
Semantics of Concurrent Revisions

Sebastian Burckhardt1 and Daan Leijen1

Microsoft Research

Abstract. Enabling applications to execute various tasks in parallel is difficult
if those tasks exhibit read and write conflicts. We recently developed a program-
ming model based on concurrent revisions that addresses this challenge in a novel
way: each forked task gets a conceptual copy of all the shared state, and state
changes are integrated only when tasks are joined, at which time write-write con-
flicts are deterministically resolved.
In this paper, we study the precise semantics of this model, in particular its guar-
antees for determinacy and consistency. First, we introduce a revision calculus
that concisely captures the programming model. Despite allowing concurrent ex-
ecution and locally nondeterministic scheduling, we prove that the calculus is
confluent and guarantees determinacy. We show that the consistency guarantees
of our calculus are a logical extension of snapshot isolation with support for con-
flict resolution and nesting. Moreover, we discuss how custom merge functions
can provide stronger guarantees for particular data types that are tailored to the
needs of the application.
Finally, we show we can visualize the nonlinear history of state in our computa-
tions using revision diagrams that clarify the synchronization between tasks and
allow local reasoning about state updates.

1 Introduction

With the recent broad availability of shared-memory multiprocessors, many more ap-
plication developers now have a strong motivation to tap into the potential performance
benefits of parallel execution. Exploiting parallel hardware can be relatively easy if
the application performs computations for which parallel algorithms are well known or
straightforward to develop (such as for scientific problems or multimedia applications).
However, traditional parallelization strategies often do not satisfactorily address how to
execute different application tasks that access shared data in parallel.

For example, consider an office application that needs to perform five different
tasks: (1) save a snapshot of the document to disk, (2) react to keyboard input by the
user who is editing the document, (3) perform a spellcheck of the document, (4) ren-
der the document on the screen, and (5) exchange document updates with collaborating
remote users.

Executing such tasks in parallel is not simple, because all of them potentially access
the same data (such as the document) at the same time. For instance, in a case study
on parallelizing a game application [3] we discovered that the parallel execution of
the physics task and the render task is essential to achieve decent speedup on multiple
cores. But these tasks naturally exhibit read-write conflicts: The physics task modifies

all coordinates of game objects (to simulate elapsed time) while the render task reads
all coordinates (to render a snapshot of the scene).

Avoiding, negotiating, or resolving such conflicts between parallel tasks can be quite
challenging with traditional synchronization models. In fact, many programmers are
deterred by the engineering complexity of performing explicit, manual synchroniza-
tion (such as by using locks and critical sections) or replication (such as by creating
temporary copies or using double buffering).

Our proposed programming model, concurrent revisions [8], simplifies paralleliza-
tion of conflicting tasks by (conceptually) copying shared state automatically on a fork.
Tasks execute in complete isolation because each has its own copy of the shared data
(e.g. the document or the coordinates, in the above examples), somewhat analogous to
source control systems that allow multiple programmers to work on the same code at
the same time by creating local copies of files, and checking changed files back into the
repository.

x = 0 ;
y = 0 ;

r = rfork { x = 1 ; }
y = x ;
rjoin r ;

print x, y ;

x = 0
y = 0 ��

•
r = rfork

��

(revision starts)

��
·

y = x

��

·
x = 1

��
·

rjoin r

��

·

(revision ends)ss◦
print x,y

��

Fig. 1. An example of a revision diagram (on the right) representing the execution of a program
(on the left). The effect of the write x = 1 is confined to its revision until that revision is joined.
Thus the print statement prints (1,0).

For example, consider the code in Fig. 1 which illustrates the basic concept of fork-
ing and joining revisions and how to visualize executions using revision diagrams. The
program on the left forks a concurrent revision, obtaining a handle r which it later joins.
The forked revision executes the assignment x = 1, but the effect of this assignment is
confined to that revision until it is joined, at which point all of its changes are applied
to the joining revision. The diagram shows how the state is forked and joined (each
vertex represents a state, and curved arrows represent fork and join), as well as how
the state is locally updated by revisions (vertical arrows represent steps by revisions).
Note that because revisions are isolated, data can flow only along edges in the diagram.
Moreover, because the program specifies where to join revisions and does not depend
on scheduling and timing, the execution is determinate.

Our previous work [8] has already provided some evidence that this concurrent re-
vision model can be implemented efficiently enough to achieve satisfactory paralleliza-
tion speedups, and that it is easier to use than locks or transactions [3]. However, our

previous work has only partially addressed important questions about the semantics, in
particular questions relating to determinacy and consistency guarantees. The purpose
of our work presented in this paper is to address these questions rigorously and provide
precise answers. We make the following contributions:

1. We give a minimal calculus describing the concurrent revision model. Because the
calculus is small, it is well suited as a semantic reference and as an experimental
tool to study various extensions or implementations. In fact, it was inspired (and
is very similar to) the AME calculus [24] which served a similar purpose in the
context of transactional memory.

2. Even though the calculus is intrinsically concurrent, we prove that it guarantees
determinacy.

3. We give a comprehensive discussion of consistency guarantees and state merging.
We show that in the absence of write-conflicts and nesting, revisions are analogous
to transactions with snapshot isolation. We also show how the introduction of cus-
tom merge functions into the calculus can allow the programmer to achieve stronger
consistency guarantees tailored to the needs of the application.

4. We formalize the notion of a revision diagram. These diagrams capture the revision
history of an execution, by showing the order and nesting of forks and joins. More-
over, they illustrate data flow, since information can propagate only along edges.
We prove that revision diagrams are semilattices, which means that we can always
find a greatest common ancestor when merging states.

Overall, our work shows that the revision model preserves some of the best prop-
erties of sequential programs (deterministic execution, local reasoning about state up-
dates) without forcing programmers to manually isolate parallel tasks, and without re-
stricting parallel executions to be fully equivalent to a sequential execution. Rather,
parallelism is expressed directly and explicitly, and always exploitable even if the tasks
exhibit conflicts.

2 Discussion

We start with a high-level informal discussion of various aspects of the revision model,
such as determinacy, nesting of revisions, handling of write-write conflicts, and revision
diagrams. Moreover, we compare revisions to related work on transactional memory
and determinacy.

2.1 Revisions vs. Interleaved Tasks

In our model, revisions are the basic unit of concurrency. They function much like asyn-
chronous tasks that are forked and joined, and they may themselves fork and join other
tasks. We chose the term ‘revision’ to emphasize the semantic similarity to branches in
source control systems where programmers work with a local snapshot of the shared
source code.

In particular, on every revisional fork (rfork), the system conceptually copies the
entire state and each branch works on its own local copy. Every revision is completely

isolated from the others and there is no possibility of communication through shared
state. Any updates in a revision only become re-integrated once the revision is joined.
Since there is no possibility of stateful interleavings with other threads, intra-revision
reasoning (that is, reasoning about code executing within a revision) is sequential.

The revision model is a significant departure from memory models that interleave
tasks at the level of individual instructions, such as sequential consistency [21]. More-
over, this difference is not simply a matter of the interleaving granularity. Transactional
memory, for example, interleaves tasks at the granularity of atomic blocks [22, 15].
However, coarser interleaving does not in itself guarantee determinacy of executions,
as the relative order of the atomic blocks is unspecified. Thus, whether we use sequen-
tial consistency or transactional memory, the interleaving chosen during an execution
depends on nondeterministic arbitration which can vary between executions. In con-
trast, with our concurrent revision model, the precise structure of forks and joins is
completely determined by the program and independent of runtime scheduling.

(sequential consistency) (transactional memory) (concurrent revisions)

x = 0 ; y = 0 ;
t = fork { if (x = 0) y++ ; }
if (y = 0) x++ ;
join t ;

assert((x = 0 ∧ y = 1) ∨
(x = 1 ∧ y = 0) ∨
(x = 1 ∧ y = 1)) ;

x = 0 ; y = 0 ;
t = fork { atomic { if (x = 0) y++ ; } }
atomic { if (y = 0) x++ ; }
join t ;

assert((x = 0 ∧ y = 1) ∨
(x = 1 ∧ y = 0)) ;

;

x = 0 ; y = 0 ;
r = rfork { if (x = 0) y++ ; }
if (y = 0) x++ ;
rjoin r ;

assert(x = 1 ∧ y = 1) ;
;
;

Fig. 2. Outcomes under different programming models.

We illustrate this difference in Figure 2 where we compare the results of a program
for these three models. The program forks a concurrent branch where each branch incre-
ments a variable x or y respectively depending on the value of the other variable (y and
x respectively). Under sequential consistency, there are many interleavings possible and
there are three distinct possibilities for the values of x and y. In the second program, we
use transactional memory to limit the possible interleavings by executing each branch
atomically. This effectively serializes the execution and we see either x = 0 ∧ y = 1
or x = 1 ∧ y = 0 depending on how the branches are scheduled. Using revisions, the
outcome is always determinate: both branches get their own local (conceptual) copy of
the state, and both branches will increment the variables ending in x = 1 ∧ y = 1.

2.2 Local Reasoning vs. Serializability

As Figure 2 shows, we can truly reason about each branch locally without considering
any interleavings. However, note also that there is no equivalent sequential execution
for this example. The lack of equivalence to some sequential execution is no accident:
requiring such equivalence fundamentally limits the concurrency that can be practically
exploited if tasks exhibit conflicts. For the kind of applications we have in mind, con-
flicts may be quite frequent.

With revisions, conflicts never destroy the available parallelism and never cause
rollbacks. These choices provide substantial practical benefits over the use of rollbacks
in optimistic transactional memory, which does not fare well in the presence of frequent
conflicts, and cannot be easily combined with I/O [33].

Comfortably reasoning about application behavior in the absence of serializability
requires understanding and conceptualizing a nonlinear history of state. We achieve
this by introducing revision diagrams that directly visualize how the global state can be
forked, updated, and joined (Fig. 1, Fig. 3). Revisions correspond to vertical chains in
the diagram, and are connected by curved arrows that represent the forks and joins. We
sometimes label the revisions with the actions they perform. Such diagrams visualize
clearly how information may flow (it follows the edges) and how effects become visible
upon the join. In Section 5 we show that the diagrams have a formal and well-defined
meaning with relation to the calculus.

2.3 State Merging

When joining a revision, two copies of the state need to be merged together, which
naturally raises two questions:

1. Can we always find a common ancestor state to help us determine if either side has
made changes, and what those changes are?

2. If both sides have made changes, how do we resolve such write-write conflicts?
(Note that there are no read-write or write-read conflicts between revisions.)

We answer the first question by showing how our calculus keeps track of the an-
cestor state (Section 3), and by showing that revision diagrams are semilattices and the
ancestor state is in fact the greatest common ancestor (Section 5).

We address the second question by discussing several sensible merge policies. A
key insight that makes state merging practical and convenient is that we need not define
merge functions or policies globally, but can do so separately for each variable. In fact,
we used this insight in previous work to parallelize a game application [8] by declaring
the policy for each variable using special isolation types. Such isolation types allow the
user to convey deep semantic knowledge that helps to exploit the available parallelism
even if there are numerous conflicts.

In this paper, we consider a number of different merge policies. Note that these
happen at the granularity of individual memory locations, not on the global state.

– (Join overwrites). This policy is the default in our basic calculus (Section 3). On
a write-write conflict, the value of the joined revision overwrites the value of the
joining revision.

– (Custom merge function). We can use a user-defined merge function to resolve
conflicts deterministically (Section 4.1).

– (Give up and report). We can refuse to merge write-write conflicts and report the
failure to the user, who can take some appropriate action. (Section 4.3).

What we found a bit surprising is that the (Join overwrites)-policy is very useful in
practice even though it appears to ’lose state’. This is because it lets us precisely control

which revisions should take precedence over others by ordering the joins accordingly.
For instance, if writes by revision B should take priority over writes by revision A, we
can simply join B after joining A. The (Custom merge function)-policy was useful very
specifically for implementing collections, which are often updated in a commutative
way by concurrent revisions. We did not have any use for the (Give Up and Report)-
policy in the game.

Isolation types are also sensible from a software engineering perspective: in a large
application an architect can annotate the shared data structures with their merge policy,
while the code that uses such data types stays the same: in particular, programmers have
no need to use atomic regions or locks when accessing such data types and can reason
about it without considering interleaved executions.

2.4 Nesting of Revisions

Possible Impossible
(regular) (overlap) (nested) (bridge) (cross over) (butterfly)

��
•
�� ��
·
��

·
��

·
��

·

qq◦
��

��
•
�� ��
•
����

·
��

·
��

·
��

·

qq·

--

◦
��
◦
��

��
•
�� ��
·
��

•

�� ��
·
�� ��

·

qq·
��

◦

qq◦
��

��
•
�� ��
·
��

•

qq ��
◦
��

·
��

•
�� ��

·

qq·
��

◦

qq◦
��

��
•
�� ��
·
��

•r
����

·
��

·

��

·

ll◦
��

�� ��
•

��@
@@

@@
@

��

•

��~~
~~

~~

��
◦

��

◦

��

Fig. 3. Some examples of revision diagrams. The four on the left are all valid revision diagrams.
On the right are two examples of impossible revision diagrams: the first one is not possible since
the main branch cannot join on the outer revision as the (fresh) outer revision handle r cannot be
part of its state. The right-most diagram cannot be constructed for similar reasons, in particular,
all revision diagrams are semi-lattices (Theorem 3).

Nesting of revisions is a natural consequence of the fact that revisions can them-
selves fork and join other revisions. We show a progression of nesting in the four left
most examples of Fig. 3. The (regular) and (overlap) diagrams do not nest revisions
beyond a depth of 1 (that is, only the main revision is forking and joining revisions).
The (nested) diagram shows simple nesting, where a revision forks a child of depth 2
and then joins it (before being joined itself). The (bridge) diagram shows that child re-
visions can “survive” their parents (i.e. be joined later), and that revisions can be joined
by a different revision than where they were forked.

However, not all diagrams are possible, because revision handles must flow along
edges. The two right-most examples in Fig. 3 show impossible revision diagrams. We

prove some structural properties of revision diagrams in Section 5, in particular that
revision diagrams are semi-lattices (Theorem 3).

Note that the structure of revision diagrams is entirely dynamic, not lexical. In par-
ticular, once a revision is forked, its handle can be stored in arbitrary data structures
and be joined at an arbitrary later point of time. In some sense, revisions behave like
futures whose side effects are delayed, and take effect atomically at the moment when
the future is forced.

Although we present a fully dynamic model, it is of course possible to design a
language that statically restricts the use of joins, to make stronger scheduling guarantees
(as done in Cilk++ [14, 29]) or to simplify the most common usage patterns and to
eliminate common user mistakes (as done in X10 [23]). In fact, many models (including
an earlier version of our calculus) use a restricted “fork-join” parallelism [7, 5]. Whether
such restrictions are necessary or beneficial is beyond the scope of this paper. For now,
we are content with stating that it is relatively easy to add them if desired, while it would
be difficult to remove them from a calculus that depends on restrictive assumptions.

2.5 Related Work

Just as we do with revisions, proponents of transactions have long recognized that pro-
viding strong guarantees such as serializability [27] or linearizability [17] can be overly
conservative for some applications, and have proposed alternate guarantees such as
multi-version concurrency control [26] or snapshot isolation (SI) [4, 11, 30]. In fact,
revisions can be understood as a natural generalization of snapshot isolation, extended
to handle resolution of write-write conflicts following some policy (as discussed in
Section 2.3), and to support nesting (as discussed in Section 2.4). We examine the rela-
tionship to snapshot isolation more formally in Section 4.3.

There has been much prior work on programming models for concurrency[25, 12, 1,
31, 2, 6]. Recently, many researchers have proposed programming models for determin-
istic concurrency [7, 5, 32, 28], creating renewed interest in an old problem previously
known as determinacy [10]. All of these models differ semantically from revisions, and
are quite a bit more restrictive. As they guarantee that the execution is equivalent to
some sequential execution, they cannot easily resolve all conflicts on commit (like revi-
sions do). Thus, they must restrict tasks from producing such conflicts either statically
(by type system) or dynamically (pessimistic with blocking, or optimistic with abort
and retry).

To the best of our knowledge, our combination of snapshot isolation and determin-
istic conflict resolution, as first presented in [8], is a novel way to simplify the paral-
lelization of tasks that exhibit conflicts.

Isolation types are similar to Cilk++ hyperobjects [13]: both use type declarations
by the programmer to change the semantics of shared variables. Cilk++ hyperobjects
may split, hold, and reduce values. Although these primitives can (if properly used)
achieve an effect similar to revisions, they do not provide a similarly seamless seman-
tics. In particular, the determinacy guarantees are fragile, i.e. do not hold for all pro-
grams. For instance, the following program may finish with either x == 2 or x == 1:

reducer opadd〈int〉 x = 0 ;

cilk spawn { x++ }
if (x= 0) x++ ;
cilk sync

Isolation types are also similar to the idea of transactional boosting, coarse-grained
transactions, and semantic commutativity [16, 19, 20], which eliminate false conflicts
by raising the abstraction level. Isolation types go farther though: for example, the type
versioned〈T〉 does not just avoid false conflicts, but resolves true conflicts deterministi-
cally (in a not necessarily serializable way).

3 Revision Calculus

For reference and to remove potential ambiguities, we now present a formal calculus for
revisions. It is based on a similar calculus introduced by prior work on AME (automatic
mutual exclusion) [24].

Notations. To present the formal syntax and semantics succinctly, we use some
standard and nonstandard notations for partial functions. For sets A, B, we write A ⇀
B for the set of partial functions from A to B. For f, g ∈ A ⇀ B, a ∈ A, b ∈ B,
and A′ ⊂ A, we adopt the following notations: f(a) = ⊥ means a /∈ dom(f), ε is
the empty partial function with dom(ε) = ∅, f [a 7→ b] is the partial function that is
equivalent to f except that f(a) = b, and f::g is the partial function that is equivalent to
g on dom(g) and equivalent to f onA\dom(g). In our transition rules, we use patterns
of the form f(a1 7→ b1) . . . (an 7→ bn) (where n ≥ 1)) to match partial functions f that
satisfy f(ai) = bi for all 1 ≤ i ≤ n.

3.1 Syntax and Semantics

We show the syntax and semantics of our calculus concisely in Fig. 4. The syntax (top
left) represents a standard functional calculus, augmented with references. References
can be created (ref e), read (!e) and assigned (e := e). The result of a fork expression
rfork e is a revision identifier from the set Rid, and can be used in a rjoin e expression
(note that e is an expression, not a constant, thus the revision being joined can vary
dynamically).

To define evaluation order within an expression, we syntactically define execution
contexts (Fig. 4 right column, in the middle). An execution context E is an expression
“with a hole �”, and as usual we let E [e] be the expression obtained from E by replacing
the hole � with e.

The operational semantics (Fig. 4, bottom) describes transitions of the form s→r s
′

which represent a step by revision r from global state s to global state s′. Consider first
the definition of global states (Fig. 4, top right). A global state is a partial function from
revision identifiers to local states: there is no shared global state. The local state has
three parts (σ, τ, e): the snapshot σ is a partial function that represents the initial state
that this revision started in, the local store τ is a partial function that represents all the
locations this revision has written to, and e is the current expression.

Syntactic Symbols
v ∈ Val ::= c | x | l | r | λx.e
c ∈ Const ::= unit | false | true
l ∈ Loc
r ∈ Rid
x ∈ Var
e ∈ Expr ::= v

| e e | (e ? e : e)
| ref e | !e | e := e
| rfork e | rjoin e

State
s ∈ GlobalState = Rid ⇀ LocalState

LocalState = Snapshot× LocalStore× Expr
σ ∈ Snapshot = Loc ⇀ Val
τ ∈ LocalStore = Loc ⇀ Val

Execution Contexts
E = �
| E e | v E | (E ? e : e)
| ref E | !E | E := e | l := E
| rjoin E

Operational Semantics
(apply) s(r 7→ 〈σ, τ, E [(λx.e) v]〉) →r s[r 7→ 〈σ, τ, E [[v/x]e]〉]
(if-true) s(r 7→ 〈σ, τ, E [(true ? e1 : e2)]〉) →r s[r 7→ 〈σ, τ, E [e1]〉]
(if-false) s(r 7→ 〈σ, τ, E [(false ? e1 : e2)]〉) →r s[r 7→ 〈σ, τ, E [e2]〉]

(new) s(r 7→ 〈σ, τ, E [ref v]〉) →r s[r 7→ 〈σ, τ [l 7→ v], E [l]〉] if l /∈ s
(get) s(r 7→ 〈σ, τ, E [!l]〉) →r s[r 7→ 〈σ, τ, E [(σ::τ)(l)]〉] if l ∈ dom(σ::τ)
(set) s(r 7→ 〈σ, τ, E [l := v]〉) →r s[r 7→ 〈σ, τ [l 7→ v], E [unit]〉] if l ∈ dom(σ::τ)

(fork) s(r 7→ 〈σ, τ, E [rfork e]〉) →r s[r 7→ 〈σ, τ, E [r′]〉][r′ 7→ 〈σ::τ, ε, e〉] if r′ /∈ s
(join) s(r 7→ 〈σ, τ, E [rjoin r′]〉)(r′ 7→ 〈σ′, τ ′, v〉) →r s[r 7→ 〈σ, τ::τ ′, E [unit]〉][r′ 7→ ⊥]
(joinε) s(r 7→ 〈σ, τ, E [rjoin r′]〉)(r′ 7→ ⊥) →r ε

Fig. 4. Syntax and Semantics of the revision calculus.

The rules for the operational semantics (Fig. 4, bottom) all follow the same general
structure: a transition s →r s

′ matches the local state for r on the left, and describes
how the next step of revision r changes the state.

The first three rules (apply), (if-true), and (if-false)) reflect standard semantics of
application and conditional. They affect only the local expression. The next three rules
(new), (get), and (set) reflect operations on the store. Thus, they affect both the local
store and the local expression. The (new) rule chooses a fresh location (we simply
write l /∈ s to express that l does not appear in any snapshot or local store of s). The
last two rules reflect synchronization operations. The rule (fork) starts a new revision,
whose local state consists of (1) a snapshot that is initialized to the current state σ::τ ,
(2) a local store that is the empty partial function, and (3) an expression that is the
expression supplied with the fork. Note that (fork) chooses a fresh revision identifier
(we simply write r /∈ s to express that r is not mapped by s, and does not appear in any
snapshot or local store of s). The rule (join) updates the local store of the revision that
performs the join by merging the snapshot, master, and revision states (in accordance
with the declared isolation types), and removes the joined revision. We call r the joining
revision (or joiner), and r′ the joined revision (or joinee). A join can only proceed if the
joinee has executed all the way to a value (which is ignored). The final rule (joinε) is

added to prevent joining a revision handle more than once. If a revision handle is joined
a second time, the joinee is no longer in the domain of s, and the entire state transitions
to a special error state represented by the empty partial function ε (this state can not be
reached in any other way, and has no outgoing transitions).

3.2 Executions

As usual, we let → be the union of all →r where r ∈ Rid. Furthermore, we use the
following notations for repeated steps: we say s →n s′ if s′ can be reached from s in
exactly n →-steps, we say s →∗ s′ (transitive reflexive closure) if it can be reached
in zero or more steps, s →+ s′ (transitive closure) if it can be reached in one or more
steps, and s→? s′ (reflexive closure) if it can be reached in zero or one steps.

We define global executions of expressions as follows. First, an expression e is
a program expression if it does not contain any revision identifiers (expressions may
contain revision identifiers during execution, but not initially). We say a sequence of
transitions s0 → s1 → · · · → sn is an execution of a program expression e if s0 =
{(r, (ε, ε, e)} for some r ∈ Rid. We call such an execution maximal if there exists no s′

such that sn → s′. Finally, given a program expression e we write e ↓ s if there exists
a maximal execution for e with final state s.

3.3 Determinacy

A surprising property of our calculus is that executions are determinate and not depen-
dent on a specific ‘schedule’. Before we can state this precisely, we need a notion of
equivalence of states modulo renaming of revisions and locations.

For a permutation α of Rid and a global state s let α(s) be the global state obtained
by replacing all revision identifiers r that occur in s with α(r). Similarly, define β(s)
for a permutation β of Loc. We say two states s, s′ are equivalent upto αβ-renaming,
written as s ≈ s′, if there exist permutations α of Rid and β of Loc such that s =
α(β(s′)).

We now state the main result of this section: executions are determinate modulo
renaming of locations and revisions.

Theorem 1 (Determinacy). Let e be a program expression, and let e ↓ s and e ↓ s′.
Then s ≈ s′.

Before proving this theorem, we make a few observations, and establish a few lem-
mas and an important confluence theorem.

Note that some executions may terminate in the special error state ε if they attempt
to join the same revision more than once. Our use of a special error state is important to
guarantee determinacy. Suppose two revisions try to join a third revision simultaneously
(i.e. there is a race between two joins). Without the rule (joinε) the different schedules
may lead to different final states. However, with (joinε), all executions are forced to
eventually end up at ε, maintaining determinacy.

To prepare for the proof, we now state and prove a local determinism lemma and a
confluence theorem.

Lemma 1 (Local Determinism). If s1 ≈ s′1 and s1 →r s2 and s′1 →r s
′
2, then s2 ≈

s′2.

Proof. First we observe that by construction, each evaluation context E contains at most
one hole and that there is no choice in which redex to evaluate next. We can now do a
case analysis on E [e] where e is a redex. For a fixed revision r, such expression context is
matched uniquely by at most one operational rule. Moreover, each rule is deterministic
modulo αβ-equivalence. This is trivial for all operations except (new) and (fork) that
create new locations and revisions respectively. Given a state s(r 7→ 〈σ, τ, E [ref v]〉),
rule (new) can create different names for the new location, i.e. s = s(r 7→ 〈σ, [τ 7→
l]v, E [l]〉) or s′ = s(r 7→ 〈σ, [τ 7→ l′]v, E [l′]〉). If l = l′ this is equivalent directly. If
l 6= l′ we can apply α-renaming with α = [l/l′] where s = α(s′) which holds since
l′ 6∈ s′ and l 6∈ s due to the side condition on (new) (and by definition s ≈ s′). We
prove equivalence similarly for (fork).

Lemma 2 (Strong Local Confluence). Let s1 and s′1 be reachable states that satisfy
s1 ≈ s′1. Then, if s1 →r s2 and s′1 →r′ s

′
2, then there exist equivalent states s3 ≈ s′3

such that both s2 →?
r′ s3 and s′2 →?

r s
′
3.

Proof. First we observe that when r = r′, the lemma follows directly from the local-
determinism lemma. We continue the proof for the case r 6= r′, and do a case distinction
on the kind of the two operational steps appearing in the assumption of the theorem. We
use the term local step to denote a step that is not (fork), (join), and (joinε).

– (local) / (local). The rules affect independent parts of the state s and thus commute.
As before, we may need to use α-renaming for the (new) case.

– (local) / (fork),(join). Same argument; note that the forked/joined revision can not
be the same as the local one because of the side condition r′ 6∈ s (for fork) or
because the joinee can not take a step (for join).

– (joinε) / any. The claim follows because if we could apply (joinε) in some state but
perform a different rule, then (joinε) still applies.

– (fork) / (fork). In this case the side condition r′ 6∈ s ensures that both forks will
fork a unique revision. As shown in the proof of the previous lemma, we can safely
apply β-renaming to show both end states are equivalent.

– (fork) / (join). Observe that the (join) cannot join on the revision that forks (since
its expression is not a value). Also, the side condition r′ 6∈ s ensures that a unique
revision is forked that is different from r and r′ in the (join) rules.

– (join) / (join). Consider the matched state for both rules: s(r 7→ 〈σ, τ, E [rjoin r1]〉)(r1 7→
〈σ1, τ1, v1〉) and s(r′ 7→ 〈σ′, τ ′, E ′[rjoin r2]〉)(r2 7→ 〈σ2, τ2, v2〉). We have two
possiblities. First, if r1 6= r2, both joins commute directly. Otherwise, r1 = r2.
In this case the joinee is shared . Thus, taking step →r leads to a state where
s(r1 7→ ⊥) and step →r′ must use (joinε) ending in state ε, which is also the
outcome for the opposite order.

Theorem 2 (Confluence). For any reachable states s1 ≈ s′1, it holds that if s1 →∗ s2
and s′1 →∗ s′2, then there exist equivalent states s3 ≈ s′3 such that both s2 →∗ s3 and
s′2 →∗ s′3.

Proving confluence from strong local confluence is well-known and often illustrated
using tiling of diagrams. It is useful for several applications (e.g. the lambda calculus
or general term rewriting) but can also be understood more abstractly as a property of
binary relations [18]. We include a quick proof sketch for reference.

Proof. First, lift the step relation → to equivalence classes of states modulo ≈. Let
x, y, z, u range over equivalence classes, and consider the following three properties:

1. ∀xyz : x→ y ∧ x→ z ⇒ ∃u : y →? u ∧ z →? u
2. ∀n : ∀xyz : x→? y ∧ x→n z ⇒ ∃u : y →∗ u ∧ z →? u
3. ∀n : ∀xyz : x→n y ∧ x→∗ z ⇒ ∃u : y →∗ u ∧ z →∗ u

We can then show that (1) the first claim follows from strong local confluence, (2) the
second claim follows from the first by induction over n, (3) the third claim follows from
the second by induction over n, and (4) the theorem follows from the third claim.

We now conclude with the proof of theorem 1. Given a program expression e and
two maximal executions s0 →∗ s and s′0 →∗ s′ for e, we know s0 ≈ s′0 (by the way we
defined initial states for e), so by the confluence theorem there exist s1 ≈ s′1 such that
s →∗ s1 and s′ →∗ s′1. But since s and s′ are maximal it must be the case that s = s1
and s′ = s′1 and thus s ≈ s′ as claimed.

4 State Merging

(join-merge) s(r 7→ 〈σ, τ, E [rjoin r′]〉)(r′ 7→ 〈σ′, τ ′, v〉) →r

s[r 7→ 〈σ,merge(τ, τ ′, σ′), E [unit]〉][r′ 7→ ⊥]

where merge(τ, τ ′, σ′)(l) =

τ(l) if τ ′(l) = ⊥
τ ′(l) if σ′(l) = τ(l)
mergel(τ(l), τ

′(l), σ′(l)) otherwise

Fig. 5. Extending the revision calculus with merge functions.

The basic calculus introduced in the previous section provides little flexibility as to
how write-write conflicts should be resolved. We now show how to modify the calculus
so that it can support custom merge functions (Section 4.1), how it can be understood
as an extension of snapshot isolation (Section 4.3), and how we can provide stronger
consistency guarantees for abstract data types using sequential merge functions (Sec-
tion 4.4).

4.1 Merge Functions

Figure 5 extends the basic calculus with flexible merge functions. There is just one
change to the basic calculus where we replace the (join) rule with the (join-merge) rule.
Instead of composing the new state as τ::τ ′ we call a custom merge(τ, τ ′, σ′) function
that merges the states. If there is no (write-write) conflict at a particular location, this

function behaves just like our earlier composition. In case of conflict, the value at a
location l after a join is determined by a location specific function mergel : Val×Val×
Val→ Val which is defined separately for each location l.

Note that the choice of merge function does not influence determinacy. The deter-
minacy proof remains intact regardless of what merge function is chosen (as long as
it is a function of its three inputs). In particular, we need not restrict our attention to
commutative or associative functions only.

The mergel function subsumes the semantics of the previous calculus where a joi-
nee takes precedence since we can define the default merge function as:

mergel(v, v
′, v0) = v′ (joinee wins)

Similarly, we can implement the dual strategy where updates to a specific location are
ignored if there is a write-write conflict:

mergel(v, v
′, v0) = v (joiner wins)

Note that sometimes, we may wish to define merge functions involving more than a
single variable. In our calculus we can do so by using composite types to group several
variables into a single location and merge them collectively.

4.2 Commutative Merges
We call a merge function commutative if mergel(v, v

′, v0) = mergel(v
′, v, v0). Clearly,

the default merge function is not commutative, but many others are. For example, a rea-
sonable merge function for sets could be:

mergel(s, s
′, s0) = s ∪ s′

which is commutative. This is not the only reasonable merge function though. Consider
the following venn diagram that shows how the sets s, s′, and s0 may interact:

&%
'$

&%
'$&%

'$

s s′

s0

b
a c

When taking the union of s and s′, we always include the regions a, b, and c. One can
argue however that to end up with s′ from s0, the elements in a were explicitly removed
(and similarly for swith region c). Another reasonable merge function may respect such
removals and remove region a and c from the final result. We can specify this as:

mergel(s, s
′, s0) = (s− s0) ∪ (s′ − s0) ∪ (s ∩ s′)

which is also commutative. Note that when all operations on the set are additive, both
of these merge functions produce the same result since s0 ⊆ (s ∩ s′) in that case.

Ultimately, this discussion simply illustrates that the choice of a merge function
should be informed by what operations are performed (additions only, removals only,
both, etc.). We discuss this idea more formally in Section 4.4, where we show that by
restricting the operations on an abstract data type, we can find merge functions can
provide particularly strong guarantees.

4.3 Snapshot isolation

(join-ok) s(r 7→ 〈σ, τ, E [rjoin r′]〉)(r′ 7→ 〈σ′, τ ′, v〉) →r

s[r 7→ 〈σ,merge(τ, τ ′, σ′), E [true]〉][r′ 7→ ⊥] if ¬fail(τ, τ ′, σ′)

(join-fail) s(r 7→ 〈σ, τ, E [rjoin r′]〉)(r′ 7→ 〈σ′, τ ′, v〉) →r

s[r 7→ 〈σ, τ, E [false]〉][r′ 7→ ⊥] if fail(τ, τ ′, σ′)

where fail(τ, τ ′, σ′) = undef ∈ rng(merge(τ, τ ′, σ′))

Fig. 6. Extending the merge calculus with failing joins.

We now explain how to view our system as a generalization of snapshot isolation
[4], a concurrency control algorithm that is widely used in the database community, and
has for example been implemented by Oracle and Microsoft SQL Server (with minor
variations). We use the definition given by Fekete et al. [11].

We claim that our revision calculus is a generalization of snapshot isolation, aug-
mented by (1) the ability to gracefully resolve write-write conflict when a suitable merge
function exists for a particular location, and (2) support nontrivial nesting (Fig. 3) while
maintaining a simple and precise semantics. To see why this is the case, we perform
the reverse process: we (1) introduce the ability to fail on write-write conflicts, and (2)
remove nesting from revisions.

Removing nesting is straightforward (for example, we can disallow forks by all
revisions but the main revision). As for failing on conflicts, we proceed as follows. To
mirror how transactions fail (and discard state), we introduce the notion of a failing join
as follows.

– We change the merge calculus slightly, by redefining the local merge functions so
that they can return a special value indicating that there is an unresolvable conflict:

mergel : Val× Val× Val→ (Val ∪ {undef})

– We extend the merge calculus by replacing (join-merge) with two new rules. The
(join-ok) rule is equivalent to the previous (join-merge) rule but can only be applied
now if all of the location specific merge functions are defined. The rule (join-fail)
applies if at least one of the merges failed and simply ignores all updates in the
joinee. Both rules now return a boolean to the joiner, where true indicates that the
join was successful, and false indicates that it was not.

Consider now the definition of snapshot isolation: A transaction A executing un-
der snapshot isolation operates on a snapshot of the database taken at the start of the
transaction. When the transaction concludes, it will successfully commit only if the
values updated by the transaction A were not updated by any other transaction B that
committed after transaction A started.

We can succinctly describe this behaviour in our calculus by letting every mergel
function fail:

mergel(v, v
′, v0) = undef (snapshot isolation)

When discussing snapshot isolation there is sometimes confusion whether a trans-
action should abort if there was a concurrent silent write in the main branch where the
original value has been left unchanged. In our formal calculus there is no such confu-
sion: due to the second case of the merge function (Fig. 5), concurrent silent writes
on the main branch will not cause a transaction to fail. Note that we can still model the
behaviour where silent writes cause a transaction to fail by assigning sequence numbers
to each value (ensuring that σ′(l) 6= τ(l) on silent writes). Dually, we can ignore silent
writes on the child branch by modifying the merge function:

mergel(v, v
′, v0) = ((v′ = v0) ? v′ : undef) (ignore silent wr)

4.4 Abstract Data Types and Sequential Merges

As Theorem 1 shows, our calculus is always determinate, but we have seen in the intro-
duction that it is not always serializable (Fig. 2). However, we can sometimes guarantee
equivalence to a sequential execution by raising the abstraction level of operations on
data, and constructing merge functions that are tailored to the operations that are per-
formed.

For example, consider a program location x that is initially zero and for which we
define the merge function mergex(v, v

′, v0) = v + v′ − v0. Furthermore, assume that
a program performs only one type of operation on x, namely add(i), which adds an
integer i to it. Then the final value of x is always consistent with a serial execution
of all the add operations that occurred in the program. We now explain this idea more
formally.

Abstract Data Types. We define an abstract data type to be a tuple (V, o,Op, op)
where V is a set of values,o ∈ V is an initial value, Op is a set of operations, and
op : Op × V ⇀ V is a partial function. In our formalization, the set Op includes
argument and return values of operations, and op is partial because not all operations
apply in all states.

Example 1. We can define an integer register (i.e. a memory location holding an integer
that can be read and written) as IntReg = (Z, 0,Op, op) where

Op = {get(v) | v ∈ Z} ∪ {set(v) | v ∈ Z}

op(v, o) =

w if o = set(w)
v if o = get(v)
⊥ if o = get(v′) and v 6= v′

Sequential Merge Functions. Sometimes we can find merge functions that can simu-
late a deterministic, linear interleaving of the operations. We call such merge functions
sequential. This concept is quite useful in practice since the programmer can design the
application specifically to enable sequential merge functions, by restricting what type of
operations may happen in concurrent revisions. For example, if an application performs
aggregation of results, sequential merges usually exist.

To study the effect of entire sequences of operations, we introduce the following
concise notations. We consider operation sequences as words in Op∗, and write u(v)
(where u ∈ Op∗ and v ∈ Val) for the combined effect of all the operations in the
sequence u (left to right) applied to the value v, which may be undefined. For example,
this means that for operation sequences u,w ∈ Op∗ and a value v, we have uw(v) =
w(u(v)) if u(v) 6= ⊥ and w(u(v)) 6= ⊥. We now define sequential merge functions as
follows.

Definition 1. LetA = (V, o,Op, op) be an abstract data type. We say a merge function
m : V ×V ×V → V is sequential forA if for all operation sequences u,w1, w2 ∈ Op∗

such that u(o) 6= ⊥, uw1(o) 6= ⊥ and uw2(o) 6= ⊥, both of the following are true:

1. uw1w2(o) 6= ⊥
2. m(uw1(o), uw2(o), u(o)) = uw1w2(o)

The advantage of a sequential merge function is that it guarantees the appearance
that all operations were executed sequentially, with the operations of the joined revision
happening at the time of the join.

Note that condition 1 of Def. 1 does not depend on the actual merge function, but is
a property of the abstract data type. This property may not be satisfiable, thus sequential
merge functions do not exist for all abstract data types. For example, the abstract data
type IntReg defined in Example 1 does not permit sequential merging because it can be
the case that w1 = set(1), w2 = get(0) in which case always uw1w2(0) = ⊥.

Abelian Data Types. Particularly simple to merge are certain abstract data types with
commutative operations that we call abelian. More formally, call an abstract data type
(V, o,Op, op) abelian if there exists a binary operation + on V , and a function δ :
Op→ V such that (1) (V,+) is an abelian group with neutral element o, and (2) for all
a ∈ Op we have a(v) = v + δ(a).

We conclude this section with a lemma that shows how to construct sequential
merge functions for abelian data types.

Lemma 3. For an abelian data type (V, o,Op, op) with operation +, the merge func-
tion : m(v1, v2, v) = v1 + v2 − v is sequential.

Proof. Let w1 =
∑n
i=1 ai and w2 =

∑m
i=1 bi and v = u(o). Then claim 2 is satisfied:

m(uw1(o), uw2(o), u(o)) = m(w1(u(o)), w2(u(o)), u(o)) = m(v +
∑n
i=1 ai, v +∑m

i=1 bi, v) = v +
∑n
i=1 ai + v +

∑m
i=1 bi − v = v +

∑n
i=1 ai +

∑m
i=1 bi =

w1w2(u(o)) = uw1w2(o). This implies also that claim 1 is satisfied.

5 Revision Diagrams

In this section we describe and formally define revision diagrams, a special kind of
graph that visually represent the dataflow of computations of our calculus. Revision
diagrams are an essential tool to understand how to program with revisions, somewhat
analogous to the role of stream diagrams for stream programming. Because of their

relevance for visualization, we care to establish a precise, fully formal correspondence
to the calculus to avoid potential confusion and disambiguities in the future.

We also state a result that was somewhat challenging to prove: that revision dia-
grams are semi-lattices. This result illuminates how revision graphs differ from task-
parallel models that allow arbitrary directed acyclic graphs of tasks. Moreover, the ex-
istence of a greatest common ancestor for any two states is essential reason about state
merging and to decribe precisely what a conflict means.

Intuitively, revision diagrams represent executions, with vertices being states and
edges being transitions. Technically, revision diagrams are labeled graphs:

Definition 2. A fsj-graph G is a tuple G = (V,E) where V is a set of vertices and
E ⊂ V × {f, s, j} × V is a set of labeled edges.

Graph Notations. We use the usual terminology for graphs, but emphasize a rela-

tional view of edges. For a fixed graph G = (V,E), we define a binary relation
f−→ on

vertices such that (u
f−→ v) def⇔ ((u, f, v) ∈ E), and similarly for

j−→ and s−→. We also

define the relation→ def= (
f−→ ∪ j−→ ∪ s−→).

5.1 Operational Construction

To define the revision diagram for a given execution, we extend the original operational
semantics so that a fsj-graph is constructed alongside the executing program. More
formally, we extend the original transition relation→ to an extended transition relation
→d (where d is just a label for easier distinction) on states (s, (V,E), ρ, γ) where: s ∈
GlobalState is a global state as defined previously, (V,E) is a fsj-graph, ρ : V → Rid
maps vertices to revision they belong to, and γ : Rid ⇀ V is a partial function that
maps a revision to the last (current) vertex of that revision.

local rules (fork) rule (join) rule
·

s

��
·

·

s

��

f

��
· ·

·

s

��

·

j
vv·

s��
·
s��

f

��
·
s��

·
s��

f

��
·
s��

·

jqq

·

jpp

·
s��
·
s��

Fig. 7. (a) Left: the diagrams illustrate how revision diagrams are constructed incrementally by
transition rules adding vertices. (b) Right: a typical example of a revision diagram.

The graph is constructed incrementally by adding new vertices, and edges from the
existing graph to the new vertices, as illustrated in Fig. 7 (a). The precise transition rules
for→d are defined in Fig. 8. Intutively, the constructed graphs represents excecutions
in the following sense (for an example, see Fig. 7 (b)):

– Each vertex v ∈ V belongs to a particular revision ρ(v) and represents the local
state of that revision at a certain point of time.

– The set of all vertices belonging to the same revisions is totally ordered by s−→, the
successor relation, which describes how the local state of that revision evolves over
time.

– Each edge in
f−→ represents the forking of a new revision. Its destination vertex is

the first vertex of the new revision.
– Each edge in

j−→ represents the joining of a revision. Its source vertex is that last
vertex of the revision being joined.

We define the initial states to be (s0, G0, ρ0, γ0) where s0 = (r, (ε, ε, e)) is an
initial global state (that is, r is a revision identifier and e is an expression not containing
any revision identifiers), G0 = ({v}, ∅) is a singleton graph, and ρ0 = {v 7→ r},
γ0 = {r 7→ v}. We say a state (s,G, ρ, γ) is reachable if there exists an initial state
from which it can be reached by zero or more→d-transitions.

Definition 3. A revision diagram is an fsj-graph G that is part of some reachable state
(s,G, ρ, γ).

It is easy to see (comparing the definitions of → and →d) that for any execution
s0 →∗ sn such that sn 6= ε, we can find a corresponding extended execution, and vice
versa. Note that this may entail the renaming of revision identifiers in the→-execution,
because the latter does allow the reuse of revision identifiers after the revision has been
joined while→d does not.

Our main theorem can now be stated as:

Theorem 3. Let G = (V,E) be a revision diagram. Then G is a semilattice, i.e. for
any two vertices x, y ∈ V , there exists a greatest common ancestor.

We provide a detailed proof of this theorem as well as other useful or interesting
properties of revision diagrams in the companion Tech Report [9].

6 Conclusion and Future Work

We have presented a novel programming model based on concurrent revisions. First, we
presented a concise calculus that shows how revisions can maintain determinacy despite
nondeterministic scheduling. Then we provided a discussion of how state merging can
be tailored to the needs of the application. Finally, we formalized revision diagrams as
the fundamental tool to visualize nonlinear histories of state, and showed graph proper-
ties that distinguish revision diagrams from general task graphs.

In future work, we may further investigate state merging and serialization guaran-
tees. We are also interested in enhancing the calculus with reactive inputs and outputs
and extending the determinacy guarantee to such applications. Finally, the precise char-
acterization of revision diagrams remains an open problem.

Acknowledgments. We thank Tim Harris, Tom Ball and Manuel Fähndrich for their
helpful feedback.

(apply) (s(r 7→ 〈σ, τ, E [(λx.e) v]〉), (V,E), ρ, γ) →d (if v /∈ V)

(s[r 7→ 〈σ, τ, E [[v/x]e]〉], (V ∪ v,E ∪ γ(r) s−→ v), ρ[v 7→ r], γ[r 7→ v])

(if-true) (s(r 7→ 〈σ, τ, E [(true ? e1 : e2)]〉), (V,E), ρ, γ) →d (if v /∈ V)

(s[r 7→ 〈σ, τ, E [e1]〉], (V ∪ v,E ∪ γ(r) s−→ v), ρ[v 7→ r], γ[r 7→ v])

(if-false) (s(r 7→ 〈σ, τ, E [(false ? e1 : e2)]〉), (V,E), ρ, γ) →d (if v /∈ V)

(s[r 7→ 〈σ, τ, E [e2]〉], (V ∪ v,E ∪ γ(r) s−→ v), ρ[v 7→ r], γ[r 7→ v])

(new) (s(r 7→ 〈σ, τ, E [ref v]〉), (V,E), ρ, γ) →d (if l /∈ s and v /∈ V)

(s[r 7→ 〈σ, τ [l 7→ v], E [l]〉], (V ∪ v,E ∪ γ(r) s−→ v), ρ[v 7→ r], γ[r 7→ v])

(get) (s(r 7→ 〈σ, τ, E [!l]〉), (V,E), ρ, γ) →d (if l ∈ dom(σ::τ) and v /∈ V)

(s[r 7→ 〈σ, τ, E [(σ::τ)(l)]〉] (V ∪ v,E ∪ γ(r) s−→ v), ρ[v 7→ r], γ[r 7→ v])

(set) (s(r 7→ 〈σ, τ, E [l := v]〉), (V,E), ρ, γ) →d (if l ∈ dom(σ::τ) and v /∈ V)

(s[r 7→ 〈σ, τ [l 7→ v], E [unit]〉], (V ∪ v,E ∪ γ(r) s−→ v), ρ[v 7→ r], γ[r 7→ v])

(fork) (s(r 7→ 〈σ, τ, E [rfork e]〉) (V,E), ρ, γ) →d (if r′ /∈ s and v, w /∈ V and r′ /∈ rng(ρ))

(s[r 7→ 〈σ, τ, E [r′]〉][r′ 7→ 〈σ::τ, ε, e〉],

(V ∪ {v, w}, E ∪ {γ(r) s−→ v, γ(r)
f−→ w}), ρ[v 7→ r][w 7→ r′], γ[r 7→ v][r′ 7→ w])

(join) (s(r 7→ 〈σ, τ, E [rjoin r′]〉)(r′ 7→ 〈σ′, τ ′, v〉) (V,E), ρ, γ) →d (if v /∈ V)

(s[r 7→ 〈σ, τ::τ ′, E [unit]〉][r′ 7→ ⊥],

(V ∪ v,E ∪ {γ(r) s−→ v, γ(r′)
j−→ v}), ρ[v 7→ r], γ[r 7→ v][r′ 7→ ⊥])

Fig. 8. Operational rules for→d. The rules match the ones in Fig. 4, except for the highlighted
parts, and for the omission of (joinε).

References

1. S. Aditya, Arvind, L. Augustsson, J.-W. Maessen, and R. Nikhil. Semantics of pH: A Parallel
Dialect of Haskell. In Paul Hudak, editor, Proc. Haskell Workshop, La Jolla, CA USA, pages
35–49, June 1995.

2. E. Allen, D. Chase, C. Flood, V. Luchangco, J.-W. Maessen, S. Ryu, and G. Steele Jr. Project
fortress: A multicore language for multicore processors. In Linux Mag., September 2007.

3. A. Baldassin and S. Burckhardt. Lightweight software transactions for games. In Workshop
on Hot Topics in Parallelism (HotPar), 2009.

4. H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and P. O’Neil. A critique of ANSI
SQL isolation levels. In Proceedings of SIGMOD, pages 1–10, 1995.

5. E. Berger, T. Yang, T. Liu, and G. Novark. Grace: Safe multithreaded programming for
C/C++. In (OOPSLA), 2009.

6. G. Blelloch, S. Chatterjee, J. Hardwick, J. Sipelstein, and M. Zagha. Impl. of a portable
nested data-parallel language. Journal of Par. and Dist. Comp., 21(1):4–14, April 1994.

7. R. Bocchino, V. Adve, D. Dig., and S. Adve et al. A type and effect system for deterministic
parallel java. In OOPSLA, 2009.

8. S. Burckhardt, A. Baldassin, and D. Leijen. Concurrent programming with revisions and
isolation types. In (OOPSLA), October 2010.

9. S. Burckhardt and D. Leijen. Semantics of concurrent revisions. Technical Report MSR-
TR-2010-94, Microsoft Research, 2010.

10. P. Denning and J. Dennis. The resurgence of parallelism. Commun. ACM, 53(6), 2010.
11. A. Fekete, D. Liarokapis, E. O’Neil, P. O’Neil, and D. Shasha. Making snapshot isolation

serializable. ACM Trans. Database Syst., 30(2):492–528, 2005.
12. C. Flanagan and M. Felleisen. The semantics of future and its use in program optimization.

In Rice University, pages 209–220, 1995.
13. M. Frigo, P. Halpern, C. E. Leiserson, and S. Lewin-Berlin. Reducers and other cilk++

hyperobjects. In Sym. on Par. Algorithms and Architectures (SPAA), pages 79–90, 2009.
14. M. Frigo, C. Leiserson, and K. Randall. The implementation of the Cilk-5 multithreaded

language. In Programming Language Design and Impl. (PLDI), pages 212–223, 1998.
15. T. Harris, A. Cristal, O. Unsal, E. Ayguadé, F. Gagliardi, B. Smith, and M. Valero. Transac-

tional memory: An overview. IEEE Micro, 27(3):8–29, 2007.
16. M. Herlihy and E. Koskinen. Transactional boosting: a methodology for highly-concurrent

transactional objects. In Principles and Practice of Parallel Programming (PPoPP), pages
207–216, 2008.

17. M. Herlihy and J. Wing. Linearizability: a correctness condition for concurrent objects. ACM
Trans. Program. Lang. Syst., 12(3):463–492, 1990.

18. G. Huet. Confluent reductions: Abstract properties and applications in term rewriting sys-
tems. J. ACM, 27(4), October 1980.

19. E. Koskinen, M. Parkinson, and M. Herlihy. Coarse-grained transactions. In Principles of
Programming Languages (POPL), pages 19–30, 2010.

20. M. Kulkarni, K. Pingali, B. Walter, G. Ramanarayanan, K. Bala, and L. Chew. Optimistic
parallelism requires abstractions. In (PLDI), 2007.

21. L. Lamport. How to make a multiprocessor computer that correctly executes multiprocess
programs. IEEE Trans. Comp., C-28(9):690–691, 1979.

22. J. Larus and R. Rajwar. Transactional Memory. Morgan & Claypool, 2007.
23. J. Lee and J. Palsberg. Featherweight x10: a core calculus for async-finish parallelism. In

Principles and Practice of Parallel Programming (PPoPP), 2010.
24. A. Martin, A. Birrell, T. Harris, and M. Isard. Semantics of transactional memory and auto-

matic mutual exclusion. In Principles of Prog. Lang. (POPL), pages 63–74, 2008.
25. L. Moreau. The semantics of scheme with future. In ACM SIGPLAN International Confer-

ence on Functional Programming (ICFP’96, pages 146–156, 1996.
26. P.A.Bernstein and N.Goodman. Multiversion concurrency control—theory and algorithms.

ACM Trans. Database Syst., 8(4):465–483, 1983.
27. P.A.Bernstein, V.Hadzilacos, and N.Goodman. Concurrency Control and Recovery in

Database Systems. Addison-Wesley, 1987.
28. P. Pratikakis, J. Spacco, and M. Hicks. Transparent proxies for java futures. SIGPLAN Not.,

39(10):206–223, 2004.
29. K. Randall. Cilk: Efficient Multithreaded Computing. PhD thesis, Dept. of Electrical Engi-

neering and Computer Science, MIT, May 1998.
30. T. Riegel, C. Fetzer, and P. Felber. Snapshot isolation for software transactional memory. In

Workshop on Transactional Computing (TRANSACT), 2006.
31. G. Steele. Parallel programming and parallel abstractions in fortress. In Invited talk at the

8th Int. Symp. on Functional and Logic Prog. (FLOPS), April 2006.
32. A. Welc, S. Jagannathan, and A. Hosking. Safe futures for java. In (OOPSLA), pages 439–

453, 2005.
33. A. Welc, B. Saha, and A.-R. Adl-Tabatabai. Irrevocable transactions and their applications.

In Symposium on Parallel Algorithms and Architectures (SPAA), pages 285–296, 2008.

