
Statically Validating Must Summaries for
Incremental Compositional Dynamic Test Generation

Patrice Godefroid1, Shuvendu K. Lahiri1, and Cindy Rubio-González2

1 Microsoft Research, Redmond, WA, USA
2 University of Wisconsin, Madison, WI, USA

Abstract. Compositional dynamic test generation can achieve significant scal-
ability by memoizing symbolic execution sub-paths as test summaries. In this
paper, we formulate the problem of statically validating symbolic test summaries
against code changes. Summaries that can be proved still valid using a static anal-
ysis of a new program version do not need to be retested or recomputed dynam-
ically. In the presence of small code changes, incrementality can considerably
speed up regression testing since static checking is much cheaper than dynamic
checking and testing. We provide several checks ranging from simple syntactic
ones to ones that use a theorem prover. We present preliminary experimental re-
sults comparing these approaches on three large Windows applications.

1 Introduction

Whitebox fuzzing [15] is a promising new form of security testing based on dynamic
test generation [5, 14]. Dynamic test generation consists of running a program while
simultaneously executing the program symbolically in order to gather constraints on
inputs from conditional statements encountered along the execution. Those constraints
are then systematically negated and solved with a constraint solver, generating new
test inputs to exercise di�erent execution paths of the program. Over the last couple of
years, whitebox fuzzing has extended the scope of dynamic test generation from unit
testing to whole-program security testing, thanks to new techniques for handling very
long execution traces (with billions of instructions). In the process, whitebox fuzzers
have found many new security vulnerabilities (bu�er overflows) in Windows [15] and
Linux [21] applications, including codecs, image viewers and media players. Notably,
our whitebox fuzzer SAGE found roughly one third of all the bugs discovered by file
fuzzing during the development of Microsoft’s Windows 7 [12]. Since 2008, SAGE has
been continually running on average 100� machines automatically “fuzzing” hundreds
of applications in a dedicated security testing lab. This represents the largest computa-
tional usage ever for any Satisfiability Modulo Theories (SMT) solver [27], according
to the authors of the Z3 SMT solver [8].

Despite these successes, several challenges remain, such as increasing code cover-
age and bug finding, while reducing computational costs. A key promising idea is com-
positionality: the search process can be made compositional by memoizing symbolic
execution sub-paths as test summaries which are re-usable during the search, resulting
in a search algorithm that can be exponentially faster than a non-compositional one

E. Yahav (Ed.): SAS 2011, LNCS 6887, pp. 112–128, 2011.
c� Springer-Verlag Berlin Heidelberg 2011

Statically Validating Must Summaries 113

[11]. By construction, symbolic test summaries are “must” summaries guaranteeing the
existence of some program executions and hence useful for proving existential reacha-
bility properties (such as the existence of an input leading to the execution of a specific
program branch or bug). They dualize traditional “may” summaries used in static pro-
gram analysis for proving universal properties (such as the absence of specific types of
bugs for all program paths). We are currently building a general infrastructure to gener-
ate, store and re-use symbolic test summaries for large parts of the Windows operating
system.

In this context, an important problem is the maintenance of test summaries as the
code under test slowly evolves. Recomputing test summaries dynamically from scratch
for every program version sounds wasteful, as new versions are frequent and much
of the code has typically not changed. Instead, whenever possible, it could be much
cheaper to statically check whether previously-computed symbolic test summaries are
still valid for the new version of the code. The formalization and study of this problem
is the motivation for this paper.

We introduce the must-summary checking problem:

Given a set S of symbolic test summaries for a program Prog and a new version
Prog� of Prog, which summaries in S are still valid must summaries for Prog�?

We also consider the more general problem of checking whether an arbitrary set S of
summaries are valid must summaries for an arbitrary program Prog.

We present three algorithms with di�erent precision to statically check which old test
summaries are still valid for a new program version. First, we present an algorithm (in
Section 3) based on a simple impact analysis of code changes on the static control-flow
and call graphs of the program; this algorithm can identify local code paths that have
not changed and for which old summaries are therefore still valid. Second, we present
(in Section 4) a more precise predicate-sensitive refined algorithm using verification-
condition generation and automated theorem proving. Third, we present an algorithm
(in Section 5) for checking the validity of a symbolic test summary against a program
regardless of program changes, by checking whether the pre�postconditions captured in
the old summary still hold on the new program. We discuss the strengths and weak-
nesses of each solution, and present preliminary experimental results with sample test
summaries generated for three large Windows applications. These experiments con-
firm that hundreds of summaries can be validated statically in minutes, while validating
those dynamically can require hours or days.

2 Background and Problem Definition

2.1 Background: Compositional Symbolic Execution

We assume we are given a sequential program Prog with input parameters I. Dy-
namic test generation [14] consists of running the program Prog both concretely and
symbolically, in order to collect symbolic constraints on inputs obtained from predi-
cates in branch statements along the execution. For each execution path w, i.e., a se-
quence of statements executed by the program, a path constraint �w is constructed that

114 P. Godefroid, S.K. Lahiri, and C. Rubio-González

characterizes the input values for which the program executes along w. Each variable
appearing in �w is thus a program input. Each constraint is expressed in some theory
T decided by a constraint solver (for instance, including linear arithmetic, bit-vector
operations, etc.). A constraint solver is an automated theorem prover which also returns
a satisfying assignment for all variables appearing in constraints it can prove satisfiable.
All program paths can be enumerated by a search algorithm that explores all possible
branches at conditional statements. The paths w for which �w is satisfiable are feasible
and are the only ones that can be executed by the actual program provided the solutions
to �w characterize exactly the inputs that drive the program through w. Assuming that
the constraint solver used to check the satisfiability of all formulas �w is sound and
complete, this use of symbolic execution for programs with finitely many paths amounts
to program verification.

Systematically testing and symbolically executing all feasible program paths does
not scale to large programs. Indeed, the number of feasible paths can be exponential in
the program size, or even infinite in the presence of loops with unbounded number of
iterations. This path explosion [11] can be alleviated by performing symbolic execution
compositionally [2, 11].

Let us assume the program Prog consists of a set of functions. In the rest of this
section, we use the generic term of function to denote any part of the program Prog
whose observed behaviors are summarized; any program fragments can be treated as
“functions” as will be discussed later. To simplify the presentation, we assume the
functions in Prog do not perform recursive calls, and that all the executions of Prog
terminate. These assumptions do not prevent Prog from having infinitely many execu-
tions paths if it contains a loop whose number of iterations depends on some unbounded
input.

In compositional symbolic execution, a function summary � f for a function f is de-
fined as a logic formula over constraints expressed in theory T . � f can be derived by
successive iterations and defined as a disjunction of formulas �w f of the form �w f �

prew f � postw f , where wf denotes an intraprocedural path inside f , prew f is a conjunc-
tion of constraints on the inputs of f , and postw f is a conjunction of constraints on the
outputs of f . An input to a function f is any value that can be read by f , while an out-
put of f is any value written by f . �w f can be computed automatically from the path
constraint for the intraprocedural path wf [2, 11].

For instance, given the function �� �������� in Figure 1, a summary � f for this
function can be

� f � (x � 0 � ret � 1) � (x � 0 � ret � 0)

where ret denotes the value returned by the function.
Symbolic variables are associated with function inputs (like x in the example) and

function outputs (like ret in the example), in addition to whole-program inputs. In order
to generate a new test to cover a new branch b in some function, all the previously
known summaries can be used to generate a formula �P representing symbolically all
the paths known so far during the search. By construction [11], symbolic variables
corresponding to function inputs and outputs are all bound in �P, and the remaining
free variables correspond exclusively to whole-program inputs (since only those can be
controlled for test generation).

Statically Validating Must Summaries 115

������� � �		

��� ���� ����� � �� � ������

��� �� ��� � 	�

��� � � 	� � � �� ����

��� � ��� � ���������
�������

�� ��� �� �� ������� �� ��

�������

�

��� �� ������
���� � �

�� ! 	� ������ ��

������ 	�

�

��� "��� � ��� #� �

�� ! 	�$$%&�%#� ! �	��

������ ��

������ 	�

�

Fig. 1. Example

For instance, for the program � in Figure 1, a formula �P to generate a test covering
the then branch (*) given the above summary � f for function �� �������� can be

(ret0 � ret1 � � � � � retN�1 � 3) �
�

0�i�N

((s[i] � 0 � reti � 1) � (s[i] � 0 � reti � 0))

where reti denotes the return value of the ith call to function �� ��������. Even
though program � has 2N�1 feasible whole-program paths, compositional test gener-
ation can cover “symbolically” all those paths in at most 4 test inputs: 2 tests to cover
both branches in function �� �������� plus 2 tests to cover both branches of the con-
ditional statement (*). Compositionality avoids an exponential number of tests and
calls to the constraint solver, at the cost of using more complex formulas with more
disjunctions.

2.2 Problem Definition: Must Summary Checking

In practice, symbolic execution of large programs is bound to be imprecise due to com-
plex program statements (pointer manipulations, floating-point operations, etc.) and
calls to operating-system and library functions that are hard to reason about symbol-
ically with good enough precision at a reasonable cost. Whenever precise symbolic
execution is not possible during dynamic test generation, concrete values can be used
to simplify constraints and carry on with a simplified, partial symbolic execution [14].
The resulting path constraints are then under-approximate, and summaries become must
summaries.

For example, consider the function 	 in Figure 1 and assume the function
��
��

is a complex or unknown function for which no constraint is generated. Assume we
observe at runtime that when 	 is invoked with y � 45, the value of
��
���� is 987.
The summary for this execution of function 	 can then be

(x � 0 � y � 45 � ret � 1)

Here, symbolic variable y is constrained to be equal to the concrete value 45 observed
along the run because the expression hash(y) cannot be symbolically represented. This
summary is a must summary since all value pairs (x� y) that satisfy its precondition
define executions of 	 that satisfy the postcondition ret � 1. However, this set is a subset

116 P. Godefroid, S.K. Lahiri, and C. Rubio-González

of all value pairs that satisfy this postcondition assuming there exists some other value
of y di�erent from 45 such that hash(y) � 10. For test generation purposes, we safely
under-approximate this perfect but unknown input set with the smaller precondition
x � 0 � y � 45. A must summary can thus be viewed as an abstract witness of some
execution. Must summaries are useful for bug finding and test generation, and dualize
may summaries for proving correctness, i.e., the absence of bugs.

We denote a must summary by a quadruple �lp, P, lq, Q� where lp and lq are arbitrary
program locations, P is a summary precondition holding in lp, and Q is a summary
postcondition holding in lq. lp and lq can be anywhere in the program: for instance, they
can be the entry and exit points of a function (as in the previous examples) or block,
or two program points where consecutive symbolic constraints are injected in the path
constraint during symbolic execution, possibly in di�erent functions. In what follows,
we call a summary intraprocedural if its locations (lp, lq) are in a same function f and
the function f did not return between lp to lq when the summary was generated (i.e., no
instruction from a function calling f higher in the call stack was executed from lp to lq
when the summary was generated). We will only consider intraprocedural summaries
in the remainder of this paper, unless otherwise specified.

Formally, must summaries are defined as follows.

Definition 1. A must summary �lp, P, lq, Q� for a program Prog implies that, for every
program state satisfying P at lp in Prog, there exists an execution that visits lq and
satisfies Q at lq.

A must summary is called valid for a program Prog if it satisfies Definition 1. We define
the must-summary checking problem as follows.

Definition 2. (Must-summary checking) Given a valid must summary �lp, P, lq, Q� for
a program Prog and a new version Prog� of Prog, is �lp, P, lq, Q� still valid for Prog�?

We also consider later in Section 5 the more general problem of checking whether
an arbitrary must summary is valid for an arbitrary program Prog. These problems
are di�erent from the must summary inference�generation problem discussed in prior
work [2, 11, 16].

We present three di�erent algorithms for statically checking which old must sum-
maries are still valid for a new program version. These algorithms can be used in isola-
tion or in a pipeline, one after another, in successive “phases” of analysis.

3 Phase 1: Static Change Impact Analysis

The first “Phase 1” algorithm is based on a simple impact analysis of code changes in
the static control-flow and call graphs of the program.

A suÆcient condition to prove that an old must summary �lp, P, lq, Q� generated as
described in Section 2.1 is still valid in a new program version is that all the instruc-
tions that were executed in the original program path taken between lp and lq when the
summary was generated remain unchanged in the new program. Recording all unique
instructions executed between each pair (lp, lq) would be expensive for large programs
as many instructions (possibly in other functions) can be executed.

Statically Validating Must Summaries 117

Instead, we can over-approximate this set by statically finding all program instruc-
tions that may be executed on all paths from lp to lq: this solution requires no additional
storage of runtime-executed instructions but is less precise. If no instruction in this
larger set has changed between the old and new programs, any summary for (lp, lq) can
then be safely reused for the new program version; otherwise, we have to conservatively
declare the summary as potentially invalid since a modified instruction might be on the
original path taken from lp to lq when the summary was generated.

To determine whether a specific instruction in the old program is unchanged in the
new program, we rely on an existing lightweight syntactic “di�”-like tool which can
(conservatively) identify instructions that have been modified, deleted or added between
two program versions by comparing their abstract syntax trees.

Precisely, an instruction i of a program Prog is defined as modified in another pro-
gram version Prog� if i is changed or deleted in Prog� or if its ordered set of immediate
successor instructions changed between Prog and Prog�. For instance, swapping the
then and else branches of a conditional jump instruction “modifies” the instruction.
However, the definition is local as it does not involve non-immediate successors.

Program instructions that are not modified can be mapped across program versions.
Conversely, if an instruction cannot be mapped across program versions, it is considered
as “deleted” and therefore modified. Similarly, a program function is defined as modified
if it contains either a modified instruction, or a call to a modified function, or a call to
an unknown function (e.g., a function outside the program or through a function pointer
which we conservatively assume may have been modified). Note that this definition is
transitive, unlike the definition of modified instruction.

Given those definitions, we can soundly infer valid summaries using the following
rule.

An intraprocedural summary from lp to lq inside a same function f is valid if,
in the control-flow graph for f , no instruction between lp and lq is modified or
is a call to a modified function.

The correctness of this rule is immediate for intraprocedural summaries (as defined in
Section 2.2) since, if the condition stated in the rule holds, we know that all instructions
between lp and lq are unchanged across program versions.

Implementing this rule requires building the control-flow graph of every function
containing an old intraprocedural summary and the call graph for the entire program in
order to transitively determine which functions are modified. Note that the precision of
the rule above could be improved by considering interprocedural control-flow graphs
(merging together multiple intraprocedural control-flow graphs), at the cost of building
larger graphs.

4 Phase 2: Predicate-Sensitive Change Impact Analysis

Consider the summary �lp, x � 0 � y � 10, lq, w � 0� for the code fragment shown on
the left of Figure 2. Assume the instructions marked with “MODIFIED” have been
modified in the new version. Since some instructions on some paths from lp to lq have
been modified, the Phase 1 analysis will invalidate the summary. However, notice that

118 P. Godefroid, S.K. Lahiri, and C. Rubio-González

'''

(�) �� ! 	� �

�� # �� �	�

*��� �� +,-./.0-

�(��

* � 	�

� �(�� �

* � �� �� +,-./.0-

�

(1) '''

'''

(�) �� � 	� �

�� # � 	�

� � ��

�(�� �

� � 	� ��+,-./.0- �� � � 2�

�

�

(1) '''

Fig. 2. Motivating examples for Phase 2 (left) and Phase 3 (right)

the set of executions that start from a state satisfying x � 0 � y � 10 at lp and reach lq
has not changed.

In this section, we present a second change impact analysis “Phase 2” that exploits
the predicates P and Q in a summary �lp, P, lq, Q� to perform a more refined analy-
sis. The basic idea is simple: instead of considering all the paths between lp and lq,
we only consider those that also satisfy P in lp and Q in lq. We now describe how
to perform such a predicate-sensitive change impact analysis using static verification-
condition generation and theorem proving. We start with a program transformation for
checking that all executions satisfying P in lp that reach lq and satisfy Q in lq are not
modified from lp to lq.

Given an intraprocedural summary �lp, P, lq, Q� for a function f , we modify the body
of f in the old code as follows. Let Entry denote the location at the beginning of f , i.e.,
just before the first instruction executed in f . We use an auxiliary Boolean variable
modified, and insert the following code at the labels Entry, lp, lq and at all labels �

corresponding to a modified instruction or a call to a modified function (just before the
instruction at that location).

Entry : goto lp;

lp : assume P; modified :� false;

lq : assert (Q �� �modified);

� : modified :� true;

The assume statement assume P at lp is a blocking instruction [4], which acts as a
no-op if control reaches the statement in a state satisfying the predicate P, and blocks
the execution otherwise. The assertion at lq checks that if an execution reaches lq where
it satisfies Q via lp where it satisfied P, it does not execute any modified instruction
between lp and lq.

Theorem 1. Given an intraprocedural must summary �lp, P, lq, Q� valid for a function
f in an old program Prog, if the assertion at lq holds in the instrumented old program
for all possible inputs for f , then �lp, P, lq, Q� is a valid must summary for the new
program Prog�.

Proof. The assertion at lq ensures that all executions in the old program Prog that
(1) reach lq and satisfy Q in lq and (2) satisfy P at lp do not execute any instruction

Statically Validating Must Summaries 119

that is marked as modified between lp and lq. This set of executions is possibly over-
approximated by considering all possible inputs for f , i.e., ignoring specific calling
contexts for f and lp in Prog. Since all the instructions executed from lp to lq during
those executions are preserved in the new program Prog�, all those executions W from
lp to lq are still possible in the new program. Moreover, since �lp, P, lq, Q� is a must
summary for the old program Prog, we know that for every state s satisfying P in
lp, there exists an execution w from s that reaches lq and satisfies Q in lq in Prog.
This execution w is included in the set W preserved from Prog to Prog�. Therefore, by
Definition 1, �lp, P, lq, Q� is a valid must summary for Prog�. �	

The reader might wonder the reason for performing the above instrumentation on the
old program Prog instead of on the new program Prog�. Consider the case of a state
that satisfies P at lp from which there is an execution that reaches lq in Prog, but from
which no execution reaches lq in Prog�. In this case, the must summary �lp, P, lq, Q� is
invalid for Prog�. Yet applying the above program transformation to Prog� would not
necessarily trigger an assertion violation at lq since lq may no longer be reachable in
Prog�.

To validate must summaries statically, one can use any static assertion checking tool
to check that the assertion in the instrumented program does not fail for all possible
function inputs. In this work, we use Boogie [3], a verification condition (VC) based
program verifier to check the absence of assertion failures. VC-based program verifiers
create a logic formula from a program with assertions with the following guarantee: if
the logic formula is valid, then the assertion does not fail in any execution. The validity
of the logic formula is checked using a theorem prover, typically a SMT solver. For
loop-free and call-free programs, the logic formula is generated by computing variants
of weakest liberal preconditions (wlp) [9]. Procedure calls can be handled by assigning
non-deterministic values to the return variable and all the globals that can be potentially
modified during the execution of the callee. Similarly, loops can be handled by assigning
non-deterministic values to all the variables that can be modified during the execution of
the loop. Although procedure postconditions and loop invariants can be used to recover
the loss of precision due to the use of non-determinism for over-approximating side
e�ects of function calls and loop iterations, we use the default postcondition and loop
invariant true for our analysis to keep the analysis automated and simple.

5 Phase 3: Must Summary Validity Checking

Consider the code fragment shown on the right of Figure 2 where the instruction marked
“MODIFIED” is modified in the new code. Consider the summary �lp, x � 0, lq, r
 0�.
Since the modified instruction is along a path between lp and lq, even when restricted
under the condition P at lp, neither Phase 1 nor Phase 2 will validate the summary.
However, note that the change does not a�ect the validity of the must summary: all
executions satisfying x � 0 at lp still reach lq and satisfy r
 0 in the new code, which
means the must summary is still valid. In this section, we describe a third algorithm
dubbed “Phase 3” for statically checking the validity of a must summary �lp, P, lq, Q�
against some code, independently of code changes.

120 P. Godefroid, S.K. Lahiri, and C. Rubio-González

In the rest of this section, we assume that the programs under consideration are (i)
terminating, i.e., every execution eventually terminates, and (ii) complete, i.e., every
state has a successor state.

Given an intraprocedural summary �lp, P, lq, Q� for a function f , we perform the
following instrumentation on the new code. We denote by Entry the location of the
first instruction in f , while Exit denotes any exit instruction in f . We use an auxiliary
Boolean variable reach lq, and insert the following code at the labels Entry, lp, lq and
Exit.

Entry : reach lq :� false; goto lp;

lp : assume P;

lq : assert (Q); reach lq :� true;

Exit : assert (reach lq);

The variable reach lq is set when lq is visited in an execution, and initialized to false
at the Entry node. The assume P blocks the executions that do not satisfy P at lp. The
assertion at lq checks that if an execution reaches lq via lp, it satisfies Q. Finally, the
assertion at Exit checks that all executions from lp have to go through lq.

Theorem 2. Given an intraprocedural must summary �lp, P, lq, Q� for a function f ,
if the assertions hold in the instrumented program for all possible inputs of f , then
�lp, P, lq, Q� is a valid must summary for the program.

Proof. The assertion at lq ensures that every execution that reaches lq from a state
satisfying P at lp, satisfies Q. This set of executions is possibly over-approximated by
considering all possible inputs for f , i.e., ignoring specific calling contexts for f and
lp. Since we consider programs that are terminating and complete, the assertion at Exit
is checked for every execution (except those blocked by assume P in lp which do not
satisfy P), and ensures that every execution that satisfies P at lp visits lq. The goto lp
ensures that lp is reached from Entry, otherwise the two assertions could vacuously hold
if lp was not reachable or through restricted calling contexts smaller than P. �	

The assertions in the instrumented function can be checked using any o�-the-shelf
assertion checker as described in Section 4. Our implementation uses VC generation
and a theorem prover to validate the summaries. Since loops and procedure calls are
treated conservatively by assigning non-deterministic values to modified variables, the
static validation is also approximate and may sometimes fail to validate valid must
summaries.

Note that Phase 3 is not an instance of the Phase 2 algorithm when every statement
is marked as “modified”: Phase 3 checks the new program while Phase 2 checks the old
program (see also the remark after Theorem 1).

Moreover, the precision of Phase 3 is incomparable to the precision of Phase 2 (which
refines Phase 1). Both Phase 1 and Phase 2 validate a must summary for the new pro-
gram assuming it was a must summary for the old program, whereas Phase 3 provides
an absolute guarantee on the new program. At the start of this section, we presented an
example of a valid must summary that can be validated by Phase 3 but not by Phase 2.

Statically Validating Must Summaries 121

Conversely, Phase 3 may fail to validate a summary due to the presence of complex code
between lp and lq and imprecision in static assertion checking, while Phase 1 or Phase 2
may be able to prove that the summary is still valid by detecting that the complex code
has not been modified.

6 Dealing with Partial Summaries

In practice, tracking all inputs and outputs of large program fragments can be prob-
lematic in the presence of large or complex heap-allocated data structures or when
dealing with library or operating-system calls with possibly unknown side e�ects. In
those cases, the constraints P and Q can be approximate, i.e., only partially defined: P
constraints only some inputs, while Q can capture only some outputs (side e�ects). The
must summary is then called partial, and may be wrong in some other unknown call-
ing context. Constraints containing partial must summaries may generate test cases that
will not cover the expected program paths and branches. Such divergences [14] can be
detected at runtime by comparing the expected program path with the actual program
path being taken. In practice, divergences are often observed in dynamic test genera-
tion, and partial summaries can still be useful to limit path explosion, even at the cost
of some divergences.

Consider the partial summary �lp, x � 0, lq, ret � 1� for the function

��� 3��� � �

(�) �� ! 	� $$
4(�5&(! �	�� ������ ��

������ 	�

(1) �

where the input value stored in the global variable ������� is not captured in the
summary, perhaps because it does not depend on a whole-program input. If the value of
������� is constant, the constraint �������� � ��� is always true and can safely be
skipped. Otherwise, the partial summary is imprecise: it may be wrong in some calling
contexts.

The validity of partial must summaries could be defined in a weaker manner to reflect
the fact that they capture only partial preconditions, for instance as follows:

Definition 3. A partial must summary �lp, P, lq, Q� is valid for a program Prog if there
exists a predicate R on program variables, such that (i) R does not imply false, (ii) the
support1 of R is disjoint from the support of P, and (iii) �lp, P � R, lq, Q� is a must
summary for Prog.

Since R is not false, the conditions (ii) and (iii) cannot be vacuously satisfied. More-
over, since the supports of P and R are disjoint, R does not constrain the variables in P
yet requires that the partial must summary tracks a subset of the inputs (namely those
appearing in P) precisely.

In practice, it can be hard and expensive to determine whether a must summary is
partial or not. Fortunately, any partial must summary can be soundly validated using the

1 The support of an expression refers to the variables in the expression.

122 P. Godefroid, S.K. Lahiri, and C. Rubio-González

stronger Definition 1, which is equivalent to setting R to true in Definition 3. Phases 1,
2 and 3 are thus all sound for validating partial must summaries.

Validating partial summaries with Definition 3 or full summaries for non-
deterministic programs with Definition 1 could be done more precisely with an as-
sertion checker that can reason about alternating existential and universal quantifiers,
which is non-standard. It would be interesting to develop such an assertion checker in
future work.

7 Recomputing Invalidated Summaries

All the summaries declared valid by Phase 1, 2 or 3 are mapped to the new code and
can be reused. In contrast, all invalid summaries need to be recomputed, for instance
using a breadth-first strategy in the graph formed by superposing path constraints.

Consider the graph G whose nodes are all the program locations lp and lq mentioned
in the old set of test summaries, and where there is an edge from lp to lq for each
summary. Note that, by construction [11], every node lq of a summary matches the
node lp of the next summary in the whole-program path constraint, unless lq is the last
conditional statement in the path constraint or lp is the first one, which we denote by r
for “root”. By construction, G is a directed acyclic graph.

Consider any invalid summary �lp, P, lq, Q� that is closest to the root r of G. Let
� denote the set of paths from r to lp. By construction with a breadth-first strategy,
all summaries along all the paths in � are still valid for the new program version. To
recompute the summary �lp, P, lq, Q� for the new program, we call the constraint solver
with the formula

P �
�

�i��

�i

in order to generate a test to exercise condition P at the program location lp (see
Section 2.1). Then, we run this test against the new program version and generate a
new summary from lp to wherever it leads to (possibly a new lq and Q). This process
can be repeated to recompute all invalidated summaries in a breadth-first manner in G.

8 Experimental Results

We now present preliminary results for validating intraprocedural must summaries gen-
erated by our tool SAGE [15] for several benchmarks, with a focus on understanding
the relative e�ectiveness of the di�erent approaches.

8.1 Implementation

We have developed a prototype implementation for analyzing x86 binaries, using two
existing tools: the Vulcan [10] library to statically analyze Windows binaries, and the
Boogie [3] program verifier. We briefly describe the implementation of the di�erent
phases in this section.

Our tool takes as input the old program (DLLs), the set of summaries generated by
SAGE for the old program, and the new version of the program. We use Vulcan to

Statically Validating Must Summaries 123

Functions with Changes Summaries
Benchmark Functions M % M IM % IM U % U IU % IU (Intraprocedural)
ANI 6978 703 10% 3130 45% 2340 34% 5174 74% 286
GIF 13897 712 5% 4370 31% 3814 27% 8827 64% 288
JPEG 20357 623 3% 6150 30% 7463 37% 12184 60% 517

Fig. 3. Benchmark characteristics

find di�erences between the two versions of the program, and propagate them inter-
procedurally. In this work, we focus on the validation of must summaries that are in-
traprocedural (SAGE classifies summaries as intraprocedural or not at generation time).
Intraprocedural summaries that cannot be validated by Phase 1 are further examined by
the more precise Phases 2 and 3. For each of those, we conservatively translate the x86
assembly code of the function containing the summary to a function in the Boogie input
language, and use the Boogie verifier (which uses the Z3 SMT solver) to validate the
summaries using the Phase 2 or Phase 3 checks. Finally, our tool maps the lp and lq
locations of every validated summary from the old program to the new program.

Unfortunately, Boogie currently does not generate a VC if the function under analysis
has an irreducible control-flow graph [1], although the theory handles it [3]. A function
has an irreducible control-flow graph if there is an unstructured loop with multiple
entry points into the loop. Such an unstructured loop can arise from two sources: (i)
x86 binaries often contain unstructured goto statements, and (ii) we add a 	��� lp
statement in Phases 2 and 3 that might jump inside a loop. Such irreducible graphs
appear in roughly 20% of the summaries considered in this section. To circumvent
this implementation issue, we report experimental results in those cases where such
loops are unrolled a constant number of times (four times). Although we have manually
checked that many of these examples will be provable if we had support for irreducible
graphs, we can treat those results to indicate the potential of Phase 2 or Phase 3: if their
e�ectiveness is poor after unrolling, it can only be worse without unrolling.

8.2 Benchmarks

Table 3 describes the benchmarks used for our experiments. We consider three image
parsers embedded in Windows: ANI, GIF and JPEG. For each of these, we ran SAGE
to generate a sample of summaries. The number of DLLs with summaries for the three
benchmarks were 3 for ANI, 4 for GIF, and 8 for JPEG. Then, we arbitrarily picked a
newer version of each of these DLLs; these were between one and three years newer
than the original DLLs. The column “Functions” in Table 3 denotes the total number
of functions present in the original DLLs. The columns marked “M”, ”IM”, ”U” and
”IU” denote the number of functions that are “Modified”, “Indirectly Modified” (i.e.,
calling a modified function), “Unknown” (i.e., calling a function in an unknown DLL
or through a function pointer) and “Indirectly Unknown”, respectively. The table also
contains the percentage of such functions over the total number of functions. Finally, the
“Summaries” column denotes the number of summaries classified as intraprocedural.
For all three benchmarks, most summaries generated by SAGE are intraprocedural.

124 P. Godefroid, S.K. Lahiri, and C. Rubio-González

Benchmark # Summ Phase 1 Phase 2 Phase 3 All
% time # % time # % time # % time

ANI 286 167 58% 8m (3m) 244 85% 37m 86 30% 42m 256 90% 87m
GIF 288 198 69% 12m (4m) 264 92% 23m 90 31% 35m 274 95% 70m

JPEG 517 317 61% 18m (6m) 487 94% 31m 173 33% 37m 501 97% 86m

Fig. 4. Di�erent phases on all the intraprocedural summaries

Although these benchmarks have a relatively small fraction of modified functions
(between 3% – 10%), the fraction of functions that can transitively call into these func-
tions can be fairly large (between 30% – 45%). The impact of unknown functions is
even more significant, with most functions being marked U or IU. Note that any call to
a M, IM, U or IU function would be marked as modified in Phase 1 of our validation
algorithm (Section 3). Although we picked two versions of each benchmark separated
by more than a year, we expect the most likely usage of our tool to be for program
versions separated only by a few weeks.

8.3 Results

The three tables (Fig. 4, Fig. 5 and Fig. 6) report the relative e�ectiveness of the di�er-
ent phases on the previous benchmarks. Each table contains the number of intraproce-
dural summaries for each benchmark (“# Summ”), the validation done by each of the
phases, and the overall validation. For each phase (and overall), we report the number of
summaries validated (“#”), the percentage of the total number of summaries validated
(“%”) and the time (in minutes) taken for the validation. The time reported for Phase 1
includes the time taken for generating the modified instructions interprocedurally, and
mapping the old summaries to the new code; the fraction of time spent solely on vali-
dating the summaries is shown in parenthesis. The failure to prove a summary valid in
Phase 2 or Phase 3 could be the result of a counterexample, timeout (100 seconds per
summary), or some internal analysis errors in Boogie.

Figure 4 reports the e�ect of passing all the intraprocedural summaries indepen-
dently to all the three phases. First, note that the total number of summaries validated is
quite significant, between 90% and 97%. Phase 1 can validate between 58%–69% of the
summaries, Phase 2 between 85%–94% and Phase 3 between 30%–33%. Since Phase 1
is simpler, it can validate the summaries the fastest among the three approaches. The
results also indicate that Phase 2 has the potential to validate significantly more sum-
maries than Phase 1 or Phase 3. After a preliminary analysis of the counterexamples
for Phase 3, its imprecision seems often due to the partiality of must summaries (see
Section 6): many must summaries do not capture enough constraints on states to enable
their validation using Phase 3.

To understand the overlap between the summaries validated by each phase, we report
the results of the three phases in a “pipeline” fashion, where the summaries validated by
an earlier phase are not considered in the later stages. In all the configurations, Phase 1
was allowed to go first because it generates information required for running Phase 2
and Phase 3, and because it is the most scalable as it does not involve a program verifier.

Statically Validating Must Summaries 125

Benchmark # Summ Phase 1 Phase 2 Phase 3 All
% time # % time # % time # % time

ANI 286 167 58% 8m 77 27% 29m 12 4% 6m 256 90% 43m
GIF 288 198 69% 12m 73 25% 15m 3 1% 1m 274 95% 28m

JPEG 517 317 61% 18m 179 35% 18m 5 1% 5m 501 97% 41m

Fig. 5. Pipeline with Phase 1, Phase 2 and Phase 3

Benchmark # Summ Phase 1 Phase 3 Phase 2 All
% time # % time # % time # % time

ANI 286 167 58% 8m 30 10% 12m 59 21% 27m 256 90% 47m
GIF 288 198 69% 12m 25 9% 7m 51 18% 12m 274 95% 31m

JPEG 517 317 61% 18m 52 10% 14m 132 26% 14m 501 97% 46m

Fig. 6. Pipeline with Phase 1, Phase 3, Phase 2

The invalid summaries from Phase 1 are passed either to Phase 2 first (Figure 5) or to
Phase 3 first (Figure 6).

The results indicate that the configuration of running Phase 1, followed by Phase 2
and then Phase 3 is the fastest. The overall runtime in Figure 5 is roughly half than the
overall runtime in Figure 4. Note that the number of additional summaries validated by
Phase 3 beyond Phases 1 and 2 is only 1%–4%.

On average from Figure 5, it takes about (43 min divided by 256 summaries) 10
secs to statically validate one summary for ANI, 6 secs for GIF and 5 secs for JPEG.
In contrast, the average time needed by SAGE to dynamically re-compute a summary
from scratch is about 10 secs for ANI, 70 secs for GIF and 100 secs for JPEG. Statically
validating summaries is thus up to 20 times faster for these benchmarks.

9 Related Work

Compositional may static program analysis has been amply discussed in the litera-
ture [25]. A compositional analysis always involves some form of summarization. In-
cremental program analysis is also an old idea [7, 24] that nicely complements com-
positionality. Any incremental analysis involves the use of some kind of “derivation
graph” capturing inference interdependencies between summaries during their compu-
tation, such as which lower-level summary was used to infer which higher-level sum-
mary. While compositional interprocedural analysis has now become mainstream in
industrial-strength static analysis tools (e.g., [19]) which otherwise would not scale to
large programs, incremental algorithms are much less widely used in practice. Indeed,
those algorithms are more complicated and often not really needed as well-engineered
compositional static analysis tools can process millions of lines of code in only hours
on standard modern computers.

The purpose of our general line of research is to replicate the success of compo-
sitional static program analysis to the testing space. In our context, the summaries we
memoize (cache) are symbolic test must summaries [2, 11] which are general

126 P. Godefroid, S.K. Lahiri, and C. Rubio-González

input-dependent pre�postconditions of a-priori arbitrary code fragments, and which are
represented as logic formulas that are used by an SMT solver to carry out the interpro-
cedural part of the analysis. Because test summaries need to be precise (compared to
those produced by standard static analysis) and are generated during an expensive dy-
namic symbolic execution of large whole programs, incrementality is more appealing
for cost-reduction in our context.

The algorithms presented in Sections 3 and 4 have the general flavor of incremental
algorithms [24], while the graph formed by superposing path constraints and used to
recompute invalidated summaries in Section 7 corresponds to the “derivation graph”
used in traditional incremental compositional static-analysis algorithms. However, the
details of our algorithms are new due to the specific nature of the type of summaries we
consider.

The closest related work in the testing space are probably techniques for regres-
sion test selection (e.g., see [17]) which typically analyze test coverage data and code
changes to determine which tests in a given test suite need to be re-executed to cover
newly modified code. The techniques we use in Phase 1 of our algorithm are similar,
except we do not record coverage data for each pair lp and lq as discussed at the begin-
ning of Section 3. There is a rich literature on techniques for static and dynamic change
impact analysis (see [26] for a summary). Our Phase 1 can be seen as a simple instance
of these techniques, aimed at validating a given must summary. Although more sophis-
ticated static-analysis techniques (based on dataflow analysis) have been proposed for
change impact analysis, we are not aware of any attempt to use verification-condition
generation and automated theorem proving techniques like those used in Phase 2 and
Phase 3 for precise checking of the impact of a change. The work on di�erential sym-
bolic execution (DSE) [22] is the closest to our Phase 3 algorithm. Unlike DSE, we do
not summarize paths in the new program to compare those with summaries of the old
program; instead, we want to avoid recomputing new summaries by reusing old ones as
much as possible. Whenever an old summary �lp, P, lq, Q� becomes invalid and needs to
be recomputed, a data-flow-based impact analysis like the one discussed in [23] could
refine the procedure described in Section 7 by identifying which specific program paths
from lp to lq need to be re-executed symbolically. In our experiments, every summary
covers one or very few paths (of the old program), and this optimization is not likely to
help much.

Must abstractions are program abstractions geared towards finding errors, which
dualize may abstractions geared towards proving correctness [13]. Reasoning about
must abstractions using logic constraint solvers has been proposed before [6, 13, 16,
18, 20], and are related to Phase 3 in our work.

10 Conclusions

In this work, we formulated the problem of statically validating must summaries to
make compositional dynamic test generation more incremental. We described three ap-
proaches for validating must summaries, that di�er in their strengths and weaknesses.
We outlined the subtleties involved in using an o�-the-shelf verification-condition-
based checker for validating must summaries, and the impact of partial predicates on

Statically Validating Must Summaries 127

precision. We presented a preliminary evaluation of these approaches on a set of
representative intraprocedural summaries generated from real-world applications, and
demonstrated the e�ectiveness of static must summary checking. We plan to evaluate
our tool on a larger set of summaries and benchmarks, investigate how to validate inter-
procedural summaries, and improve the precision of the path-sensitive analysis.

Acknowledgements. We thank the anonymous reviewers for their constructive com-
ments. The work of Cindy Rubio-González was done mostly while visiting Microsoft
Research. A preliminary version of this work appeared under the title “Incremental
Compositional Dynamic Test Generation” as MSR Technical Report MSR-TR-2010-
11, February 2010.

References

1. Aho, A., Sethi, R., Ullman, J.: Compilers: Principles, Techniques and Tools. Addison-
Wesley, Reading (1986)

2. Anand, S., Godefroid, P., Tillmann, N.: Demand-Driven Compositional Symbolic Execu-
tion. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 367–381.
Springer, Heidelberg (2008)

3. Barnett, M., Chang, B.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: A modular
reusable verifier for object-oriented programs. In: de Boer, F.S., Bonsangue, M.M., Graf, S.,
de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 364–387. Springer, Heidelberg
(2005)

4. Barnett, M., Leino, K.R.M.: Weakest-precondition of unstructured programs. In: PASTE
2005, pp. 82–87 (2005)

5. Cadar, C., Ganesh, V., Pawlowski, P.M., Dill, D.L., Engler, D.R.: EXE: Automatically Gen-
erating Inputs of Death. In: ACM CCS (2006)

6. Chandra, S., Fink, S.J., Sridharan, M.: Snugglebug: A Powerful Approach to Weakest Pre-
conditions. In: PLDI 2009 (2009)

7. Conway, C.L., Namjoshi, K.S., Dams, D., Edwards, S.A.: Incremental algorithms for inter-
procedural analysis of safety properties. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005.
LNCS, vol. 3576, pp. 449–461. Springer, Heidelberg (2005)

8. de Moura, L., Bjorner, N.: Z3: An EÆcient SMT Solver. In: Ramakrishnan, C.R., Rehof, J.
(eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)

9. Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of programs.
Communications of the ACM 18, 453–457 (1975)

10. Edwards, A., Srivastava, A., Vo, H.: Vulcan: Binary transformation in a distributed environ-
ment. Technical report, MSR-TR-2001-50, Microsoft Research (2001)

11. Godefroid, P.: Compositional Dynamic Test Generation. In: POPL 2007, pp. 47–54 (2007)
12. Godefroid, P.: Software Model Checking Improving Security of a Billion Computers. In:

Păsăreanu, C.S. (ed.) Model Checking Software. LNCS, vol. 5578, pp. 1–1. Springer, Hei-
delberg (2009)

13. Godefroid, P., Huth, M., Jagadeesan, R.: Abstraction-Based Model Checking Using Modal
Transition Systems. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154,
pp. 426–440. Springer, Heidelberg (2001)

14. Godefroid, P., Klarlund, N., Sen, K.: DART: Directed Automated Random Testing. In: PLDI
2005, pp. 213–223 (2005)

15. Godefroid, P., Levin, M., Molnar, D.: Automated Whitebox Fuzz Testing. In: NDSS 2008,
pp. 151–166 (2008)

128 P. Godefroid, S.K. Lahiri, and C. Rubio-González

16. Godefroid, P., Nori, A., Rajamani, S., Tetali, S.: Compositional Must Program Analysis:
Unleashing The Power of Alternation. In: POPL 2010 (2010)

17. Graves, T.L., Harrold, M.J., Kim, J.-M., Porter, A., Rothermel, G.: An Empirical Study
of Regression Test Selection Techniques. ACM Transactions on Software Engineering and
Methodology (TOSEM) 10(2), 184–208 (2001)

18. Gurfinkel, A., Wei, O., Chechik, M.: Y���: A Software Model-Checker for Verification
and Refutation. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 170–174.
Springer, Heidelberg (2006)

19. Hallem, S., Chelf, B., Xie, Y., Engler, D.: A System and Language for Building System-
Specific Static Analyses. In: PLDI 2002, pp. 69–82 (2002)

20. Hoenicke, J., Leino, K.R.M., Podelski, A., Schäf, M., Wies, T.: It’s doomed; we can prove
it. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 338–353. Springer,
Heidelberg (2009)

21. Molnar, D., Li, X.C., Wagner, D.: Dynamic test generation to find integer bugs in x86 binary
linux programs. In: Proc. of the 18th Usenix Security Symposium (2009)

22. Person, S., Dwyer, M.B., Elbaum, S.G., Pasareanu, C.S.: Di�erential symbolic execution. In:
SIGSOFT FSE, pp. 226–237 (2008)

23. Person, S., Yang, G., Rungta, N., Khurshid, S.: Directed Incremental Symbolic Execution.
In: PLDI 2011, pp. 504–515 (2011)

24. Ramalingam, G., Reps, T.: A Categorized Bibliography on Incremental Algorithms. In:
POPL 1993, pp. 502–510 (1993)

25. Reps, T., Horwitz, S., Sagiv, M.: Precise Interprocedural Dataflow Analysis via Graph Reach-
ability. In: POPL 1995, pp. 49–61 (1995)

26. Santelices, R.A., Harrold, M.J., Orso, A.: Precisely detecting runtime change interactions for
evolving software. In: ICST, pp. 429–438 (2010)

27. Satisfiability Modulo Theories Library (SMT-LIB),
%���)��"����('��'���*&'�����6�(�5�

http://goedel.cs.uiowa.edu/smtlib/

	Statically Validating Must Summaries for Incremental Compositional Dynamic Test Generation
	Introduction
	Background and Problem Definition
	Background: Compositional Symbolic Execution
	Problem Definition: Must Summary Checking

	Phase 1: Static Change Impact Analysis
	Phase 2: Predicate-Sensitive Change Impact Analysis
	Phase 3: Must Summary Validity Checking
	Dealing with Partial Summaries
	Recomputing Invalidated Summaries
	Experimental Results
	Implementation
	Benchmarks
	Results

	Related Work
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

