Language and
Its Query Processing. InICDE, 1999.

[41] J. G. Siek, L.-Q. Lee, and A. Lumsdaine.The Boost Graph Library - User
Guide and Reference Manual. C++ in-depth series. Pearson / Prentice Hall,
2002.

[42] A. Silva, W. M. Jr., and M. J. Zaki. Mining Attribute-structure Correlated
Patterns in Large Attributed Graphs.PVLDB, 5(5):466–477, 2012.

[43] SPARQL.http://www.w3.org/TR/rdf-sparql-query/.
[44] G. Szabo and G. Fath. Evolutionary Games on Graphs.Physics Reports,

446(4-6):97–216, July 2007.
[45] I. Tatarinov, S. D. Viglas, K. Beyer, J. Shanmugasundaram, E. Shekita, and

C. Zhang. Storing and querying ordered XML using a relational database
system. InSIGMOD, 2002.

[46] L. G. Valiant. A bridging Model for Parallel Computation. Communincations of
ACM, 33(8):103–111, 1990.

[47] F. Wei. TEDI: Efficient Shortest Path Query Answering onGraphs. In
SIGMOD, 2010.

[48] X. Yan, P. S. Yu, and J. Han. Graph Indexing: A Frequent Structure-based
Approach. InSIGMOD, 2004.

[49] P. Zhao, C. C. Aggarwal, and M. Wang. gSketch: On Query Estimation in
Graph Streams.PVLDB, 5(3):193–204, 2011.

[50] P. Zhao and J. Han. On Graph Query Optimization in Large Networks.PVLDB,
3(1):340–351, 2010.

