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Abstract. In this paper we present a new shape analysis algorithm.
The key distinguishing aspect of our algorithm is that it is completely
compositional, bottom-up and non-iterative. We present our algorithm
as an inference system for computing Hoare triples summarizing heap
manipulating programs. Our inference rules are compositional: Hoare
triples for a compound statement are computed from the Hoare triples
of its component statements. These inference rules are used as the basis
for a bottom-up shape analysis of programs.

Specifically, we present a logic of iterated separation formula (LISF)
which uses the iterated separating conjunct of Reynolds [17] to represent
program states. A key ingredient of our inference rules is a strong bi-
abduction operation between two logical formulas. We describe sound
strong bi-abduction and satisfiability decision procedures for LISF.

We have built a prototype tool that implements these inference rules
and have evaluated it on standard shape analysis benchmark programs.
Preliminary results show that our tool can generate expressive sum-
maries, which are complete functional specifications in many cases.

1 Introduction

In this paper we present a new shape analysis algorithm: an algorithm for an-
alyzing programs that manipulate dynamic data structures such as lists. The
key distinguishing aspect of our algorithm is that it is completely bottom-up
and non-iterative. It computes summaries describing the effect of a statement
or procedure in a modular, compositional, non-iterative way: the summary for a
compound statement is computed from the summaries of the simpler statements
that make up the compound statement.

Shape analysis is intrinsically challenging. Bottom-up shape analysis is partic-
ularly challenging because it requires analyzing complex pointer manipulations
when nothing is known about the initial state. Hence, traditional shape analy-
ses are based on an iterative top-down (forward) analysis, where the statements
are analyzed in the context of a particular (abstract) state. Though challenging,
a bottom-up shape analysis appears worth pursuing because the compositional
nature of the analysis promises much better scalability, as illustrated by the
recent work of Calcagno et al. [8]. The algorithm we present is based on ideas
introduced by Calcagno et al. [8].
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Motivating Example. Consider the procedure shown in Figure 1. Given a list,
pointed to by parameter h, this procedure deletes the fragment of the list de-
marcated by parameters a and b. Our goal is an analysis that, given a procedure
S such as this, computes a set of Hoare triples [ϕ] S [ϕ̂] that summarize the
procedure. We use the above notation to indicate that the Hoare triples inferred
are total : the triple [ϕ] S [ϕ̂] indicates that, given an initial state satisfying ϕ,
the execution of S will terminate safely (with no memory errors) in a state
satisfying ϕ̂.

delete(struct node *h, *a, *b)
1. y=h;
2. while (y!=a && y!=0) {
3. y=y->next;

}
4. x=y;
5. if (y!=0) {y=y->next;}
6. while (y!=b && y!=0) {
7. t=y;
8. y=y->next;
9. delete(t);

}
10. if (x !=0) {
11. x->next=y;
12. if (y!=0) y->prev=x;

}

Fig. 1. Motivating exam-
ple – deletion of the list
segment

Inferring Preconditions. There are several challenges
in meeting our goal. First, note that there are a num-
ber of interesting cases to consider: the list pointed to
by h may be an acyclic list, or a complete cyclic list,
or a lasso (an acyclic fragment followed by a cycle).
The behavior of the code also depends on whether
the pointers a and b point to an element in the list or
not. Furthermore, the behavior of the procedure also
depends on the order in which the elements pointed
to by a and b occur in the list.

With traditional shape analyses, a user would have
to supply a precondition describing the input to en-
able the analysis of the procedure delete. Alter-
natively, an analysis of the calling procedure would
identify the abstract state σ in which the procedure
delete is called, and delete would be analyzed in an
initial state σ. In contrast, a bottom-up shape anal-

ysis automatically infers relevant preconditions and computes a set of Hoare
triples, each triple describing the procedure’s behavior for a particular case (such
as the cases described in the previous paragraph).

Inferring Postconditions. However, even for a given ϕ, many different correct
Hoare triples can be produced, differing in the information captured by the
postcondition ϕ̂. As an example consider the case where h points to an acyclic
list, and a and b point to elements in the list, with a pointing to an element
that occurs before the element that b points to. In this case, the following are
all valid properties that can be expressed as suitable Hoare triples: (a) The
procedure is memory-safe: it causes no pointer error such as dereferencing a
null pointer. (b) Finally, h points to an acyclic list. (c) Finally, h points to an
acyclic list, which is the same as the list h pointed to at procedure entry, with
the fragment from a to b deleted. Clearly, these triples provide increasingly more
information.

A distinguishing feature of our inference algorithm is that it seeks to infer triples
describing properties similar to (c) above, which yield a functional specification
for the analyzed procedure. One of the key challenges in shape analysis is relating
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the value of the final data-structure to the value of the initial data-structure. We
utilize an extension of separation logic, described later, to achieve this.

Composition via Strong Bi-Abduction. We now informally describe how sum-
maries [ϕ1] S1 [ϕ̂1] and [ϕ2] S2 [ϕ̂2], in separation logic, can be composed to
obtain summaries for S1;S2. The intuition behind the composition rule, which
is similar to the composition rule in [8], is as follows. Suppose we can identify
ϕpre and ϕpost such that ϕ̂1 ∗ ϕpre and ϕpost ∗ ϕ2 are equivalent. We can then
infer summaries [ϕ1 ∗ ϕpre] S1 [ϕ̂1 ∗ϕpre] and [ϕpost ∗ ϕ2] S2 [ϕpost ∗ ϕ̂2] by ap-
plication of Frame rule [15], where ∗ is the separating conjunction of Separation
Logic [17] (subject to the usual Frame rule conditions: ϕpre and ϕpost should
not involve variables modified by S1 and S2 respectively). We can then compose
these summaries trivially and get [ϕ1 ∗ ϕpre] S1; S2 [ϕpost ∗ ϕ̂2]. Given ϕ̂1 and
ϕ2, we refer to the identification of ϕpre, ϕpost such that ϕ̂1 ∗ ϕpre ⇔ ϕpost ∗ ϕ2

as strong bi-abduction. Strong bi-abduction also allows for existentially quanti-
fying some auxiliary variables from the right hand side of the equivalence. Refer
Section 2 for details.

Iterative Composition. A primary contribution of this paper is to extend the
above intuition to obtain loop summaries. Suppose we have a summary [ϕ] S [ϕ̂],
where S is the body of a loop (including the loop condition). We can apply
strong bi-abduction to compose this summary with itself: for simplicity, suppose
we identify ϕpost and ϕpre such that ϕ̂ ∗ ϕpre ⇔ ϕpost ∗ ϕ. If we now induc-
tively apply the composition rule, we can then infer a summary of the form
[ϕ ∗ϕkpre] Sk [ϕkpost ∗ ϕ̂] that summarizes k executions of the loop. Here, we have
abused notation to convey the intuition behind the idea. If our logic permits
a representation of the repetition of a structure ϕpre an unspecified number of
times k, we can then directly compute a Hoare triple summarizing the loop from
a Hoare triple summarizing the loop body.

Logic Of Iterated Separation Formulas. In this paper, we introduce LISF, an
extension of separation logic that enables us to meet our goal, and present
sound procedures for strong bi-abduction and satisfiability in LISF. LISF has
two key aspects: (i) It contains a variant of Reynolds’ iterated separating con-
junct construct that allows the computation of a loop summary from a loop
body summary. (ii) It uses an indexed symbolic notation that allows us to give
names to values occurring in a recursive (or iterative) data-structure. This is
key to meeting the goal described earlier of computing functional specifica-
tions that can relate the value of the final data-structure to the value of the
initial data-structure. LISF gives us a generic ability to define recursive pred-
icates useful for describing recursive data-structures. The use of LISF, instead
of specific recursive predicates, such as those describing singly-linked lists or
doubly-linked lists, allows us to compute more precise descriptions of recursive
data-structures in preconditions. Though we use LISF for a bottom-up analy-
sis, it can also be used to represent program states in top down interprocedural
analysis.
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Empirical Evaluation. We have implemented our inference rules in a prototype
bottom-up analyzer and evaluated it on several shape analysis benchmarks. On
most of the examples we could generate ‘complete’ functional specifications. On
the example program in Figure 1, we could generate several summaries with
cyclic and lasso structures, although a complete specification was not obtained.
This is due to the incompleteness of our strong bi-abduction algorithm.

Related Work. Our work is most closely related to the recent compositional
shape analysis algorithm presented by Calcagno et al. [8], which derives from
the earlier work in [9]. The algorithm described by Calcagno et al. is a hy-
brid algorithm that combines compositional analysis with an iterative forward
analysis. The first phase of this algorithm computes candidate preconditions
for a procedure, and the second phase utilizes a forward analysis to either
discard the precondition, if the precondition is found to potentially lead to a
memory error, or find a corresponding sound postcondition. The key idea in
the Calcagno et al. approach, which we borrow and extend, is the use of bi-
abduction to handle procedure calls compositionally. Given ϕ̂1, the state at
a callsite, and ϕ2, a precondition of a Hoare triple for the called procedure,
Calcagno et al. compute ϕpre and ϕpost such that ϕ̂1 ∗ ϕpre ⇒ ϕpost ∗ ϕ2.
Our approach differs from the Calcagno et al. work in the following ways. We
present a completely bottom-up analysis which does not use any iterative anal-
ysis whatsoever. Instead, it relies on a “stronger” form of bi-abduction (where
we seek equivalence instead of implication but allow some auxiliary variables to
be quantified) to compute the post-condition simultaneously. Furthermore, our
approach extends the composition rule to treat loops in a similar fashion. Our
approach also computes preconditions that guarantee termination. We present
LISF, which serves as the basis for our algorithm, while their work uses a set
of abstract recursive predicates. We also focus on computing more informative
triples that can relate the final value of a data-structure to the initial data-
structure.

Several recent papers [16,2,13] describe techniques to obtain preconditions
by going backwards starting from some bad states. Unlike our approach, these
techniques are not compositional or bottom-up. The work on regular model-
checking [1,6,5,7] represents input-output relations by a transducer, which can
be looked upon as a functional specification. But these works do not provide
compositional techniques to compute the transducer for a loop.

Extrapolation techniques proposed in [18,4] compute sound overapproxima-
tions by identifying the growth in successive applications of transducers and
iterating that growth. Similarly, [12] proposes a technique to guess the recursive
predicates characterizing a data structure by identifying the growth in succes-
sive iterations of the loop and repeating that growth. In contrast, we identify the
growth in both the pre and postconditions by strong bi-abduction and iterate
it to compute Hoare triples that are guaranteed to be sound. Furthermore, our
analysis is bottom-up and compositional in contrast to these top-down (forward)
analyses.



192 B.S. Gulavani et al.

Program Syntax
e ::= v | null
C ::= v = e | v != e
S ::= v.f := e | v := u.f | v := new | dispose v | S; S

| assert(C) | v := e | if(C, S, S) | while(C) S

Assertion Logic Syntax (∼ ∈ {=, �=})
e ::= null | v | . . .
P ::= e ∼ e | false | true | P ∧ P | . . .
S ::= emp | e �→ (f : e) | true | S ∗ S | . . .
SH ::= P ∧ S | ∃v. SH

Fig. 2. Program syntax and assertion logic syntax

Contributions. (i) We present the logic of iterated separation formulas LISF
(Section 3) and give sound algorithms for satisfiability checking and strong bi-
abduction in this logic (Section 5). (ii) We present inference rules to compute
Hoare triples in a compositional bottom-up manner (Section 4). (iii) We have
a prototype implementation of our technique. We discuss its performance on
several challenging programs (Section 6).

2 Composition via Strong Bi-abduction

In this section we introduce the idea of composing Hoare triples using strong
bi-abduction.

2.1 Preliminaries

Programming language. We address a simple language whose syntax appears in
Figure 2. The primitives assert(v = e) and assert(v != e) are used primar-
ily to present inference rules for conditionals and loops (as will be seen later).
Here v, u are program variables, and e is an expression which could either be a
variable or a constant null. This language does not support address arithmetic.

Semantically, we use a value domain Locs (which represents an unbounded set
of locations). Each location in the heap represents a cell with n fields, where n is
statically fixed. A computational state contains two components: a stack, mapping
program variables to their values (Locs ∪ {null}), and a heap, mapping a finite
set of non-null locations to their values, which is a n-tuple of (primitive) values.

Assertion Logic. We illustrate some of the key ideas using standard Separation
Logic, using the syntax shown in Figure 2. The ‘. . . ’ in Figure 2 refer to con-
structs and extensions we will introduce in Section 3. We assume the reader is
familiar with the basic ideas in Separation Logic. An expressions e evaluates
to a location. Given a stack s, a variable v evaluates to a location. A symbolic
heap representation consists of a pure part P and a spatial part S. The pure
part P consists of equalities and disequalities of expressions. The spatial part S
describes the shape of the graph in the heap. emp denotes that the heap has
no allocated cells. x �→ (f : l) denotes a heap consisting of a single allocated cell
pointed to by x, and the f field of this cell has value l. The ∗ operator is called
the separating conjunct; s1 ∗ s2 denotes that s1 and s2 refer to disjoint portions
of the heap and the current heap is the disjoint union of these sub-heaps. The
meaning of pure assertions depends only on the stack, and the meaning of spatial
assertions depends on both the stack and the heap.
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Table 1. Local reasoning rules for primitive statements

Mutation [v �→ (f : w; . . .)] v.f := e [v �→ (f : e; . . .)]

Deallocation [v �→ (f1 : w1, . . . , fn : wn)] dispose v [v �= null ∧ emp]

Allocation (modifies v) [v = x] v := new [∃ w1 . . . wn. v �→ (f1 : w1, . . . , fn : wn)]

Lookup (modifies v) [v = x ∧ u �→ (f : w; . . .)] v := u.f [v = w ∧ u �→ (f : w; . . .)]
[v = x ∧ v �→ (f : w; . . .)] v := v.f [v = w ∧ x �→ (f : w; . . .)]

Copy (modifies v) [v = x] v := e [v = e〈v → x〉]
Guard [v = e] assert(v = e) [v = e]

[v �= e] assert(v!= e) [v �= e]

Hoare triples. The specification [ϕ] S [ϕ̂] means that when S is run in a state
satisfying ϕ it terminates without any memory error (such as null dereference)
in a state satisfying ϕ̂. Thus, we use total correctness specifications. Additionally,
we call the specification [ϕ] S [ϕ̂] strong if ϕ̂ is the strongest postcondition of ϕ
with respect to S. We use the logical variable v to refer to the value of program
variable v in the pre and postcondition of a statement S. The specification may
refer to auxiliary logical variables, called Aux, that do not correspond to the
value of any program variable. For the present discussion, we prefix all auxiliary
variable names with ‘ ’. A Hoare triple with auxiliary variables is said to be valid
iff it is valid for any value binding for the auxiliary variables occurring in both
the pre and postcondition. The local Hoare triples for reasoning about primitive
program statements are given in Table 1. These are similar to the small axioms
of [15].

We use the following short-hand notations for the remainder of the paper.
Formulae true∧S and P ∧emp in pre or post conditions are represented simply
as S and P respectively. The notation θ : 〈v → x〉 refers to a renaming θ that
replaces variable v with x, and eθ refers to the expression obtained by applying
renaming θ to e. For sets A and B of variables, we write θ : 〈A ↪→ B〉 to denote
renaming of a subset of variables in A by variables in B. We use free(ϕ) to
refer to the set of free variables in ϕ. Similarly, mod(S) denotes the set of logical
variables corresponding to program variables modified by S. We denote sets of
variables by upper-case letters like V,W,X, Y, Z, . . .. For every such set V , Vi
denotes the set of i subscripted versions of variables in V . We use ϕs and ϕp to
refer to the pure and spatial parts, respectively, of ϕ. The notation ∃X.ϕ ∗ ∃Y.ψ
is used to denote ∃X,Y. ϕp ∧ψp ∧ϕs ∗ψs, when ϕ and ψ are quantifier free and
do not have free Y and X variables, respectively.

2.2 Composing Hoare Triples

Given two summaries [ϕ1] S1 [ϕ̂1] and [ϕ2] S2 [ϕ̂2], we wish to compute a sum-
mary for the composite statement S1;S2. If we can compute formulas ϕpre and
ϕpost that are independent of mod(S1) and mod(S2), respectively, such that
ϕ̂1 ∗ ϕpre ⇔ ϕpost ∗ ϕ2, then by application of Frame rule we can infer the sum-
mary [ϕ1∗ϕpre] S1; S2 [ϕpost∗ϕ̂2]. We can compose the two given summaries even
under the slightly modified condition ϕ̂1 ∗ ϕpre ⇔ ∃Z. (ϕpost ∗ ϕ2), if Z ⊆ Aux.
The summary inferred in this case is [ϕ1 ∗ ϕpre] S1; S2 [∃Z. (ϕpost ∗ ϕ̂2)].
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Compose
[ϕ1] S1 [ϕ̂1]
[ϕ2] S2 [ϕ̂2]

ϕ̂1 ∗ ϕpre ⇔ ∃Z. (ϕpost ∗ ϕ2)

[ϕ1 ∗ ϕpre] S1; S2 [∃Z. (ϕpost ∗ ϕ̂2)]

free(ϕpre) ∩ mod(S1) = ∅
free(ϕpost) ∩ mod(S2) = ∅
Z ⊆ Aux

Branch
[ϕ ∧ B] S1 [ϕ̂]
[ϕ∧!B] S2 [ϕ̂]

[ϕ] if(B, S1, S2) [ϕ̂]

Exit While Then Else
[ϕ] assert(!B) [ϕ̂]
[ϕ] while(B) S [ϕ̂]

[ϕ] (assert(B); S)+; assert(!B) [ϕ̂],
[ϕ] while(B) S [ϕ̂]

[ϕ] assert(B); S1 [ϕ̂]
[ϕ] if(B, S1, S2) [ϕ̂]

[ϕ] assert(!B); S2 [ϕ̂]
[ϕ] if(B, S1, S2) [ϕ̂]

Fig. 3. Inference rules for sequential composition, loops, and branch statements

Given ϕ̂1 and ϕ2, we refer to the determination of ϕpre, ϕpost and a set Z
of variables such that ϕ̂1 ∗ ϕpre ⇔ ∃Z. (ϕpost ∗ ϕ2) as strong bi-abduction. The
concept of strong bi-abduction is similar to that of bi-abduction presented in [8]
(in the context of using a Hoare triple computed for a procedure at a particular
callsite to the procedure). Key differences are that bi-abduction requires the con-
dition ϕ̂2 ∗ϕpre ⇒ ϕpost ∗ϕ2, whereas we seek equivalence instead of implication
while allowing some auxiliary variables to be existentially quantified in the right
hand side of the equivalence. While the above composition rule is sound even if we
use bi-abduction, bi-abduction may not yield good post-conditions. Specifically,
‘total’ and ‘strong’ properties of specifications are preserved under composition
using strong bi-abduction. The ‘strong’ property is not preserved under compo-
sition using bi-abduction, although composition is sound. A drawback of using
strong bi-abduction, though, is that there exist Hoare triples which cannot be
composed using strong bi-abduction but can be composed using bi-abduction.
However, even with this drawback our tool could generate complete functional
specification for most of the benchmark programs using strong bi-abduction in
a bottom-up analysis.

Example 1. In this and subsequent examples, we use v �→ w as a short-hand for
v �→ (next : w). Let us compose two summaries, [v = a] v := new [∃ b. v �→ b] and
[v = c ∧ c �→ d] v := v.next [v = d ∧ c �→ d]. Note that all variables other than
v are distinct in the two summaries, as they represent implicitly existentially
quantified auxiliary variables in each of the two summaries. Since (∃ b. v �→ b) ∗
emp⇔ ∃ c d. emp ∗ (v = c ∧ c �→ d) we can compose the two summaries and deduce
[v = a] v := new; v := v.next [∃ c d. v = d ∧ c �→ d].

We now present a set of Hoare inference rules in Separation Logic for our
programming language. The rules are formally presented in Figure 3. The Com-
pose rule captures the above idea of using strong bi-abduction for the sequential
composition of statements. The rules While, Then and Else use the Compose
rule to derive the fact in their antecedent.

The rules Exit and While are straightforward rules that decompose analysis
of loops into two cases. Rule Exit handles the case where the loop executes zero
times, while rule While applies when the loop executes one or more times. Rule
While leaves the bulk of the work to the computation of triples of the form
[ϕ] S+ [ϕ̂]. The triple [ϕ] S+ [ϕ̂] means that for every initial state satisfying ϕ,
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there exists a k ≥ 1 such that the state resulting after k executions of S satisfies
ϕ̂. In next two sections we present a technique for computing triples of this form.

3 Logic of Iterated Separation Formulae: LISF

Let S be the loop: while (v!=null) v := v.next. Let us use �ki=0 ψ
i infor-

mally to represent the iterated separating conjunction ψ0 ∗ · · · ∗ ψk [17]. We
would like to infer the following summary for S: [v = x0 ∧ xk = null ∧ �k−1

i=0 xi �→
xi+1] S [v = xk ∧ xk = null ∧ �k−1

i=0 xi �→ xi+1]. In this section, we present a formal
extension of Separation Logic that lets us express such triples involving iterated
separating conjunction, in a restricted form. We first motivate this restricted
form of iteration by informally explaining how we plan to infer summaries such
as the one above.

Assume that we have a Hoare triple [ϕ] S [ϕ̂] where ϕ and ϕ̂ are quantifier free
formulas. We can compute a Hoare triple for k executions of S by repeated appli-
cations of the Compose rule as follows. Let ϕi (resp. ϕ̂i) denote ϕ (resp. ϕ̂) with
every variable x ∈ Aux replaced by an indexed variable xi. Consider the following
valid Hoare triples with variables renamed, [ϕi] S [ϕ̂i] and [ϕi+1] S [ϕ̂i+1]. Let
ϕipre and ϕipost be such that, free(ϕipre) ∩mod(S) = free(ϕipost) ∩mod(S) = ∅,
and ϕ̂i ∗ϕipre ⇔ ϕipost ∗ϕi+1. Note that unlike ϕi or ϕ̂i, ϕipre and ϕipost may have
free variables with index i as well as i + 1. We can now inductively apply the
compose rule and conclude the following Hoare triple.

[ϕ0 ∗ (�k−1
i=0 ϕipre)]S

k+1[(�k−1
i=0 ϕipost) ∗ ϕ̂k] (3.1)

Example 2. Let S be the statement: assert(v! = null); v := v.next. Let us com-
pose the two summaries [v = x0 ∧ x0 �→ y0] S [v = y0 ∧ x0 �→ y0] and [v = x1 ∧ x1 �→
y1] S [v = y1 ∧ x1 �→ y1], which are identical, except for renaming of auxiliary
variables. Let ϕpre ≡ x1 = y0∧ x1 �→ y1 and ϕpost ≡ x1 = y0 ∧ x0 �→ y0. Application
of the Compose rule results in the following summary. [(v = x0∧ x0 �→ y0)∗ ( x1 =

y0 ∧ x1 �→ y1)] S; S [( x1 = y0 ∧ x0 �→ y0) ∗ (v = y1 ∧ x1 �→ y1)]. Iterative application
of compose gives the summary: [v = x0 ∧ x0 �→ y0 ∗ �k−1

i=0 ( xi+1 = yi ∧ xi+1 �→ yi+1)]

S+ [�k−1
i=0 ( xi+1 = yi ∧ xi �→ yi) ∗ (v = yk ∧ xk �→ yk)].

ae ::= arr | ae[·] | ae[· + 1] | ae[c] | ae[$c]
e ::= . . . | ae[·] | ae[· + 1] | ae[c] | ae[$c]
P ::= . . . | RP(P, l, u)

S ::= . . . | RS(S, l, u)

SH ::= P ∧ S | ∃v. SH | ∃arr. SH

Fig. 4. LISF assertion syntax

LISF Syntax and Informal Semantics:
We now formally introduce a restricted
form of the iterated separating conjunct
illustrated above. Fig. 4 presents the
syntax of LISF, where “. . .” represents
standard constructs of Separation Logic
from Figure 2.We first illustrate the syn-
tax with an example relating the infor-

mal notation introduced earlier to the formal syntax. The informal notation
v = x0 ∧ xk = null ∧ �k−1

i=0 xi �→ xi+1 is represented in LISF as v = A[0]∧A[$0] =

null ∧ RS(A[·] �→ A[· + 1], 0, 0). This represents an acyclic singly linked list pointed to
by v.
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m |= e1 ∼ e2 iff E(e1, L, s,V) ∼ E(e2, L, s,V)

m |= RP(P, l, u) iff ∃k. k + 1 = len(V, L, P ) ∧ ∀l ≤ i ≤ k − 1− u. (s, h,V, i :: L) |= P

m |= e1 �→ (f : e2) iff h(E(e1, L, s,V)) = (f : E(e2, L, s,V)) ∧ dom(h) = {E(e1, L, s,V)}
m |= RS(S, l, u) iff ∃k, u′, hl, . . . , hu′ . k + 1 = len(V, L, S) ∧ u′ = k − 1− u ∧ h =

⊔u′
i=l hi ∧

∀l ≤ i, j ≤ u′. i �= j ⇒ hi#hj ∧ ∀l ≤ i ≤ u′. (s, hi,V, i :: L) |= S

Fig. 5. Subset of semantics of LISF. m is (s, h,V, L), len is as explained in text.

A LISF formula may reference a new type of logical variable such as A, which we
call an array variable. We will denote array variable names with bold-faced upper
case letters, as a convention. As we will see later, the semantics of LISF will uti-
lize a mapping from such array variables to a sequence of values (v0, · · · , vk). LISF
also utilizes multi-dimensional arrays to handle nested recursive data-structures.
In such cases, the values vi may themselves be sequences.

Expressions are extended in LISF to permit indexed variable references, which
consist of an array variable name followed by a sequence of one or more indices. An
index can take one of the following four forms: (i) arr[c], (ii) arr[$c], (iii) arr[·], or
(iv) arr[· + 1]. Fixed indices arr[c] and arr[$c] refer to the element at an offset c
from the beginning or end of the sequence that arr denotes, respectively. E.g., if
A is bound to (v0, · · · , vk), then A[0] and A[$0] evaluate to v0 and vk respectively.
Iterated indices arr[·] and arr[· + 1] will be explained soon.

We extend the pure and spatial formulas with predicates RP(P, l, u) and RS(S, l, u),
respectively, to capture repeated structures. Loosely speaking, RS(S, l, u) corre-
sponds to our informal notation �k−1−u

i=l S, except that there is no explicit repre-
sentation of the index variable i or the bound k. The values of i and k are actually
provided by the evaluation context in the semantics. The dot in the iterated in-
dices arr[·] and arr[· + 1] is used to refer to the implicit index variable i. Thus,
arr[·] refers to the element at offset i, and arr[·+ 1] refers to the element at offset
i+1. Expressions with iterated indices are used within RP or RS predicates. For ex-
ample, consider the predicate RS(A[·] �→ A[·+1], 0, 0), where A is bound to a sequence
of length k+ 1. This predicate asserts that for all i ∈ [0, k− 1], the ith element of
A is the location of a cell in the heap whose next field has the same value as the
i+ 1th element of A. Further, the predicate also asserts that the elements A[0] to
A[k − 1] are distinct. For notational convenience we denote the formulas RP(P, l, u)

and RS(S, l, u) by RP(P ) and RS(S), respectively, when both l and u are 0.

LISF Semantics Expression evaluation semantics is extended in a straightforward
fashion to evaluate indexed variable references. Expressions involving array vari-
able with multiple indices require the value of that array and a list of indices, one
for every iterated index, for their evaluation. The semantics of an expression e,
which evaluates to a location, is given by the function E(e, L, s,V) where L is the
index list (provided by the evaluation context), s is the stack, and V is the mapping
of array names to their values (uni or multi-dimensional sequences of locations).
Definition of E and detailed semantics are provided in the extended version [11].

The structures modeling LISF formulas are (s, h,V) where s is the stack, h is
the heap, and V is the mapping of array names to their values. The semantics of
assertions is given by the satisfaction relation (|=) between a structure extended
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with a list of indicesL, and an assertionϕ. The list of indicesL facilitates evaluation
of expressions by the function E . The structure (s, h,V) models ϕ iff (s, h,V , []) |=
ϕ. Semantics of constructs novel to LISF are given in Figure 5. We assume that ϕ
is a well formed formula (wff ) and (s, h,V) is a well formed structure for ϕ (wfsϕ).
Intuitively, wff and wf sϕ avoid indexing error in the evaluation of ϕ. We write
h1#h2 to indicate that h1 and h2 have disjoint domains, and h1 � h2 to indicate
the disjoint union of such heaps.

Consider a RP(P, l, u) (or RS(S, l, u)) predicate nested inside n− 1 other RP (or RS)
predicates. The length of the array accessed by the nth iterated index of every
expression in P (or S) is guaranteed to be identical by the requirement of well
formed structures of a formula. Given a list L of n − 1 index values correspond-
ing to the evaluation context arising from the outer RP (or RS) predicates, function
len(V , L, P ) (or len(V , L, S)) determines the length, say k + 1, of the array ac-
cessed by the nth iterated index of any expression in P (or S). The semantics of
RP(P, l, u) requires that P holds for each array index i ranging from l to k − 1 − u.
Similarly, the semantics of RS(S, l, u) requires that S holds over a sub-heap hi of h
for each array index i ranging from l to k − 1 − u, with the additional constraint
that the his are pair-wise disjoint.

4 Inductive Composition

Induct

Given

1. [ϕ] S [∃X. ϕ̂]

2. ϕ̂0 : ϕ̂ with every w ∈ W replaced by w0

3. ϕ1 : ϕ with every w ∈ W replaced by w1

4. free(ϕ0
pre) ∩mod(S) = ∅

5. free(ϕ0
post) ∩mod(S) = ∅

6. (∃X. ϕ̂0) ∗ ϕ0
pre ⇔ ϕ0

post ∗ ϕ1

7. α : 〈x→ X[0]〉, for each x in W

8. β : 〈x→ X[$0]〉, for each x in W

9. Function Iter as explained in following text

Infer

[ϕα ∗ Iter(ϕ0
pre)] S+ [∃X. Iter(ϕ0

post) ∗ ϕ̂β]

Fig. 6. Inference rule for acceleration

The rules introduced in Figure 3 are
valid even with LISF extension of Sep-
aration Logic. The set of auxiliary
variables,Aux, includes the arrayvari-
ables in this extension. For clarity, we
adopt the following convention in the
remainder of the paper: (i) unless ex-
plicitly stated, all formulas in LISF are
quantifier free, (ii) Hoare triples are
always expressed as [ϕ] S [∃X. ϕ̂], (iii)
free(ϕ) = V ∪ W and free(ϕ̂) =
V ∪W ∪X , where V denotes the set of
logical variables representing values of
program variables, and W,X are sets
of auxiliary variables, including array

variables1. ThusW is the set of free auxiliary variables occurring inϕ and in ∃X. ϕ̂.
Let [ϕ] S [∃X. ϕ̂] be a Hoare triple. We wish to compute a strong summary for

S+. Figure 6 presents the rule Induct to compute such a summary. As in the previ-
ous Section, we useϕi (resp. ϕ̂i) to denoteϕ (resp. ϕ̂) with every free auxiliary vari-
able w ∈ W replaced by an indexed variable wi. Let ϕ0

pre, ϕ0
post be formulas such

1 By restricting preconditions to quantifier free formulas we do not sacrifice ex-
pressiveness. Indeed, the Hoare triple [∃Y. ψ(V,W, Y )] S [∃X. ψ̂(V,W,X)] is valid iff
[ψ(V,W, Y )] S [∃X. ψ̂(V,W,X)] is valid, where W,X, Y are disjoint sets of auxiliary vari-
ables (see defn. 124 in [10]).
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that free(ϕ0
pre) and free(ϕ0

post) are disjoint from mod(S) and (∃X. ϕ̂0) ∗ ϕ0
pre ⇔

ϕ0
post ∗ ϕ1. Note that the premises 4, 5, and 6 of Induct imply that free(ϕipre)

and free(ϕipost) are disjoint frommod(S), and that (∃X. ϕ̂i)∗ϕipre ⇔ ϕipost ∗ϕi+1

for any i. Given these conditions, the Compose rule can be iteratively applied to
obtain an accelerated summary similar to that in (3.1).

We use α, β, and Iter to express ϕ0, ϕ̂k and the iterated separating conjunct of
accelerated summary (3.1) in LISF. The renamingα replaces every variable x ∈ W
in ϕ by X[0]. Similarly β replaces every x ∈ W in ϕ̂ by X[$0].

Inductq

Given

1. [ϕ] S [∃X. ϕ̂]

2. ϕ̂0 : ϕ̂ with every w ∈ W and x ∈ X
replaced by w0 and x1, resp.

3. ϕ1 : ϕ with every w ∈ W replaced by w1

4. free(ϕ0
pre) ∩mod(S) = ∅

5. free(ϕ0
post) ∩mod(S) = ∅

6. (∃X. ϕ̂0) ∗ ϕ0
pre ⇔ ∃Z1. (ϕ0

post ∗ ϕ1)

7. Z1 ⊆ W1 ∪X1 ⊆ Aux and |Z1| = r

8. free(ϕ0
pre) ∩ Z0 = ∅

9. α, β, Iter, same as described in Induct

Infer

[ϕα ∗ Iter(ϕ0
pre)]

S+

[∃X,Z1, . . . ,Zr. Iter(ϕ0
post) ∗ ϕ̂β]

Fig. 7. Inference rule Inductq

The function Iter in premise 9 takes
an LISF formula ψ, computes an in-
termediate formula ψren, and returns
RP(ψp

ren) ∧ RS(ψs
ren). The formula ψren

is computed by applying a function
called warp to ψ. warp makes at most
two passes over the syntax tree of ψ
in a bottom-up manner. In the first
pass it renames every indexed auxil-
iary variable w0 (resp. w1) by a fresh
array with iterated index W[·] (resp.
W[· + 1]). If ψpren and ψsren do not
have any common array variable, it
performs a second pass in which ev-
ery sub-formula e1 �→ e2 in ψsren is
replaced by e1 �= null ∧ e1 �→ e2. All
resulting sub-formulas of the form
RS(P ∧ S, l, u) are finally replaced by
RP(P, l, u) ∧ RS(S, l, u). This ensures that

ψpren and ψsren always have at least one common array variable, unless ψs is emp.
The length of these common arrays determines the implicit upper bound in the
universal quantifier of RP and RS predicates in Iter(ψ).

In general, the strong bi-abduction of ∃X. ϕ̂0 and ϕ1 in premise 6 may require
variables to be existentially quantified on the right hand side. The Induct rule
needs to be slightly modified in this case. The modified rule Inductq is presented
in Figure 7. We use a refined notation in Inductq where ϕi (resp. ϕ̂i) denotes
ϕ (resp. ϕ̂) with every variable w ∈ W replaced by an indexed variable wi and
every variable x ∈ X replaced by xi+1. Let the bi-abduction between ϕ̂0 and ϕ1

be (∃X1. ϕ̂
0)∗ϕ0

pre ⇔ ∃Z1. (ϕ0
post ∗ϕ1), whereZ1 ⊆W1∪X1 is the set of auxiliary

variables. If the additional side-condition free(ϕ0
pre) ∩Z0 = ∅ holds, we can infer

the accelerated summary in the conclusion of Inductq.
Let Zi be the set of variables {z1

i , . . . , z
r
i }. The values of variables in Z0 =

{z1
0 , . . . z

r
0}, . . . , Zk = {z1

k, . . . z
r
k} are represented as elements of r arrays Z1=

{z1
0 , . . . , z

1
k}, . . . ,Zr= {zr0 , . . . , zrk} in the postcondition of conclusion of Inductq.

These two representations are analogous to representing elements of the same ma-
trix row-wise and column-wise. The variables representing the values of variables
in Z1 ∪ . . . ∪ Zk need to be existentially quantified in the postcondition of the
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conclusion of Inductq because of the existential quantification of Z1 in strong
bi-abduction. Hence we existentially quantify the array variables Z1, . . . ,Zr in the
conclusion of Inductq. As a technical subtlety, the variables in Z0 need not be
quantified. This is taken care of by adding extra equalities in Iter(ϕ0

post) (see [11]
for details).

Soundness of Induct and Inductq can be proved by appealing to the sound-
ness of the Compose rule, and by using structural induction. Note that if any
Hoare triple in the premise of an inference rule in Figure 3, 6, or 7 is partial (i.e.,
termination is not guaranteed starting from a state satisfying precondition), then
the Hoare triple in the conclusion will also be partial.

Lemma 1. Inference rules Induct and Inductq are sound.

Example 3. Recall Example 2 where two instances of the summary [v = x ∧ x �→
y] S [v = y ∧ x �→ y] are composed using ϕ0

pre : ( x1 = y0 ∧ x1 �→ y1) and
ϕ0

post : ( x1 = y0 ∧ x0 �→ y0). For this example, Iter(ϕ0
pre) generates the LISF for-

mula RP(X[· + 1] = Y[·]) ∧ RS(X[· + 1] �→ Y[· + 1]), and Iter(ϕ0
post) generates the for-

mula RP(X[· + 1] = Y[·]) ∧ RS(X[·] �→ Y[·]). In this representation, the arrays X and
Y represent the sequences x0, . . . , xk and y0, . . . , yk, respectively. The renamed
formulas ϕα and ϕ̂β correspond to the formulas v = X[0] ∧ X[0] �→ Y[0] and v =

Y[$0] ∧ X[$0] �→ Y[$0] respectively. The application of Induct thus generates the
summary: [v = X[0] ∧ RP(X[· + 1] = Y[·]) ∧ X[0] �→ Y[0] ∗ RS(X[· + 1] �→ Y[· + 1])] S+

[v = Y[$0] ∧ RP(X[·+ 1] = Y[·]) ∧ RS(X[·] �→ Y[·]) ∗X[$0] �→ Y[$0]].

Discussion. In the above example, the equality x1 = y0 in ϕ0
pre and ϕ0

post iden-
tifies folding points of the repeated sub-heaps. Hence we can rewrite the pre and
postcondition as v = x0 ∧�k−1

i=0 xi �→ xi+1 and v = xk ∧�k−1
i=0 xi �→ xi+1, respectively,

using the equality y0 = x1 to eliminate y0 in both the formulas. The corresponding
summary in LISF is: [v = X[0] ∧ RS(X[·] �→ X[·+ 1])] S+ [v = X[$0] ∧ RS(X[·] �→ X[· + 1])].

Instead of translating a recurrence into a LISF formula, one could also translate
it into a recursive predicate. For example, the recurrence �k−1

i=0 xi �→ xi+1 obtained
above can be translated into a recursive predicate Rec( x0, xk), where Rec( x0, xk) ≡
x0 �→ xk∨∃ x1. x0 �→ x1 ∗Rec( x1, xk). We choose to represent the values of variables
in successive instances of a repeated formula by an array rather than hiding them
under an existential quantifier of a recursive predicate. This enables us to relate the
data-structures before and after the execution of a loop. For example, this enables
our analysis to establish the fact that traversing a list using next field does not
modify contents of the cells or the relative links between them.

The Compose and Exit rules can be used to obtain summaries of loop free
code fragments and trivial summaries of loops, respectively. Given a loop body
summary, the Induct and Inductq rules generate an accelerated summary for
use in the While rule. Any pair of accelerated summaries can also be composed
to obtain new accelerated summaries. In general, determining the sequence of ap-
plication of the rules Compose, Inductq, Exit and While to obtain useful loop
summaries is an important but orthogonal issue and needs to be guided by heuris-
tics. Heuristics used for acceleration in [3] can be adapted to guide the application
of these rules for synthesizing useful loop summaries. Given procedure summaries,
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non-recursive procedure calls can be analyzed by the Compose rule, as in [8]. The
Inductq rule can also be used to compute accelerated summaries of tail recursive
procedures having at most one self-recursive call.

5 A Strong Bi-abduction Algorithm for LISF

BiAbduct(ϕ, ψ, mod1, mod2)

1: res← {}
2: for all (M,C,L1, L2) ∈ Match(ϕs, ψs) do
3: Δ← (ϕp ∧ L1) ∗ (M ∧ C) ∗ (ψp ∧ L2)
4: if sat(Δ) then
5: δ1 ← RemoveVar(M∧ψp∧L2, ϕ,mod1, V ∪W )

6: δ2 ← RemoveVar(M∧ϕp∧L1, ψ,mod2, V ∪Y )

7: γ ← ComputeRenaming(δ1,mod1, Y )
8: κ1 ← δ1γ
9: Ẑ ← Range(γ)

10: if IsIndep(κ1,mod1) and IsIndep(δ2,mod2)
then

11: θ ← ComputeRenaming(κ1, X ∪ Y,X)

12: Z̃ ← Domain(θ)
13: if IsIndep(κ1θ,X) then

14: res← res ∪ (κ1θ, δ2θ̄, Ẑ ∪ Z̃)
15: return res

Fig. 8. Algorithm BiAbduct

We now present a sound algorithm
for computing ϕpre, ϕpost and Z in
the equivalence (∃X. ϕ̂) ∗ ϕpre ⇔
∃Z. (ϕpost ∗ ϕ) in the premise of
the Compose and Inductq rules.
Simplifying notation, the problem
can be stated as follows: given vari-
able sets mod1 and mod2, and two
LISF formulas ∃X. ϕ(V,W,X) and
ψ(V, Y ) where V,W,X, Y are dis-
joint sets of variables, we wish to
computeϕpre,ϕpost, and a setZ ⊆
X ∪ Y such that (i) (∃X. ϕ) ∗
ϕpre ⇔ ∃Z. (ϕpost ∗ ψ), (ii)
free(ϕpre) ∩ mod1 = ∅, and (iii)
free(ϕpost) ∩mod2 = ∅.

Our strong bi-abduction algo-
rithm, BiAbduct, is presented in Figure 8. We illustrate the algorithm through the
following example: ϕ ≡ v �→ x0, ψ ≡ v = y0 ∧ y0 �→ y1, V = {v},W = {}, X =
{ x0}, Y = { y0, y1} and mod1 = mod2 = {v}.

The key step in bi-abduction is the Match procedure used in line 2. Match
takes as input two spatial formulas ϕs and ψs and returns a set of four tuples
(M,C,L1, L2) where M is a pure formula and C,L1, L2 are spatial formulas. For
each such tuple,M describes a constraint under which the heaps defined byϕs and
ψs can be decomposed into an overlapping part defined byC and non-overlapping
parts defined by L1 and L2 respectively.

We present procedure Match as a set of inference rules in Figure 9. In these in-
ference rules we use a set of spatial facts and a star conjunction of spatial facts
interchangeably. The function unrollf RS(S, l, u) required by rule MIII unrolls RS

once from the beginning. This is done by instantiating that iterated index [·] (resp.
[·+1]) of every array expression in S corresponding to the nesting depth of S with
fixed index [l] (resp. [l+1]). Similarly unrollb RS(S, l, u) unrolls RS once from the end.
These rules can be easily implemented as a recursive algorithm. Note that in rules
MIII and MIV, the size of the formula L1 ∗RS( , , ) in the conclusion may be larger
than the size of formula k1 in the premise. This may lead to non-termination of
the recursion. In practice we circumvent this problem by limiting the number of
applications of these rules.

Lemma 2. Every (M,C,L1, L2) computed in line 2 of BiAbduct satisfies (i) M ∧
ϕs ⇔ (M ∧ C) ∗ L1, and (ii) M ∧ ψs ⇔ (M ∧ C) ∗ L2.
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M0 (true, emp, S1, S2) ∈ Match(S1, S2)

MI

k1 ∈ S1, k2 ∈ S2, S′

1 = S1 \ k1, S′

2 = S2 \ k2
(M, C, L1, L2) ∈ Match(k1, k2)

(N, C′, L′

1, L′

2) ∈ Match(S′

1 ∪ L1, S′

2 ∪ L2)
(M ∧ N, C ∗ C′, L′

1, L′

2) ∈ Match(S1, S2)

MII
k1 ≡ x �→ (fi : xi), k2 ≡ y �→ (fi : yi)

M ≡ x = y ∧
∧
{xi = yi}

(M, x �→ (fi : yi), {}, {}) ∈ Match(k1, k2)

MIII

k1 : RS(S, l, u), k2 : x �→ (f : y),
S1 : unrollf RS(S, l, u)

(M, C, L1, L2) ∈ Match(S1, k2)
(M, C, L1 ∗ RS(S, l + 1, u), L2) ∈ Match(k1, k2)

MIV

k1 : RS(S, l, u), k2 : x �→ (f : y),
S1 : unrollb RS(S, l, u)

(M, C, L1, L2) ∈ Match(S1, k2)
(M, C, L1 ∗ RS(S, l, u + 1), L2) ∈ Match(k1, k2)

MV
k1 : RS(S1, l, u), k2 : RS(S2, l, u),

(M, C, {}, {}) ∈ Match(S1, S2)
(RP(M, l, u), RS(C, l, u), {}, {}) ∈ Match(k1, k2)

Fig. 9. Rules for procedure Match

Given a possible decomposition (M,C,L1, L2) of ϕs and ψs, line 4 checks whether
this decomposition is consistent with ϕp and ψp. This is done by checking the sat-
isfiability of (ϕp∧L1)∗(M∧C)∗(ψp∧L2). If this formula is found to be satisfiable,
δ1 and δ2 are computed fromM∧ψp∧L2 andM∧ϕp∧L1, respectively, using func-
tion RemoveVar (lines 5, 6). The function RemoveVar(φ1, φ2, A,B) replaces every
free variable v ∈ A in φ1 by e if φ2 implies v = e and free(e) ∈ B \ A. For our
running example δ1 ≡ v = y0 ∧ x0 = y1 and δ2 ≡ x0 = y1 is one such pair.

Lemma 3. Every (δ1,δ2) pair computed in lines 5 and 6 of BiAbduct satisfies ϕ ∗
δ1 ⇔ δ2 ∗ ψ.

Next, we process the formula δ1 so as to make it independent ofmod1. In line 7, we
compute a renaming γ : 〈mod1 ↪→ Y 〉 such that if κ1 represents δ1γ and Ẑ equals
the range of γ, then ϕ ∗ κ1 ⇔ ∃Ẑ. (δ2 ∗ ψ). This is done by invoking function
ComputeRenaming. The function ComputeRenaming(φ,A,B) renames a variable
a ∈ A by b ∈ B if φp implies the equality a = b. If δ1γ is not independent of mod1

or δ2 is not independent of mod2, we discard the pair (δ1, δ2) (line 10). Note the
asymmetry in dealing with δ1 and δ2, which stems from the asymmetric structure
(∃Z only on right side) of the required solution (∃X. ϕ) ∗ ϕpre ⇔ ∃Z. (ϕpost ∗ ψ).
For our running example, Ẑ = { y0} and γ : 〈 y0 → v〉 gives a valid renaming,
since δ1γ ≡ x0 = y1 is independent of v.

Lemma 4. Every κ1 and Ẑ computed in lines 8 and 9 of BiAbduct satisfy ϕ∗κ1 ⇔
∃Ẑ. (δ2 ∗ ψ).

For every κ1 at line 11 we compute a renaming θ : 〈Z̃ ↪→ X〉, where Z̃ ⊆
X ∪ Y , so as to render κ1θ independent of X (lines 11, 12, 13). The function
ComputeRenaming(κ1, X ∪ Y,X) computes the renaming θ. Let θ̄ : 〈X ↪→ Z̃〉
be a renaming such that θ̄(x) = z only if θ(z) = x. If κ1θ is independent of X ,
then algorithm BiAbduct returns (κ1θ, δ2θ̄, Z̃ ∪ Ẑ) as one of the solutions of strong
bi-abduction.

The invocations of ComputeRenaming in lines 7 and 11 have one important
difference: in line 7 only non-array variables in mod1 are renamed, whereas
in line 11 array variables in X ∪ Y may be renamed. The function
ComputeRenaming(φ,A,B) renames array variables as follows. An array variable
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Table 2. Experimental results on (a) list manipulating example, (b) functions from
Firewire Windows Device Drivers, and (c) examples from [2,14]. Experiments performed
on Pentium 4 CPU, 2.66GHz, 1 GB RAM. All programs are available at [11].

Progs LOC Time (s) # triples Complete?
discovered

init 16 0.010 2 Yes
del-all 21 0.009 2 Yes
del-circ 23 0.013 2 Yes
delete 42 0.090 * 19 No
append 23 0.013 3 Yes
ap-disp 52 0.047 6 Yes
copy 33 0.532 3 Yes
find 28 0.023 4 Yes
insert 53 1.270 6 Yes
merge 60 0.880 12 No
reverse 20 0.015 * 3 No

Progs LOC Time (s) # triples Complete?
discovered

BusReset 145 0.080 * 3 Yes
CancelIrp 87 1.060 * 32 Yes
SetAddress 96 0.185 * 6 Yes
GetAddress 94 0.185 * 6 Yes
PnpRemove 460 75.321 34 No

(b)
Progs LOC Time (s) # triples Complete?

discovered

dll-reverse 23 0.130 3 No
fumble 20 0.017 2 Yes
zip 37 0.650 4 No
nested 20 0.130 10 Yes

(a) (c)

a ∈ A is renamed to another array variable b ∈ B if φp implies one of the following
facts: (i) RP(a[·] = b[·]) ∧ a[$0] = b[$0], or (ii) RP(a[· + 1] = b[· + 1]) ∧ a[0] = b[0], or
(iii) RP(a[·] = b[·] ∧ a[· + 1] = b[· + 1]). Higher dimensional arrays can be renamed
by performing similar checks for each dimension. For our running example,
we have X = { x0}, Z̃ = { y1} and θ : 〈 y1 → x0〉. It is evident that
(∃ x0. v �→ x0) ∗ (true) ⇔ ∃ y0, y1. (true) ∗ (v = y0 ∧ y0 �→ y1). Thus ϕpre ≡ κ1θ ≡ true,
ϕpost ≡ δ2θ̄ ≡ true, and and Z = { y0, y1} is a solution of strong bi-abduction
between ∃ x0. ϕ ≡ ∃ x0. v �→ x0 and ψ ≡ v = y0 ∧ y0 �→ y1.

Lemma 5. Every θ and Z̃ at line 14 of BiAbduct satisfy (∃X. ϕ) ∗ κ1θ ⇔
∃Ẑ, Z̃. (δ2θ̄ ∗ ψ).

Satisfiability checking. We provide a sound algorithm for checking satisfiability of
LISF formulas. The basic idea is to convert a LISF formula to a formula in separation
logic without iterated predicates. This is achieved by instantiating the lengths of
all dimensions of all arrays to fixed constants, and by soundly unrolling the RP and
RS predicates. The array lengths are so chosen that the offsets specified in the fixed
indices of all expressions in the formula are within the respective array bounds. See
[11] for details.

6 Experimental Evaluation

We have implemented our inference rules to generate specifications of programs in
a bottom-up and compositional manner. Our implementation takes as input a C
program and outputs summaries for each procedure in the program. We currently
do not handle pointer arithmetic.
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The results of running our tool on a set of challenging programs are tabulated in
Table 2. Programs in Table 2(a) are adopted from [9]. Program delete is the same
as the motivating example in Section 1. All programs in Table 2 (c) except nested
are adopted from [2,14]. These programs manipulate singly or doubly linked lists.
Program nested traverses nested linked lists. In each of these tables, the fourth
column indicates the number of summaries inferred by our tool. The last column
indicates whether the inferred summaries provide a complete specification for the
corresponding program. Our tool inferred richer summaries than those inferred by
the tool in [9]. For example, for the programs delete and reverse, our tool infers
preconditions with cyclic lists (indicated by * in fourth column). For the program
delete some of the inferred preconditions even have a lasso structure.

The examples in Table 2(b) are program fragments modifying linked structures
in the Firewire Windows Device Driver. We report only the summaries discovered
for the main procedures in these programs. A complete set of summaries is dis-
covered for all the other procedures in these programs. The original programs and
data structures have been modified slightly so as to remove pointer arithmetic.
These programs perform selective deletion or search through doubly linked lists.
The program PnpRemove iterates over five different cyclic lists and deletes all of
them; it has significant branching structure. All programs except CancelIrp refer
to only the next field of list nodes. The programCancelIrpalso refers the prev field
of list nodes. The increased number of inferred summaries for CancelIrp is due
to the exploration of different combinations of prev and next fields in the the pre
and postconditions. The summaries inferred for all programs except for PnpRemove
have been manually checked and found to be complete. These summaries capture
the transformations on an unbounded number of heap cells, although they con-
strain only the next fields of list nodes. Hence these summaries can be plugged in
contexts where richer structural invariants involving both next and prev fields are
desired.

7 Conclusion

We have presented inference rules for bottom-up and compositional shape analy-
sis. Strong bi-abduction forms the basis of our inference rules. We have introduced
a new logic, LISF, along with sound procedures for strong bi-abduction and satis-
fiability checking in LISF.

In future we would like to (i) enrich the Match procedure by additional lemmas
so that our tool can generate more expressive summaries, (ii) extend strong bi-
abduction procedure to operate over disjunctions of LISF formulas, and (iii) extend
our technique to analyze programs manipulating tree-like structures.
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