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ABSTRACT
Intensive computations required for sensing and process-
ing perceptual information can impose significant burdens
on personal computer systems. We explore several policies
for selective perception in SEER, a multimodal system for
recognizing office activity that relies on a layered Hidden
Markov Model representation. We review our efforts to em-
ploy expected-value-of-information (EVI) computations to
limit sensing and analysis in a context-sensitive manner. We
discuss an implementation of a one-step myopic EVI analy-
sis and compare the results of using the myopic EVI with a
heuristic sensing policy that makes observations at different
frequencies. Both policies are then compared to a random
perception policy, where sensors are selected at random. Fi-
nally, we discuss the sensitivity of ideal perceptual actions
to preferences encoded in utility models about information
value and the cost of sensing.

General Terms
Economics, Performance, Experimentation

Keywords
Selective perception, expected value of information, auto-
matic feature selection, Hidden Markov Models, office aware-
ness, multi-modal interaction, human behavior recognition

1. INTRODUCTION
Investigators have long been interested in the promise of

performing automatic recognition of human behavior and in-
tentions from observations. Successful recognition of human
behavior enables compelling applications, including auto-
mated visual surveillance and multimodal human–computer
interaction (HCI)—considering multiple streams of informa-
tion about a user’s behavior and the overall context of a sit-
uation to provide appropriate control and services. There
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has been progress on multiple fronts in recognizing human
behavior and intentions. However, challenges remain for
developing machinery that can provide rich, human-centric
notions of context in a tractable manner. We address in this
paper the computational burden associated with perceptual
analysis.

Computation for visual and acoustical analyses has typi-
cally required a large portion –if not nearly all– of the total
computational resources of personal computers that make
use of such perceptual inferences. It is not surprising to find
that there is little interest in invoking such perceptual ser-
vices when they require a substantial portion of the available
CPU time, significantly slowing down more primary appli-
cations that are supported or extended by the perceptual
apparatus. Thus, we have pursued coherent strategies for
automatically limiting in an automated manner the compu-
tational load of perceptual systems.

Our work centers on the control of perception in SEER,
a probabilistic reasoning system that provides real-time in-
terpretations of human activity in and around an office [21].
We have explored two strategies for sensor selection and sen-
sor data processing in SEER. The first approach is based on
the use of decision-theoretic principles to guide perception,
where we compute the expected value of information (EVI)
of different subsets of observations in real-time on a frame by
frame basis. This is a greedy, one-step lookahead approach
to computing the next best set of observations to evaluate
at each time step. We refer to this strategy as EVI-based
perception.

The second approach to limiting the computational bur-
den of perception centers on defining heuristically policies
by specifying observational frequencies and duty cycles with
which each feature extracted from the sensors is computed.
We name this approach rate-based perception.

We will compare the performance of the EVI-based and
the rate-based perception methods with the legacy SEER
system that analyzes all features all the time (i.e. without
selective perception), and with a random feature selection
perception approach, where the features are randomly se-
lected at each time step.

This paper is organized as follows: We first provide back-
ground on context-sensing systems and principles for guiding
perception in Section 2. In Section 3 we describe the chal-
lenge of understanding human activity in an office setting
and review the different perceptual inputs that are used.
We also provide background on the legacy SEER system,
focusing on our work to extend a single-layer implementa-
tion of HMMs into a more effective cascade of HMMs, a



representation that we refer to as Layered Hidden Markov
Models (LHMMs). Section 4 describes the three selective
perception strategies that we have developed: EVI-based,
rate-based and random-based perception. In Section 5 we
review the implementation of a new version of the SEER
system that we refer to as Selective SEER (S-SEER here-
after). Experimental results with the use of S-SEER are
presented in Section 6. Finally, we summarize our work and
highlight several future research directions in Section 7.

2. PRIOR RELATED WORK

Human Activity Recognition
Most of the prior work on leveraging perceptual information
to recognize human activities has centered on the identifi-
cation of a specific type of activity in a particular scenario.
Many of these techniques are targeted at recognizing sin-
gle, simple events, e.g., “waving the hand” or “sitting on
a chair”. Only in recent years more effort has been ap-
plied to research on methods for identifying more complex
patterns of human behavior, extending over longer periods
of time. A significant portion of work in this arena has
harnessed Hidden Markov Models (HMMs) [22] and exten-
sions. Starner and Pentland in [26] use HMMs for recogniz-
ing hand movements used to relay symbols in American Sign
Language. More complex models, such as Parameterized-
HMMs [28], Entropic-HMMs [3], Variable-length HMMs [9],
Coupled-HMMs [4], structured HMMs [25] and context-free
grammars [18] have been used to recognize more complex
activities such as the interaction between two people or cars
on a freeway.

Moving beyond the independence assumptions made by
HMMs, over the last several years more general dependency
models, represented as dynamic Bayesian networks have been
adopted for the modeling and recognition of human activi-
ties [20, 13, 7, 5, 17, 8]. Finally, beyond recognizing specific
gestures or patterns the dynamic Bayesian network models
have been used to make inferences about the overall con-
text of the situation of people. Recent work on probabilistic
models for reasoning about a user’s location, intentions, and
focus of attention have highlighted opportunities for build-
ing new kinds of applications and services [15].

We have explored the use of a layering of probabilistic
models at different levels of temporal abstraction. We have
shown that this representation allows a system to learn and
recognize in real-time common situations in office settings
[21]. Although the methods have performed well, a great
deal of perceptual processing has been required by the sys-
tem, consuming most of the resources available by personal
computers. We have thus been motivated to explore strate-
gies for selecting on-the-fly the most informative features,
starting with the integration of decision-theoretic approaches
to information value for guiding perception.

Principles for Guiding Perception
Decision theory studies mathematical techniques for decid-
ing between alternative courses of action. It provides an
overall mathematical framework for reasoning about the net
value of information [16]. Expected value of information
(EVI) refers to the expected value of making observations
under uncertainty, taking into consideration the probability
distribution over values that will be seen should an observa-
tion be made.

The connection between decision theory and perception
received some attention by AI researchers studying com-
puter vision tasks in the mid-70’s, but interest faded for

nearly a decade. Decision theory was used to model the
behavior of vision modules [2], to score plans of perceptual
actions [10] and plans involving physical manipulation with
the option of performing simple visual tests [6]. This early
work introduced decision-theoretic techniques to the percep-
tual computing community.

Following this early research, was a second wave of interest
in applying decision theory in perceptual applications in the
early 90’s, largely for computer vision systems [29] and in
particular in the area of active vision search tasks [24].

3. TOWARD ROBUST CONTEXT SENSING
Before focusing on the control of perceptual actions, we

will discuss in more detail the domain and original SEER
office-awareness prototype. We will turn to selective per-
ception in Section 4.

A key challenge in inferring human-centric notions of con-
text from multiple sensors is the fusion of low-level streams
of raw sensor data—for example, acoustic and visual cues—
into higher-level assessments of activity. We have developed
a probabilistic representation based on a tiered formulation
of dynamic graphical models that we refer to as Layered Hid-
den Markov Models (LHMMs) [21]. For recognizing office
situations, we have explored the challenge of fusing informa-
tion from the following sensors:

1. Binaural microphones: Two mini-microphones (20−
16000 Hz, SNR 58 dB) capture ambient audio information
and are used for sound classification and localization. The
audio signal is sampled at 44100 KHz.

2. Camera: A video signal is obtained via a standard
Firewire camera, sampled at 30 f.p.s, that is used to deter-
mine the number of persons present in the scene.

3. Keyboard and mouse: We keep a history of key-
board and mouse activities during the past 1, 5 and 60 sec-
onds.

3.1 Hidden Markov Models (HMMs)
In early work on SEER we explored the use of single-layer

hidden Markov models (HMMs) to reason about an over-
all office situation. Graphically, HMMs are often depicted
“rolled-out in time”, as displayed in Figure 1 (a). We found
that a single-layer HMM approach generated a large param-
eter space, requiring substantial amounts of training data for
a particular office or user. The single-layer model did not
perform well: the typical classification accuracies were not
high enough for a real application. Also, when the system
was moved to a new office, copious retraining was typically
necessary to adapt the model to the specifics of the signals
and/or user in the new setting. Thus, we sought a repre-
sentation that would be robust to typical variations within
office environments, such as changes of lighting and acous-
tics, and models that would allow the system to perform well
when transferred to new office spaces with minimal tuning
through retraining.

3.2 Layered Hidden Markov Models (LHMMs)
We converged on the use of a multilayer representation

that reasons in parallel at multiple temporal granularities,
by capturing different levels of temporal detail. We formu-
lated a layered HMM (LHMM) representation that had the
ability to decompose the parameter space in a manner that
reduced the training and tuning requirements. In LHMMs,
each layer of the architecture is connected to the next layer
via its inferential results. The representation segments the
problem into distinct layers that operate at different tempo-



Figure 1: Graphical representation of (a) HMMs, and
(b) LHMMs with 3 different levels of temporal granular-
ity.

ral granularities1 —allowing for temporal abstractions from
pointwise observations at particular times into explanations
over varying temporal intervals. LHMMs can be regarded as
a cascade of HMMs. The structure of a three-layer LHMM
is displayed in Figure 1 (b).

The layered formulation of LHMMs makes it feasible to
decouple different levels of analysis for training and infer-
ence. As we review in [21], each level of the hierarchy is
trained independently, with different feature vectors and
time granularities. In consequence, the lowest, signal-analysis
layer, that is most sensitive to variations in the environ-
ment, can be retrained, while leaving the higher-level layers
unchanged. Figure 1(b) highlights how we decompose the
problem into layers with increasing time granularity.

4. SELECTIVE PERCEPTION POLICIES
Although the legacy SEER system performs well, it con-

sumes a large portion of the available CPU time to process
video and audio sensor information to make inferences. We
integrated into SEER several methods for selecting features
dynamically: EVI-based perception, based on calculations
of the Expected Value of Information (EVI); and rate-based
perception, an observational frequency approach. In experi-
ments, we studied the performance of the system using these
methods as compared with the legacy SEER system, and
with a random perception approach, where features are ran-
domly selected, frame by frame.

4.1 EVI for Selective Perception
We focused our efforts on implementing a principled, decision-

theoretic approach for guiding perception. Thus, we worked
to apply expected value of information (EVI) to determine
dynamically which features to extract from sensors in dif-

1The “time granularity” in this context corresponds to the
window size or vector length of the observation sequences in
the HMMs.

ferent contexts. EVI policies for guiding sensing and com-
putational analysis of sensory information promised to en-
dow SEER with an ability to limit computation with utility-
directed information gathering.

The following properties of SEER and its problem domain
are conductive to implementing an EVI analysis: (1) a de-
cision model is available that allows the system to make de-
cisions with incomplete information; (2) the decision model
can be used to determine the value of information for dif-
ferent sets of variables used in the decision; (3) there are
multiple information sources, associated with different costs
and response times; (4) the system operates in a personal
computing environment with limited resources (CPU, time):
gathering all the relevant information all the time before
making the decision is very expensive.

A critical issue is deciding which information to collect
when there is a cost associated with its collection. We
compute the expected value of information for a perceptual
system by considering the value of eliminating uncertainty
about the state of the set of features fk, k = 1...K, under
consideration. For example, the features associated with the
vision sensor (camera) are motion density, face density, fore-
ground density and skin color density in the image. There
are K = 16 possible combinations of these features and we
wish the system to determine in real-time which combina-
tion of features to compute, depending on the context2.

Perceptual Decisions Grounded in Models of Utility
We wish to guide the sensing actions with a consideration of
their influence on the global expected utility of the system’s
performance under uncertainty. Thus, we need to endow
the perceptual system with knowledge about the value of
action in the world. In our initial work, we encoded util-
ity as the cost of misdiagnosis by the system. We assess
utilities, U(Mi, Mj), as the value of asserting that the real-
world activity Mi is Mj . In any context, a maximal utility
is associated with the accurate assessment of Mj as Mj .

Uncertainty About the Outcome of Observations
Let us take fm

k , m = 1...M to denote all possible values of
the feature combination fk, and E to refer to all previous
observational evidence. The expected value (EV) of com-
puting the feature combination fk is,

EV (fk) =
∑
m

P (fm
k |E)max

i

∑
j

P (Mj |E, fm
k )U(Mi, Mj) (1)

As we are uncertain about the value that the system will
observe when it evaluates fk, we consider the change in ex-
pected value associated with the system’s overall output,
given the current probability distribution of the different
values m that would be obtained if the features in fk would
in fact be computed, P (fm

k |E).
The expected value (EVI) of evaluating a feature com-

bination fk is the difference between the expected utility
of the system’s best action when observing the features in
fk and not observing them, minus the cost of sensing and
computing such features, cost(fk). If the net expected value
is positive, then it is worth collecting the information and
therefore computing the features.

EV I(fk) = EV (fk) − max
i

∑
j

P (Mj |E)U(Mi, Mj) − cost(fk) (2)

2In the following we will refer to features instead of sensors,
because one can compute different features for each sensor
input –e.g. skin density, face density, motion density, etc,
for the camera sensor.



where cost(fk) is in our case the computational cost asso-
ciated with computing feature combination fk. Perceptual
systems normally incur significant cost with the computa-
tion of the features from the sensors. Thus, we trade the
information value of observations with the cost due to the
analysis required to make the observations.

Just as we can acquire detailed preferences about the value
model, we can assess preferences about the cost of compu-
tation in different settings. The cost can be represented
by a rich model that that continues to take into considera-
tion changes in the usage context. For a system like SEER,
which was designed to run in the background, monitoring
the user’s daily activities in the office, the cost of compu-
tation is significant when a user is engaged in a resource-
intensive primary computing task and is insignificant when
the user is not using the computer. Thus, as we show in
Section 6.2, we can construct an expected cost model that
takes into consideration the likelihood that a user will ex-
perience poor responsiveness because of the portion of CPU
that is being used by SEER.

Single and Multistep Analyses
For tractability, real-world applications of EVI typically em-
ploy a greedy approach, computing the next best observa-
tions at each step, making a false assumption that the final
system action will occur in the next step. Although we sim-
ilarly use a greedy strategy to compute the next best obser-
vations, we extend typical EVI computations by reasoning
about different combinations of features, fk. In our analysis,
the system selects the feature combination with the greatest
EVI, i.e. f∗ = arg maxk EV I(fk).

As indicated by Equation 1, the computation of EVI, even
in the case of greedy analysis, requires for each piece of unob-
served evidence, probabilistic inference about the outcome
of seeing the spectrum of alternate values should that obser-
vation be computed. Thus, even one-step lookaheads can be
computationally costly. A variety of less-expensive approx-
imations for EVI have been explored [1, 12]. As we show
next, we exploit dynamic programming in HMMs to achieve
an efficient algorithm to determine the EVI associated with
each feature combination.

We follow an approach similar to other architectures, re-
ferred to as sequential diagnosis, for interleaving the compu-
tation of beliefs and executing information acquisition [11,
14, 12, 27]; we embed the graphical model framework in
an architecture with two interconnected modules: the first
module (probabilistic module) specifies a graphical model
and its associated algorithms for computing probabilities
and processing evidence. The second module (control mod-
ule) incorporates the method for selective gathering of evi-
dence. Both modules cooperate such that the control mod-
ule queries the probabilistic module for information about
the variables of interest and decides on what computations
should be performed next by the probabilistic module.

EVI in HMMs
Our probabilistic modules are HMMs, with one HMM per
class. In the case of HMMs, with continuous observation
sequences {O1, ..., Ot, Ot+1}, the term P (fm

k |E) from Equa-
tion 1 is given by:

P (fm
k |E) =

∑
n

p(O
fm

k
t+1

|Mn)P (Mn) (3)

∝
∑
n

[
∑

s

αn
t (s)

∑
l

an
slb

n
l (O

fm
k

t+1
)]P (Mn)

where αn
t (s) is the alpha or forward variable at time t and

state s in the standard Baum-Welch algorithm [23], an
sl is

the transition probability of going from state s to state l,

and bn
l (O

fm
k

t+1) is the probability of observing O
fm

k
t+1 in state l,

all of them in model Mn.
Therefore the EVI of features fk is given by3:

EV I(fk) =

∫
p(O

fk
t+1

) max
i

∑
j

U(Mi, Mj)p(Mj)d
O

fk
t+1

−max
i

∑
j

U(Mi, Mj)p(Mj) − cost(O
fk
t+1

)

∝

∫ ∑
n

[
∑

s

αn
t (s)

∑
l

an
slb

n
l (O

fk
t+1

)]P (Mn)

max
i

∑
j

U(Mi, Mj)p(Mj)d
O

fk
t+1

(4)

−max
i

∑
j

U(Mi, Mj)p(Mj) − cost(O
fk
t+1

)

If we discretize the observation space into M bins4, Equa-
tion 4 becomes:

EV I ∝

M∑
m=1

∑
n

[
∑

s

α
n
t (s)

∑
l

a
n
slb

n
l (O

fm
k

t+1)]P (Mn)

max
i

∑
j

U(Mi, Mj)p(Mj)

−max
i

∑
j

U(Mi, Mj)p(Mj) − cost(Ofk
t+1) (5)

The computational overhead added to carry out the EVI
analysis is –in the discrete case– O(M ∗F ∗N2∗J), where M
is the maximum cardinality of the features, F is the number
of feature combinations, N is the maximum number of states
in the HMMs and J is the number of HMMs.

4.2 Heuristic Rate-based Perception
In order to better understand the properties of the EVI

approach, we have developed alternative methods for selec-
tive perception. We explored, in a second selective percep-
tion policy, a heuristic, rate-based approach. This policy
consists of defining an observational frequency and duty cy-
cle (i.e. amount of time during which the feature is com-
puted) for each feature f . Figure 2 illustrates an exam-
ple of different observational frequencies and duty cycles for
four features: audio classification, video classification (per-
son presence), sound localization and keyboard and mouse
activities.

With this approach, each feature f is computed periodi-
cally. The period between observations and the duty cycle of
the observation is determined by means of cross-validation
on a validation set of real-time data.

The rationale behind this rate-based perception strategy
is based on the observation that not all the features are
needed all the time: the system should be able to make
accurate inferences about the current activity with partial
information about the current state of the world. For ex-
ample, to identify that a Presentation is taking place, the
system heavily relies on the keyboard and mouse activities
and on the audio classification. The video classification and

3For the sake of conciseness, we will drop hereafter the con-
ditioning on the previous evidence, E (observations in the
HMMs case {O1...Ot}).
4In S-SEER M is typically 10.



sound localization features become less relevant. Therefore,
instead of computing all the features all the time, one could
set a high frequency for the computation of the audio and
keyboard/mouse features, and a low frequency for comput-
ing the video and sound localization. Because HMMs pro-
cess the data contained in a sliding window of length T ,
their inferences are robust to some missing (non-observed)
features in some of the data points of the sliding window.

Period 

Duty Cycle 

ON 

OFF 

ON 

OFF 

ON 

OFF 

ON 

OFF 

Video
Classification 

Audio 
Classification 

Sound 
Localization 

Keyboard 
& Mouse 

Figure 2: Example of observational frequencies and
duty cycles for four features: audio classification,
video classification, sound localization and keyboard and
mouse activities.

Although we defined a heuristic rate-based policy, we note
that a rate-based formulation could be used within an EVI
framework. That is, observational rates and duty cycles for
sensors can serve as control parameters optimized with an
EVI analysis at design time or in real-time. We are inves-
tigating the development of an EVI-mediated, rate-based
system.

4.3 Random Selection
For another baseline policy, we developed a simple random-

selection method, where features are selected randomly for
use on a frame-by-frame basis. In this case, the average
computational cost of the system is constant, independent
of the current sensed activity, and lower than the cost of
computing all of the features all the time.

5. IMPLEMENTATION OF S-SEER
S-SEER operates the same way as its predecessor, SEER,

except in the availability of several selection perception poli-
cies. For clarity, we shall include a brief summary of the core
system and move onto the details of experiments with selec-
tive perception in Section 6.

5.1 Core Learning and Inference
SEER consists of a two-level LHMM architecture with

three processing layers. For a more detailed description we
direct the reader to [21].

Feature Extraction in S-SEER
The raw sensor signals are preprocessed in S-SEER to ob-
tain feature vectors (i.e. observations) for the first layer of
HMMs. With respect to the audio analysis, Linear Predic-
tive Coding coefficients [22] are computed. Feature selection

is applied to these coefficients via principal component anal-
ysis. The number of features is selected such that at least
95% of the variability in the data is maintained, which is
typically achieved with no more than 7 features. We also ex-
tract other higher-level features from the audio signal such
as its energy, the mean and variance of the fundamental fre-
quency over a time window, and the zero crossing rate [22].
The source of the sound is localized using the Time Delay
of Arrival (TDOA) method.

Four features are extracted from the video signal: the den-
sity of skin color in the image (obtained by discriminating
between skin and non-skin models, consisting of histograms
in YUV color space), the density of motion in the image
(obtained by image differences), the density of foreground
pixels in the image (obtained by background subtraction,
after having learned the background), and the density of
face pixels in the image (obtained by means of a real-time
face detector [19]).

Finally, a history of the last 1, 5 and 60 seconds of mouse
and keyboard activities is logged.

First Level HMMs
The first level of HMMs includes two banks of distinct HMMs
for classifying the audio and video feature vectors. The
structure for each of these HMMs is determined by means
of cross-validation on a validation set of real-time data. On
the audio side, we train one HMM for each of the following
office sounds: human speech, music, silence, ambient noise,
phone ringing, and the sounds of keyboard typing. In our
architecture, all the HMMs are run in parallel. At each in-
stant, the model with the highest likelihood is selected and
the data –e.g. sound in the case of the audio HMMs– is clas-
sified correspondingly. We will refer to this kind of HMMs
as discriminative HMMs. The video signals are classified us-
ing another bank of discriminative HMMs that implement
a person detector. At this level, the system detects whether
nobody, one person (semi-static), one active person, or mul-
tiple people are present in the office.

Each bank of HMMs can use any of the previously defined
selective perception strategies to determine which features
to use. For example, a typical scenario is one where the
system uses EVI analysis to select in real-time the motion
and skin density features when there is one active person in
the office, and skin density and face detection when there
are multiple people present.

Second Level HMMs
The inferential results5 from this layer (i.e. the outputs of
the audio and video classifiers), the derivative of the sound
localization component, and the history of keyboard and
mouse activities constitute a feature vector that is passed
to the next (third) and highest layer of analysis. This layer
handles concepts with longer temporal extent. Such con-
cepts include the user’s typical activities in or near an office.
In particular, the activities modeled are: (1) Phone conver-

sation; (2) Presentation; (3) Face-to-face conversation; (4)
User present, engaged in some other activity; (5) Distant

conversation (outside the field of view); (6) Nobody present.
Some of these activities can be used in a variety of ways in
services, such as those that identify a person’s availability.

The models at this level are also discriminative HMMs and
they can also use selective perception policies to determine
which inputs from the previous layer to use.

5See [21] for a detailed description of how we use these in-
ferential results.



5.2 Performance of SEER
We have tested S-SEER in multiple offices, with different

users and respective environments for several weeks. In our
tests, we have found that the high-level layers of S-SEER
are relatively robust to changes in the environment. In all
the cases, when we moved S-SEER from one office to an-
other, we obtained nearly perfect performance without the
need for retraining the higher levels of the hierarchy. Only
some of the lowest-level models required re-training to tune
their parameters to the new conditions (such as different
ambient noise, background image, and illumination) . The
fundamental decomposability of the learning and inference
of LHMMs makes it possible to reuse prior training of the
higher-level models, allowing for the selective retraining of
layers that are less robust to the variations present in differ-
ent instances of similar environments.

5.3 HMMs vs LHMMs
In a more quantitative study, we compared first the per-

formance of our model with that of single, standard HMMs.
The feature vector in the latter case results from the con-
catenation of the audio, video and keyboard/mouse activi-
ties features in one long feature vector. We refer to these
HMMs as the Cartesian Product (CP) HMMs.

Note that the number of parameters to estimate is much
lower for LHMMs than for CP HMMs. Moreover, in LH-
MMs the inputs at each level have already been filtered by
the previous level and are more stable than the feature vec-
tors directly extracted from the raw sensor data. Therefore,
encoding prior knowledge about the problem in the struc-
ture of the models decomposes the problem in a set simpler
subproblems and reduces the dimensionality of the overall
model. For the same amount of training data, we would
expect LHMMs to have superior performance than HMMs.
Our experimental results corroborate this expectation. We
direct the reader to [21] for a detailed description of the ex-
periments comparing HMMs and LHMMs for office activity
recognition as well as to a detailed review of an evaluation
of the recognition accuracy of the system.

6. EXPERIMENTS WITH SELECTIVE PER-
CEPTION

We performed a comparative evaluation of the S-SEER
system when executing the EVI, rate-based, and random
selective perception algorithms.

6.1 Studies of Accuracy and Computation
In an initial set of studies, we considered diagnostic ac-

curacy and the computational cost incurred by the system.
The results are displayed in Tables 1, 2 and 3, and in Fig-
ure 3. We use the abbreviations: PC=Phone Conversation;
FFC=Face to Face Conversation; P=Presentation; O=Other
Activity; NP=Nobody Present; DC=Distant Conversation.

Figure 3 illustrates the automatic toggling on and off of
features when running the EVI analysis in S-SEER in the
office and switching between different activities. The figure
shows only the transitions among activities. If a feature was
turned on, its activation value in the graph is 1 whereas it is
0 if it was turned off. The vertical lines indicate the change
of activity and the labels on the top show which activity
was taking place at that moment. In this experiments we
assume a simple utility model represented as the identity
matrix.

Observations that can be noted from the figure include:
(1) At times the system does not use any features at all.

Figure 3: Automatic selection of features when tran-
sitioning between different office activities. Each graph
represents the activation of one feature: video process-
ing, audio processing, sound localization and computer
activity monitoring.

For example at time=50, no features are evaluated as the
system is confident enough about the situation, and it se-
lectively turns the features on only when necessary; (2) the
system guided by EVI tends to have longer switching time
(i.e. the time that it takes to the system to realize that a
new activity is taking place) than when using all the fea-
tures all the time. We found that the EVI computations
trigger the use of features again only after the likelihoods
of hypotheses have sufficiently decreased, i.e. none of the
models is a good explanation of the data; (3) in the exam-
ple, the system never turns the sound localization feature
on, due to its high computational cost versus the relatively
low informational value the acoustical analysis provides.

Tables 1 and 2 compare the average recognition accuracy
and average computational cost (measured as % of CPU us-
age) when testing S-SEER on 600 sequences of office activity
(100 sequences/activity) with and without (first column, la-
beled “Nothing”) selective perception. Note how S-SEER
with selective perception achieved as high a level of accu-
racy as when evaluating all the features all the time, but
with a significant reduction on the CPU usage.

Table 1: Average accuracies for S-SEER with and with-
out different selective perception strategies.

Recognition Accuracy (%)
Nothing EVI Rate-based Random

PC 100 100 29.7 78
FFC 100 100 86.9 90.2
P 100 97.8 100 91.2
O 100 100 100 96.7
NP 100 98.9 100 100
DC 100 100 100 100

These results correspond to the following observational
rates (in seconds): 10 for the audio channel, 20 for the video
channel, .03 for the keyboard and mouse activities and 20 for



Table 2: Average computational costs for S-SEER with
and without different selective perception strategies.

Computational Costs (% of CPU time)
Nothing EVI Rate-based Random

PC 61.22 44.5 37.7 47.5
FFC 67.07 56.5 38.5 53.4
P 49.80 20.88 35.9 53.3
O 59 19.6 37.8 48.9
NP 44.33 35.7 39.4 41.9
DC 44.54 23.27 33.9 46.1

the sound localization. The recognition accuracy for Phone
Conversation in the rate-based approach is much lower
than for any of the other activities. This is because the sys-
tem needs to use video information more often than every
20 seconds in order to appropriately recognize that a Phone
Conversation is taking place. If we raise the rate of using
video to 10 seconds, while keeping the same observational
frequencies for the other sensors, the recognition accuracy
for Phone Conversation becomes 89%, with a computa-
tional cost of 43%.

6.2 Richer Utility and Cost Models
The EVI-based approach experiments previously reported

correspond to using an identity matrix as the system’s util-
ity model U(Mi, Mj) and a measure of cost cost(fk), associ-
ated with percentage of CPU usage. However, we can assess
more detailed models that capture a user’s preferences about
different misdiagnoses in various usage contexts and about
latencies associated with computation for perception.

Models of the Cost of Misdiagnosis
As an example, one can assess in dollars the cost to a user
of misclassifying Mi as Mj , i, j = 1...N in a specific setting.
In one assessment technique, for each actual office activity
Mi, we seek the dollar amounts that users would be willing
to pay to avoid having the activity misdiagnosed as Mj by
an automated system, for all N − 1 possible misdiagnoses.

Models of the Cost of Perceptual Analysis
In determining a real world measure of the expected value
of computation, we also need to consider the deeper seman-
tics of the computational costs associated with perceptual
analysis. To make cost-benefit tradeoffs, we map the com-
putational cost and the utility to the same currency. Thus,
we can assess cost in terms of dollars that a user would be
willing to pay to avoid latencies associated with a computer
loaded with perceptual tasks.

Operating systems are complex artifacts, and perceptual
processes can bottleneck a system in different ways (e.g. disk
i/o, CPU, graphics display). In a detailed model, we must
consider dependencies among specific perceptual operations
and different kinds of latencies associated with primary ap-
plications being executed by users. As an approximation,
we seek to characterize the relationship between latencies
for common operations in typical applications and the to-
tal load on the CPU. We then assess a function linking the
latencies to a user’s willingness to pay (in dollars) to avoid
such latencies during typical computing sessions. In the end,
we have a cost model that provides a dollar cost as a function
of the computational load.

Similar to the value model, represented as a context-sensitive
cost of misdiagnosis, we can introduce key contextual con-

siderations into a cost-model. For example, we can condi-
tion cost models on the specific software application that
has focus at any moment. We can also consider settings
where a user is not explicitly interacting with a computer
(or is not relying on the background execution of primary
applications), versus cases where a user is interacting with a
primary application, and thus, at risk of experiencing costly
latencies.

We compared the impact of an activity-dependent cost
model in the EVI-based perception approach. We run S-
SEER on 900 sequences of office activity (150 seq/activity)
with a fixed cost model (i.e. the compuational cost) and an
activity-dependent cost model. In the latter case, the cost
of evaluating the features was penalized when the user was
interacting with the computer (e.g. Presentation, Per-
son Present-Other Activity), and it was reduced when
there was no interaction (e.g. Nobody Present, Distant
Conversation Overheard).

Table 3 summarizes our findings. It contains the percent-
age of time per activity that a particular feature was ac-
tive both with constant costs and activity-dependent costs.
Note how the system selects less frequently computationally
expensive features (such as video and audio classification)
when there is a person interacting with the computer (third
and fourth columns in the table) while it uses them more
frequently when there is nobody in front of the computer
(last two columns in the table). There was no significant
difference in the average accuracy of both approaches.

Table 3: Impact of a variable cost model in EVI-based
selective perception as measured in percentage of time
that a particular feature was “ON”.

PC FFC P O NP DC
Constant Cost

Video 86.7 65.3 10 10 78.7 47.3
Audio 86.7 65.3 10 10 78.7 47.3
Sound Loc 0 0 0 0 0 0
Kb/Mouse 100 100 27.3 63.3 80.7 100

Variable Cost
Video 78 48.7 2 1.3 86 100
Audio 78 40.7 2 1.3 86 100
Sound Loc 14.7 0 2 1.3 86 100
Kb/Mouse 100 100 53.3 63.3 88 100

The use of such context-sensitive cost models is directly
supported by S-SEER’s domain level reasoning. S-SEER
provides the probability that the primary activity at hand
involves interaction with the desktop system. If we assume
that the cost of computation is zero when users are not using
a computer, we can harness such a likelihood to generate an
expected cost (EC) of perception as follows,

EC(Lat(fk), E) = C(Lat(fk), E)(1 −

m∑
i=1

P (Mi|E)) (6)

where Lat(fk, E) represents the latency associated with ex-
ecuting the observation and analysis of the set of features fk,
E represents evidence already observed, and the index 1..m
contains the subset activities of the N total activities being
considered that do not involve a user’s usage of the com-
puter. Thus, the probability distribution over the inferred
activities changes the cost structure. As EVI-based methods
weigh the costs and benefits of making observations, systems
representing expected cost as in Equation 6, would typically
shift their selective perception policies in situations where,
for example, a user begins to use an interactive application.

7. SUMMARY AND ONGOING RESEARCH



We have reviewed our efforts to endow a computationally
intensive perceptual system for office activity recognition
with selective perception policies. We have explored and
compared the use of different selective perception policies for
guiding perception in our models, emphasizing the balance
between computation and recognition accuracy. In particu-
lar, we have compared EVI-based perception and rate-based
perception techniques to a system evaluating all features all
of the time all and a random feature selection approach.
We have carried out experiments probing the performance
of LHMMs in S-SEER, a real-time system for recognizing
typical office activities.

Although the EVI analysis adds computational overhead
to the system, we had shown that a utility-directed information-
gathering policy can significantly reduce the computational
cost of the system by selectively activating features, depend-
ing on the situation. When comparing the EVI analysis to
the rate-based and random approaches, we found that EVI
provides the best balance between computational cost and
recognition accuracy. We believe that this approach can be
used to enhance multimodal interaction in a variety of do-
mains.

We are currently exploring the refinement of S-SEER along
several dimensions. In one area of effort, we are pursuing
a deeper understanding of how the cost and utility models
affect the selection of features. As part of this effort, we
are seeking realistic utility models that represent the costs
of recognitions in different contexts. This research includes
constructing models of cost based on the expected disatis-
faction of users with the reduction of performance of their
personal computer during different kinds of activities.

We are also interested in building and using models that
represent the decay of confidence about states of the world
with increasing time since an observation is made. Different
observations are associated with different volatilities; we be-
lieve that there is opportunity to use the expected stability
of states to inform selective perception policies.

We have found that selective perception policies can sig-
nificantly reduce the computation required by a multimodal
behavior-recognition system. Selective perception policies
show promise for enhancing the design and operation of mul-
timodal systems–especially for systems that consume a great
percentage of available computation on perceptual tasks.
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