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ABSTRACT
Users often search spatial databases like yellow page data
using keywords to find businesses near their current loca-
tion. Such searches are increasingly being performed from
mobile devices. Typing the entire query is cumbersome and
prone to errors, especially from mobile phones. We address
this problem by introducing type-ahead search functional-
ity on spatial databases. Like keyword search on spatial
data, type-ahead search needs to be location-aware, i.e.,
with every letter being typed, it needs to return spatial ob-
jects whose names (or descriptions) are valid completions
of the query string typed so far, and which rank highest in
terms of proximity to the user’s location and other static
scores. Existing solutions for type-ahead search cannot be
used directly as they are not location-aware. We show that a
straight-forward combination of existing techniques for per-
forming type-ahead search with those for performing prox-
imity search perform poorly. We propose a formal model
for query processing cost and develop novel techniques that
optimize that cost. Our empirical evaluations on real and
synthetic datasets demonstrate the effectiveness of our tech-
niques. To the best of our knowledge, this is the first work
on location-aware type-ahead search.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Information
Storage and Retrieval—Information Search and Retrieval [Search
Process]

General Terms
Algorithms, Performance

1. INTRODUCTION
Spatial databases like yellow page data are often searched

using keywords. For example, users use local search engines
to find businesses, products or services near their current
location. Hence, local search engines need to be “location
aware”, i.e., the businesses are ranked not only by relevance
to the keyword query but also by their proximity to user’s
location. Other factors like the popularity and ratings of
businesses are also required to be taken into account [10, 6].

While many such searches are conducted from personal
computers, users are increasingly using their mobile devices
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to perform such searches [1]. For example, users often need
to find a nearby Starbucks or gas station on-the-go; they
conduct such searches from their mobile devices like smart
phones, where typing is cumbersome and susceptible to er-
rors. We wish to reduce the amount of typing and clicking
required before the user gets to see the final results.

In this paper, we propose to progressively return relevant
businesses as the user is typing in her query. Consider a
user looking for a nearby Starbucks. Suppose she has typed
in the letters “star” on her mobile device. Note that the
user’s location can be obtained via a GPS-equipped mobile
device. Based on that, it will be immensely useful to return
the address and phone number of the nearest Starbucks, as it
saves her from typing in the rest of the query. Furthermore,
unlike in the case of autocompletion which returns likely
query completions and requires the user to select the desired
query, no clicking is required to see the final results here.
This functionality is referred to as type ahead search (TAS)
[14, 3]. In this paper, we introduce the problem of supporting
TAS on spatial databases.

While TAS has been studied in the context of text docu-
ments and relational databases, to the best of our knowledge,
ours is the first effort to solve TAS for spatial databases [14,
3]. What distinguishes TAS over spatial data from general
TAS is that, like keyword search over spatial data, it needs
to be location-aware. With every letter being typed, TAS
should return k spatial objects whose names (or descrip-
tions) are valid completions of the query string typed so far
and which are closest to the user’s location.
Semantics of Location-aware TAS: We define the se-
mantics of TAS on spatial databases. Consider a spatial
database containing names and locations of businesses shown
in Table 1; locations are represented as points in 2-D space.
We ignore the static score column for the time being. Sup-
pose a user has typed in “star” so far from location (36, 0).
O7 and O10 are valid completions of the query. Suppose the
user is interested in the top-1 result. TAS should return O10

as it is much closer to the user’s location compared to O7.
Note that it is crucial to consider spatial proximity at a

fine granularity. Being proximity-oblivious for all objects
inside a city might result in undesirable answers. For exam-
ple, if we assume all the objects in Table 1 are located in the
same city, a proximity-oblivious search might fail to distin-
guish between the nearest Starbucks O10 (for the previous
query), and a much farther one O7.

Furthermore, other factors like the popularity and ratings
of the objects should also be considered; we model all these
factors as a single static score associated with each object.
Consider the query “shan” from location (37,3), and the cor-
responding valid completions (O5 and O6). Ignoring static
score, we will get object O6 as the top-1 result. But intu-



ID String Location Static
Score

O1 Target (3,9) 200
O2 Thai Basil Leaf Restaurant (50,30) 5
O3 Sushi Rock (9,50) 7
O4 Sushi at Plano (0,9) 25
O5 Shanghai Cafe (41,2) 500
O6 Shanghai Garden (38,5) 10
O7 Starbucks (32,8) 100
O8 Super China Buffet (42,5) 100
O9 Staples (45,12) 300
O10 Starbucks (35,0) 100

Table 1: Spatial Database D with 10 Objects

itively O5 is a better answer, since it is a much more popular
restaurant and is only slightly farther from the user’s current
location compared to O6. In Section 2, we define semantics
that takes both proximity and static scores into account.
Architecture: One may think that location-aware TAS can
be supported by simply partitioning the entire geographical
space into a set of spatial regions and using the location-
unaware TAS solution (i.e., build a trie) for the objects in
each region. In Section 3.1, we argue the limitations of that
solution. We propose a novel architecture that integrates
the trie with a spatial data structure to enable location-aware
TAS. The basic idea is to maintain a single trie for the en-
tire database, and augment it with spatial information of the
objects. Such a trie for a subset of database in Table 1 (con-
sisting of O1, O7, O9, O10) is shown in Figure 1. Benefits
of such an architecture is discussed in Section 3.2. A simple
baseline algorithm to support location aware TAS in this ar-
chitecture is to first identify the trie node that matches with
the query string, then traverse the entire subtree below it,
compute the scores of the objects in that subtree, and finally
return the top k objects based on the ranking function.
Improving Response Time: A TAS system has to be
responsive – it must look instantaneous to the user. Prior
work has shown that this implies a maximum response time
of 100ms. In a client-server setting, this 100ms bound in-
cludes not only the trie search time but also network over-
head. Hence, it is desirable to keep the trie search time
minimal. The above baseline algorithm fails to meet that
requirements, as it traverses too many links in the trie and
scores too many objects. An efficient algorithm must avoid
such unnecessary traversals and score computations.

One option is to materialize the top-k answers for each
query prefix and for each query location; this is clearly in-
feasible due to the space overhead. A variant that maintains
the top-k answers at the granularity of “regions” is also in-
feasible: the regions need to be granular enough to support
the desirable semantics which results in high space overhead.

We propose to materialize score bounds at trie nodes:
these are upper bounds of the scores of any object under
that node. At query time, these bounds are used to prune,
i.e., avoid traversal in parts of the trie that cannot contribute
to the top-k results. Observe that the actual scores depend
on the query location; therefore a single score bound per trie
node is not tight enough for effective pruning – we need score
bounds at a fine spatial granularity for effective pruning.

Since the trie needs to be memory resident, and the amount
of main memory is limited, storing score-bounds at a fine
spatial granularity at each trie node is not possible. We
argue that we can materialize bounds only in a subset of
trie nodes. Furthermore, we observe that not all such sub-
sets are equally beneficial in saving query processing cost.
For example, materializing at a parent and its child node
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Figure 1: Integrated Architecture for Location-Aware

TAS

in a trie with similar score bounds is less beneficial com-
pared with choosing two nodes with significantly different
upper bounds. Hence, it is important to select the subset
judiciously. In addition, the benefit of storing score bounds
at a fine spatial granularity in much higher in some regions
than in others. For example, where the score-bounds exhibit
high spatial locality, we do not need to store fine granular-
ity score-bounds. Therefore, we need to be adaptive in our
choice of granularity, i.e., store coarse-granularity bounds
over regions that have high locality, and fine-granularity
bounds elsewhere.
Summary of Contributions: The main technical chal-
lenge we address in this paper is: how to distribute available
memory among the nodes in the trie in order to minimize
the expected query processing cost? We refer to this as the
memory distribution problem. We address this challenge by
proposing a novel, rigorous modeling of query processing
cost for TAS queries, and formalizing it as an optimization
problem. Our contributions can be summarized as follows:
•We introduce the problem of location-aware TAS on spatial
databases, define its semantics, and propose an integrated
architecture for it (Section 3.2).
• We propose a novel analytical model for TAS query pro-
cessing cost (Section 4.1)
•We formalize the memory distribution problem as an opti-
mization problem (Section 4.4). Unfortunately, this problem
is extremely hard as it is exponential in two factors: (i) num-
ber of trie nodes, and (ii) available space budget. As a rea-
sonable alternative, we propose a slightly restricted problem:
how to select a subset of M trie nodes and store R bounds
in each of them such that expected query processing cost
can be minimized? We refer to this as the {M,R}-Memory
Distribution Problem. We show that the above problem can
be split into two independent optimization problems:
(i) M-node selection problem: The problem is to select a
set of M nodes where bound materialization would minimize
the query processing cost. Based on that, we introduce the
notion of “benefit” of materializing bounds at a set of nodes,
and formalize the M -node selection as an optimization prob-
lem. We prove that the problem is NP-complete, and design
a hill-climbing based algorithm as an efficient alternative
(Section 5.1).
(ii)R-cover computation problem: The problem is to
create a partitioning of size R of the entire geographic re-
gion such that the query processing cost is minimized. We
formalize the problem as an optimization problem based on
the popular maximum-error metric. We show the problem
is NP-hard. We consider a novel, restricted version of the
problem, where the rectangles are restricted to the regions



of a quadtree [11], and provide an optimal algorithm for it
(Section 5.2).
•We propose a novel query processing algorithm. We prove
its optimality in query processing cost (Section 6).
• Finally, we perform extensive experiments using real and
synthetic dataset (Section 7). Our experiments show that
our algorithms leveraging score bounds are 3-4 times faster
than the baseline algorithm that does not use score bounds.

2. SEMANTICS OF LOCATION-AWARE TAS
We start by introducing our data model, query model,

proposed ranking framework, and finally define the location-
aware TAS problem.

2.1 Data model
Let D be a spatial database. Each spatial object O is de-

fined as the tuple 〈O.id,O.str,O.loc, O.sscore〉 where, O.id
is the unique id of that object, O.str is the description
string of O, O.loc is the location descriptor in multidimen-
sional space, and O.sscore is the static score. In this work,
we assume two dimensional space, i.e., O.loc = (x, y) and
describes x and y co-ordinates respectively. These coordi-
nates can be derived from longitude and latitude informa-
tion. Type ahead search is performed over O.str.

Consider a Yellow Page database containing names and
locations of all businesses. There, O.str denotes name of
the object (this enables TAS over name), O.loc is its geo-
graphical location, and O.sscore is the overall score com-
puted using a number of factors like the popularity, number
of reviews, and ratings of the business.

Note that sometimes users search by the type of business
instead of the name of the business. For example, users
might type in “coffee shop” while looking for coffee shops.
We would like the TAS system to return the nearest Star-
bucks, Tully’s Coffee, and other coffee shops. Observe that
these results will not be returned if O.str is the name of the
business (because the above names do not start with “cof-
fee”). We can address this problem by associating, in addi-
tion to the name, strings that describe the type of business
to the objects, and performing search over those strings.

We use the spatial database in Table 1 as a running exam-
ple. In this example, we assume the business name is only
description string associated with the O.str. Note that the
same string can be associated with multiple objects (e.g.,
string “Starbucks” associated to all Starbucks stores).

2.2 Query Model
The TAS query interface is as follows: As the user types

in the query, with every key stroke, the string typed so far
is sent to the TAS system along with the user’s location. In
response, the TAS system returns the set of most relevant k
spatial objects. The query Q therefore has two components:
(i) the string typed so far; we denote it by Q.str, and (ii)
the location Q.loc of the user during query.

Furthermore, without loss of generality, we assume that
the database D induces a global rectangular region Global =
{ll, ur} such that all objects in D are spatially contained in
it. Global.ll and Global.ur denote the lower left and upper
right corner respectively of Global. Furthermore, we assume
Q.loc is contained inside Global.

Note that the above query model corresponds to a state-
less TAS system. In reality, the TAS system can be stateful:
such a system can compute answers incrementally by using
results of earlier queries, as the user types in more charac-
ters. For simplicity, we present our techniques in the context

of a stateless TAS system. The general technique of materi-
alizing score bounds and using them to prune trie traversal
applies to a stateful system as well. However, our query
processing algorithm needs to be adapted to exploit cached
results from earlier queries; we wish to explore that direction
in future work.

2.3 Ranking Framework
Given a query Q and a spatial database D, TAS should

only return objects from D that are valid completions of
Q.str. Any type-ahead search system must satisfy this basic
property. We denote the set of such objects as MatchSet(Q,D).
Since D is fixed, for simplicity, we henceforth omit D from
our notation. Formally,
MatchSet(Q) = {O|O ∈ D ∧Q.str is a prefix of O.str}.

Among these objects, we want to return the k objects that
are in close proximity to the query location and have high
static score. We next describe such a ranking function.

Combination Model: Let Dist(Q.loc,O.loc) denote the
distance between the location of the query Q and object O.
In this paper, we use the Euclidean distance function but
any function that is monotone with respect to the distance
along each dimension (i.e., x, y) can be used. In fact, all Lp

distance functions satisfy this property.
The overall score of an object O ∈MatchSet(Q) for query

Q is defined as F(Dist(Q.loc,O.loc), O.sscore), where F is
a function monotone with respect to the two components.
Although our techniques apply to the above class of scoring
function, for simplicity, we describe our techniques in the
context of the linear interpolation function proposed in [6,
10].

Specifically, the final score is a linear interpolation of the
individual normalized scores of the two components:

F(Q,O) = wd×(1−Dist(Q.loc.O.loc)

maxDist
)+ws×

O.sscore

maxSScore
(1)

where wd, ws are the two parameters, s.t.wd +ws = 1. They
allow the system designer to control the relative importance
of the two components in the overall score. maxDist is
the maximum distance between any object and query and
maxSScore is the maximum static score of any object in
the database. We compute maxDist as Dist(G.ll, G.ur).
maxDist (similarly maxSScore) is used to normalize the
distance score (static score).

Note that our study focuses on efficient techniques for
type-ahead search; hence, we adapt existing distance func-
tions instead of developing new ones.

2.4 Problem Statement
Given a query Q = (str, loc), a spatial database D, and an

integer k, identify the result set Res(Q, k) of objects, such
that,
(i) |Res(Q,k)| = k
(ii) ∀O ∈ Res(Q, k), O ∈MatchSet(Q), and
(iii) the objects in Res(Q, k) have the highest scores among
all objects in MatchSet(Q), i.e.,for any object O ∈ Res(Q, k)
and any object O′ ∈MatchSet(Q)−Res(Q, k), F(Q,O) ≥
F(Q,O′).

3. ARCHITECTURES FOR LOCATION AWARE
TAS

Standard (i.e., non location-aware) TAS systems require
ordered tree data structure such as trie. Type ahead search
is enabled by inserting all search strings into a trie T . Let
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Figure 2: Partition Space Build Trie for Location-Aware

TAS

nT be a node in T , and Subtree(nT ) is the entire subtree
under it.

Note that each trie node nT can be uniquely identified by
a string (denoted by str(nT )); that string corresponds to the
labeled path from the root node to nT . For example, in the
trie in Figure 1, the string identifying the left child of the
root is “s”, the one identifying its (only) child is “st”, and so
on. Searching is performed by first identifying the node nT
that matches the query string, i.e., str(nT ) = Q.str. This
node is henceforth referred to as the query matched node,
denoted by QMN(Q). Subsequently, Subtree(QMN(Q)) is
searched to obtain the results. Existing work offers several
optimized version of trie, such as Patricia Tree [7], and we
adopt those optimized versions. Now, to make the search
location aware, these are the two possibilities.

3.1 Partition Space then Build Trie
One possibility is to first partition the global space Global

into a set of spatial regions. Maintain a trie containing de-
scription strings of the objects inside each region. Given
a query Q, the system first identifies the region that con-
tains the query location. It then performs a standard trie
search operation inside that region to identify Res(Q, k).
Res(Q, k) is determined solely based on static scores of the
objects, ignoring distance. Figure 2 corresponds to this ar-
chitecture, where 25 spatial regions of D are created (each of
dimension 10×10), and the trie corresponding to the region
{(30, 0), (40, 10)} is shown.

Although simple and similar in principle to standard TAS
architecture, this architecture suffers from several potential
demerits:
Missing cross-boundary objects: Recall the example
“shan” in Section 1. This architecture first determines the
Q.loc specific spatial region {(30, 0), (40, 10)}, then performs
trie search and returns O6 as the top-1 completion. A more
desirable result O5 will be missed as it fails to consider cross-
boundary objects.
Inability to support desired semantics: The ranking
of an object inside a spatial region is oblivious to distance.
Now recall example “star” in Section 1, the above architec-
ture fails to distinguish between farther Starbucks O7 and
the nearer one O10, and may return either of them. Observe
that, a very fine-granularity partition (e.g., one partition per
zip code) may mitigate such effects to some extent. However,
very fine granularity partitions are extremely space redun-
dant as they require to replicate the same string numerous
times (in each spatial region specific trie). Limited avail-
ability of main memory makes this possibility unrealistic in

practice.

3.2 Integrate Trie with Spatial Data Structure
An alternative possibility is to maintain a single trie over

all description strings of objects in D. Each trie leaf con-
tains a list of objects (denoted as object list). Each object
is described by 〈O.id,O.loc,O.sscore〉. Observe that, any
object whose description string is the string identifying the
node lT , is in the object list of lT . Figure 1 shows this ar-
chitecture over a subset of objects O1, O7, O9, and O10 from
the database in Table 1.

Given a query Q, the search begins in T by identifying
QMN(Q). Res(Q, k) is computed by visiting each leaf lT in
Subtree(QMN(Q)) and resolving complete scores of all ob-
jects encountered there, and finally selecting k objects that
contain the overall k-highest scores. The algorithm uses a
global priority queue ResultsPQ to maintain the k-objects
with highest scores encountered thus far. ResultsPQ is up-
dated as the score of an object in a leaf node is computed
(denoted as LeafNodeSearch). The pseudocode is listed
in Algorithm 1.

Algorithm 1 Baseline-TAS -Baseline Algorithm for
location-aware TAS
Require: Trie T , Query Q, an integer k
1: ResultsPQ = φ
2: Perform lookup in Trie T to determine QMN(Q)
3: for each leaf lT ∈ Subtree(QMN(Q)) do
4: Execute LeafNodeSearch(lT ) and update ResultsPQ

5: return Res(Q, k) from ResultsPQ

The benefit of this integrated architecture is various: first,
this architecture is able to support any ranking function.
Note that, for both example queries, it will be able to re-
turn the desired semantics. Second, this architecture is opti-
mum in space requirement. Hence we adopt this integrated
architecture.
Efficient Implementation of LeafNodeSearch: The above
implementation of LeafNodeSearch scans the entire object
list in the leaf node, and computes scores of all the objects.
This can be expensive if the object list is large. This can
be avoided by using the threshold family of algorithms [9].
NRA can be used if only sorted accesses on each individual
ranking component (a getNext() interface on static score
and distance1) is provided. A TA [9] based solution can
be used and may terminate even earlier if random access is
also available on static score table. The k-th largest score in
ResultsPQ is used to determine the termination condition
of TA. Baseline-TAS is used as our baseline algorithm with
TA like implementation for LeafNodeSearch.

Limitations: Algorithm Baseline-TAS still visits each
leaf in QMN(Q), and performs several score computations
in each leaf.

4. QUERY PROCESSING USING INTEGRATED
ARCHITECTURE

Given a query Q, the goal is to return the k best objects
(Res(Q, k)) in MatchSet(Q) according to a ranking function
F , as stated in Subsection 2.4.

4.1 Query Processing Cost Model
We begin our discussion by formally defining processing

cost to determine Res(Q, k) using integrated architecture.

1main memory based spatial data structures like KD-tree, quad
tree can enable efficient getNext() interface on distance
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Figure 3: SGB at node “STA” of T

Recall that, in order to determine Res(Q, k), node QMN(Q)
needs to be determined first. The next task is to visit the leaf
nodes following the links of Subtree(QMN(Q)), and finally
compute scores of the objects encountered there.

Let, L{Q,k} be the total number of links traversed, and
Sc{Q,k} be the total number of objects for which score is
computed during query processing.

Definition 1. (Query Processing Cost Model)
QPCost(Q, k) = Cost(QMN(Q)) + cl×L{Q,k} + csc×Sc{Q,k},
where cl and csc are two constants, that denote unit link
traversal, and score computation costs respectively.

Observe that, any algorithm has to incur Cost(QMN(Q))
and is negligible compared to other two costs. Hence, we ig-
nore Cost(QMN(Q)), and focus only upon the improvement
of link traversal and score computation cost.

4.1.1 Query Processing Cost of Baseline-TAS
One may notice that during computation of the Res(Q, k),
Algorithm 1 needs to traverse entire Subtree(QMN(Q)). Let,
|Subtree(QMN(Q))| be the subtree size, and ObjlT be the
number of objects processed at leaf lT during leaf node
search.

QPCost(Q,k) = (cl × |Subtree(QMN(Q))|)
+ Σ∀lT ∈Subtree(QMN(Q))(csc ×ObjlT ).

We argue that returning top-k valid completions are most
useful to a user during few initial query key strokes, es-
pecially in the case of mobile applications, where typing
is cumbersome and error-prone. Unfortunately, the size
of the Subtree(QMN(Q)) is prohibitively large in the be-
ginning. Baseline-TAS must traverse that entire sub-
tree, and hence incurs substantial query processing cost.
Moreover, many of the link traversal and score computa-
tion get wasted as only a very small fraction of the leaf
nodes of Subtree(QMN(Q)) eventually contributes to the
set Res(Q, k). We note that an efficient query process-
ing technique must intelligently select those paths of Sub-
tree(QMN(Q)) for traversal such that they eventually con-
tributes to the final Res(Q, k). Next, we discuss these pos-
sibilities in detail.

4.2 Techniques to Reduce Query Processing
Cost

Note that, link traversal and score computation cost can
be significantly reduced, if the actual Res(Q, k) is pre-computed
and materialized for each intermediate node of T . Unfortu-
nately, such techniques immediately fail in our case, since,
i) Res(Q, k) varies based on query location according to our
ranking framework, and ii) Materializing Res(Q, k) for every
possible location at every intermediate node is impossible to

follow in practice. An alternative possibility is to materialize
at a very fine spatial granularity to support desirable ranking
semantics. However, such granularity requires humongous
space that our main memory based integrated architecture
fails to support.

We therefore propose materialization of score-bound at a trie
node, that denotes the maximum-score any object under
that subtree may get, when a query matches that node. Note
that, the challenge is to ensure that score-bound is correct
irrespective of query location.

Example 1. (Single Score Bound)
Consider the spatial database in Table 1, and the correspond-
ing partial trie in Figure 1. Observe that, the object list un-
der the trie node “STA” contains O7, O9, and O10. The
object with highest static score (O9) determines the score-
bound of that node. Note that, score-bound of an object
needs to be computed considering the maximum-score for the
distance component that occurs when Q.loc = O.loc. The
score-bound of static score component of O9 after normal-
ization becomes 0.3, whereas, that of distance component is
0.5, with an overall score-bound of 0.8 after addition (as-
suming wd = ws = 0.5 in Equation 1).

Query processing algorithm benefits from pre-computed score-
bound in the following way: if the score-bound of a node in
Subtree(QMN(Q)) is not larger than the k-th largest object
score (computed thus far during query processing), the en-
tire subtree under that node can be pruned, i.e., can be saved
from traversal. Therefore, score-bound at a node needs to
be tight for effective pruning.

However, the actual score of an object under a node may
be significantly smaller than the pre-computed score-bound
of that node. In fact, in the previous example, actual score
of O9 will never reach 0.8, unless Q.loc = O9.loc. For any
other Q.loc, the distance component score will be smaller
than 0.5. Therefore, we argue that storing only one score-
bound per trie node may not be enough since that may fail
to generate sufficiently tight score-bounds. But also, storing
score-bounds at the finest granularity is an impossible task,
especially because the entire data structure needs to reside
in the main memory during query processing.

In this work, we take up an intermediate approach by parti-
tioning Global into a set of spatial regions and storing score-
bounds for them.

The set of regions together must satisfy the cover property
over Global, i.e., each point location in Global must be con-
tained in one of the regions. We begin by considering a
special case of cover at a node, where the regions are non-
overlapping, equal size rectangles. Such a cover at node
nT with bounds is referred to as the spatial grid of bounds
(henceforth denoted as SGB(nT )). Each region of a spatial
grid (G) is referred to as a grid cell or simply a cell (g). The
granularity of a spatial grid is determined by a domain ex-
pert, and we assign score-bounds for them. Next we define
Score-bound of a grid cell g.

Definition 2. (Score-bound of a grid cell)
It is the maximum-score of any object under nT (for any
Q.loc inside g).
Score-bound(g, nT ) = max∀Oi∈Subtree(nT ) Max-Score(Oi),
s.t. g.ll.x ≤ Q.loc.x ≤ g.ur.x and g.ll.y ≤ Q.loc.y ≤ g.ur.y

Example 2. (SGB)
Consider Figure 3 that shows an SGB of the node “STA”
with granularity 10 × 10. Observe that only the grid cell



{(40, 10), (50, 20)} has score-bound 0.8, whereas the grid-cell
{(0, 40), (10, 50)} contains a much smaller score-bound of
0.48. A query that is contained in the latter cell thus acquires
tighter score-bound (as compared to a single score-bound) by
the SGB.

4.3 Main Insights
• Judicious Node Selection: It is not possible to mate-
rialize SGB at every trie node. Only a subset of trie nodes
can be materialized. Different subset of nodes offers different
benefit towards query processing. For example, materializing
a parent and child node in a trie with similar score bounds
is less beneficial compared to choosing two nodes with sig-
nificantly different score bounds. Therefore, judicious node
selection is important.
•Adaptive Cover Computation: Consider an example
trie node that contains only one object with very high static
score (all other objects have very low static scores), and as-
sume ws � wd in the ranking function. Most likely that
object will influence the score-bounds of such a node for
most Q.loc. Therefore, the score-bounds will exhibit very
high spatial locality. Creating partitions of finer granular-
ity is not useful for such nodes. However fine granularity
partitions may be beneficial for a case, that shows substan-
tial variation in score-bounds at different Q.loc. Therefore,
cover computation needs to be adaptive.

4.4 Memory Distribution
Intuitively, our objective is to minimize the expected cost

of top-k query processing on any query, using the material-
ized trie.

Let NT be the set of intermediate nodes in a trie T , and S
be the space available for materialization. Let p(Q) denote
the probability or likelihood of Q being issued 2. The formal
problem is stated as follows.

Generalized Memory Distribution Problem:
Minimize Σ∀Qp(Q)×QPCost(Q)
such that (0 ≤ snT ≤ S), and ∀nT ∈NT (ΣsnT ≤ S),
where snT is the allocated space for materialization at the
intermediate trie node nT ∈ NT .

Although clearly very important, this problem is unfortu-
nately quite challenging to solve optimally, since it is expo-
nential in both S and NT . As a first step toward addressing
these challenges, we consider a restricted version, where the
possible assignments for snT ’s are either 0 (no materializa-
tion) or R (a predefined number designed by the domain ex-
pert), and our task is to select the set of M nodes such that
each of them has R space allocation, s.t., S = M ×R. With
this simplified assumption, we define the {M,R} Memory
Distribution Problem as follows.

Definition 3. ({M,R} Memory Distribution Prob-
lem)
Minimize Σ∀Qp(Q)×QPCost(Q)
s.t., snT = 0 or R, and |{nT |(snT =R)}| = M , where snT is
the allocated space at the trie node nT ∈ NT .

5. {M,R}DISTRIBUTION PROBLEM SOLU-
TION

Note that, the optimal cover of size R (R cover in short)
can be computed independently at a trie node, while the
M node selection process needs to use R-cover to determine
the set M (s.t., |M| = M). A trie with M materialized

2can be derived from query log

nodes, where each materialized node has R-cover is known
as bound materialized trie TBM.

We begin our discussion by illustrating the M Node Se-
lection problem, then discuss R cover computation problem.

5.1 M Node Selection
We aim at modeling the benefit of a set M of materi-

alized trie nodes for reducing QPCost, and then pose the
optimization problem.

We begin by analyzing the benefit of a single materialized
node nT in a set of materialized nodes for a query Q. Ma-
terialization at a node nT benefits only those queries whose
QMN(Q) is an ancestor of nT . Benefit of materializing at
nT

3 for an ancestor n′T is modeled by considering the fol-
lowing two aspects.
Likelihood of Pruning - Suppose Q.loc is known. Let,
g and g′ be the cells in SGB(nT ) and SGB(n′T ) respec-
tively that contains Q.loc. Therefore, akin to actual pruning,
score−bound(g′,n′

T )

score−bound(g,nT )
approximates the relative value of actual

k-th largest score at n′T , and the score-bound at nT ; a larger
ratio increases the likelihood of pruning. Observe that, in
this model, we are required to capture this likelihood for
any Q.loc. Therefore, the likelihood of pruning is measured
by considering the ratio of Expected-Score-bound(n′T ), and
Expected-Score-bound(nT ), by leveraging location distribu-
tion information of past n′T queries from query logs.4

Cost Save if Pruned - Next, we capture how much QPCost
node nT saves upon materialization (irrespective of its an-
cestors), considering rest of the materialized nodes in set
M that are nT ’s descendants. We define the materialized
frontier of a node nT in that context.

Definition 4. (Materialized Frontier)
MFr(nT ) - The nearest set of materialized descendant nodes
of nT together creates a materialized frontier.

Figure 4 shows a materialized frontier of T root, and a
materialized frontier of node “STA”.

Note that, without nT being materialized, query process-
ing algorithm must proceed further down and traverse the
entire Subtree(nT ), except the subtree of nT ’s materialized
frontier. We argue that nT saves higher QPCost upon ma-
terialization, if QPCost(nT ) is much larger than the query
processing cost of its materialized frontier5.Therefore,

Definition 5. (Cost-save)

CostSave(nT ) = QPCost(nT ) - Σ∀n′′
T ∈MFr(nT )

QPCost(n
′′
T )

As an example, in Figure 4 for node“STA”QPCost(nT ) is
13 and Σ∀MFr(nT )QPCost(MFr(nT )) is 9 (assuming cl = 1
and csc = 1). A larger CostSave denotes higher worth of
nT ’s benefit.

Finally, given an ancestor n′T , likelihood of pruning at nT
and CostSave(nT ) are multiplied to denote nT ’s benefit to-
wards QPCost(n′T ). Then, we sum it over each ancestor of
nT to compute nT ’s total benefit.

Similarly, the benefit of a set of nodes is the sum of benefit
of each node in that set.

Definition 6. (Benefit)
Benefit(M) = Σ∀nT ∈MBenefit(nT ,M), and

Benefit(nT ,M) = Σ∀n′
T

Expected−Score−bound(n′
T )

Expected−Score−bound(nT )
×CostSave(nT )

s.t., n′T is an ancestor of node nT .
3n′T and Q will be used interchangeably in this discussion.
4We compute Average-Score-bound in the absence of a query log.
5Note that, Subtree nT may not even have any materialized fron-
tier.



Algorithm 2 Randomized M Node Selection : Algo-
rithm to compute the best set of M nodes

Require:
NT - set of intermediate trie nodes, NumReStart - number

of random restart, M - the number of selected nodes
1: M = {}, PrevSet = {} , PrevBenefit = 0, and i = 1
2: repeat
3: M = {a randomly chosen set of M trie nodes}
4: while AllNeighborSet(M) are not visited do
5: M′ = Remove one node fromM uniform randomly, and

replace that with a node chosen uniform randomly from
{NT } − {M}.

6: M = M′ if Benefit(M′) > Benefit(M)
7: if PrevBenefit < Benefit(M) then
8: PrevSet =M
9: PrevBenefit = Benefit(M)

10: i = i+ 1
11: until {i > NumReStart}
12: M = PrevSet

13: return M

Optimization Problem - M Node Selection:
Given a set of NT trie nodes, select a set M (|M| = M),
s.t. Benefit(M) is maximized.
Next, we argue that identifying the best setM according to
the optimization problem is provably challenging, since this
requires to solve an NP-complete problem.

Theorem 1. (Hardness Result)
Finding the set M which maximizes Benefit(M) is NP-
Complete.

NP-completeness is proved using a reduction from the set
cover problem [12], using a very simple benefit function. Due
to lack of space, we omit the details of that proof from this
version of the paper. Unfortunately, an approximation algo-
rithm for set cover does not lend to our problem easily, since
the actual benefit of a node is much complicated in reality.

Efficient Algorithm
As a reasonably efficient alternative of this hard problem, we
propose a randomized hill climbing algorithm to search for a
local optima, starting from a randomM set and computing
its associated benefit. At each step, the algorithm goes to a
“neighboring set” ofM, by swapping one random node from
the existingM set that results in higher Benefit(M). One
complete hill climbing process terminates when all swapping
possibilities of a set M are explored. We design a random-
restart approach (with a predefined number, NumReStart)
on top of the hill-climbing method, that iteratively performs
hill-climbing search, each time with a random initial setM.
The hill climbing results M that corresponds to the high-
est Benefit(M) is retained after all iterations. Note that,
random-restart enhances the chances of obtaining the global
optima. The pseudo-code of this algorithm is listed in Al-
gorithm 2.

5.2 R Cover Computation
We discuss the R cover computation problem at a trie

node. We perform the following two tasks:
• Compute SGB of grid G.
• If the number of cells in SGB is more than R, we compute
an R cover on that.

5.2.1 SGB Computation
Recall that, score-bound of a grid cell at a trie node is the

maximum Max-Score of each satisfying object under that
node for any Q.loc in that cell. Max-Score of an object can
be efficiently computed considering MINDIST [19]6.
6Although, MINDIST is defined using Euclidean distance here,
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Max-Score(O, g) = wd×(1−MINDIST (O.loc,g)
maxDist

)+ws
O.sscore

maxSScore

Definition 7. (MINDIST)
MINDIST(O, g) = |O.x− gr.x|2 + |O.y − gr.y|2, where, gr.x
(gr.y)
= g.ll.x (g.ll.y) if O.loc.x (O.loc.y) < g.ll.x (g.ll.y)
= g.ur.x (g.ur.y) if O.loc.x (O.loc.y) > g.ur.x (g.ur.y)
= O.loc.x (O.loc.y) otherwise.

Given a cell g at nT , Max-score needs to be computed
for each object under nT to compute Score-bound(g, nT ).
Then, score-bound needs to be computed for every g in the
grid G. Observe that, a naive computation is quadratic in
the number of objects, and the number of cells. Although
done in preprocessing, repeating this quadratic computation
at every trie node is impractical.

We propose a novel solution at this juncture. Given a cell
g under nT , the Score-bound(g, nT ) is the highest (top-1)
Max-Score of an object under nT . Observe that, the over-
all score of an object is a monotonic combination of dis-
tance score and static score, where distance score is again
monotonic along x and y dimensions. Therefore, Thresh-
old algorithm [9] (TA) style computation can be enabled,
and Score-bound(g, nT ) may be computed without comput-
ing Max-score of all objects under nT . Three lists are to be
used for the objects under nT during TA - List.x (sorted
in increasing x-coordinate distance), List.y (sorted in in-
creasing y-coordinate distance), List.sscore (sorted in de-
creasing static score). As in TA, each entry in the list is an
object id, its complete score can be resolved using the object
database D.

To compute the score-bound of a cell g, we perform region
specific TA, by identifying interesting regions of g, that we
define next.

Definition 8. (Interesting Regions)
interesting regions(g) = Partitions of Global(Global.ll, Global.ur)
wrt g(g.ll, g.ur).

Consider Figure 5, that shows interesting regions of a cell
g for the root node of the trie T .

First of all, the score-bounds of the internal regions of all
cells in a grid can be computed efficiently - a single scan over
D is sufficient to assign a score-bound in internal region of
each cell in G.

We explain the score-bound computation of g that has 9
interesting regions (8 external, 1 internal) next. For each
external region of g, we perform region specific TA. We now

our solution framework can be generalized to any Lp distance
metric
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describe how score-bound of region specific TA at Int.Region
7 can be computed. Note that, only objects O1 and O4 are to
be considered during RegionTA computation of Int.Region
7, and MINDIST needs to be computed considering the clos-
est boundary point of g (which happens to be g.ll), and loca-
tion of the objects inside Int.Region 7 (O1, O4). RegionTA
in other interesting regions will follow similar argument. Fi-
nally, Score-bound(g) is the maximum of these 9 interesting
region specific Max-Score.

5.2.2 R Cover Creation
Given an SGB(nT ), the task is to create a cover with

R regions. A natural approach of creating R cover is by
merging cells of SGB(nT ). An R cover must satisfy the
following conditions: the score-bound of every region r ∈ R
(Score-bound(r, nT )) is correct.

Observe that, in order to satisfy this condition, Score-
bound(r, nT ) must be the maximum of the score-bounds of
the cells inside it, as Lemma 1 suggests.

Lemma 1. (Score-bound of a region)
Score-bound(r, nT ) = max∀g∈r Score-bound(g, nT ).

Due to lack of space, we omit the details of the proof from
this version of the paper.

As an example, consider the SGB in Figure 6 (the bound val-
ues are imaginary numbers here). The correct score-bound
of the region (grey filled) is 0.765 - hence, the original grid
cells with 0.7 bounds now get a higher score bound of 0.765.
In other words, merging introduces looseness in the score-
bound and is detrimental to effective pruning. But note
that, different merging induces different looseness. For ex-
ample, if the cell with score-bound 0.48 is merged with the
cell with bound 0.7, that induces more looseness for the for-
mer cell, as compared to merging 0.6 score-bound cell with
0.7.

We define error in that context. For a given g, that is
merged inside a region r, the difference in score-bound be-

Root
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Figure 7: Quad-Tree of a SGB(nT )

tween these two is denoted as g’s error. Note that, error
captures looseness in bounds, hence may affect the effec-
tiveness of pruning, but not the correctness of results.

While it is mandatory to maintain the correct score-bound
in r, it is also important to preserve tight bounds for effec-
tive pruning. Therefore, a cover creation algorithm must
adaptively form R regions. Our next optimization prob-
lem intends to create R cover such that it minimizes the
maximum-error of the regions in the cover.

Definition 9. (Maximum-Error of a region)
Maximum-error(r, nT ) = max∀g∈r Score-bound(g, nT ) - min∀g′∈r

Score-bound(g
′
, nT )

Optimization Problem - R Cover Creation : Given
an SGB(nT ), create R cover such that,

max∀r∈RMaximum-error(r, nT ) is minimized.

Although seemingly practical and important, optimally solv-
ing R Cover Creation problem is unfortunately very chal-
lenging - since it requires us to solve an NP-complete prob-
lem. A direct mapping exists between this known NP-hard [15]
problem and our problem. Furthermore, any reasonable
approximation algorithm is also unknown. The difficulty
comes from the fact that it needs to consider exponential
number of possible region formations to compute optimal
cover. Figure 6 shows an optimal cover of size 4 (r1, r2, r3, r4),
where each cell has 0 error.

Theorem 2. (Hardness Result)
Computing optimal cover of size R based on the maximum-
error metric is NP-complete.

We consider a viable alternative of this hard problem by
restricting the choice of possible regions to the nodes of a
quad tree QT of SGB. The benefit of quad-tree [11] is, it
allows us to design an optimal algorithm to select R cover.
In a nutshell, the basic idea is to create a QT of SGB(nT )
(the leaf nodes of QT are the actual cells), and select a R-
size frontier of it that optimizes the maximum-error metric.
Figure 7 depicts a quad-tree with 16 cells, and a size 10
frontier (with the wriggly line) of it.

Algorithm to Select R-size Frontier of QT:
Algorithm 3 selects R-size Frontier - initially the cover (re-
ferred to as Cover in the pseudo-code) consists of the leaf
nodes of QT, therefore has 0 error. The algorithm begins
by sorting the intermediate nodes of QT in the increasing
order of maximum-error. At a certain point, if the size of
the current cover is larger than R, the algorithm selects the
“best” (with lowest maximum-error) available intermediate
node, and add that to the existing cover. Each time a new
node is added in the cover, all its immediate children nodes
are removed from there; thus this operation overall reduces



Algorithm 3 SelectRFrontier : Algorithm to Select
R-size Frontier of QT
Require:

QT - a quad tree of SGB(nT ), R - an integer
1: Cover = { leaf nodes of QT}
2: I = { set of intermediate QT nodes, sorted in increasing order

of error }
3: while |Cover| 6= (R± 3) do
4: Consider the first node I1 ∈ I
5: I = {I} − {I1}
6: Cover = {Cover}+ {I1} − {ChildrenI1}
7: return Cover

the size of the cover by 3. Also, the maximum-error of the
cover at that point is the maximum-error of that newly-
added node. The algorithm terminates when cover has R
regions7.

It can be shown that Algorithm SelectRFrontier is
an optimal algorithm, as the Lemma 2 suggests.

Lemma 2. (Optimality)
Algorithm SelectRFrontier is optimal for maximum-error
metric.

6. EFFICIENT QUERY PROCESSING
Finally, we discuss algorithm (BMT-TAS) that leverages

TBM to compute Res(Q, k). The pseudo-code is written in
Algorithm 4.

Consider the case, where each node in the trie contains
materialized bounds. In such cases, the algorithm BMT-TAS
can follow the best-first search [7] like execution fashion of
nearest-neighbor queries in multi-dimensional index struc-
ture, that has been shown to be optimal [19].

However, TBM is unique, since only a judiciously selected
set of M nodes in the trie contains materialized informa-
tion. Therefore, we employ a hybrid-approach, that performs
depth-first search [7] traversal in a subtree rooted at a ma-
terialized node (SRM), but performs best-first like traversal
across SRMs. Lines 7-15 in the pseudocode perform these
two operations.

Algorithm BMT-TAS maintains two data-structures in this
process - a stack for depth-first search, and a priority queue
for best-first search. The current best-k results are main-
tained in a global priority queue ResultsPQ. During depth-
first search (inner loop), if the algorithm encounters a ma-
terialized node, that node is pushed into the priority quere,
with the priority as its score-bound 8. Best-first search is
performed in the outer loop across SRMs. During best-first
search, the algorithm first obtains the top item in the prior-
ity queue, i.e., the unexplored SRM with the highest score
bound. Next it determines if the termination condition (if
the k-th largest object score is not smaller than the score
bound of the top unexplored SRM) is satisfied. If satis-
fied, it terminates, otherwise, it continues with exploring the
top unexplored SRM. This process terminates automatically
when the entire Subtree(QMN(Q)) is traversed.

It can be proved that algorithm BMT-TAS is optimal in
query processing cost.

Lemma 3. (Optimality)
BMT-TAS is an optimal algorithm in query processing cost.

7We note that for certain cases, the resultant frontier size may
vary by ±3 from R - this happens due to the restricted quad-tree
structure and we allow such a negligible deviation
8Note that, the depth first search may encounter even leaf nodes
in that process if there is no materialization.

Algorithm 4 BMT-TAS - Efficient Algorithm for location-
aware TAS using TBM

Require: Trie TBM , Query Q, an integer k
1: ResultsPQ = φ, stackForDFS = φ, pqforBFS = φ
2: Perform lookup in Trie TBM to determine QMN(Q)
3: stackForDFS.Push(QMN(Q))
4: while true do
5: while (!stackForDFS.empty()) do
6: nextNodeToTraverse = stackForDFS.Pop()
7: if (nextNodeToTraverse == LeafNode) then
8: resultsPQ = LeafNodeSearch(nextNodeToTraverse);
9: else

10: for all childNode ∈ nextNodeToTraverse.children
do

11: if (childNode.IsMaterialized) then
12: bound = GetBound(childNode.RCover,Q.loc)
13: pqForBFS.Enqueue(ChildNode, bound)
14: else
15: stackForDFS.Push(ChildNode)
16: if (pqForBFS.IsEmpty()) then
17: break
18: rootOfNextSubtreeToTraverse = pqForBFS.Dequeue()
19: if (k-th largest score in resultsPQ ≥

rootOfNextSubtreeToTraverse.Priority) then
20: break
21: else
22: stackForDFS.Push(topItemFromPQ.V alue)

23: return Res(Q, k) from ResultsPQ

7. EXPERIMENTAL EVALUATION
We present an experimental evaluation of the techniques

proposed in the paper. The goals of our study are:
• To measure the benefit of materializing score bounds using
the {M,R} distribution technique to query performance
• To evaluate the benefit of judicious node selection and
adaptive cover creation using the {M,R} distribution tech-
nique over arbitrary node and cover selection
• To study the sensitivity of query performance of BMT-TAS
algorithm to M and R
• To study the scalability of BMT-TAS to database size
• To study the sensitivity of query performance of BMT-TAS
to k
• To study the sensitivity of query performance of BMT-TAS
to the ranking function, specifically the weights wd and ws

of the two components.

7.1 Experimental Setting
Implementation: We implemented two algorithms: (i)

the baseline algorithm Baseline-TAS and (ii) the proposed
algorithm BMT-TAS using the bound materialized trie. For
Baseline-TAS, we modify the standard trie as follows. For
each leaf node lT , we store two pointers:
(i) Pointer to a kd-tree: We store the spatial locations of
the objects in the object list of lT (along with the object ids)
in a kd-tree and store a pointer to the root of that kd-tree
in lT .
(ii) Pointer to static score list: We store the ids, static
stores and locations of those objects in a list sorted in de-
creasing order of static scores. We store a pointer to that
list in lT as well.
By exploiting the getNext() interface of kd-tree, getNext()
interface of static score list as well as random access interface
to the static score list, we implemented the LeafNodeSearch
subroutine using the TA algorithm as discussed in Section
3.2. This implementation of LeafNodeSearch is used by
both Baseline-TAS and BMT-TAS. The remaining imple-
mentation of Baseline-TAS follows the pseudocode of Al-
gorithm 1.
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For BMT-TAS, we further modify the trie as follows. We
first execute the node and cover selection process. Subse-
quently, for each trie node nT selected, we store the regions
in R-cover and the score bound for each region in nT . Since
each region is a node in the quad-tree over the basic grid G
of nT , we store a single number that encodes the quad-tree
node [18]. At query time, we can use the encoding to deter-
mine the region that contains the query location efficiently.
Datasets: We report results over a real-world dataset and
a synthetic dataset.
Yellow Page dataset: This dataset contains names, loca-
tions (in latitude and longtitude) and popularities of 100,000
business entities in the state of Washington, USA. We use
the popularities of the businesses as their static scores. Each
business name has an average of 20 characters.
Synthetic dataset: We synthetically generated spatial datasets
that emulate real-life spatial data for scalability experiments.
We make three observations about real-world spatial data:
(i) the number of objects having the same description string
follows the Zipf distribution, i.e., there are a few strings
associated with many objects (e.g., “Starbucks”, “Bank of
America”, “Mcdonald’s”) while most strings are associated
with very few objects (ii) the popularities of objects also fol-
low the Zipf distribution: some objects are extremely pop-
ular while most are modestly popular and (iii) locations of
objects follow a clustered distribution. Based on these ob-
servations, we generate a synthetic dataset as follows. We
have a large set of business names (but not their locations
and popularities) from the customer database of a Fortune
500 company: we randomly select a string from that set.
We then generate a number z (scaled by the desired size of
the database) from a Zipf distribution and generate z ob-
jects associated with the string. We generate the locations
of the objects following the clustered distribution and the
popularities following the Zipf distribution. We iterate the
process till we obtain the desired number of objects.
Queries: For each dataset, we generated 100 queries as
follows. We randomly select 100 prefixes of object strings
(of length 1, 2 and 3 characters) whose selectivities are be-
tween 1% and 10%. We associate the location of a randomly
selected object from the database with each prefix. An ex-
ample of a query for Yellow Page dataset is (“ma”, (47.60,
-122.33)). All our results are averaged over 100 such queries.
We use a k = 10 unless otherwise specified. We use wd = 0.5
and ws = 0.5 unless otherwise specified.

All experiments were conducted on an Intel x64 machine
with two 2.66GHz Intel Xeon processor and 8GB RAM, run-
ning Windows 2008 Server (R2 Enterprise x64 edition). In
all experiments, the trie resides completely in main memory.

7.2 Experimental Results: Synthetic Dataset
Benefit of bound materialization: We first evaluate
the benefit of materializing the bounds computed by the

{M,R}-technique on a synthetic database of 1 million ob-
jects. We compare the query processing cost of BMT-TAS
algorithm with that of Baseline-TAS. We measure the
query processing cost not only by execution time but also
the two main components: (i) number of score computa-
tions, and (ii) number of links traversed. Figure 8 shows
the number of score computations for Baseline-TAS and
BMT-TAS. The leftmost point in each chart shows the num-
ber for Baseline-TAS (labeled Baseline in all charts) while
the remaining points show the number for BMT-TAS for vari-
ous values of M and R. For all values of M and R, BMT-TAS
performs fewer score computations compared to baseline.
BMT-TAS is most beneficial when bounds are materialized
in 100,000 or more nodes and the number of regions is at
100 or more. For example, for M = 100, 000 and R = 100,
BMT-TAS performs 3 times fewer score computations com-
pared with Baseline-TAS. For M = 200, 000 and R = 200,
BMT-TAS outperforms Baseline-TAS by a factor of 5. 9

This implies that the bounds help in avoiding most score
computations.

We next compare the performance of the two algorithms
in terms of the second component of the cost: the num-
ber of links traversed. Figure 9 plots the results. The re-
sults are quite similar to the case of score computations:
BMT-TAS performs fewer score computations compared to
Baseline-TAS for all values of M and R. Again, BMT-TAS
is most beneficial for M ≥ 100000 and R ≥ 100. For
example, for M = 100, 000 and R = 100, BMT-TAS tra-
verses 2.5 times fewer links compared with Baseline-TAS.
For M = 200, 000 and R = 200, BMT-TAS outperforms
Baseline-TAS by a factor of 4.5. This implies that the
bounds help in avoiding traversing most of the links.

Finally, we compare the two algorithms in terms of the
execution time. Figure 10 shows the results. The results
follow the same pattern as the previous two figures. First,
this validates our model of query processing cost: the execu-
tion time is a weighted combination of the above two costs.
Second, BMT-TAS outperforms Baseline-TAS for all val-
ues of M and R, For M = 100, 000 and R = 100, BMT-TAS is
2 times faster than Baseline-TAS. For M = 200, 000 and
R = 200, BMT-TAS is 4 times faster than Baseline-TAS.
As discussed in Section 1, it is crucial to keep the trie search
time well below 100 ms: BMT-TAS achieves the above goal.
While Baseline-TAS takes an average of 212 ms, BMT-TAS
with M = 200, 000 and R = 200 takes an average of only

9 Assuming average object size of 36 bytes (20 bytes for string,
4 bytes for id, 8 bytes for location and 4 bytes for static score),
the trie along with the objects have a size of 36MB. With M =
100, 000 and R = 100, the space to materialize the bounds is
roughly 100000× 100× 8 = 80MB (assuming 8 bytes per region)
Hence, M = 100, 000 and R = 100 or even M = 200, 000 and
R = 200 is feasible in modern hardware.
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54ms. In summary, our techniques make location-aware TAS
feasible.
Comparison with Random Node Selection: The above
charts show that bound materialization saves the query pro-
cessing cost. However, do we really need judicious node
selection and adaptive cover creation using the {M,R} dis-
tribution technique? Or would randomly selecting M nodes
and an uniform grid of R cells in each of those nodes would
have been equally beneficial (referred to as Rand-Uni mate-
rialization)? We conducted experiments to answer the above
questions. We selected the nodes and the covers using the
Rand-Uni technique and augmented the trie with it. We
then executed queries using BMT-TAS on such a trie. Fig-
ures 11 shows the performance in terms execution time for
various values of M and R. Rand-Uni materialization do
have some benefit over Baseline-TAS but our {M,R} dis-
tribution technique yields much more benefit for the same
space overhead (i.e., M×R). For example, for M = 200, 000
and R = 200, the number of score computations, number of
links traversed and execution time for Rand-Uni materializa-
tion are 31k, 424k and 162ms respectively; for the {M,R}
technique, these numbers are 11k, 149k and 53ms. This
implies that the benefit modeling and node selection based
on benefit are important; similarly, the adaptive choice of
regions is also important.
Scalability to database size: We evaluate the scalabil-
ity of Baseline-TAS and BMT-TAS using {M,R}-based
materialization and Rand-Uni materialization. We gener-
ated synthetic databases of size 100k, 500k and 1 million.
For the materialization approaches, we chose M to be 20%
of the database size (i.e., 20k, 100k and 200k respectively)
and R = 200. Figure 12 the performance in terms of ex-
ecution time. {M,R} technique significantly outperforms
Baseline-TAS and Rand-Uni for all database sizes. The
gap increases with increase in database size. We observed
similar behavior for the two components of the cost; we omit
those charts to avoid repetition.
Sensitivity to k: We evaluate the sensitivity of the algo-
rithms to the number k of results desired. Figure 13 plots
the execution time of the 3 techniques for various values of
k. For all values of k, {M,R} technique significantly out-
performs the other two techniques.

7.3 Experimental Results: Real Dataset
Benefit of bound materialization: We first evaluate the
benefit of bound materialization for the real world dataset.
Figure 14 shows the average execution time for Baseline-TAS
(Baseline) and BMT-TAS. As in the synthetic dataset, BMT-TAS
is most beneficial when the bounds are materialized in enough
nodes. In this case, that number is 10000. For M = 20000
and R = 10, BMT-TAS outperforms Baseline-TAS by a
factor of 3. We observe that covers consisting a few regions
(e.g., 10) suffices for this dataset; further increasing R does
not provide additional benefit. We investigated this behav-

ior in depth. A highly popular business (that is a valid com-
pletion) typically has the highest overall score for queries
originating from the area surrounding it, i.e., it dominates
over less popular businesses in the surrounding area. Since
the real dataset is spatially sparser compared with the syn-
thetic dataset (10 times fewer objects distributed over the
same geographical space), the highly popular businesses are
spread farther apart and each of them dominates in even
larger surrounding areas. Hence, many regions around it
will have the same upper bound score, i.e., the bounds will
have more spatial locality. In such cases, our adaptive R
cover algorithm can cover the geographic space with a small
number of regions without introducing much error.
Sensitivity to ranking function: Finally, we evaluate the
sensitivity of the {M,R} technique to the ranking function.
Specifically, we study how sensitive is the query performance
to the weights wd and ws. All previous experiments used
wd = 0.5 and ws = 0.5. Figures 15 and 16 show the exe-
cution times for wd = 0.25, ws = 0.75 and wd = 0.75, ws =
0.25. BMT-TAS outperforms Baseline-TAS for these val-
ues of weights as well. Note that when the weight on spatial
proximity increases to 0.75, the domination of highly pop-
ular businesses in surrounding areas reduces. This reduces
the spatial locality of the bounds. Hence, increasing R does
provide additional benefit.

8. RELATED WORK
To the best of our knowledge, this is the first work on TAS

over spatial databases. Our semantics and architecture build
upon prior works on keyword search on spatial databases,
standard TAS, and autocompletion. However, our principal
technical contributions remain in the novel formulations and
solutions of the memory distribution problem.
Keyword search on spatial databases: Keyword search
on spatial data has been recently studied in [10, 6]. Existing
work proposes ranking metric that considers both proxim-
ity and relevance of the object with the query. Our ranking
framework uses similar intuition by combining distance and
static score in location-aware TAS. However, location-aware
TAS is required to return top-k valid completions with ev-
ery key stroke, making our problem and solution tangentially
different from [10, 6].
Autocompletion and TAS: The TAS problem is related
to autocompletion [8, 16, 5]. In autocompletion, as the user
types in her query, the system displays the set of likely com-
pletions of the query. While autocompletion reduces the
amount of typing, it still requires a large amount of clicking
before the user gets to see the final results.

Our work differs from prior work on TAS as prior ap-
proaches are not location-aware [14, 3]. TAS on spatial data
needs to be location-aware; hence, prior semantics, archi-
tecture, and algorithms are inadequate. Another example
of TAS is the recently released Google Instant (GI). With a
query being typed, GI selects the most popular completion
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and returns the results for it. However, in the cases where
the most popular completion is not the intended query, the
results will be undesirable. We, on the other hand, return
the “best” set of results among all the likely completions of
the query and use location as a strong signal to select the
“best” results. Due to the diversity of the results, our results
are much more likely to include the desired result even with
just a few letters typed.
Spatial index structures and other data structures:
We use spatial data structures as components of our loca-
tion aware TAS system [4, 11]. In the integrated archi-
tecture proposed in this paper, we index the spatial loca-
tions of the objects in each leaf node using a main mem-
ory spatial index structure (e.g., kdtree). Subsequently,
we can use the threshold algorithm to efficiently implement
LeafNodeSearch. Spatial grids have been used for index-
ing spatial objects [2, 17]. In this paper, we use grids for
storing the bounds instead of indexing objects. Further-
more, our main contribution is the adaptive cover computed
using the spatial grid of bounds. Our R-cover selection algo-
rithm uses a quad-tree as a basis [11]; our main contribution
here is the optimal cover selection algorithm. Furthermore,
BMT-TAS employs a best-first search [7] approach to search
in TBM , leveraging priority queue [7] data structure.
Optimization problems: We formalize two optimization
problems to pre-compute TBM . Unfortunately, both of them
are computationally hard. We show the NP-Completeness of
M Node Selection problem by reducing classical set cover [12]
problem to it, even for a much simpler benefit function. In
the absence of a reasonable approximation algorithm, appli-
cable for our actual benefit function, we design a hill climb-
ing based heuristic solution.

Our R Cover Creation problem aims to optimize maximum-
error [13] of individual grid cells, and is also NP-hard. It di-
rectly maps to the existing work [15], that shows the hard-
ness of rectangular partitioning in two-dimensional space.
Although efficient approximation algorithm is designed for
cases where the objective is to minimize the number of re-
gions that is required to satisfy an error bound, those results
do not extend to our case where the number of regions(R)
is given and the task is to determine the partitioning that
minimizes the error.

9. CONCLUSION
In this work, we introduce the problem of location-aware

TAS on spatial databases. We show that standard TAS
techniques can not be adapted effectively on spatial data.
We propose an integrated architecture for location-aware
TAS. Furthermore, we suggest novel techniques to augment
that architecture with materialized information for efficient
query processing. The challenges mainly surfaces due to
the limited availability of main memory. We formalize two
optimization problems in that contexts by modeling query
processing cost. We demonstrate the hardness of both prob-

lems, and design efficient algorithmic solutions. Finally, we
devise an optimal query processing algorithm that uses that
augmented architecture for efficient query processing. We
perform extensive experiments on real and synthetic data
that corroborate the efficiency of our proposed solution.
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