

CINEMA: A System for Procedural Camera
Movements

Steven M. Drucker, Tinsley A. Galyean, and David Zeltzer

Computer Graphics and Animation Group
MIT Media Lab

Cambridge, MA. 02139
(smd | tag | dz)@media-lab.media.mit.edu

Abstract

This paper presents a general system for camera movement
upon which a wide variety of higher-level methods and applica-
tions can be built. In addition to the basic commands for camera
placement, a key attribute of the CINEMA system is the ability to
inquire information directly about the 3D world through which the
camera is moving. With this information high-level procedures can
be written that closely correspond to more natural camera specifi-
cations. Examples of some high-level procedures are presented. In
addition, methods for overcoming deficiencies of this procedural
approach are proposed.

1. Introduction

Camera control is an integral part of any 3D interface. In
recent years a number of techniques for interactively specifying
camera movement have been implemented or proposed. Each of
these techniques has provided an interface for solving a problem
for a particular domain, but all of them have remained independent
making it impossible to use them across domains. These domains
include keyframe based computer graphic animation techniques
[8, 11], navigation of virtual environments [1, 2, 9, 12, 13], general
3D interaction [3, 12], automatic presentation [6] (in which com-
puters generate a presentation), and synthetic visual narratives [4]
(in which users author presentations). The CINEMA system
described in this paper is a camera protocol that supports camera
interface paradigms useful for all these domains, and provides a
framework on which new interfaces can be developed.

The CINEMA system has a procedural interface for specify-
ing camera movements relative to objects, events, and the general
state of an environment. This task level approach enables the
implementation of many common interactive metaphors and pro-
vides the ability to build higher level parameterized procedures
that are reusable.

After a brief introduction to the problem, we will review
related work in camera control, and then describe the CINEMA
system, including the underlying support structure, the implemen-

tation, and several examples that demonstrate the system. Finally,
we will discuss problems with this approach and suggest alterna-
tives based upon our findings. We will work under the assumption
that the actions in the environment are occurring independently
from the observer. By making this assumption, the specification of
the camera is independent from the 3D world, or can be treated as
a window into the world that does not impact on it. This simplifica-
tion is made by many of the existing camera interfaces reviewed in
this paper, and although limiting, it is appropriate for a variety of
situations.

An effective camera protocol must support interfaces that
investigate/explore and interfaces that present/illustrate the 3D
world. Although we have only begun to explore the uses of this
system, there are many applications in which it could be used. In
both scientific and architectural visualization there is the need to
explore the virtual environment interactively and then to later
author a set of illustrative camera movements to be shown to cli-
ents or colleagues. In electronic books there will be the need for a
designer or knowledge based system to generate an interface
through which a reader can view the information. In the entertain-
ment industry an animator could use it to direct or specify camera
movements. Live action film makers may use it to create interac-
tive story boards of their scenes, plan camera movements, or even
to generate commands for motion controlled cameras. Telerobotic
or virtual environment applications require a task level camera

CINEMA
System

Automatic

(Karp & Feiner)
Keyframed

(Kochanek)

Navigating

Environments
(Brooks)

3D Interaction
(Ware et al)

Synthetic
Visual Narratives

(Davenport et al)

Animation,
Motion Control

Camera

(Shoemake)

Movements

Presentation

Virtual

(Mackinlay, et al)

(Chen et al)

protocol in order to allow a human operator to efficiently and intu-
itively control the view while performing or directing some remote
operation. All of these interfaces can be supported on top of the
camera protocol described in this paper.

2. Previous Work

Early work in animation is devoted to making the movement
of the camera continuous and to developing the proper representa-
tion for camera movements along a path [8, 11]. These works are
devoted to giving the animator greater control in creating smooth
movements and to finding ways to interpolate between user speci-
fied keyframes. Although generating spline curves for camera
movement can produce smooth paths, it can be difficult to relate
the movements of the camera to objects in the environment.

With the advent of virtual environments and related 3D inter-
active worlds, a great deal of effort has been spent on presenting
convenient metaphors through which to change the user’s view of
an object or the world. A metaphor, as discussed in Ware et al [12]
provides the user with a model that enables the prediction of sys-
tem behavior given different kinds of input actions. A good meta-
phor is both appropriate and easy to learn. Some examples of
metaphors are the ‘eyeball in hand’ metaphor, the ‘scene in hand’
or ‘dollhouse’ metaphor, and ‘flying vehicle control.’

In the ‘eyeball in hand’ metaphor, a 6 degree of freedom
device is used to position and orient a camera by directly translat-
ing and rotating the input device. Ware et al found this method
somewhat awkward to use but easy to learn. The ‘scene in hand’
metaphor allows the user to rotate and translate the scene based on
the position of the input device. This was found to be very conve-
nient for hand sized objects, but nearly impossible to use for navi-
gating inside closed spaces. Another scheme discussed by Ware et
al was to control a simulated flying vehicle. The user’s position
and orientation respectively affected the linear and angular veloc-
ity of the camera viewpoint and direction of gaze. This metaphor
makes it easy to navigate, but difficult to examine a particular
object. Although 3D input devices such as a Polhemus Isotrack
system or a Spatial Systems Spaceball enable the user to specify 6
degrees of freedom simultaneously, simulations of these devices
can be done using only 2D devices [3].

Mackinlay et al [9] discuss the problem of scaling camera
movements appropriately. They develop methods to select an
object of interest and to move exponentially towards or away from
the object. In this way, when the user is close to an object, the
viewpoint changes only a little, while when they are far from an
object, the viewpoint changes rapidly. By selecting ‘point of inter-
est,’ the authors can reorient the camera to present a maximal view
of the desired object. The degrees of freedom are therefore
restricted and the user can concentrate more on the task of navigat-
ing through the environment.

Brooks [1, 2] developed several different methods for moving
around architectural simulations including steerable treadmills or
shopping carts with devices to measure the direction and speed of
movement.

The above work shows that different interfaces are appropri-
ate for different application requirements. In our view, no one
interface is ideally suited for all tasks, and a common underlying
structure on top of which several different metaphors can be imple-
mented would give the user a powerful tool to interact with 3D
environments.

An important ability is to allow the user to select an object of
interest within the environment. We have expanded on this by
allowing the user to make general queries about the visibility and
orientation of objects within the environment. This allows the user
to manipulate camera motion based on the actions within the envi-
ronment.

Furthermore, while direct manipulation has certain advan-
tages in interactive systems, there are several deficiencies. It is not
necessarily good for repetitive actions, and any action that requires
a great deal of accuracy, such as smooth movement for cameras, is
not necessarily suited to input using one of the metaphors sug-
gested in the preceding paragraphs. Some of the problems inherent
in using 6 DOF input devices presently available are noise which
is inherent in user movements and the number of degrees of free-
dom which must be simultaneously controlled. Textual systems,
with interaction built on top of them, allow both a high level input
device interface, and an underlying language through which com-
mands can be specified directly or generated through other rule
bases.

An expert system for presentation, including the selection of
proper camera movements, is discussed in some detail by Karp and
Feiner [6]. In their Esplanade system (Expert System for PLAN-
ning Animation Design and Editing), they emphasize the ability to
incorporate cinematic knowledge for the construction of coherent
descriptions of a scene. To do so, they need to have representations
of a database of objects and explicit events, along with a notion of
how frames, shots, scenes and sequences can be put together to
make an effective narrative. Their work emphasizes using a
knowledge based system for automatically selecting camera place-
ment and for choosing appropriate camera movements based on
cinematic considerations. Currently, they do not concentrate on the
movements themselves, but more on the initial placement of the
camera for shots and how to make transitions to other shots.

3. The CINEMA System

We have developed the CINEMA system to address the prob-
lem of combining different paradigms for controlling camera
movements into one system. The CINEMA system is extensible,
permitting the user to build higher level procedures from simpler
primitives. It also provides the very important ability to make
inquiries into a database which contains information describing the
state of objects within a 3D environment. After the system was
developed, it was used by a dozen students in a course entitled
“Synthetic Cinematic and Cinematic Knowledge.

1

” In this course
the students used this system to explore alternative ways of ani-
mating one of several scenes. Although this system has mainly
been used for a synthetic narrative application, we feel that what
was learned is applicable to the other domains such as the applica-
tions mentioned above.

The CINEMA system is divided up into two major parts. The
first is a database which contains information about objects, their
positions over time, and events over time. The second part is a
parser that accepts and interprets user commands. The user com-
mands are restricted to inquiries about the state of the database and
commands which query or affect the state of the camera.

1 The course has been taught at the MIT Media Lab by Professors David
Zeltzer and Glorianna Davenport – two short versions in January 1989 and
1990, and two full semester courses in the Spring of 1991 and 1992.

3.1 Support structure for CINEMA

To produce CINEMA’s procedural interface it was necessary
to develop a set of primitive functions. There are three parts to this
support structure. First, there is a set of commands for moving the
camera or inquiring about the current camera state. Second is a set
of commands for inquiring about the state of the 3D world. Last is
a set of mathematical routines for manipulating the values returned
from the other functions.

There are two sets of primitive functions for changing the
camera position and orientation. The lower level of these are the
commands that directly set the

x

,

y

, and

z

positions and the

from

,

up

, and

at

 vectors that are so commonly used in computer graph-
ics. The slightly higher level primitives (but still part of the support
structure) perform simple camera moves like

pan

,

tilt

,

roll

,

truck

,

dolly

, and

crane

 [7]. In the film industry terms such as dolly and
truck are loosely used. For example, truck may be used to mean a
move in or out, or a move from side to side. In this implementation
we have chosen one of the possible definitions for these terms to
avoid confusion. The conversion between the computer graphics
vectors and the film standards is straightforward.

Many descriptions of how to film, frame, and navigate the
scene (by both screenwriter and layperson) are with respect to the
objects in the world. For example one might ask for the camera to
move alongside object A while looking at object B. An interface
that supports these descriptions must provide information about
events, geometric and spatial relationships such as position, rela-
tive occlusion, direction of glance, and distances. For example,
functions like

obj_visibility(), obj_obj_visibility()

 find
visibility information between the camera and an object or
between two particular objects. Currently this is implemented by
using simple ray casting with bounding box intersection. More
sophisticated techniques can be used to provide a more precise
notion of visibility. However, this implementation has proven ade-
quate for this preliminary research. Other functions (like

frame_events()

) are provided to support inquiry into discrete
events which might take place during an animation.

In addition to the commands described above, the system pro-
vides a set of supporting mathematical commands, including both
scalar and vector calculations. These commands are needed to
manipulate the output of the inquiry commands. With these func-
tions, an inquiry about the state of the scene can be manipulated to
calculate new camera parameters (such as position, from, at and up
vectors). With combinations of these basic tools higher level pro-
cedures can be built.

3.2 Implementation

The entire system is currently implemented on 2 platforms:
an HP9000-835 turbo SRX in C using a public domain front end
language called Tcl [10], and on an Apple Macintosh. The Macin-
tosh platform can not provide interactive update rates for rendered
images, but is successfully used for wireframe images.

3.3 Examples

The following examples are representative of how the CIN-
EMA System was used in several different situations. The first
example shows how the CINEMA system is interfaced to a 3D
environment, and implements one of Ware et al’s movement meta-
phors. The second example shows how higher level camera move-

ments can be built from lower level primitives and inquiry
functions. Finally, example 3 shows the cinematic power of the
system in filming a simple animation.

Example 1

: CAMERA MOVEMENT METAPHOR: This
example shows how a 3D input device such as the Isotrack Polhe-
mus or Spatial Systems Spaceball can be used to change the view
in a scene. In the accompanying video, we use an Ascension Tech-
nologies Bird to control the

x

,

 y

, and

z

 position of the camera while
always looking at the object called “joe.” This is very similar to the
“eyeball in hand” movement metaphor discussed by Ware et al.

The following pseudocode shows how this function is imple-
mented using the CINEMA system. The function consists of an
inquiry to the 6 DOF input device and then translating the camera
based upon the translation returned by the input device.

proc

eyeball_in_hand

(object) {
 (x,y,z) :=

get_input_from_device

();

cam_set_point

(x,y,z);

lookat

(object);
}

Example 2

: EXTENSIBLE LANGUAGE: The procedure
“vertigo shot” simulates Hitchcock’s classic shot in the film “Ver-
tigo” where the camera moves outwards while the field of view
grows narrower keeping the object a constant size at the center of
the frame. This effect makes viewers feel as if they are moving
closer and closer to an unattainable goal. In only a few minutes we
constructed the following procedure to make a vertigo shot.

proc

vertigo_shot

(obj, rate, no_frames) {

/*

get the angle subtended by the object

*/

 angle :=

get_angle_height

(obj);
 /*

get the camera’s field of view

*/

 fov :=

cam_fov

();
 /*

compute the percentage of the fov */

 /*

which the object subtends

*/

 percent := angle/fov;
 for (i=0;i<no_frames;i++) {

/* truck in the specified direction */

/* at the specified rate */

cam_truck

(rate);

/* set the field of view so that */
/* the object subtends the same */
/* percentage as before */

frame_it

(obj, percent);
 }
}

Example 3

: SYNTHETIC NARRATIVE: The last example
shows that the system can be used for simple cinematic teaching
purposes. An animation of a figure sitting down is filmed. A cut in
the middle of the animation changes the viewpoint from an oblique
view to a head on view. The views are selected so that a “match”
cut [5] is achieved. See sequence of frames at the end of the paper.

4. Future Work

The CINEMA system needs to be extended to provide a
mechanism to easily combine and constrain multiple procedures.
For example, suppose a user would like to track the motion of a
walking figure while preventing the camera from moving through
walls. Ideally, one would like to have these procedures (one for
tracking and one for avoidance) automatically combined to

achieve the desired performance. Currently, it would be necessary
to construct a new procedure meeting both constraints.

The ability to combine procedures would allow user input to
be treated as another procedure that can be combined with other
constraints. Camera movements could then be interactively
adjusted to achieve a desired result.

To address some of these problems, we have already begun
exploration into constraint satisfaction techniques for camera
placement and movement. By specifying the camera’s relationship
to other objects via weighted constraints, the system can find the
best position that satisfies certain criterion. These constraints are
maintained as the objects, and the camera moves throughout the
environment. Additional constraints can be placed on the move-
ment of the camera, so that the camera can have attributes of a sim-
ulated physical object such as a fluid head.

5. Conclusion

The CINEMA system provides users with the ability to rap-
idly experiment with various camera movement paradigms. Users
can create new camera metaphors or extend existing ones. The
ability to inquire about the state of objects in the environment pro-
vides support for more powerful camera movement procedures.

The CINEMA system has already proven quite useful in the
teaching domain. Students were able to use the CINEMA system
to explore different ways to film and present a simple animation,
and to plan a real camera shoot. The constraint satisfaction meth-
odology described above is an ongoing area of research. There are
many other areas to explore in camera movement systems includ-
ing rule based generations systems, codifying stylistic attributes,
examining cuts, and interfacing with task oriented applications to
name just a few. The hope is that once a strong support base for
camera positioning and movement is produced, further research in
these areas will be easier.

The CINEMA system makes it possible to experiment with
camera paradigms quickly and conveniently. We intend to continue
evolving the CINEMA system with an eye toward different appli-
cation domains including telerobotics/virtual environments and
synthetic narratives.

Acknowledgements

The authors wish to thank Glorianna Davenport, David Stur-
man, Mike McKenna, Steve Pieper, and David Chen for their com-
ments and assistance. Hong Tan was invaluable for her help with
the implementation on the Macintosh. The students in the Syn-
thetic Cinema course also provided many useful suggestions. This
work was sponsored in part by NHK (Japan Broadcasting Corpo-
ration), DARPA/Rome Air Development Center Contract F30602-
89-C-022, and equipment grants from Apple Computer and
Hewlett-Packard.

References

1 Brooks, F.P. (1986). Walkthrough - A Dynamic Graphics System
for Simulating Virtual Buildings.

Proceedings of 1986 Work-
shop on Interactive 3D Graphics

 (Chapel Hill, North Caro-
lina). In

Computer Graphics

, 9-21.
2 Brooks, F.P. (1988). Grasping Reality Through Illusion: Interac-

tive Graphics Serving Science.

SIGCHI

 '88 1-11.
3 Chen, M., S.J. Mountford, A. Sellen. (1988). A Study of Interac-

tive 3D Rotation Using 2D Control Devices.

Proceedings of
SIGGRAPH ‘88

 (Atlanta, Georgia). In

Computer Graphics

22(4):121-129.

4 Davenport, G., T.A.Smith., N.Pincever (1991). Cinematic Primi-
tives for Multimedia. IEEE Computer Graphics & Applica-
tions. July. 67-74.

5 Hochberg, J. and V. Brook. (1978). The perception of motion
pictures. in Handbook of Perception Vol X. eds. Carterette and
Friedman. Academic Press: New York. Chapter 11.

6 Karp, P., S.Feiner. (1990). Issues in the Automated Generation of
Animated Presentations.

Graphics Interface '90

 (Halifax,
Nova Scotia). 39-48.

7 Katz, E. (1979).

The Film Encyclopedia

. Perigree Books: New
York.

8 Kochanek, D.H.U. (1984). Interpolating Splines with Local Ten-
sion, Continuity, and Bias Control.

Proceedings of SIGGRAPH
‘84

 (Minneapolis, Minnesota).

Computer Graphics

.18(3):33-
42.

9 Mackinlay, J.D., S. Card, G. Robertson. (1990). Rapid Con-
trolled Movement Through a Virtual 3D Workspace.

Proceed-
ings of SIGGRAPH ‘90

 (Dallas, Texas). In

Computer Graphics

24(4):171-176.
10 Ousterhout, J. (1990). Tcl: An Embeddable Command Lan-

guage. Proceedings of USENIX Winter Conference. 133-146.
11 Shoemake, K. (1985). Animating Rotation with Quaternion

Curves.

Proceedings of SIGGRAPH ‘

85 (San Francisco, CA).
In

Computer Graphics

 19(3):245-254.
12 Ware, C., S. Osborne. (1990). Exploration and Virtual Camera

Control in Virtual Three Dimensional Environments.

Proceed-
ings of the 1990 Symposium on Interactive 3D Graphics

(Snowbird, Utah).In

Computer Graphics

 24(2):175-184.
13 Zeltzer, D. (1991). Task-level Graphical Simulation: Abstrac-

tion, Representation, and Control,

Making Them Move

, eds.
Badler, Barskey and Zeltzer. Morgan Kaufmann Publishers:
California. 3-33.

