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Abstract

We study the problem of abstracting a finite state ma-
chine (FSM) from a given software system whose opera-
tional behavior is described by an abstract state machine
(ASM). ASMs are typically infinite state systems and the
problem of extracting a finite abstraction, thetrue FSM,
from an ASM with respect to a given abstraction function
is in general undecidable. To approximate the true FSM we
utilize the two key features of ASMs, that they areexecutable
and haveprecise mathematical semanticsthat allows for a
symbolic representation of the overall system behavior. On
one hand, executability of ASMs is exploited for true compu-
tation path exploration; this yields anunder-approximation
of the true FSM. On the other hand, the symbolic repre-
sentation of the system behavior enables us to use theo-
rem proving to exclude impossible computation paths; this
yields anover-approximationof the true FSM. In this paper
we discuss an algorithm that combines both into a unified
approach.

1. Introduction

One way to deal with the state space explosion of sys-
tems with very large or even infinite state spaces is to ab-
stract away from irrelevant details of the state and to con-
sider a reduced finite state description of the original sys-
tem. In our case the original system is an abstract state
machine (ASM) [2] written in the ASM specification lan-
guage AsmL [1]. The problem of generating a finite state
machine (FSM) from an ASM is orginally studied in [4],
where an algorithm is proposed that generates an FSM by
executingthe given ASM. The algorithm described in [4]
has been extended is several ways and is implemented in
the AsmL test tool, that is part of the AsmL toolkit [1].

The nodes of the FSM, calledhyperstates, are equivalence
classes of the states of the ASM, where the equivalence re-
lation is anindistinguishabilityrelation expressed through a
finite number of Boolean conditions on the ASM state, i.e.
two states are equivalent if they cannot be distinguished by
the given conditions. In general the conditions may be not
just Boolean, but arbitrary finite valued properties on the
state. Thetrue FSMhas a trasition from hyperstateh1 to
hyperstateh2 if and only if there is a transition in the ASM
from some reachable representative ofh1 to some represen-
tative ofh2.

Generation of the true FSM is in general an undecidable
problem [4]. The main property of the algorithm in [1] is
that it yields anunder-approximationof the true FSM, i.e.
some links may be missing but no superfluous links are gen-
erated. One of the open areas mentioned in [4] is to study
extensions to the algorithm that yield better approximations
of the true FSM. The meaning of “better” depends of course
on the context where the algorithm is applied. In the context
of test case generation [1] for example, it is desirable not to
have links that are not part of the true FSM because the gen-
erated test cases should correspond to feasible computation
paths. On the other hand, in the context of model-checking,
the more abstract model mustsimulate the original sys-
tem so that certain properties of the original model are pre-
served. In order to ensure the simulation property, standard
data-abstraction aglorithms yield anover-approximationof
the ideal data-abstraction [3] (the true FSM).

In this paper we combine the algorithm in [4] with a sym-
bolic analysis that uses theorem proving to rule out links
that correspond to infeasible transitions. In other words the
links that are ruled out are known to be outside the true
FSM. Thus, all the remaining links correspond to an over-
approximation of the true FSM. The difference between the
over and the under-approximations can for example be used
to estimate the quality of the approximations. One applica-
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tion is to estimate the coverage of the test suite produced by
the test tool mentioned above. The use of AsmL in scenario-
based modeling is addressed in another paper in this vol-
ume [20]; the paper illustrates how the obtained model of
scenarions can be finitized into an FSM that is subsequently
used for test case generation. Here we look at the problem
of measuring and improving the quality of such a generated
FSM by using symbolic methods. This helps to measure the
quality of the generated test suite.

The remainder of this paper is organized as follows. In
Section 2 we provide some background definitions and re-
lated references. In Section 3 and 4 we explain the main
parts of the algorithm. An example illustrating the main
ideas of the approach is given in Section 5.

2. Background

2.1. The true FSM

An AsmL specification of a computational system con-
tains the following parts:

• definitions of data types and static functions;

• declarations of state variablesv1, v2, . . ., vs that char-
acterize the state space of the considered system;

• rules that describe the transition relation of the system
(i.e. how the variables change), notice that rules may
be nondeterminsitic.

Let P1(v1, . . . , vs), . . . , Pn(v1, . . . , vs) be Boolean con-
ditions on the state variables. Two states(a1, . . . , as) and
(b1, . . . , bs) are indistinguishableif for each conditionP i

one has
Pi(a1, . . . , as) ↔ Pi(b1, . . . , bs).

A hyperstateis an equivalence class of the system states
with respect to this equivalence relation. (Each hyperstate
hi is characterized by an appropriate complete conjunction
Hi of the conditions and their negations.) Hyperstates are
the nodes of the true FSM.

Given two hyperstatesh1 andh2 the true FSM has a tran-
sition (h1, h2) if there exist two system statess1, s2 such
that s1 ∈ h1, s2 ∈ h2, s1 is reachable, and the transition
(s1, s2) is enabled by the specification, i.e. some rule of the
specification takes the system from states1 to states2.

If the considered system is initialized ands0 is an initial
state, then a hyperstateh of the corresponding FSM is initial
if s0 ∈ h.

Note that the true FSM may be (and usually is) nonde-
terministic even if the initial system is deterministic, and
conversely, the true FSM may be deterministic even if the
original system is nondeterministic. The notion of true FSM
is similar to the notion of ideal abstraction used in the con-
text of model checking [3].

2.2. Approaches to FSM extraction

Finite state machines are widely used in various areas, in
particular, different test generation techniques are based on
using finite state machines or finite labeled transition sys-
tems (see e.g. [13, 9]). Extraction of FSMs from model-
based specifications for the purpose of test case generation
was first studied in [8]. The approach in [8] is based on a fi-
nite partitioning of the state space using full disjunctive nor-
mal forms of conditions in the spec. The FSM is generated
by symbolic analysis via theorem proving and produces an
over-approximation of the true FSM.

An algorithm for FSM generation from AsmL specifica-
tions that is described in [4] is utilized in the testing tool
that accompanies AsmL distribution [1]. In this paper we
suggest an extension of the algorithm that uses both: model
execution and static analysis via theorem proving. The ap-
proach we are considering here aims at getting the benefits
of both approaches while avoiding the drawbacks.

3. Approximation of the true FSM

Givenn Boolean conditions the number of hyperstates is
at most2n. Thus, the true FSM is a subgraph of the com-
plete graph with2n nodes. To derive the true FSM one has
to decide for each edge of the complete graph if the cor-
responding transition is possible or not. To describe our
approximation algorithm we will use the following defini-
tions. Given an edgee = (h1, h2) in the complete graph of
hyperstates, we say that

• e is greenif it belongs to the true FSM and an example
of the corresponding computation path is found;

• e is red if we were able to prove that there is no repre-
sentatives1 of h1 and no representatives2 of h2 such
that the transition(s1, s2) is enabled by the specifica-
tion;

• e is blue if for some representatives of h1 there is a
transition to some representative ofh2, yet it is not
clear whethers is reachable from the initial state (on
the other hand it follows that this edge is certainly not
red);

• e is gray if it is neither green, nor red, nor blue, i.e. if
the corresponding transition was not studied yet, or an
attempt to decide it failed.

Notice that a blue edge may or may not belong to the true
FSM due to the reachability requirement. Note also that not
all true FSM edges are necessarily green, some of them may
be blue and others may be gray.
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3.1. Key procedures

The main part of the algorithm is described at the end
of this section. We start with the main subroutines that are
used by it.

Procedure: exhaustive model execution. Starting from
a given states of the system that corresponds to hyperstate
h execute the specification and compute the corresponding
hyperstateh′ for the obtained next states′.

Update the color of the edge(h, h ′): if the procedure
started from a reachable state then the edge should become
green. Otherwise, ifs was just randomly generated,(h, h ′)
should become blue unless it was already green.

The execution contuinues until no new edges are found.
Since the considered system could be nondeterministic,

one may have several subsequent states fors. In this case
proceed with those that correspond to new edges. For ad-
vanced version of this procedure see [4].

Procedure: random state generation. Let the Boolean
conditions used to define the hyperstates be fixed. Given a
formula (formed from the conditions) try to generate a state
satisfying this formula. To solve this probelm efficiently we
can use the access driven filtering approach to parameter
generation that is originally implemented in the Korat [5]
tool and has been extended and implemented in the AsmL
test tool [1]. As an additional improvement, the formula
could be represented by a binary decision diagram [14] and
the state variables could be ordered(vi1 , vi2 , . . . , vis

) corre-
spondingly to the order of the conditions in the BDD. Such
a representation could help to catch unsatisfiable combina-
tions early on during the state space exploration. Given a
time limit (or another resource limit) the procedure may
terminate with failure without generating any appropriate
state.

Procedure: theorem proving. Given two Boolean prop-
erties (combinations of the conditions)Q1 andQ2 this pro-
cedure tries to prove that wheneverQ1 holds in a states,
Q2 must hold in a subsequent states′ = T (s). Usually it is
done by formulating a proof goal

Q1(s) → Q2(T (s)),

wheres denotes the vector of state variables,T is a tran-
sition function. The proof attempt may fail due to a given
time limit or undecidability.

A typical use case for this subroutine is the follwing. In
order to classify an arrow(h1, h2) as red one has to prove
that

H1(s) → ¬H2(T (s)).

In other words, providedH1 is true in a states, H2 will be
false in the subsequent state of the system.

We have explored some heuristics that could reduce the
number of calls to the theorem prover.

First of all, one could utilize the following condition
dependencies. For example, one can perform standard
data-flow analysis on the specification in order to deter-
mine the dependencies between the conditions. Given a
system specification one could rather easily compute, for
each state variablevi, the set of state variablesDep(vi) =
{vi1 , . . . , vil

} whose values completely determine the value
of vi in the next state. Using these variable dependencies
one could compute the dependencies for the Boolean con-
ditions, i.e. for eachPj find out those{Pj1 , . . . , Pjm

} that
determine the truth value ofPj in the next state.

For each conditionPj one can consider all possible truth
value combinations of the conditions it depends on. Once it
is proved that, some combination of the properties implies
thatPj is true (false) in the subsequent state, it gives us all
the red arrows that follow from this implication.

Another way to produce several red arrows with one in-
vocation of a theorem prover is the following. Given sev-
eral implications that are expected to be valid, one may try
to prove a more general property. For example, instead of
considering separately the following goals:

¬A ∧ B → ¬(A′ ∧ B′)
A ∧ B → ¬(A′ ∧ B′)

¬A ∧ B → ¬(A′ ∧ ¬B′)
A ∧ B → ¬(A′ ∧ ¬B′)

it is reasonable to try proving that

B → ¬A′.

If the latter proof succeeds, all the prior implications fol-
low. To realize this idea we use the notion ofmultiarrowas
described below.

3.2. Lattice of FSM multiarrows

It was already mentioned above that each FSM hyper-
state is characterized by a complete conjunction of the con-
ditions and their negations. (Complete means that for any
conditionPi eitherPi or ¬Pi appears in the conjunction.)
Each incomplete conjunction characterizes the set of all hy-
perstates corresponding to the completions of the conjunc-
tion. Similarly, since each edge is characterized by a pair of
complete conjunctions, a pair of incomplete conjunctions
corresponds to a set of edges, we call it amultiarrow.

Given multiarrows(ϕ1, ψ1) and(ϕ2, ψ2) the first one is
called to be more general than the second one if all con-
juncts ofϕ1 belong toϕ2 and all conjuncts ofψ1 belong to
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ψ2. We extend the edge coloring to multiarrows: a multiar-
row (ϕ, ψ) is greenif for some reachable states and tran-
sition T one hasϕ(s) andψ(T (s)), a multiarrow(ϕ, ψ) is
red if

∀�s(ϕ(�s) → ¬ψ(T (�s)).

The remaining colors are defined similarly.
It follows immediately that a multiarrow is green iff it is

more general than some green arrow; a multiarrow is blue
if it is not green, but at least one of less general arrows is
blue; a multiarrow is red iff all of less general arrows are
red; otherwise it is gray.

For our algorithm, the main important property of mul-
tiarrows coloring is the following: once an arrow is marked
to be enabled (i.e. green or blue) all multiarrows that are
more general are enabled too. And vice versa, if some mul-
tiarrow is proved to be imposible (red) all the less general
arrows should be red too.

Thus, we come up with the following strategy for using
the theorem prover: each time choose the most general mul-
tiarrow that remains gray. If the prover succeeds to make it
red then all the less general arrows should be red too; if not,
mark it with a tag indicating failure.

3.3. The main algorithm

Step 1 Initialization.

– Generate the complete graph with2n nodes cor-
responding to all Boolean combinations of the
conditions; make all the edges gray;

– compute dependencies for the conditions and
generate the graph of multiarrows;

– compute the concordant orderings for the condi-
tions and the state variables for the random state
generation procedure.

Step 2 Generating green arrows. Invoke the exhaustive
model execution procedure starting from the initial
state of the system.

Step 3 Random generation of a hyperstate instances.Con-
sider the disjunction of all the unreached hyperstates.
Invoke the random state generation procedure for this
formula.

If each hyperstate was already reached, take hyper-
states that have outgoing gray arrows.

Step 4 Generating blue links. Call the model execution pro-
cedure for each new state generated.

Step 5 Generating red links. For a maximal gray multiarrow
(that was not treated before) invoke the theorem prover
in an attempt to make it red.

Step 6 Go back to step 3 until all potential FSM edges are
resolved/treated or the time limit is reached.

3.4. Remarks on the algorithm performance

Originally we had in mind applications where the num-
ber of the Boolean conditions is realtively small, so that the
number of hyperstates and edges would be easily visualiz-
able. For small values one could expect rather good perfor-
mance.

Note also that most of the steps of the algorithm are in-
dependent, so the performance could be significantly im-
proved by using parallel execution of different parts: ran-
dom state generation for different hyperstates, execution of
different computation paths, treating different arrows with
theorem prover.

4. The algorithm output

This is the output of the algorithm.

• Under-approximation of the true FSM (the set of green
arrows). This result is the same as for the FSM gener-
ation algorithm described in [4]. The important advan-
tage of our approuch is that it allows to estimate the
quality of the approximation.

• Overapproximation of the true FSM — the set of all
not red arrows (i.e. green, blue, and gray ones). This
graph might be useful for software monitoring: each
correct step of the system should correspond to some
edge in the overapproximation.

• Red arrows — formally verified properties of the sys-
tem. The analysis of the generated red arrows may
help do derive new properties of the system: transition
invariants an more complex properties in terms of pre-
conditions and postconditions (see [11] for a similar
approach).

5. Railroad Crossing Example

The following example is a model of a single track rail-
road crossing. The model has been adapted to AsmL to-
gether with a model of the environment from its original
realtime ASM model in [16, 17].

Data types and function definitions:

enum Status
Coming
Crossing
Empty

enum Signal
Open
Close
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H1:Open,True,Empty,none

H2:Open,True,Coming,none

H3:Open,True,Coming,pend

H4:Open,True,Coming,now

H5:Close,False,Coming,exp

H6:Close,True,Crossing,exp

H7:Close,True,Empty,exp

H8:Open,False,Coming,none

H9:Open,False,Empty,none

H10:Open,False,Coming,pend

Figure 1. The green links of the FSM gener-
ated by asmltfrom the Railroad model.

structure Infinite

function less(t1 as Integer,
t2 as Integer or Infinite) as Boolean

return t2 is Infinite or else t1< (t2 as Integer)
function SafeToOpen() as Boolean
return (TrackStatus() = Empty) or

less(CurrentTime, Deadline)
function Expired(timer as Integer) as Boolean
timer <= CurrentTime

function TrackStatus() as Status
if Expired(TrackTimer) then Empty
elseif Expired(TrackTimer - CrossingTime)

Crossing
else Coming

function GateIsOpen() as Boolean
(Direction = Open) and Expired (GateTimer)

function GateIsClosed() as Boolean
(Direction = Close) and Expired (GateTimer)

There are four constant positive integer valued param-
eters of the model: 1)ComingTime, the time in which the
train can reach the crossing from the moment it appears on
the track (i.e. triggers a track sensor); 2)CrossingTime,
the time it takes for the train to pass the crossing; 3)
OpeningTime, gate opening time; 4)ClosingTime, gate

colsing time. An additional constraint is that the durations
are at least 3 time units each and thatClosingTime + 2 <

ComingTime. The particular values chosen below for the
constants are ignored by the symbolic analysis, but must
be present in order to execute the model.

const ComingTime = 9
const CrossingTime = 12
const OpeningTime = 4
const ClosingTime = 4
var CurrentTime as Integer = -1
var TrackTimer as Integer = -1
var GateTimer as Integer = -1
var Direction as Signal = Open
var Deadline as (Integer or Infinite) =

Infinite()

The main program of the model:

procedure TheCompleteStep(randomTrain as Boolean)
if Direction = Open and not SafeToOpen() then
Direction := Close
GateTimer := CurrentTime + ClosingTime

elseif Direction = Close and SafeToOpen() then
Direction := Open
GateTimer := CurrentTime + OpeningTime

if TrackStatus() = Coming
and (Deadline is Infinite) then

Deadline := CurrentTime +
(ComingTime - ClosingTime) - 1

elseif TrackStatus() = Empty
and not (Deadline is Infinite) then

Deadline := Infinite()
if TrackStatus() = Empty and randomTrain then
TrackTimer := CurrentTime +

ComingTime + CrossingTime
CurrentTime := CurrentTime + 1

We consider four hyperstate properties: 1) the diretion
of the train (Direction); 2) expiration status of the gate
timer (Expired(GateTimer)); 3) the status of the track
(TrackStatus()); 4) the status of whether deadline for clos-
ing the gate has been reached:

if Deadline is Infinite then "none"
elseif Deadline as Integer>CurrentTime then "pend"
elseif Deadline=CurrentTime then "now"
else "exp" //expired

We used the AsmL tester tool [1] to generate green and blue
links of the FSM, i.e. links whose discovery required exec-
tion of the model. The green links discovered this way are
shown in Figure 1. The property values of the discovered
hyperstates are illustrated by node labels. The initial state
belongs toH1. For the symbolic analysis part we trans-
lated the model into HOL by using the translation scheme
introduced in [18]. In the following we mention only some
highlights, details can be found in [19].

After completing step 2, how close is the generated FSM
to the true FSM? In order to answer to this question we went
through the remaining steps. In this example we restricted
our attention to outgoing links from the discovered hyper-
states. First we generated random represenatives in the al-
ready reached hyperstates, and in this way discovered 7 new
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hyperstates and 13 blue links (i.e. links that are possible but
not necessarily reachable). We then used HOL to show that
these were the only possible ougoing links. Out of the new
links and hyperstates, one hyperstate and 3 links turned out
to be green. Four of the remaining hyperstates were unsafe
in the sence that they allowed the train to be crossing while
the gate is not completely closed. We believe that these hy-
perstates are in fact not reachable, but we didn’t prove so.
The last two hyperstates are not unsafe but we believe that
they too are not reachable

Initially, when we started out with this example we had
identified only the first three properties and we believed that
we had discovered all the relevant hyperstates and that our
FSM was the true FSM. It was not until we used the sym-
bolic analysis that made us realize that our properties were
not adequate (we needed the fourth property to make the
partitioning of state space more precise). The number of
reasonable linksdecreasedas a result. Further analysis lead
to the discovery of the one missing true hyperstate and the
three missing green links. See the technical report for more
details [19].
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