SAV-V: Securing Anti-Virus with Virtualizatioh

Jacob R. Lorch Bryan Parno Helen J. Wang
Microsoft Research Carnegie Mellon University Microsoft Research

Abstract

Today’s desktop PCs rely on security software such as amtsproducts and personal firewalls for
protection. Unfortunately, malware authors have adaptespecifically targeting and disabling these
defenses, a practice exacerbated by the rise in zero-dédgitsxdn this paper, we present the design,
implementation, and evaluation of SAV-V, a platform thahances the detection capabilities of anti-
virus software. Our platform leverages virtualization tegerve thentegrity of AV software and to
guarantee access to AV updates. SAV-V also uses securaipggd a split file system to preserve the
fidelity of input to the AV program. Combined with our technique ofdadhutdowns, these measures
allow SAV-V to eventually detect any zero-day malware theteg to disk. Benchmarks of our prototype
system suggest that SAV-V can be implemented efficientlgl,vaa validate our prototype by testing it
against real-world malware.

1 Introduction

The typical desktop PC depends on various forms of protecmftware, including anti-virus (AV)
and anti-spyware applications, as well as host-based filewizhe anti-malware tools safeguard persistent
state on the PC, while firewalls cleanse network input. Teigeprotection, these tools rely on rules and
signatures developed based on knowledge of malware, aitaokl software vulnerabilities. While these
techniques do not offer perfect protection, they repreti@atprimary defense mechanism for millions of
computer users.

Unfortunately, even with these protection mechanisms &tgl most computers remain vulnerable to
zero-day attacks based on undiscovered vulnerabilitiesyknown malware, and indeed zero-day attacks
are likely to be a fact of life for years to come. Recent treimdicate that zero-day exploits are on the
rise [33]. As new technologies [28, 38] are deployed to defagainst known vulnerabilities, the incentive
to launch zero-day exploits will increase. As a result, feitcomputer systems must be able to deal with, or
at least recover from, zero-day attacks.

Zero-day attacks fundamentally undermine a user’s cortilenthe security of her machine, since they
can seize control of applications and even the operatingsyand then use this control to disable or subvert
protection software. This subversion can be subtle anddiffisult to detect. For example, it may leave
the protection software running but prevent it from downliog updates needed to detect and remove the
infection. By keeping a low profile, malware may remain uedetd indefinitely, and throughout this time
the user is unwittingly vulnerable to arbitrary maliciouidty. For instance, her bank passwords may be
captured, or her computer may be used to send spam or laun@t-deservice attacks.

In this work, we aim to create a platform, SAV-V, that pressrthe detection capabilities of protection
software, even in the presence of zero-day attacks thatulared the operating system. Note that we do
not attempt to stop all zero-day attacks from executingeliging a practical system for reliably preventing
the execution of unknown malware targeting unknown expl@mains an open research problem. Instead,

“Based on research conducted at Microsoft Research from2D@&through April 2007.

SAV-V enables AV software to detect past zero-day infedjoeven ones that attempted to disrupt the
AV software itself, when signatures for those infectiongdiae available. Compared with today’s AV
techniques, which leave the user perpetually uncertaio teettrustworthiness of her computer, the ability
to reliably detect intrusions past or present represenigniisant step forward. Once the user is informed
of an intrusion, she can terminate her use of the corrupteisyand take steps to recover the system to a
known-good state. These steps can involve rollback to @qus\backup or more advanced techniques that
allow selective replay of legitimate activity [16, 20].

By focusing on protection software, we adopt a hierarchpratection model in which the SAV-V
platform secures the protection software and the protecaitware secures the rest of the system. This
approach allows AV vendors to continue in their traditionale as the source of creativity in signature
development and deployment. As a result, the SAV-V modelaisktvard-compatible with today's AV
operations and allows easy deployment.

Our hierarchical protection model naturally suggestsriayig the extra privilege level provided by
Virtual Machine Monitors (VMM). We draw two lessons from oexploration in the solution space of
a VM-based SAV-V platform. FirstyYM introspection-based approaches have significant sgcusks
VM introspection infers high-level software semanticsc{sas file accesses) from the hardware-level state
exposed by the monitored VM. To do so, assumptions must be ot the OS and software structures
running in the monitored VM. However, these assumptions lmawiolated by malware intrusions. The
second lesson is thaecuring an application’s integrity through OS hardeniegjuires excessive complexity
and cannot realistically be completgince this entails securing the enormous number of OS coemi® on
which the application depends.

Our design for SAV-V is based on these lessons. To make thefWare tamperproof without the need
for OS hardening, we isolate AV software in a secure VM sdpdram the guest VM that the AV software
protects. To eliminate the security risks of VM introspentiwe have the AV software inspect the guest’s
state at the file system level rather than the hardware level.

Driven by two attacker models, we have designed, implendersied evaluated on Windows two file-
system inspection approaches for the SAV-V platform: Gu@sated Logging (GIL) and Split File System
(Split FS). The former targets file-based attacks in whiehstystem is compromised as the result of execut-
ing a malicious file. This attack vector encompasses mosidai\t's viruses and does not necessarily depend
on the existence of software vulnerabilities, since scamgineering techniques can convince users to exe-
cute malicious binaries. As Pennington et al. note [25],vidi& majority of today’s malware, particularly
on home PCs, can be detected at the disk level. Split FS affieigher level of assurance, guaranteeing that
the AV software can, if desired, monitor and/or interposeswery file-system operation, even if the guest
operating system is subverted by a memory-based attack.

While Split FS offers stronger guarantees, it incurs sutiistly more overhead than GIL. GIL only
crosses the virtual machine boundary when the file systenodfiad, and only adds a few microseconds to
file-system operations. In contrast, Split FS must crossittgal machine boundary even on reads, and can
add more than a millisecond to file-system operations. Wherempare these two implementations with
a file-system-intensive macrobenchmark, we find that Glkeiases completion time by 5% while Split FS
increases it by 62%. These results illustrate the inheradebff between security and performance.

With Split FS in place, attackers who exploit memory-baselderabilities will likely postpone writing
to disk for as long as possible. However, they must eventwetite to disk to persist across a shutdown.
To speed detection of such malware that postpones suspiaiotes until shutdown, we propose the use of
randomfake shutdownsWe present our design for this in Section 5.4.

The paper is structured as follows. In Section 2, we presengoals for SAV-V. Then, in Section 3
we present a taxonomy of malware, which we use to clearly ééfia types of malware SAV-V can and
cannot defend against. Section 4 explains our design edépand Section 5 describes the architecture for
the SAV-V platform. We present our security analysis in #&c6. We then describe the details of our

implementation and evaluation in Section 7 and suggesttdres for future research in Section 8. Finally,
we survey related work in this area in Section 9 and offer omctusions in Section 10.

2 Goals of SAV-V

AV software detects and removes malware by comparing nerelgted or modified files against virus
signatures. AV detection and cleansing takes place botbhaittime and during normal operations. For the
latter, AV software intercepts file-system API calls so thaan scan files when they are first written to disk
or first accessed.

The SAV-V platform should endow AV software with the follavg capabilities:

e Prevent New Infections by Known Virus@¥. software should be able to prevent new infections that
can be detected by the current set of virus signatures. Ndardhis property, the AV software must
see the authentic file system at all times, and it must exedthentegrity, i.e., it cannot be tampered
with or disabled.

e Detect Past Zero-Day InfectiongV software should be able to detect past zero-day infestiwhen
signatures for the associated malware become availablis. r@tuires the AV software to continue
functioning correctly after the zero-day infection.

e Obtain Updated Signaturedalware should not be able to tamper with the network conoedhat
AV software uses to receive updates. Note that we considgrmalware resident on the computer
itself; defending against an adversary who floods the vistimatwork link from an external computer
is beyond the scope of this paper.

Zero-day attacks prevent current AV programs from fullyiaeimg any of these capabilities. Since AV
programs typically cannot stop the execution of zero-dégchs, the attacker can disable the AV software
and prevent it from detecting known malware that later itfe¢he system. The malware may instead al-
low the AV software to continue executing, but prevent infroeceiving the updates needed to detect the
new attack. In either case, the AV software offers littlditytito the user, and as a result, she will have
correspondingly little faith in the protection it provides

3 Malware Taxonomy and SAV-V’'s Scope

To describe the types of malware our techniques can defesidsigwe create a taxonomy of malware
based on its interaction with the disk. The classes and astes are described in detail below.

3.1 Disk-based Malware

Disk-basedmalware must be written to disk before it can execute. Thesctd disk-based malware
includes typical viruses that spread via e-mail or infedtied, often relying on social engineering tricks to
persuade users to execute them. As a result, even opergitegns without any vulnerabilities may still
allow disk-based malware to execute. The MyDoom virus isoagpypical example [8].

AV software is most effective against disk-based malwars.lghg as it has an appropriate signature
for the malware, and it has not yet been compromised by zayorthlware, it can usually prevent files
containing that malware from executing.

3.2 Memory-based Malware

Memory-basednalware can execute without being written to disk. Typigcaill exploits a software
vulnerability such as a buffer overflow, format-string vedability, etc. Malware in this class rarely requires

active participation from the user. Examples in this clasfuide the Blaster and SQL Slammer worms.

We classify memory-based malware into one of two subclags@® memory-based malware, which
never writes anything to disk, andixed memory-based malware, which does write to disk. Below, we
describe the class of mixed memory-based malware in moad.det

Memory-based malware authors have various reasons fangviid disk. First,convenience-rather
than write new tools that avoid disk writes, they may usegxisting tools, such as an ftp client, that write
to disk. Secondsize constraints-they may need to download large amounts of data that wilfihiot main
memory. For example, if the malware is to serve as a repgsitorbootleg movies or pirated software, it
may need to store them on disk. Third, and most importapéssistence-malware authors often want their
malware to maintain control of the system beyond a shutddvire fact that pure memory-based malware
is purged from the system upon shutdown provides a stroniyation to write to disk.

An example of mixed memory-based malware is the Blaster waovhich exploited a DCOM RPC
vulnerability in Microsoft Windows to gain execution ptieges, then downloaded an executable to the
infected computer [7].

AV software generally does not protect against memory-dbaseloits, but it may be able to detect
mixed memory-based malware. Note, however, that mixed meivased malware with the proper privi-
leges and capabilities may disrupt current AV softwaren tivate to disk without risk of detection.

3.3 Scope of SAV-V

We have designed SAV-V to defend against both disk-basedanaland mixed memory-based mal-
ware. At present, we leave consideration of pure memorgédasalware for future work. Prior work
suggests that virtually all modern malware leaves tracés giresence on disk [25], indicating that SAV-V
can be effective even without addressing pure memory-basddare.

4 Design Rationale

In this section, we discuss approaches for our platformgdetiat we considered and rejected before
settling on the SAV-V architecture. The flaws we found ser@ediseful guidance in the design of SAV-V.

4.1 Virtualization-Based Approaches

Virtualization technology permits strong isolation of tsadire components, and thus is a logical compo-
nent for our system of hierarchical protection.

A virtual machine monitor (VMM) is a thin layer of softwareattypically runs directly on the physical
machine while presenting the abstraction of multiple @rtmachines (VMs). Within each virtual machine,
an operating system runs as it normally would on a physicalhine, often unaware of the virtualization
layer underneath. Popular examples of virtualizationveafé for commodity desktops include Xen [6],
various products from VMWare [36], and Microsoft’s VirtuaC [22].

An important property provided by virtualization isolation software inside one VM cannot see or
affect another VM unless explicitly permitted by the VMM. i§rsuggests a natural way to achieve our
hierarchy of protection. We can place most of the system forbi=cted into one VM, called trguest VM
and the protection software itself into another VM, calleegsecure VM The VMM permits the secure VM
to monitor and control the guest VM, but does not permit therge. Thus, malware that takes control of
the guest VM cannot disrupt the protection software.

VM introspectionis a powerful technique that enables one VM to monitor ardthé5,19]. Essentially,
the VMM allows one VM to examine the hardware state of anotiidr The inspecting VM can then use this
hardware state to infer the high-level software state ofriepected VM. Often, the VMM also allows the

Secure VM| | GuestVM Secure VM| | GuestVM Secure VM| | GuestVM Secure VM| | GuestVM
P P
AV 'App | w LAV | AV App AV App
Lo/ Lo/ N
! Guest OS ! Guest OS 105 Guest OS
0s LG_u_eft_O_S_: 0s LG_u_eft_O_S_: 0s Guest OS ey
| VMM | | VMM | | VMM | | VMM |
| Hardware | | Hardware | | Hardware | | Hardware |
(a) Disk Introspection (b) Watcher (c) Guest-Initiated Logging (d) Split File System

Figure 1: Figures 1(a) and 1(b) illustrate two approaches we congdend rejected. Figures 1(c) and 1(d) show the
two inspection techniques used by SAV-V. AV indicates tiwiams application, and W signifies a watcher program.

inspecting VM to register a callback that gets invoked whentain hardware events occur on the inspected
VM. This way, the inspecting VM can continually monitor inmemt elements of the inspected VM’s state.

4.1.1 Disk Introspection

The first approach we considered places the user’s primargr@d&pplications in a guest VM and the
AV software in a secure VM from which it can use VM introspeatito perform its tasks. Figure 1(a)
illustrates this approach.

With disk introspection, the VMM provides the necessaryKsoand permissions to allow the secure
VM to inspect the disk state of the guest VM, and to be notifiachetime the guest OS writes to disk. As
noted in Section 9, prior work employs a similar approachpfaviding host-based intrusion detection [15].

The primary problem with disk introspection is the large ftw@mof assumptions it must make about
how the software inside the guest VM behaves. The VMM can pnbyide accurate information about
the low-level hardware machine state of the guest VM. Anyitamdthl information must be inferred. So,
the VMM can provide information about blocks written to diglut the security software must somehow
use that information to infer information about file writeg/hile some researchers have considered the
problem of inferring file system information from block-&hevents [30], their work focuses on performance
optimizations and does not consider the possibility of aveeshrial environment. Indeed, once malware
in the guest VM succeeds in executing, it can immediatelyatéothe assumptions used by the security
software when it makes its inferences. Since a compromigheofjuest OS will make the information
gleaned from VM introspection unreliable, we cannot reltlis approach to safeguard security software.

4.1.2 Watcher

Another approach we considered we calledwlacherapproach. In this approach, the security software
runs inside the guest VM, not the secure VM. What runs in tleeirgeVM is a watcher program, which
uses VM introspection to ensure the integrity of the segsdftware’s execution and the fidelity of the
information it receives (see Figure 1(b)). In the end, tpisraach proved excessively complex and unwieldy.

Placing the security software inside the guest VM givesreaivisibility into the guest software state.
It no longer needs to make inferences about the correspoadswtthis state to the guest hardware state. It
also eliminates the need to modify or shim the security saéwsince it continues its normal operations.

The watcher program resides in the secure VM and monitor&xbeution of the security software.
It verifies that the security software has not been tamperéd @and it also guarantees that the security
software observes the correct information. In theory, esitiie watcher program only monitors a single

piece of software, it should require a minimal amount of VNtaspection, while the security software’s
position in the guest VM gives it an accurate view of the rafg\guest operations.

The problem with this approach is that since the securitywsot operates inside the guest VM, it
depends heavily on the guest OS. As a result, safeguardingpiration of the security software requires
safeguarding the transitive closure of every piece of theraipg system that the security software relies
on, including both code and data. For example, to ensurethikagecurity software is run with sufficient
frequency, we must secure the scheduler. The schedulenrnn itelies on the timing devices, various
interrupt handlers, and the state stored in each threadntimites its priority and the amount of time
it has already run. Similarly, an AV program relies on the filstem code, which in turn relies on the
integrity of various caches, e.g., the block cache, thecthirg entry cache, etc. Thus, the watcher’s task
of “simply” protecting the security software actually ives the enormous subproblem of protecting the
code and data of most of the operating system. Given the sze@nplexity of modern general-purpose
operating systems, this is unlikely to be the optimal metlongbrotecting security software.

4.2 A Non-Virtualization-Based Approach

As an alternative to leveraging the higher privilege levieh & MM, we considered an approach using
the higher privilege level enjoyed by the BIOS. This alténealeverages the fact that most commercial
BIOSes can be easily configured to boot from a CD if one is pitessiboot time. In this approach, the user
performs a system scan by booting from a CD that immediateipdhes a copy of the security software.
The security software downloads updates, if available) Huans the contents of the hard drive.

This approach offers several advantages. Since the BIQ8ahl and hard to modify [21], there is high
assurance that the software security will be executed apptely. The software itself loads from a CD,
making it tamper-resistant as well. Also, the securitywgafe can execute before any other programs on the
system begin, preventing malware from hiding in memorymythe scan.

Unfortunately, this approach suffers from problems of &fficy and efficacy. First, as hard drives
continue to increase in size, few users will have the paielncendure an entire drive scan every time
the computer starts up. More importantly, scanning onlytat-sip means that the user has no real-time
protection, even if new signatures are released. As thelizheeen shutdowns continues to increase, users
will spend more and more time in a potentially vulnerabléestdhus, while this approach offers a powerful
alternative to virtualization-based approaches, itsilisals limited.

4.3 Lessons Learned

Our exploration of these approaches provides two primasdes. First, VM introspection cannot fully
achieve the goals laid out in Section 2, since it cannot guieeathat the security software will receive
accurate data if the guest OS is compromised. Second, pngiéice security software by hardening the OS
(as in the Watcher method) is excessively complex and haigé&asible for today’s commodity operating
systems. Thus, in our work, we leverage virtualization adate and protect the security software, but we
inspect the guest VM at the file-system layer. By operating atgher level, we avoid the complexity
of inferring higher-level events based on low-level dstadnd we eliminate the insecure semantic gap
engendered by the inference process. As a result, the sesaofiware receives accurate information about
the software events inside the guest VM, even if malwarewgrsand modifies the guest OS.

5 SAV-V Architecture

At a high level, the SAV-V architecture uses two VMssecure VMunning the AV software andguest
VM running the original OS and applications. The SAV-V platidhen offers the choice of two techniques,

Guest-Initiated Logging (GIL) and Split File System (SiB), for ensuring the fidelity of the information
needed by the AV software. Figure 1 summarizes these taabsigFinally, we leverage virtualization to
create fake shutdowns that speed detection of patient mahBa&low, we describe the architecture in detail.

5.1 Secure VM

By running the AV software in its own VM, SAV-V guarantees timegrity of its execution and the
security of its connection to the outside world.

Separating the AV software from the legacy OS and applinatimakes maximal use of the isolation
guarantees provided by the VMM. Any malware, malfunctionmnisconfiguration in the guest VM cannot
affect the operation of the security software in the secuk& Vike most virtualization-based work, we
make the assumption that the vastly smaller VMM, both in geahlines of code and interface exported,
can be more readily trusted than the large commodity opeyatystems employed today.

Placing the security software in a separate VM also allowg-8A40 provide it with a guaranteed com-
munication channel, since the VMM ultimately controls tleguisite network hardware. Thus, security
applications will always be able to download updates andsigmnatures, regardless of what happens inside
the guest VM. Guaranteeing signature updates is an edspattaof resilience against zero-day attacks.
If the AV software cannot obtain the latest signatures, tthenzero-day malware may remain undetected
indefinitely.

5.2 Guest-Initiated Logging

In this section, we present the SAV-V technique of Guedtdiad Logging (GIL). This technique allows
AV software to detect disk-based malware even if it is iflifi@nknown to the AV software and thus has an
opportunity to execute. Disk-based malware, a class tlttdes most current viruses and trojans, is the
traditional target of AV software. Even exploit-free syateremain vulnerable to disk-based malware, since
social engineering attacks can convince users to execuieiong binaries. GIL does not attempt to detect
zero-day mixed memory-based malware; for our solution &b pnoblem, see section 5.3.

The key idea in GIL is to use aappend-only lodor file system writes. Before a write is allowed to
proceed, it must be logged to an append-only log in the se¢ieSince disk-based malware must be
written to disk before it can attain any control over the syst at the time it is written to disk it has no
control over the system. Therefore, the guest OS will be wopted at that time, and we can rely on it to
initiate logging. By the time the malware takes control, ¢év@ence of its presence will have already been
irrevocably entered in the log. It will remain there until @atthing signature becomes available, at which
point AV software in the secure VM can detect it from its presein the log.

We now describe how GIL works in greater detail. We add hookbé guest OS that are activated by
file system operations relevant to AV operations. The setbfelevant operations is quite small; most AV
products only scan files on write, not read, and many othesygéem operations query or set attributes that
are irrelevant to the AV scanner. Also, we only care aboutsfiistem operations that succeed, so SAV-V
need not log failed operations. Section 7 describes thelétdlils of our implementation.

When one of the hooks in the guest OS is triggered, the SAV-duteinvokes a VMM command that
adds a log entry to an append-only log in the secure VM. Thergbonly property prevents a compromised
guest OS from editing or deleting previous log entries. Evemalware in the guest OS deletes all of the
incriminating files, their entries will remain in the logJ@king the AV software to detect the malware’s
presence when appropriate signatures are released.

Within the secure VM, the AV software monitors the log in temaé, allowing it to detect known viruses.
When the AV downloads an update or a new set of signatureanitravel through time by rescanning the
log. Any viruses matched by the new signatures will be deteaven if they were unknown when they first

entered the system. To facilitate interoperability witgdey AV applications, SAV-V includes the ability to

recreate files based on the log entries, so that legacy AVcapipins can perform their normal file-based
scans without modification. With a standard log format, f@tdV products could include the ability to scan
a log filein situ.

The reason GIL works on disk-based malware, but not memasgd malware, is as follows. A malware
author aware of SAV-V and able to exploit a memory-basedadxpbuld design malware that immediately
disables GIL before writing to disk. More subtly, the maleaould alter the SAV-V module in the guest OS
to ignore files created by the malware while still loggingmat file activity. This attack is not a problem
when we restrict attackers to disk-based malware, sinceéheare’s presence on disk will be logged before
it has a chance to execute.

5.2.1 Discussion

In this section, we compare GIL with VM introspection. Weaatonsider storage-space issues.

While GIL superficially resembles VM introspection, it difs significantly in several respects. Unlike
VM introspection, GIL makes its dependence on the guest Q@8céx GIL expects the guest OS to log
every malware-relevant file system operation. In contht,introspection must make broad assumptions
about the integrity of the guest OS; these assumptions ach tmarder to verify or enforce. In addition,
allowing the guest OS to initiate logging makes the SAV-Vteygs much simpler and more efficient than
VM introspection, which must constantly monitor low-levedrdware events and attempt to infer higher-
level software events.

Users may be concerned about the amount of disk space coddyntee log in the secure VM. How-
ever, SAV-V permits the user to adjust the level of logging@ened, trading off space efficiency versus ease
of detection and recovery. Users can choose to log only theefted operations that have occurred since
boot time, allowing SAV-V to determine if the computer is @mtly infected or it has been infected since
the last boot. Alternatively, SAV-V can record more extgadogs that allow it to determine if the machine
was ever infected and to potentially perform rollback andd®e playback of legitimate actions [12, 16].

In practice, the capacity of consumer-grade hard drivetimags to grow at a tremendous rate [37]. As
disk sizes approach terabyte capacity, users are unlikatyirid (or even notice) if a fraction of the space
is devoted to improving the security of their system. Furii@re, existing research indicates that full-file
system logging can be performed on production servers [&}laat even the full-logging scenario can be
implemented in a space-efficient manner [16, 20, 35].

Despite the growth in disk space capacity, there will alwagsome finite limit on the amount of space
devoted to the SAV-V log. When SAV-V reaches that limit, tlhg Imust “wrap around”, i.e., old entries
will be overwritten with new entries. Malware might try tdkeaadvantage of this limitation by writing huge
amounts of data to disk, in the hopes that its presence wabtiterated when the log is overwritten. These
attempts can be countered via anomaly detection technidissuming sufficient disk space is devoted to
the log, wrap-around should occur infrequently. A sharpease in the rate and amount of data written
may signal an intrusion. SAV-V can warn the user that an @idmu may be underway, while noting that
the warning may be unwarranted if the user is actively wgitio the disk (e.g., by creating movies or
downloading pictures).

5.3 Split File System

While GIL offers an efficient solution for monitoring file-siem operations, it is unable to protect AV
software against mixed memory-based malware. Thus, wgmesian alternative scheme, called a Split File
System (Split FS), which protects AV software against bask-thtased and mixed memory-based malware.

As discussed in Section 5.2, GIL can be completely subvdayanixed memory-based malware. Once
such malware takes control of the system via a memory-bag#@dit it can prevent the guest from logging
suspicious writes by the malware. Split FS, in contrastygutees that the security software in the secure
VM sees every file-system operation with perfect fidelityu$hevery file-system operation can be logged
with perfect fidelity for review when updated signaturesvarrThese guarantees are resilient to both known
and unknown disk-based and mixed memory-based malware.

Split FS achieves its stronger guarantees by moving theyies itself to the secure VM and leaving
only a stub interface in the guest VM, as shown in Figure 1TH)s way, the guest VM no longer has direct
access to the file system or to the disk. Instead, it has arsteitface that communicates with the file system
running in the secure VM. The stub interface it not trustedieysecure VM — it merely defines the set of
commands the file system in the secure VM recognizes andtdided the legacy OS’s communication with
the file system. The VMM facilitates message passing betweemguest VM and the secure VM, taking
advantage of the fact that both are operating on the sameimeacthe security software in the secure VM
can monitor the messages arriving from the guest in realtithese operations are also logged to facilitate
review when siganture updates are received.

With the Split FS system in place, malware in the guest VMardlpss of whether it is disk-based or
memory-based, must use the stub provided in order to writhsta Thus, the security software and the
logging software will always witness these operations \pihfect fidelity. Since both operate in the secure
VM, malware cannot interfere with their correct operation.

However, the interface between the guest VM and the securen\ist be carefully hardened against
attack. Since we assume malware can compromise the gueshé@iBterface on the secure VM must be
prepared to handle arbitrary input from the stub in the gudstThus, simply taking an existing file system
and splitting it at an arbitrary point will likely leave thecure VM vulnerable to attack. Instead, the split
must be made judiciously and the secure VM must thoroughiitisa its inputs. Section 7 discusses how
this consideration influenced our implementation.

As alluded to in Section 4.1.1, splitting the storage irategf at the file-system layer (rather than, for
example, at the block layer as Xen'’s blktap driver [2] does important security implications. Since AV
software operates based on file-system events, making lihatdpe file-system layer ensures the accuracy
of the AV'’s input. Splitting at any other level would requiB&V-V to infer the requisite file-system events.
For example, to make the split at the block level, SAV-V wonigkd to correlate individual block reads and
writes with file and directory accesses. While some reseaschave considered the problem of inferring
file system information from block-level events [30], theiork focuses on performance optimizations and
does not consider the possibility of an adversarial envirent.

The Split FS technique can be seen as applying microkerimaiples [27] to legacy operating systems.
Indeed, previous work has suggested that VMMs are micrekemone right [17]. By separating the file
system from the rest of the operating system, we gain stroagagtees about the integrity of the file sys-
tem despite compromises to the rest of the guest operatstgry but we still retain the benefits of legacy
operating systems, particularly application compatyilsome may argue that using VMMs in this manner
negates some of the benefits of virtualization. After adlditional virtualization makes each VM an inde-
pendent unit that can be migrated, checkpointed, etc. emtigntly. Making VMs interdependent as SAV-V
does makes these properties harder to achieve. Nonethiédessdditional security benefits outweigh the
complications entailed by mutually dependent VMs. Inddsdmodifying the VMM to include the notion
of a container that holds one or more interdependent VMs, amereplicate the migration, checkpointing
and other benefits of traditional virtualization while algjoying the new security properties.

Random
cm Alt-Del TMM] ——2k 5 Fork Guest Timer VIV Fork - |Guest
VM o ® |w
= =T
Input Shutdown Guest| |Guest Input Shutdown_ |Guest| | Guest
@ VMM] ===y | | v ® > MMMI===>1wm || wwr
Inputl I Destroy 4 | Input A
oy © ©
(a) Real Shutdown (b) Fake Shutdown

Figure 2:Fake ShutdownsTo create a convincing fake shutdown, we alter the normatidslwn procedure. During

a real shutdown: 1) The user enters a unique key combinagiting the VMM to shutdown; 2) The VMM sends a
fork message to the Guest VM, which 3) creates a second GlEst4)j Any further user input is discarded by the
VMM. 5) The VMM uses a hardware signal to tell the original &M to shutdown, and 6) destroys the Guest'VM
To fake a shutdown: 1) A random timer signals the VMM, whicke2)ds a fork message to the Guest VM, which 3)
creates a second Guest VM4) Any further user input is redirected by the VMM to the nave§& VM. 5) The VMM
uses a hardware signal to tell the original Guest VM to shutdo Notice that from the perspective of the original
Guest VM, the two scenarios appear identical.

5.4 Fake Shutdowns

The techniques we have described thus far all rely on diskdacanning to detect malware. Unfor-
tunately, patient malware may remain in memory until morsdagfore the user shuts down the machine.
Frequent shutdowns can hasten detection but disrupt thre Urs#tead, we propose a new technique for
performing fake shutdowns that accelerates detectiorowittlisturbing the user. We also describe methods
for ensuring that the fake shutdowns are indistinguishfibla legitimate shutdowns.

5.4.1 Patient Malware

While our earlier techniques will quickly detect malwaratthvrites to disk, an intelligent piece of
malware that enters via a memory-based exploit and is aviag system may avoid detection for extended
periods of time by delaying any use of the disk.

Our techniques rely on disk-based scanning in large partaitre difficulty of scanning memory. Data
in memory typically possesses less structure than thatfoua file system. Reasoning about what struc-
ture is present requires assumptions about the guest OSHevgit performs caching or assigns portions
of the address space) that malware may violate. Portionseofiary may also be paged to disk, further
complicating any attempt to gain a coherent picture of mgnaontents.

Having gone through the effort to compromise a computer weemory-based exploit, malware authors
have an incentive to write to disk in order to persist acroshudown. However, a malware author may
rationally choose to make the malware patient, i.e., shedeaign the malware to write to disk only when it
detects that a shutdown is imminent. This way, if there is 8ff\gare running that can detect the malware by
observing what it writes to disk, the malware can remain tewted for as long as possible. Furthermore,
even if there is no AV software capable of detecting the fisps disk data, the malware is nearly as
persistent as otherwise. It will persist across a shutdoxee in the unlikely event that the shutdown
comes without warning, e.g., due to the power cord beingmlyrpulled.

1The malware author may instead try to reinfect the machiimgue same exploit. However, malware authors often coenpet
with each other to collect compromised machines, so theg havncentive to patch the exploit they used initially tongedntrol.
Thus, reinfection is no longer an option, and to maintaint@nthey must write information to disk

10

5.4.2 Frequent Shutdowns

The logical approach to force patient malware to write td disto frequently shut down the machine.
Unfortunately, shutting down a machine is time-consuming typically infrequent. Users dislike the dis-
ruption to their work and tend to delay shutting down as los@e@ssible. Operating system trends suggest
that we cannot wait for involuntary shutdowns either. Asrating systems become more stable and require
fewer patches, there will be fewer reasons to force the ossnut down the machine.

Instead, we propose employing virtualization to flush ouigpé malware via frequent shutdowns with-
out disrupting the user. At a high level, we fork the statehef tunning guest VM. Existing work on VM
migration [10] (i.e., moving a running VM from one physicahahine to another) is directly applicable here.
Indeed, this scenario is simpler, since it takes place onglesmachine, without the overhead of network
latency. In the foreground, the user can continue workingheroriginal guest VM. In the background, the
VMM can shutdown the forked copy. The security software mghcure VM can then scan any files written
to disk during the shutdown process. Thus, when a machins slawn, if malware fails to write to disk
then it risks losing control of the system, and if it does ittt disk then it risks detection.

5.4.3 Creating Convincing Shutdowns

For our fake shutdowns to work, they must be indistinguighéfom real shutdowns. Any differences
would allow the malware to ignore the fake shutdowns and feaithe legitimate ones. To provide this
indistinguishability, we modify the shutdown proceduretfee legitimate guest OS so that the fake shutdown
can emulate it exactly.

To create convincing fake shutdowns, we modify the opegatirstem running in the guest OS such that
it will only shut down when it receives a particular hardwargnal, for example, a signal on a particular
interrupt line. When the user decides to shut down the gu&stsBe invokes a canonical shutdown key
sequence (e.g., Control-Alt-Delete). This key sequenedways captured by the VMM and never reaches
the guest VM. The VMM prompts the user to confirm the shutdoamd(warns her that all applications
will be terminated). If the user cancels the shutdown, theWMturns control to the guest OS. Otherwise,
the VMM prevents further user input from reaching the gueSt ®he VMM creates a checkpoint of the
current state of the guest VM (using the same techniquesrasHot migration) and then sends the appro-
priate hardware signal to the guest VM, informing the gueSttkat it should shut down. From the user’s
standpoint, the primary change (aside from the new key coatiboin) is that unlike the current behavior of
many operating systems, an application can no longer fahttdown. Thus, a user must be sure that all
application state has been saved before confirming the®hkintd

With the modified version of the guest OS in place, the VMM casilg fake the shutdown of the forked
VM. After performing the fork, the VMM simply sends the hardie shutdown signal to the forked VM.
Since the guest VM never sees the key combination entereaehyser, it cannot distinguish this shutdown
from a legitimate user-initiated shutdown. Similarly, aghime performing the necessary migration steps to
fork a VM for a fake shutdown will look identical to a machineeparing to shutdown.

Some care must be taken to insure that the fake shutdowngidcerped on a pseudorandom schedule,
or else malware may be able to infer whether a shutdown isdfaked on when it occurs. Note, however, that
even with random shutdowns, malware may try to distinguifika shutdown from a legitimate shutdown
by analyzing the system’s uptime and gambling that legittnsutdowns happen only infrequently. Such
malware risks losing control of the system if it inaccuratgldges a shutdown to be fake, so it faces a
difficult task in deciding when to write and when to wait.

11

6 Security Analysis

GIL (Section 5.2) targets disk-based malware. Since comz® by this kind of malware only occurs
after malware is written to disk, GIL will have already loglghe malware write by the time compromise
occurs. Because the log is kept in the secure VM, out of theeénfte of malware running in the guest VM,
attackers cannot tamper with the log. Furthermore, becthgskg is append-only, malware cannot delete
the infected file to evade detection. Although GIL cannot bargnteed to log memory-based malware
(since the malware might disable GIL’s logging infrasturetin the guest OS before writing to disk), it is
useful against prevalent social engineering attacks tlt&tisers into executing malicious code or data.

Split FS (Section 5.3) targets mixed memory-based malweaedition to disk-based malware. Split FS
offers the property that as long as malware writes any dadéskg this data will be checked by AV software
in the secure VM. Split FS, like GIL, uses append-only loggof file modifications to prevent zero-day
malware from erasing any traces of its presence before tsigesafor it become available. Pure memory-
based attacks are cleansed when the guest VM shuts down.

In the presence of Split FS, malware authors may realizewthiing to disk exposes them to possible
detection. Therefore, if they desire persistence, they padigntly delay writing to disk until it is absolutely
necessary, i.e., when a shutdown is imminent. Our fake slwitdechnique is designed to trick attackers
into persisting to disk since the fake shutdowns cannot &tinduished from user-driven shutdowns. Some
attackers may reason that the sooner a shutdown comeshaftgravious shutdown, the more likely it is to
be fake. They may thus choose to gamble by persisting to dgiskwhen the time between shutdowns is
sufficiently large. However, attackers doing so risk losiogtrol of the system if the shutdown is genuine,
and provide all users, regardless of whether they use SAWith a simple procedure for cleansing their
system of the associated malware: reboot frequently.

Viruses may attempt to obfuscate or encrypt themselvesdia aetection by AV software. However,
the role of SAV-V is to provide a secure platform for AV softweaather than easing signature creation. The
responsibility for discovering new malware and develomignatures remains with virus analysts.

Throughout this paper, we have made the assumption tha¢theesVM is more resistant to attack than
the guest VM. This is because the only software it runs is fferating system and the security software
we place in it. However, note that although the secure VM isersecure than the guest VM, it is not
impervious to attack. The AV software, the file system exgubiity Split FS, SAV-V components such as the
log replayer, and even the secure VM's operating system raag flaws that allow attack. Developers of
the SAV-V code must be careful not to introduce so many awfuhti flaws that protection is actually reduced
by its presence.

Another possible avenue of attack is to exploit flaws in théual machine monitor itself. However,
like most virtualization-based work, we make the assumpti@t the vastly smaller VMM, both in terms
of lines of code and interface exported, can be more readisted than the large commodity operating
systems employed today.

7 Implementation

In this section, we describe the details of the implemenriaéind present the results of our evaluation.
The evaluation considers both the effectiveness of therisg@f the system as well as the performance
overhead it imposes. In evaluating performance, we do nwtider the overhead of the virtualization itself,
as this has been extensively examined in prior work [3, 6, Al3o, as hardware support for virtualization
improves and becomes ubiquitous, we expect the overheaduwdlization to drop significantly.

12

7.1 Implementation Details

To evaluate SAV-V, we implemented the GIL and Split FS teghas. For the virtualization layer, we
used Virtual PC, with Windows Server 2003 R1 as the host OSNéindows XP SP2 as a guest. To simplify
development, we used the host as the secure VM.

Implementing GIL required changes to several system comisn We wrote a file-system filter driver
for the guest OS (Windows XP). The driver sits logically op @f the file-system driver and intercepts
relevant file-system calls. We also maodified the Virtual P@dryisor to accept logging calls from the filter
driver in the guest OS. When the filter driver intercepts arrdévant file-system operation, it invokes the
logging call in the hypervisor, which then signals the VaitiPC application running in user mode in the
host to append the operation to a log file. The file-systematiogis are logged synchronously on the guest
side to ensure that disk-based malware files are alwaysddggfere they have a chance to execute, but the
log entries are written asynchronously on the host side fwore performance.

The file-system calls we intercept are create, open, writé,cdose. We do not log creates and opens;
we intercept them only so that we can initialize a data stinecnd associate it with the open handle for
future use. This data structure includes the file’s inodelmemand a bit indicating whether the handle has
been written to. When we intercept a write, whether cachetbarcached, we log the write, including the
bytes written and their offset. When we intercept a closelogehe close only if there has been a write to
the handle.

The reason we log both cached and non-cached writes is asvfllWe log cached writes because
malware may be executed from the disk cache before it hasfhestred to disk. By logging cached writes,
we ensure we log such malware before it can take control afmtehine and disrupt logging. We also log
uncached writes because not all writes use the cache. Naitd thalware is written to a file by memory-
mapping that file, our scheme will not detect the cached vart will only log the write when it is flushed
from the cache. This produces a short window of vulnerghbitit our scheme; fortunately, it only arises in
the unlikely event that the user downloads the malware usipigpgram that writes via memory mapping.

We also wrote a replayer application that interprets thedod recreates the relevant files. On each
replayed close, it opens the file to make the host AV softwaegltime scanner scan the modified file.

To evaluate the Split FS technique, we leveraged existiognigogy. On the host OS, we created a
network-shared folder via Windows File Sharing. We cone@dhe guest to the host using Virtual PC’s
virtual networking support and mapped the shared foldeherhbst as a network drive on the guest. Thus,
all files are stored on the host, and the guest must accessvibdhre Server Message Block (SMB) pro-
tocol. Since the SMB server interface is designed to be expusthe world, it has been hardened against
potentially malicious input, thus protecting the secure ¥dainst a subverted guest VM. We also wrote a
file-system filter driver that runs in the host to intercepd &g relevant file-system operations on this shared
folder. This filter driver is similar to the one we used in GHxcept that since it runs in the host, it does
not need to signal the host to append to the log. It simply agge¢he log entry to a kernel buffer that is
periodically and asynchronously appended to the log file Wwpiker thread.

While this implementation serves as a proof-of-concepis @learly not optimal from a performance
standpoint. Messages passed between the guest and hostrawasse the entire TCP/IP stack on both
sides. This is particularly expensive on the guest sideesmost networking-related operations must be
emulated. Nonetheless, this implementation providesul$stdback on the amount of overhead imposed
by the Split FS technique. The results can be seen as a vawstscenario as there is ample room for
improvement.

13

7.2 Detection

To demonstrate the effectiveness of GIL, we perform theofalhg experiment. We save four files
containing the BankAsh virus to the virtual hard drive of theest VM, then delete those files. We do not
have SAV-V perform online checking for viruses during thexipd, to emulate what would happen if this
occurred when signatures were not yet available. Then, tdaensignatures becoming available, we replay
the log of guest file-system activity on the host VM, and s¢enresulting files with a virus scanner. The
AV software raises an alarm, thereby detecting the pastpoesof the malware in the guest VM and thus
the potentially corrupted current state of that VM.

7.3 Microbenchmark

To understand the performance impact of SAV-V on individilal operations, we developed a simple
microbenchmark. This microbenchmark performs 100,0@0strivith each trial consisting of the following
five operations:

Create afile.

Write a page (4 KB) of data to that file with caching disabled
Read the page of data.

Close the file.

5. Write a page (4 KB) of data to that file with caching enabled.
After each trial, the file is deleted.

We use the processor cycle counter to measure the duratieacbf operation, since these operations
can be very short. We disable Virtual PC virtualization @& thstruction to read the cycle counter so we can
directly and efficiently read this hardware counter fromdgiiest VM. Because our benchmark runs within
a virtual machine, occasionally one of its operations igrinipted by the host operating system’s scheduler
to run a thread on the host, causing the operation to takeasuladly longer than it should. Because these
events are rare but have a large effect on the mean, theyawiolenisleading results. Therefore, we discard
any operation taking longer than 10 ms, the granularity eftimer used for scheduling. This caused us to
discard less than 1% of the trials for each operation.

Figures 3(a) and 3(c) show results of this microbenchmarkortbars in Figure 3(a) indicate 95%
confidence intervals for the means. These bars are bardhevizecause the large number of trials gives us
high confidence in the accuracy of our sample means.

For GIL, we see that the overhead is quite small. Averageheaat is 0.02 ms for create, 0.09 ms for
non-cached write, 0.01 ms for read, 0.02 ms for close, ar@r@slfor cached write. This overhead increases
operation completion time by 10% for create, 13% for norkedcwrite, 2% for read, 25% for close, and
196% for cached write. The create operation overhead is nbencepting the request and performing a
query to obtain the file’s inode number. The write overhealriger because it involves communicating
with the host virtual machine and transmitting the writtemiels. As a percentage increase, this overhead is
especially noticeable for the cached write, since the @hoperation itself is quite short. The read operation
overhead is from our filter driver intercepting the requesgen though all we do is immediately pass on the
request to the file system. Interestingly, the close ovetigalso quite small. This is because it only reflects
the time to intercept the request, not the time to log theectygeration to the virtual machine. In Windows,
the kernel-level close happens asynchronously after teelegel close is allowed to complete, so the time
it takes to log this close operation is not observed by oucherark.

For Split FS, we see much higher overheads. Average oveibda@ll ms for create, 1.15 ms for non-
cached write, 0.32 ms for read, -0.03 ms for close, and 0.7#bntached write. This overhead increases
operation completion time by 891% for create, 160% for nached write, 80% for read, -33% for close,
and 1490% for cached write. Interestingly, closes are ifdsteSplit FS; this is because SMB caches
handles to remote files even after they are closed, to saednicase they are opened locally later. So, less

PwnpE

14

O unmodified @ logging M split-fs-no-host-logging [split-fs OUnmodified @ Guest-initiated logging O Split FS

10000

1000

B O
2 2 100
[= 10
1
Create WriteNC Read Close WriteC MakeDir Copy ScanDir ReadAll Make Total
Phase Phase
(a) Microbenchmark Results (b) Macrobenchmark Results
‘I GIL overhead [0 Split FS overhead ‘ ‘IGIL overhead % [1Split FS overhead % ‘
2 100
77 < 80
"] < 60
— kel B
e 1 g
1= < 40
F 0.5 o
> 20 A
8
0 T T r—l T 0 . .
Create WriteNC Read Close WriteC MakeDir Copy ScanDir ReadAll Make Total
Phase Phase
(c) Microbenchmark Results—Overhead (d) Macrobenchmark Results—Overhead

Figure 3:SAV-V Inspection TechniquesFigure 3(a) plots the mean time to perform each phase of tiseolnénch-
mark. Figure 3(b) plots the mean time to perform each phaskeoMAB macrobenchmark on a logarithmic scale.
Figures 3(c) and 3(d) plot the differences in means due to\6AVerhead. WriteNC means non-cached file write,
WriteC means cached file write, and GIL stands for Guestalteitl Logging. Error bars indicate 95% confidence
intervals. For the macrobenchmarks, Split FS employs loggi

processing is performed than for a local file system, ancbtisano communication over the virtual network.
On the other hand, all other operations require crossingitfieal machine boundary through the virtual
network interface, and this causes a substantial reduirtiperformance. Most notably, reads suffer high
overhead even though we do not log them, solely because thstyuse SMB over the virtual network.

By observing the difference between Split FS with and withmast logging, we can see how much of
the overhead of Split FS is due to host logging. We obsenehthet logging accounts for less than 0.03 ms
per operation, i.e., only a small fraction of the total owsat of Split FS. We conclude that most of the
overhead is due to the file-system operations over the nktaod thus future optimizations that mitigate
this aspect will have a substantial effect on the overaltiozad.

7.4 Macrobenchmark

While microbenchmarks show us the overhead of individualdilstem operations, they can produce
an overly pessimistic view of the actual effect on users.sThbecause most applications do many things
besides file system operations. Furthermore, many of theyideem operations are reads, which as we have
seen, suffer little overhead in GIL.

To evaluate the application-level effects of SAV-V, we radadified Andrew Benchmark (MAB). The
Andrew Benchmark [18] consists of five phases of a compile Jabphase 1 (MakeDir), the benchmark
creates an empty directory hierarchy. In phase 2 (Copy)bémehmark copies all of the source files into
the new directory hierarchy. In phase 3 (ScanDir), it retpithee status of every file. In phase 4 (ReadAll),
it reads every byte of every source file. In phase 5 (Makeynsithe actual compilation. The modification

15

that makes our benchmark a MAB involves the source code ukd.original Andrew Benchmark was
developed in 1988 and targeted client computers with 65 MRg]iso the source code was only 200 KB in
size. To provide a more realistic modern workload, and toereake we at least forced the workload out of
the processor’s cache, we used the source code for ApaclBd@.2Vindows. The source consists of 2,852
files and 202 directories for a total of 43 MB.

We ran this benchmark 100 times on each of our three setupsodified, GIL, and Split FS (with host
logging). We report the mean duration of each phase for eeitlps To avoid caching effects, we reboot
both the guest VM and the physical host before each run. &umibre, we employ differencing disks so
that after each run, we can roll back any changes that were ioatie virtual hard drive and start the next
run with the same initial drive contents.

Figures 3(b) and 3(d) show the results. We see that GIL cditidesverhead on this macrobenchmark.
The difference between GIL and the baseline is statisyicaflignificant at the 95% confidence level for all
phases except ReadAll; even for ReadAll, the overhead is . Considering all phases together, GIL
increases completion time by only 5%.

Split FS, on the other hand, substantially increases theplation time of the benchmark. It increases
completion time by 2% for MakeDir, 2% for Copy, 1508% for Sbam 90% for ReadAll, 81% for Make,
and 62% overall. This total overhead is much greater than ligitause even for phases that involve no
logging, such as ScanDir and Make, Split FS requires sutistasverhead just to read files across the
virtual network.

The overhead from Split FS is unsurprising, given that e¥deysystem operation must traverse the
entire network stack on both sides. This is particularlyemgive for the virtualized Guest OS, since most
networking-related operations must be emulated. We hehadifferent communication strategy, optimized
for the fact that the communicating virtual machines arecated, could substantially reduce this overhead.

8 Future Work

As described in Section 5.2, GIL is vulnerable to memoryedasalware. While Split FS closes this
loophole, it does so at a great cost in performance. Thexefoe are working on techniques to detect mixed
memory-based malware while maintaining similar perforogacharacteristics to GIL.

One promising approach is to supplement GIL with periodiekdionsistency checks. By checking
whether the guest’s virtual disk state is consistent wighstt of file system operations the guest has logged,
we may detect memory-based malware in the guest VM that pt&eto halt or subvert guest-initiated
logging. Thus, mixed memory-based malware will be detebteithe consistency checks if it tries to subvert
GIL, and by GIL itself if it does not.

One way to perform consistency checks is as follows. Pearatigi SAV-V takes snapshots of the guest
VM’s virtual disk, doing so efficiently using copy-on-writdisks. After each snapshot, it checks whether
the latest snapshot is consistent with the sequence of Btersyoperations logged during the period since
the previous snapshot. To do this, it creates a virtual d@k the previous snapshot, replays the operations
logged between that snapshot and the most recent one, ampaussrihe resulting virtual disk with the most
recent snapshot. If there is any inconsistency betweentbet the file system level, this suggests that
malware interfered with GIL. SAV-V can then alert the useattan intrusion is suspected.

For this scheme to work, we must log more extensive inforomatinan GIL does already. We must log
any operation that modifies the file system, or else we mak thimdeviation between our replayed disk and
the real disk signifies an intrusion. For instance, in additio writes we also need to log creates, deletes,
and size extensions.

This scheme also requires that the checker understand itespgondence between disk state and high-
level file system state. This makes the checker complex apdndient on details of the file system im-

16

plementation. Errors in this code could lead to false pessti where we notify the user of a nonexistent
intrusion, or false negatives, where we fail to notice a @ietmalware that evades our faulty checks.

9 Related Work

IntroVirt [19] has a similar goal to SAV-V, aiming to detecagt, even zero-day, exploits of vulnerabili-
ties once the vulnerabilities become known. IntroVirt eoysl VM logging, rollback and replay [12] along
with a predicate engine outside the guest VM to apply vulbiéta predicates to the guest VM for detecting
intrusions. Unlike our approach, IntroVirt takes a VM-wdpection-based approach [15]. The authors of
IntroVirt recognized the semantic gap in expressing vab#ity predicates using the low level, hardware
abstraction exposed by the VM logging, and addressed itlbywialg predicates to invoke code that already
exists in the guest. In contrast, SAV-V's GIL performs laggiat a much higher semantic level than Intro-
Virt, namely the file system level. Consequently, GIL loggdicantly fewer events and yields much better
performance, smaller log volume, and a significantly simialg replay implementation. SAV-V offers easy
deployability, since today’s AV software can readily run ®AV-V; with IntroVirt, however, either the AV
software must be modified to inspect virtual disks or IntroVieeds to implement a complex VM intro-
spection mechanism to infer file system operations on thetglastly, SAV-V does not face some of the
unsolved, difficult issues faced by IntroVirt, such as mphbcessor support.

The NSA's NetTop platform [23] uses virtualization to alldke user to access information at different
classification levels from a single desktop. It also inchideseparate partition that filters out basic network
attacks. SAV-V also uses virtualization to create a sepguattition for security software, but SAV-V focuses
on supporting anti-virus software, which involves consitidy more interaction with the guest VM.

Pennington et al. explore storage-based intrusion detedystems [25], and their implementation
places the intrusion detection system (IDS) on an NFS semex similar vein, Paul et al. propose to use
the processor in modern disk drives to scan for viruses baséle 1/O traffic seen by the disk drive [24].
SAV-V uses virtualization to place the security softwaretloem same host machine, and it employs standard
AV techniques and signatures, rather than an ad hoc IDS cradlyecrafted signatures for disk /0. SAV-V
also avoids the semantic gap engendered by inferring fild-tgoerations from disk-level activity.

Many have leveraged the isolation feature of virtual maesifor reliability [9, 13, 31] and security [14,
32]. Garfinkel et al used virtualization to develop a trustedputing platform on commodity hardware,
allowing applications with varying security requiremetasun in separate VMs [14]. Ta-Min et al propose
a system that allows the programmer to partition an apjpdicattrust in the OS such that untrusted portions
run on a commodity OS, while trusted portions run on a custethiprivate OS in a separate VM [32].
While these systems use isolation to segregate trusted drdrasted software, SAV-V uses isolation to
make protection software tamperproof. Isolation aloneossufficient for SAV-V: we also require high
fidelity inspection of the guest.

Several hardware systems have been proposed to improvéatheos software security. CoPilot [26]
uses a PCI add-in card to periodically check for maliciouslifi@ations to Linux kernels to detect rootkits.
The Trusted Computing Group (TCG) is an organization thatrfmtes open standards to help strengthen
computing platforms against software-based attacks [lje TCG issued a specification for a Trusted
Platform Module (TPM) [34], which is a dedicated securityipcdesigned to enhance software security.
With a secure boot architecture (such as AEGIS [4]), the poatess can be terminated if the software to
be loaded at each stage fails to match known-good valuesdsiothe TPM. Alternatively, the platform can
perform a trusted boot by measuring each piece of softwageld, and storing these measurements in the
TPM for later attestation to a third party. While it is podsito make an AV application’s code tamperproof
(or at least, tamper-evident) with CoPilot or the TPM-balsedt processes, it is much harder to ensure the
fidelity of all interactions between the AV software and th8,@s we argue in Section 4.1.2. The TPM-

17

based protections also provide most of their guaranteesdaidttime; if the computer is later infected, AV
software can be compromised. Pioneer [29] can provide airgilarantees to a third party at arbitrary times
after the computer boots, but it may be less suitable for Apliagtions that must constantly react to file
system activity and typically run on consumer desktop nrahiwithout a third-party verifier.

10 Conclusion

In this paper, we presented the design, implementationgealdation of SAV-V, a virtualization-based
secure execution platform for AV software. SAV-V enables gdftware to run with integrity and to detect
past malware, even in the face of zero-day malware that comipes the operating system. We kept SAV-V
simple and performant by avoiding complex VM introspectaord OS-hardening techniques. Central to
our approach is inspection of the guest VM at the file systeml Jenatching the system semantics and the
application interface that existing AV software expecthisTalso makes SAV-V practical for deployment.

References

[1] Trusted Computing Grought t p: / / www. t r ust edconput i nggr oup. or g/ , Mar. 2005.
[2] Blktap userspace tools + librarfat t p: / /| xr . xensour ce. com | xr/ sour ce/ t ool s/ bl kt ap/ , Aug. 2006.
[3] Advanced Micro Devices. AMD64 virtualization: Securitual machine architecture reference manual. AMD Pukilica
no. 33047 rev. 3.01, May 2005.
[4] W. A. Arbaugh, D. J. Farber, and J. M. Smith. A secure atidloée bootstrap architecture. Proceedings of the 1997 IEEE
Symposium on Security and Privadp97.
[5] K. Asrigo, L. Litty, and D. Lie. Using VMM-based sensois itnonitor honeypots. IRroceedings of the ACM conference on
Virtual Execution Environments (VERJew York, NY, USA, 2006.
[6] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A, IR. Neugebauer, I. Pratt, and A. Warfield. Xen and the art of
virtualization. InProceedings of the Symposium on Operating Systems PesdilOSR)Oct. 2003.
[7] CERT. Advisory CA-2003-20 W32/Blaster worrht t p: / / www. cert. or g/ advi sori es/ CA- 2003- 20. ht nl .
[8] CERT. Advisory CA-2004-01http://wwv. cert.org/inci dent_notes/ I N 2004-01. htm .
[9] Y. Chen, P. England, M. Peinado, and B. Willman. High aasoe computing on open hardware architectures. Technical
Report MSR-TR-2003-20, Microsoft Research, Mar. 2003.
[10] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. lachp |. Pratt, and A. Warfield. Live migration of virtual méoés.
In Proceedings of the 2nd Symposium on Networked SystemsResidmplementation (NSDIBoston, MA, May 2005.
[11] 1. Corporation. Intel virtualization technology spication for the 1A-32 Intel architecture. Intel Publicati no. C97063-002,
Apr. 2005.
[12] G. W. Dunlap, S. T. King, S. Cinar, M. Basrai, and P. M. @h&eVirt: Enabling intrusion analysis through virtual-chane
logging and replay. IfProceedings of the Symposium on Operating Systems Desigmatementation (OSD|Pec. 2002.
[13] U. Erlingsson, T. Roeder, and T. Wobber. Virtual enmireents for unreliable extensions. Technical Report MSRZ0B5-82,
Microsoft Research, June 2005.
[14] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Bbn&erra: A virtual machine-based platform for trusted catimg.
In Proceedings of the 19th ACM Symposium on Operating Systenggies (SOSR)2003.
[15] T. Garfinkel and M. Rosenblum. A virtual machine intrespon based architecture for intrusion detectionthia Internet
Society’s Symposium on Network and Distributed SystenTi§e@DSS) Feb. 2003.
[16] A.Goel, K. Po, K. Farhadi, Z. Li, and E. de Lara. The taséusion recovery system. Proceedings of the ACM Symposium
on Operating Systems Principles (SOSR¢w York, NY, USA, 2005.
[17] S.Hand, A. Warfield, K. Fraser, and E. Kotsovinos. Argual machine monitors microkernels done right?Phoceedings
of the 10th USENIX Workshop on Hot Topics in Operating Sys{etatOS-X) Santa Fe, NM, June 2005.
[18] J. H. Howard, M. L. Kazar, S. G. Menees, D. A. Nichols, Mitggnarayanan, R. N. Sidebotham, and M. J. West. Scale and
performance in a distributed file syste®/CM Trans. Comput. Sys6(1):51-81, 1988.
[19] A. Joshi, S. T. King, G. W. Dunlap, and P. M. Chen. Detegtpast and present intrusions through vulnerability-igec
predicates. IfProceedings of the ACM Symposium on Operating Systemsesa¢SOSR)2005.
[20] S.T. King and P. M. Chen. Backtracking intrusiodsCM Transactions on Computer Systeifsb. 2005.
[21] P. Lang. Flash the Intel BIOS with confidendatel Developer UPDATE Magazin&ar. 2002.
[22] Microsoft. Virtual PC. Available atht t p: / / www. mi cr osof t . conl wi ndows/ vi rt ual pc.
[23] National Security Agency. Nettop: Technology profilact sheet. http://ww. nsa. gov/techtrans/
techt 00011. cf m

18

[24]
[25]
[26]
[27]

(28]

[29]

[30]

[31]
[32]
[33]
[34]
[35]
[36]

[37]
(38]

N. Paul, S. Gurumurthi, and D. Evans. Towards diskllevalware detection. IiWWorkshop on Code Based Software Security
Assessments (CoBaSSKpv. 2005.

A. Pennington, J. Strunk, J. Griffin, C. Soules, G. Gaogsand G. Ganger. Storage-based intrusion detection: Hikigtc
storage activity for suspicious behavior. W SENIX Security Symposiurug. 2003.

N. L. Petroni, Jr., T. Fraser, J. Molina, and W. A. ArbaudCopilot—a coprocessor-based kernel runtime integrioyitor.
In Proceedings of the USENIX Security Sympos2004.

R. Rashid, D. Julin, D. Orr, R. Sanzi, R. Baron, A. Foilh, Golub, and M. Jones. Mach: A system software kernel. In
Proceedings of the Computer Society’s International Cemfee COMPCONFeb. 1989.

C. Reis, J. Dunagan, H. J. Wang, O. Dubrovsky, and S. Esmeowsershield: Vulnerability-driven filtering of dynaic
html. In Proceedings of the 7th USENIX Symposium on Operating Sy&esign and Implementation (OSDHeattle, WA,
Nov. 2006.

A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn, andKRosla. Pioneer: Verifying integrity and guaranteeing@axion
of code on legacy platforms. Proceedings of ACM Symposium on Operating Systems PrasoSIOSP)Oct. 2005.

M. Sivathanu, V. Prabhakaran, F. I. Popovici, T. E. Dgné\. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. Sermalit
smart disk systems. IRroceedings of the Second USENIX Symposium on File andggtdechnologies (FAST '03)ages
73-88, San Francisco, California, Mar. 2003.

M. M. Swift, B. N. Bershad, and H. M. Levy. Improving theliability of commodity operating systemACM Transactions
on Computer System22(4), Nov. 2004.

R. Ta-Min, L. Litty, and D. Lie. Splitting interfaces: &king trust between applications and operating systemfsgcmable.
In Proceedings of the 7th USENIX Symposium on Operating Syfesign and Implementation (OSDPNov. 2006.

The SANS Institute. The top 20 most critical internetdty vulnerabilities - press updatét t p: / / www. sans. or g/

t op20/ 2005/ spri ng_2006_updat e. php.

Trusted Computing Group. Trusted platform module nspgecification, Part 1: Design principles, Part 2: TPM stices,
Part 3: Commandsht t p: // www. t r ust edconput i nggr oup. or g, Oct. 2003. Version 1.2, Revision 62.

C. Verbowski, E. Kiciman, A. Kumar, B. Daniels, S. LuL&e, Y.-M. Wang, and R. Roussev. Flight data recorder: Muwimig
persistent-state interactions to improve systems manaigenin Proceedings of the 7th USENIX Symposium on Operating
Systems Design and Implementation (O$B8attle, WA, Nov. 2006.

VMWare. VMWare Workstation. Available aht t p: / / ww. vmwar e. coni , Oct. 2005.

C. Walter. Kryder’s law.Scientific AmericapAug. 2005.

H. J. Wang, C. Guo, D. R. Simon, and A. Zugenmaier. Shigldnerability-driven network filters for preventing know
vulnerability exploits. InProceedings of ACM SIGCOMNPortland, OR, Aug. 2004.

19

