
Secure In-VM Monitoring Using Hardware Virtualization

Monirul Sharif
Georgia Institute of Technology

Atlanta, GA, USA
msharif@cc.gatech.edu

Wenke Lee
Georgia Institute of Technology

Atlanta, GA, USA
wenke@cc.gatech.edu

Weidong Cui
Microsoft Research
Redmond, WA, USA

wdcui@microsoft.com
Andrea Lanzi

Institute Eurecom, Sophia Antipolis, France, lanzi@eurecom.fr
Georgia Institute of Technology,Atlanta, GA, USA, andrea@cc.gatech.edu

ABSTRACT
Kernel-level attacks or rootkits can compromise the security of

an operating system by executing with the privilege of the kernel.
Current approaches use virtualization to gain higher privilege over
these attacks, and isolate security tools from the untrusted guest
VM by moving them out and placing them in a separate trusted
VM. Although out-of-VM isolation can help ensure security, the
added overhead of world-switches between the guest VMs for each
invocation of the monitor makes this approach unsuitable for many
applications, especially fine-grained monitoring. In this paper, we
present Secure In-VM Monitoring (SIM), a general-purpose frame-
work that enables security monitoring applications to be placed
back in the untrusted guest VM for efficiency without sacrificing
the security guarantees provided by running them outside of the
VM. We utilize contemporary hardware memory protection and
hardware virtualization features available in recent processors to
create a hypervisor protected address space where a monitor can
execute and access data in native speeds and to which execution
is transferred in a controlled manner that does not require hyper-
visor involvement. We have developed a prototype into KVM uti-
lizing Intel VT hardware virtualization technology. We have also
developed two representative applications for the Windows OS that
monitor system calls and process creations. Our microbenchmarks
show at least 10 times performance improvement in invocation of a
monitor inside SIM over a monitor residing in another trusted VM.
With a systematic security analysis of SIM against a number of pos-
sible threats, we show that SIM provides at least the same security
guarantees as what can be achieved by out-of-VM monitors.

Categories and Subject Descriptors
D.4.6 [OPERATING SYSTEMS]: Security and Protection

General Terms
Security

Keywords
Virtual Machines, Secure Monitoring, Kernel Integrity, Malware

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’09, November 9–13, 2009, Chicago, Illinois, USA.
Copyright 2009 ACM 978-1-60558-352-5/09/11 ...$10.00.

1 Introduction
Kernel-level attacks or malicious programs such as rootkits that

compromise the kernel of an operating system are one of the most
important concerns in systems security at present. These attacks
can modify kernel-level code or sensitive data to hide various ma-
licious activities, change OS behavior or essentially take complete
control of the system. In addition, kernel-level security tools can
be crippled and made ineffective by these attacks. A large body of
research has adopted virtual machine monitor (VMM) technology
in an effort to mitigate such attacks because the higher privileged
hypervisor can enforce memory protections and preemptively in-
tercept events throughout the operating system environment.

A major reason for adopting virtualization is to isolate security
tools from an untrusted VM by moving them to a separate trusted
secure VM, and then use introspection [7,17] to monitor and protect
the untrusted system. Approaches that passively monitor various
security properties have been proposed [10, 11, 13, 19]. However,
passive monitoring can only detect remnants of an already success-
ful attack. Active monitoring from outside of the untrusted VM,
which has the advantage of detecting attacks earlier and preventing
certain attacks from succeeding, was enabled by Lares [16]. This is
achieved by placing secure hooks inside the guest VM that intercept
various events and invoke the security tool residing in a separate se-
cure VM. However, the large overhead for switching between the
guest VM, the hypervisor, and the secure VM makes this approach
suitable only for actively monitoring a few events that occur less
frequently during system execution.

Many security approaches require the ability to monitor frequently
executing events, such as host-based intrusion detection systems
(IDSs) that intercept every system call throughout the system, LSM
(Linux Security Module) [23] and SELinux that hook into a large
number of kernel events to enforce specific security policies, or
even instruction-level monitoring used by several offline analysis
approaches [4]. Due to the overhead involved in out-of-VM mon-
itoring, many such approaches either are not designed for produc-
tion systems, or are not created for VM’s. While keeping a monitor
inside the VM can be efficient, the key challenge is to ensure at least
the same level of security achieved by an out-of-VM approach.

In this paper, we present Secure In-VM Monitoring (SIM), a
general-purpose framework based on hardware virtualization fea-
tures that enables security monitors residing in the same VM it is
protecting to have the same level of security as residing in a sepa-
rate trusted or secured VM. A security monitor in our framework
retains the efficiency close to being inside the same VM by not re-
quiring any privilege transfers when switching to the monitor for
an intercepted event, and being able to access the system address
space at native speed. At the same time, isolation is achieved by
putting the monitor code along with its private data in a separate

Figure 1: (a) In-VM and (b) Out-of-VM monitoring

hypervisor protected guest address space that can only be entered
and exited through specially constructed protected gates. In other
words, our system is designed in such a way that normal operation
of the monitor can continue without hypervisor intervention, but
any attempts to breach the security of SIM is trapped and prevented
by the hypervisor. Our system design leverages Intel VT [9] hard-
ware virtualization extensions and the virtual memory protections
available in standard Intel processors.

We have developed a prototype of the SIM framework based on
KVM [14], an open-source virtual machine monitor available as
part of mainstream Linux that exclusively uses hardware virtual-
ization features. Microbenchmarks show that an invocation of the
monitor in SIM is almost 11 times faster than that of a monitor re-
siding in a separate VM. As a demonstration of our framework, we
have developed a process creation monitor that allows a selected
list of processes to be executed. According to our microbench-
marks, out-of-VM monitoring introduced an overhead of 690%,
which includes external introspection costs, whereas the overhead
introduced by SIM was only 13%. We have also developed a stan-
dard system call interception monitor for the Windows OS. Macro
benchmarks carried over a number of representative benchmark
programs show an average overhead of 4.15% compared to 46.10%
of out-of-VM system call monitoring.

We summarize the contributions of our work below:

∙ Leveraging hardware virtualization and memory protection
features, we propose the Secure In-VM Monitoring frame-
work where a security monitor code can reside inside a guest
VM but still enjoy the same security benefits of out-of-VM
monitors (see Section 2 and Section 3).

∙ We have implemented a prototype of the SIM framework
based on KVM and Windows guest OS (see Section 4). For
demonstration, we have developed two security monitoring
applications using our framework. We provide experimental
evaluation of the performance overhead. (see Section 5).

∙ We provide a systematic security analysis of SIM against a
number of possible threats throughout the paper, and show
that SIM provides no less security guarantees than what can
be achieved by out-of-VM monitors.

The SIM framework should provide performance benefits to a
large number of security monitoring tools that utilize virtual ma-
chines, and at the same time enable new applications that were not
possible before due to the large overhead of out-of-VM monitoring.

2 Background and Requirements
A large fraction of security problems today are caused by kernel-

level attacks or malicious code such as rootkits that violate some
form of security in the entire system. Security tools such as anti-
viruses, intrusion detection systems, and security reference moni-
tors (e.g., SELinux) use various forms of event handling in a system
in order to verify the system’s security. We use the term monitor to

represent the class of all security tools that either actively intercept
events or passively analyze a system for violations of security.

If a monitor resides inside the same operating system it protects,
the monitor itself can be compromised by kernel-level attacks. This
problem is addressed by using virtualization. In virtual machine
monitors, the hypervisor intervenes executions of the guest VM
to give a virtual view of the real hardware. This is performed by
utilizing the higher privilege of the hypervisor over the kernel to
intercept accesses to the underlying hardware. Previous software-
based virtualization utilizes a reduced privilege guest kernel, so that
a higher privileged hypervisor can exist without any hardware sup-
port for virtualization. Recent processors include hardware virtual-
ization [9] features to enable thin and light-weight virtual machine
monitors. The privileged hypervisor allows various security ap-
proaches to protect access to hardware in an untrusted guest VM,
and have security tools isolated from the untrusted system by plac-
ing them in a separate VM.

We illustrate two approaches of security monitoring in Figure 1.
Figure 1(a) shows the model when the monitor resides in the same
untrusted environment. We call this In-VM approach. The isolated
monitor approach in a separate VM is shown in Figure 1(b), which
we call Out-of-VM approach. At the high-level, In-VM approach
provides performance and the Out-of-VM approach provides secu-
rity. We define the performance requirements based on the In-VM
approach and the security requirements from the Out-of-VM ap-
proach. The goal of our work is to design a system that satisfies
both the performance and security requirements.

We present a few formal notations for precision and clarity in
the following discussion. Assume that a system P is being moni-
tored by a security monitor M . The system contains code CP and
data DP and the monitor has its code CM along with its private
data DM . For passive monitoring the monitoring code CM usually
needs to analyze the system code and data and use its own data to
verify the security of the system. For active monitoring, since an
event needs to be intercepted, a set of hooks K = {k1, k2, ..., kn}
are placed in the monitored system that invokes corresponding han-
dlers in the set H = {ℎ1, ℎ2, ..., ℎn} contained the monitoring
code CM . A hook can pass data DK related to the event that is
gathered at the point of the hook. After the handler handles the
hooked event, a response R can transfer control to any specific
point in the system. It is obvious that the active monitoring model
subsumes the passive monitoring case.

The overhead in executing security tools out of the guest OS is
primarily due to the change in privilege levels that occurs while
switching back and forth between the kernel-level and the hypervisor-
level. We set the performance requirements for SIM’s design to be
the same as provided by In-VM approaches.

∙ (P1) Fast invocation: Invoking the monitors handler H for
a hook K should not involve any privilege level changes.

∙ (P2) Data read/write at native speed: The monitor code
CM should be able to read and write any system dataDP and

Figure 2: High-level overview of the Secure In-VM Monitoring approach

local data DM at native speed, i.e., without any hypervisor
intervention.

In case of in-VM monitoring, a direct control transfer to the han-
dler code from the hook initiates the monitor. Moreover, the moni-
tor can access all data and code because everything is contained in
the same address space. The problem of out-of-VM approaches is
that both performance requirements (P1) and (P2) cannot be satis-
fied. First, the hypervisor is invoked when the hook K is executed
to transfer control to the handler residing in another VM. Second,
the hypervisor usually needs to be invoked to partially map memory
belonging to the untrusted VM into an address space in the trusted
VM for the out-of-VM monitor.

To state the security requirements, we consider an adversarial
program A residing in the same environment as the system P . In
the threat model, A runs with the highest privilege in the guest VM
and therefore can directly read from, write to and execute from any
memory location that is not protected by the hypervisor. To ensure
the security of the monitor M , we state the security requirements:

∙ (S1) Isolation of the monitor’s code CM and data DM :
This ensures the integrity of the monitor’s code and data is
protected from the adversary A. Out-of-VM approaches sat-
isfy this requirement because A does not have any means to
access another guest VM.

∙ (S2) Designated point for switching into CM : Execution
should switch to the monitor only at one of the handlers in
the setH . This requirement ensures that an attacker does not
invoke any code in CM other than the designated points of
entry. Since the hypervisor initiates entry into the monitor,
out-of-VM approaches can ensure this requirement.

∙ (S3) A handler ℎi is called if and only if the correspond-
ing hook ki executes: This requirement has two parts - (a) If
a hook ki is reached in the monitored system, then the corre-
sponding handler ℎi must be initiated by the system. (b) an
handler ℎi is initiated only if the hook ki was executed. In
out-of-VM approaches, the first requirement can be satisfied
by design of the handler dispatcher. The second requirement
can be satisfied because the exact VMCalls that initiated the
hypervisor execution can be identified and checked.

∙ (S4) The behavior of M is not maliciously alterable: The
execution of handlers H should not be maliciously alterable
by the adversaryA. First, the control-flow should not depend
on any control-data that is alterable by the attacker. Second,
the handlers should not need to call any dependencies that
is at the control of the adversary. Third, after the handler
completes, execution should return to a point that is intended

by the monitor. An out-of-VM monitor can satisfy these re-
quirements by not using any control-data contained in DP .

None of the existing in-VM approaches can satisfy all of the se-
curity and performance requirements at the same time. First, the
simple method of write-protecting the monitor’s codeCM can only
work for stateless monitors, which do not have any private data. A
second approach may be to write protect the private dataDM using
help from the hypervisor. This, however, will require the hypervi-
sor to trap every write to verify the instruction. The performance
requirement (P2) is thus not satisfied. Finally, in-lined monitor-
ing approaches such as CFI [1] and WIT [2] can instrument each
control-flow or memory write operation, usually at compile time,
so that integrity checks can be enforced at run-time. A comprehen-
sive coverage of all the required instructions needs to be performed
to guarantee that the security requirements are satisfied. Such a
modification of all kernel-level code is an overkill to achieve the
performance requirements of a general-purpose monitoring frame-
work that may be utilized for hooking different types of events oc-
curring in an OS kernel. Our SIM approach is designed with all the
performance and security requirements in mind.

3 Secure In-VM Monitoring
The goal of our Secure In-VM Monitoring framework is to en-

able security monitors that meet all the performance and security
requirements discussed in Section 2. In this section, we describe
the design of the SIM framework.

3.1 Overall Design
The overall design of SIM is shown in Figure 2. The key idea

of SIM is to introduce a separate hypervisor-protected virtual ad-
dress space in the guest VM, which we call the SIM Virtual Address
Space. This protected address space is used to place the security
monitor. It exists in parallel to the virtual address spaces being
utilized by the operating system. The virtual memory is mapped
in such a way that it has a one-way view of the guest VM’s orig-
inal virtual address space. This means that the security monitor
can view the address space of the operating system, but no code
executing in the operating system can view the security monitor’s
address space. A number of entry gates and exit gates are the only
code that can transfer execution between the system address space
and the security monitor’s address space. Hooks are placed in the
kernel before specific events that transfer control to corresponding
gates. The entry gate has an invocation checker module that checks
who invoked the entry gate. Finally, the security monitor’s code
(e.g., handlers for each hook) and data are all contained in the SIM
address space. Next we describe how we construct the SIM address
space using paging-based virtual memory and hardware virtualiza-
tion features in detail.

Figure 3: Virtual Memory Mapping of SIM approach.

3.1.1 Protected Address Space Generation

Paging based virtual memory is generated by creating page ta-
bles that map virtual addresses to physical addresses. When an in-
struction is executed the current page table is used by the hardware
to perform address translations. An OS creates a separate page ta-
ble for each process so that it can have its own virtual memory
address space and the necessary isolation can be achieved.

The memory mapping introduced by the SIM framework is shown
in Figure 3. In the figure, the process virtual address space at the
left shows the virtual address space defined by the operating sys-
tem for each executing process. The virtual address space created
for the SIM is shown at the right as the SIM virtual address space.
The actual physical memory regions are shown in the middle. For
now, physical memory can be considered as guest physical mem-
ory. Later, we will describe how the address translations are carried
out. We have only shown the relevant kernel level addressable re-
gions, leaving user space out of the picture. For each region in
the virtual address spaces, the protection flags that are set on the
relevant pages by the hypervisor are shown.

A high-level description of the contents of the process virtual ad-
dress spaces are shown in Figure 3. Generally, the kernel is mapped
into a fixed address range in each process’s address space. We call
this address range the system address space. Since we are primar-
ily focusing on kernel level monitoring, we illustrate the contents of
this address range in the figure. We denote any code and data con-
tained in the system address space as kernel code and kernel data.
All pages containing kernel code will have read and execute priv-
ileges, but we assume that the kernel code can be write protected,
especially places where hooks are placed. The data regions will
have all access rights. In general, the dynamically loaded kernel-
level code would be maintained in the kernel data region. In our
framework, we introduce the entry and exit gates into the system
address space. As mentioned earlier, the gates are used to perform
transitions between the system address space and the SIM address
space. Since the gates include code, they are set with execute per-
missions but are made read only so that they cannot be modified
from with the guest VM.

Figure 4: Switching between the untrusted and trusted address space
without hypervisor intervention.

The SIM address space includes the security monitor’s code (SIM
code) and data (SIM data). Besides the security monitor, the SIM
address space contains all the contents of the system address space
that are mapped in. However, some of the permissions are set dif-
ferently. The kernel code and data regions do not have execute
permissions. This means that while execution is within the SIM
address space, no code mapped in from the system address space
will be executable. The invocation checking modules are also con-
tained only in the SIM address space and have execution privileges.

Since the system address space contents are mapped into the SIM
address space, an important requirement for the mapping to work
is to ensure that other (the additional) regions in the SIM address
space (i.e., the SIM code, SIM data and the invocation checker re-
gions) do not overlap with the mapped in regions from the system
address space. There are two methods to achieve it. First, the vir-
tual address range that is used for user programs may be used for
allocating the SIM regions. This approach is suitable for security
monitors that will be primarily used to monitor kernel level code.
Second, we can use OS provided functionality to allocate memory
from the system address space. Once allocated, any legitimate code
(including the OS itself) should not attempt to use this memory re-
gion in the system address space. Possible attacks may arise, which
are discussed in Section 3.3.

Since the SIM address space contains all kernel code, data and
also the SIM data in its address space, the instructions as part of
the security monitor can access these regions in native speed. This
satisfies the performance requirement (P2). The memory mapping
method we have introduced satisfies the isolation security require-
ment (S1) by having the SIM code and data regions in a separate
SIM address space. Any kernel-level instruction executing in the
guest OS will utilize the system address space, which do not in-
clude these regions. Although any kernel-level code executing in
the OS environment has full freedom to change the process virtual
memory mappings because they are mapped into the system ad-
dress area, they cannot modify or alter the SIM address space. By
design, the SIM page table is neither included in the system address
space, nor the SIM address space. In Section 3.1.2, we will explain
the reason behind it and how we achieve it.

3.1.2 Switching Address Spaces
In the Intel x86 processors, the CR3 register contains the physical

address of the root of the current page table data structure In the two
level paging mechanism supported in the IA-32 architecture, the
root of the page table structure is called the page directory [8]. As
part of the process context switching mechanism, the content of the
CR3 register is updated by the kernel to point to appropriate page
table structures used by the current process. Although the kernel
of the OS mainly maintains the valid CR3 values to switch among
processes, any code executing with the kernel-level privilege can
modify the CR3 register to point to a new page table. However, to
ensure the correct operation of the operating system, kernel code
needs to see its expected CR3 values.

In virtual machines, the page tables in the guest VM are not used
for translating virtual addresses to physical addresses because the
physical memory that needs to be translated to is on the host, which
is maintained and shared among various VM’s by the hypervisor.
The hypervisor takes complete control over the guest OS memory
management by intercepting all accesses to the CR3 register. The
guest physical memory then only becomes an abstraction utilized
by the hypervisor for maintaining correct mapping to the host phys-
ical address. Shadow Page Tables are used by the hypervisor to
map guest virtual to host physical memory [3, 14, 21] and different
mechanisms are used in different VMM implementations to main-
tain consistency among the guest page tables and the shadow page
tables. The hypervisor gives the guest OS the illusion that its des-
ignated page tables are being used.

Since our mechanism requires the switching of address spaces,
we need to modify the CR3 register contents directly. However, the
modifications to the CR3 register by the guest VM is trapped by
the hypervisor. The challenge is to bypass the hypervisor invoca-
tion, so that the performance requirement (P1) can be satisfied. For
this reason, we utilize a hardware virtualization feature available in
Intel VT. By default all accesses to the guest CR3 register by the
guest VM causes a VMExit, which is a switch from the guest to
the hypervisor. Intel VT contains a feature that it does not trigger a
VMExit if the CR3 is switched to one of the page table structure’s
root addresses in a list (CR3_TARGET_LIST) maintained by the
hypervisor [8]. The number of values this list can store varies from
model to model, but the Core 2 Duo and Core 2 Quad processors
support a maximum of 4 trusted CR3 values to be added in the
CR3_TARGET_LIST.

The guest OS provides the addresses of guest page directories in
the CR3 register, and the correct execution of the guest VM is en-
sured by the hypervisor changing them to the appropriate shadow
page directories instead. However, if we bypass the hypervisor
while switching CR3 values, we need to directly switch between
the shadow page directories. Figure 4 illustrates how the switch-
ing is performed by updating CR3 register. Besides the hypervi-
sor maintained shadow page table structures, we introduce an ad-
ditional specialized shadow page table, which we call SIM shadow
page table. The page table converts virtual addresses in the SIM
address space to host physical addresses. Since it is directly main-
tained in the hypervisor and the security monitor need not manage
its virtual memory, we eliminate the need for any guest level page
table for the SIM address space. The root of the SIM shadow page
table structure is the SIM shadow page directory, which we des-
ignate as SIM_SHADOW. We also designate the physical address
of the current shadow page directory maintained by the hypervisor
as P_SHADOW. Switching between the process address space and
the SIM address space requires to directly modify the CR3 register
and load the value of SIM_SHADOW or P_SHADOW after already
adding them to the CR3_TARGET_LIST. This ensures the correct
operation of the code in the guest VM when the hypervisor is not in-
volved. The entry and exit gates described in Section 3.1.3 perform
this switching, and the rest of the design of the SIM framework
ensures that the switching is transparent to the guest OS.

3.1.3 Entry and Exit Gate Construction

The entry and exit gates are the only regions that are mapped into
both the system address space and the SIM address space in pages
having executable privilege. This ensures that a transfer between
the address spaces can only happen through code contained in these
pages. Moreover, since these pages are write-protected by the hy-
pervisor, its contents cannot be modified by any in-guest code. The
contents of the entry and exit gates are shown in Figure 5.

As mentioned earlier, each hook and handler have a pair of corre-

Figure 5: Entry and exit gates

sponding entry and exit gates. The task of an entry gate is to first set
the CR3 register with the physical address of the SIM shadow page
directory, or SIM_SHADOW. This switches the entry into the SIM
address space. Since the CR3 register cannot be directly loaded
with data, the value of SIM_SHADOW first needs to be moved to a
general purpose register. For this reason, we need to save all reg-
ister values on the stack, so that the security monitor can access
register contents at the point when the hook was reached. Even
though the register contents are saved on the stack on the system
address space, since interrupts are disabled by the entry gate al-
ready, an attacker will not be able to regain execution and modify
the values before entry into the SIM address space. Once in the
SIM address space, the next task is to switch the stack to a region
contained in the SIM data region by modifying the ESP register.
The stack switching is necessary, so that code executing in the SIM
address space does not use a stack provided by the untrusted guest
kernel-level code. Otherwise, an attacker can select an address in
the form of the stack pointer that may overwrite parts of the SIM
data region once in the SIM address space. Finally, control is trans-
ferred to the invocation checker routine to verify where the entry
gate was invoked (discussed in Section 3.1.4). Notice that the first
instruction executed in the gate is the CLI to stop interrupts from
executing. This guarantees that execution is not diverted to some-
where else due to interrupts. The reason for executing the same
CLI instruction again after entering the SIM address space is dis-
cussed in Section 3.3.

The exit gate performs the transfer out of the SIM address space
into the process address space. First the stack is switched back to
the stack address saved during entry. To make the address space
switch, the CR3 register is loaded with the address in P_SHADOW,
which is the physical address of the shadow page table root. The
hypervisor may be using multiple process shadow page tables and
switching between them as necessary. To ensure correct system
state, the value of P_SHADOW should be equal to the address of
shadow page directory being used by the hypervisor prior to enter-
ing the SIM address space. Querying the hypervisor for the correct
value during monitor invocation violates the performance require-
ment (P1). We take the approach of making the hypervisor update
the value of P_SHADOW used in the exit gates when it switches
from one process shadow page table to another. Having the value
of P_SHADOW as an immediate operand in every exit gate would
require the hypervisor to perform several memory updates. Instead,
storing it as a variable in the SIM data region requires only one
memory update by the hypervisor at the time of shadow page table
switches. At the end of the exit gate, the interrupt flag is cleared to

enable interrupts again, and then execution is transferred to a desig-
nated point usually immediately after the hooked location. The exit
gates have write permissions in the SIM address space, enabling the
security monitor to control where the execution is transferred back.

The entry gates are the only way to enter the SIM address space,
and they first transfer control to the corresponding invocation check-
ing routine, which then calls a handler routine. By doing so, we
ensure the security requirement (S2). Moreover, the “if” part of the
requirement (S3a) is satisfied because, when a hook is executed, the
corresponding handler is invoked. Additional variations of attacks
are also handled by our design and are discussed in Section 3.3.

3.1.4 Checking Invocation Points

To satisfy the security requirement (S3b), once the SIM address
space is entered through one of the entry gates, the invocation of the
gate needs to be checked to ensure that it was from the only hook
that is allowed to call the gate. The challenge is that since the en-
try gate is visible to the guest OS’s system address space, a branch
instruction can jump to this location from anywhere within the sys-
tem address space. Moreover, we cannot rely on call instructions
and checking the call stack because they are within the system ad-
dress space and as such the information cannot be trusted. We uti-
lize a hardware debugging feature available in the Intel processors
after Pentium 4 to check the invocation points. This feature, which
is called last branch recording(LBR) [8], stores the sources and
targets of the most recently occurred branch instructions in some
specific processor registers.

The last branch recording feature is activated by setting LBR flag
in the IA32_DEBUGCTL MSR. Once set, the processor records
a running trace of a fixed number of last branches executed in
a circular queue. For each of the branches, the IP (instruction
pointer) at the point of the branch instruction and its target ad-
dress are stored as pairs. The number of these pairs stored in
the LBR queue varies among the x86 processor families. How-
ever, all families of processors since Pentium 4 record information
about a minimum of four last branches taken. These values can be
read from the MSR registers MSR_LASTBRANCH_k_FROM_IP
and the MSR_LASTBRANCH_k_TO_IP where k is a number from
0 to 3.

We check the branch that transferred execution to the entry gate
using the LBR information. In the invocation checking routine, the
second most recent branch is the one that was used to invoke the
entry gate. We check that the source of the branch corresponds to
the hook that is supposed to call the entry gate. Although the target
of the branch instruction is also available, we do not need to verify
it if the source matches. Our design also mitigates possible attacks
that may jump into the middle of the entry gate and try to divert
execution before invocation checking routine is initiated. This is
discussed in Section 3.3.

A conceivable attack may be an attempt to modify these MSR
registers in order to bypass the invocation checks. We need to stop
malicious modifications to these MSR, but at the same time ensure
that performance requirement is not violated. With Intel VT, read
and write accesses to MSR registers can selectively cause VMExits
by setting the MSR read bitmap and MSR write bitmap, respec-
tively. Using this feature, we set the bitmasks in such a way that
write attempts to the IA32_DEBUGCTL MSR and the LBR MSRs
are intercepted by the hypervisor but read attempts are not. Since
the invocation checking routine only needs to read the MSRs, per-
formance is not affected.

3.2 Security Monitor Functionality

One of the important aspects of our design is to ensure that the
security monitor code does not rely on any code from any un-

trusted region. Therefore, the security monitor code needs to be
completely self-contained. This means that all necessary library
routines need to be statically linked with the code and the monitor
cannot call any kernel functions. From design, mapping the kernel
code and data with non-execute privileges ensure that even any ac-
cidental execution of untrusted code does not occur in the trusted
address space (because execution on non-execute code and data
will result in software exceptions). Any software exceptions oc-
curring while in the SIM address space is handled by code residing
in SIM. Moreover, the entry and exit from the SIM address space
can be considered an atomic execution from the perspective of the
untrusted guest OS. While the hypervisor will receive and handle
interrupts on the guest OS’s behalf, they are not notified to the guest
VM while the interrupts are disabled in the guest VM. Disabling in-
terrupts before entering and after exit ensures that interrupts do not
divert the intended execution path of the security monitor, which
guarantees the security requirement (S4). Even without using the
code of the guest OS, the same functionality provided by an out-of-
VM approach can be achieved in our design.

First, by not allowing kernel functions to be called, the security
monitor needs to traverse and parse the data structures in the kernel
address space in order to extract necessary information required for
enforcing or verifying security state of the untrusted region. How-
ever, this is the same semantic gap that exists while using intro-
spection to analyze data structures of the untrusted guest VM from
another trusted guest VM. The method of identifying and parsing
data structures used in existing out-of-VM approaches can there-
fore be ported to our in-VM approach with a few modifications.

Second, a security monitor may need to perform accesses to
hardware or perform I/O for usability purposes besides handling
the events in the untrusted guest OS. Theoretically, it may be pos-
sible to replicate the relevant guest OS functionality inside the SIM
address space. However, accessing hardware directly may interfere
with the guest OS. We take a different step in our design. Since the
SIM address space can be trusted, we allow a layer to be defined
that communicates with the hypervisor for OS-like functionality
through hypercalls. This layer, which we call the SIM API, can
provide functionalities such as memory management, disk access,
file access, additional I/O, etc. This layer can be developed as a
library that can be statically or dynamically linked with the secu-
rity monitoring code based on the implementation. The handling
of the SIM API can be performed in the hypervisor or it may be
performed by another trusted guest VM. Since the security monitor
can be designed to use such functionality less often than handling
events in the untrusted guest kernel (e.g., buffering data), the cost of
hypervisor invocation can be kept low even for fine-grained moni-
toring.

3.3 Security Analysis

We first summarize how the our design has met all the security
requirements stated in Section 2 without sacrificing any of the per-
formance requirements. SIM satisfies the security requirement (S1)
by using the hypervisor to not allow the monitor code and data to
be mappable to any untrusted address space in the guest VM. The
monitor remains in a completely isolated trusted address space iso-
lated from the attacker. The requirement (S2) is satisfied because
by design, the only method to enter the trusted address space from
the untrusted one is via the entry gates. Since each hook invokes
a corresponding entry gate, which eventually calls a corresponding
handler, and each invoker of the entry gate is checked by the invo-
cation checking routine, the requirement (S3) is satisfied. Finally,
by not allowing any code from the untrusted domain to be exe-
cutable in the trusted address space, and by design not allowing the
monitor to call into the untrusted kernel, we ensure that the security

requirement (S4) is met. In the rest of this section, we discuss a few
variations of attacks that are also handled by the design.

One important design consideration is to stop attacks that may
divert the control-flow of the security monitor by modifying the
control-data. Since any data in the untrusted region are completely
at the hands of the adversary according to our threat model, it is
important that, by design, the security monitor stores all control-
data that it needs in the SIM data region. Ensuring this does not in
any way reduce the functionality of the security monitor.

An attacker may directly call the entry gate and skip the first in-
terrupt disabling instruction with an intention of keeping interrupts
enabled after entering the SIM address space and before the invo-
cation routine is executed, causing undefined behavior in case the
interrupts are not handled properly. Having another CLI instruc-
tion at the beginning of the entry into the SIM solves this issue.

Since the entry gate is visible to the guest OS kernel-level code,
the value of the SIM_SHADOW is revealed to the attacker. Al-
though this value is known to the attacker, it cannot be used to
switch into the SIM virtual address space from the attacker’s kernel-
level code. This is because, once the instruction that loads the CR3
register with the SIM shadow page directory’s address is executed,
the address space is switched immediately. The instruction imme-
diately following the load instruction is from the new address space.
Since the attackers code will not have execute privilege in the SIM
address space, an exception will be generated. One possible mod-
ification of the attack is to allocate a page in the system address
space that precedes immediately before a page that is used inside
the SIM address space. If the instruction for setting the CR3 is the
last instruction in the page, the next instruction executed will be a
valid address inside the SIM address space. In order to defeat this
attack, we ensure that each page whose immediate previous page
does not contain code or have the executable privilege if it is al-
located in the system address space. This ensures that such illegal
entry into the SIM address space can be prevented.

4 Implementation
We have implemented a prototype of the SIM framework We

used KVM (Kernel Virtual Machine) [14] for implementing the hy-
pervisor component of the SIM framework on a Linux host with
32-bit Ubuntu distribution. The implementation was done on a sys-
tem with Intel Core 2 Quad Q6600 processor, which has Intel VT
support. We targeted Windows XP SP2 as the guest OS. To gener-
ate the SIM address space and load a security monitor into it, we
rely on an initialization phase. Then, during the system runtime,
the hypervisor based component provides memory protection, up-
dates exit gates and handles VM calls that are relevant to the SIM
API. We describe the initialization phase in Section 4.1 and the ex-
ecution phase in Section 4.2.

4.1 Initialization Phase
The initialization phase of our system is initiated by a guest VM

component implemented as a Windows driver that is executed af-
ter a clean boot when the guest OS can be considered to be in a
trusted state. The primary task of the initialization driver is to allo-
cate guest virtual memory address space for placing the entry and
exit gates based on the hooks required, initiate creation of SIM vir-
tual address space, initiate the loading of the security monitor into
the address space, and finally the creation of entry gates, exit gates
and invocation checking routines. The initialization driver commu-
nicates with the hypervisor counterpart of SIM using a hypercalls.
We use the VMCALL instruction of Intel VT for the hypercall and
use the four general purpose x86 registers to store arguments.

The first task is to reserve virtual address ranges in the system
address space for use in entry and exit gate creation. Since we need

to guarantee that the normal operation of the OS and legitimate ap-
plications do not attempt to utilize the reserved address ranges, we
rely on the guest OS to allocate virtual address space. The driver
allocates contiguous kernel-level memory from the non-paged pool
by using the MmAllocateContiguousMemory kernel func-
tion. The function returns the virtual address pointing to the start-
ing of this allocated memory region. Since the function allocates
memory from the Windows non-paged pool, it is guaranteed by the
OS to be never paged out. In other words, the pages are mapped to
guest physical frames that are not used until they are freed. Since
the memory is already allocated, any legitimate application will not
try to utilize this address space. The allocated virtual address space
region is informed to the hypervisor component using a predefined
hypercall notifying the starting address and the size of the allocated
region. During execution, our system checks for any malicious at-
tempts to utilize this address space or changes in memory mapping.

The next step is the creation of the SIM virtual address space by
the hypervisor component of the SIM framework. Once the hyper-
visor is informed about the memory allocation, the SIM shadow
page table structure is created. In the 32-bit implementation of
KVM, we noticed that KVM’s own shadow page tables are im-
plemented not as regular two-level 32-bit page tables, but as three-
level 36-bit PAE (Physical Address Extensions) [8] page table struc-
tures. The Intel processors support this type of page table structure
to handle more than 4GB of physical memory. To keep implemen-
tation elegant, one of our goals was not to make extensive modifi-
cations to KVM’s MMU (Memory Management Unit) code, which
mainly handles the shadow page table algorithms. Rather than uti-
lizing the MMU code of KVM, we wrote our own code to create,
maintain and update our SIM shadow page table. Since we need
to switch between the same type of shadow page tables, we also
implemented the SIM shadow page table as a PAE 36-bit page ta-
ble structure. The usage of the PAE page table also enabled us
to set NX-bits on pages, even though the 32-bit page tables used
by the guest OS do not support this feature. During generation of
the shadow page table, the system address space is traversed in the
current process page table and mappings of all relevant entries are
added to the SIM shadow page table with appropriate privileges.

In our current prototype implementation, the method we used for
loading a security monitor application into the SIM address space
is to load the application as part of the kernel driver in the sys-
tem address space and then inform the hypervisor to place it into
the SIM address space. The driver performs a hypercall with the
starting address of the monitor code and its size. This hypercall
enables the hypervisor component to allocate entries in the SIM
shadow page table structure and map the virtual address range to
newly allocated host physical memory that holds the monitor code
as the SIM code region. We keep the same virtual address range
so that no address relocation needs to be performed. The allocated
host physical memory is intentionally not correlated with any guest
physical memory, making it impossible for any guest page table to
try to map these regions. In the same manner, the monitor data
region is mapped into the SIM address space as SIM data. In our
current prototype, we only support static data regions. Supporting
dynamic data regions requires additional engineering effort and is
orthogonal to the current design of our framework with a focus on
performance and security.

The final task is to create the relevant routines to perform switch-
ing into the SIM address space. The security application requires
hooking into the kernel for invoking its handlers. Any form of
hooking can be utilized by the handler, and the method of hook-
ing is orthogonal to our framework. For each hook and handler, a
hypercall is performed by the driver to inform the hypervisor about
the hook instruction, the handler’s address and the address where

Figure 6: Run-time memory protection flowchart

to return execution to after the handler executes. For each received
hypercall, the hypervisor component of our framework generates
an entry gate, an invocation check routine, and an exit gate. The
invocation checking routine is modified to verify the invocation in-
struction address to be the hook instruction address provided with
the hypercall. A jump instruction is placed at the end invocation
routine to jump to the provided handler. The exit gate code is also
modified to return execution to the specified address. The address
of the entry gate is returned, so that the driver can modify the hook
to divert execution to the entry gate.

4.2 Run-time Memory Protection

At run time, attacks may attempt to breach the security enforced
by the SIM framework by changing the virtual memory mapping
in the system address space, or introducing a new virtual memory
mapping. Rather than checking the guest page table entries for se-
curity violations whenever the guest CR3 is switched to a new page
directory address, we ensure the security of the SIM framework by
verifying memory protection whenever a guest page table entry is
propagated to the shadow page table maintained by the hypervisor.
Figure 6 illustrates the memory protection in our prototype.

Whenever a page fault occurs for the shadow page tables being
used, a VMExit is called and trapped by KVM. The guest virtual
address (GVA) for which the page fault occurred is identified by
reading the guest CR2 register. We first check whether a process
shadow page table or the SIM shadow page table is active. If the
process shadow page table is active, we check whether the virtual
address is in a reserved region (the address space reserved for SIM).
If it is, it indicates a malicious memory access because this region
is already allocated by the guest OS. We simply skip the instruction
without doing anything, emulating the effect as if reading and writ-
ing succeeded. If the memory region is not reserved, we extract the
guest page table entry (PTE) by traversing the current guest page
table. If the PTE is not valid, we inject a page-fault into the guest,
causing the OS to handle a regular page-fault situation. If it is valid,
we then check whether the guest PTE is illegally trying to attempt
to map the faulting GVA to guest physical memory containing en-
try or exit gates. In case of an illegal mapping attempt, we skip the
instruction without doing anything. In case of a valid mapping, we
update the process shadow page table. We ensure that the appropri-
ate memory protection bits, such as write-protection, are enabled
for PTE’s updated in the shadow page table.

If the page-fault occurs while the SIM shadow page table is ac-

Table 1: Monitor Invocation Overhead Comparison
Monitor type Avg. time (� sec) Std. dev. (� sec)

SIM approach 0.469 0.051

Out-of-VM approach 5.055 0.132

tive, it must be due to accessing the kernel code, kernel data or user
space regions in SIM since other SIM-specific code and data were
already mapped in the initialization phase. Therefore, we traverse
the current guest page table’s system address space to search for
the page table entry (PTE) corresponding to the faulting address.
If the PTE entry is valid, in other words, the page is mapped to a
valid guest frame number, we identify the host frame number and
update the SIM shadow page table by inserting a corresponding
PTE. However, we ensure that the mapped page does not have the
execution privilege and has complete read-write access. If the PTE
is invalid or is indicated as not present, it means that the guest OS
possibly has paged-out the region. We currently cannot handle this
case because it requires the untrusted guest OS to handle the page-
fault. This is a violation of the security requirement (S4) because
an attacker may change the behavior of guest page fault handler
or insert its own. Our approach is to skip the instruction as if it
succeeded without any effect. This problem can be overcome by
having the hooking routine access these required memory regions
before invoking the entry gate, causing all potentially paged-out
frames to be paged-in before entering the SIM address space.

5 Experimental Evaluation
5.1 Monitor Invocation Overhead

We performed micro benchmarks to compare the overhead in
invoking an SIM monitor with an out-of-VM one. We measured the
time required to switch to the monitor code from a hook and then
switch back. For this reason, we implemented null event handlers
that return immediately without performing any useful task.

For measuring our SIM framework, we implemented a secu-
rity monitor whose handler only calls the corresponding exit gate.
Hence, we could measure the monitoring overhead by invoking the
entry gate, which caused a transition from the system address space
to the SIM address space and back.

For measuring the out-of-VM overhead, we developed a simple
inter-VM communication mechanism that enables a driver residing
in the untrusted VM to invoke code of a driver placed in the trusted
VM. Due to space constraints, we omit the implementation details.
We measured the time taken from the hook being executed, initi-
ating the communication from the driver in the untrusted VM to
receiving execution back with a response from the trusted VM.

Table 1 shows the results of our micro benchmarks. Invoking the
SIM monitor is almost 11 times faster than the out-of-VM monitor.
We acknowledge that the overall performance gain will also de-
pend on the processing time required for each invocation. A moni-
tor that is frequently invoked with a small amount of processing in
each invocation (i.e., fine-grained monitoring) should benefit from
the SIM framework. In cases where the monitor is less frequently
invoked and a large amount of processing is performed in each in-
vocation, our SIM approach may have less performance advantage.
However, this experiment only shows the switching overhead be-
tween the monitored system and the security monitor, leaving out
additional performance penalties out-of-VM approaches may face
due to external introspection costs. The experimental results in
the Section 5.2.1 will show a more practical comparison of per-
formance overhead by taking into account both switching and in-
trospection costs for a real-world security monitoring application.

5.2 Security Application Case Studies
We developed two security applications using the SIM frame-

work to perform a more elaborate and practical evaluation of the
performance advantages of the SIM approach over an out-of-VM
approach. We first developed a process creation monitor using our
SIM framework and the out-of-VM approach. The monitor inter-
cepts the creation of each process in the untrusted domain and al-
lows execution if the name of the process is contained in a white-
list. Micro benchmarks on this application will not only take the
monitor invocation overhead into account, but also consider any
overhead introduced due to introspection performed by the out-of-
VM monitor. Section 5.2.1 shows performance evaluation using
this application. Although micro benchmark tests allow compari-
son of overhead introduced for monitoring individual events, it does
not show the impact of monitoring on an overall system where sev-
eral events are monitored continuously. Since system call events
occur frequently, we developed a system call monitoring tool and
performed macro benchmarks on a number of representative appli-
cations running in the monitored guest VM. We provide evaluation
of SIM using this application in Section 5.2.2.

5.2.1 Process Creation Monitor
The process execution monitor that we developed works simi-

larly to the application presented in Lares [16]. We hooked the
NtCreateSection system call in Windows by modifying the
System Service Descriptor Table (SSDT). This system call is al-
ways invoked when a new process is created. The seventh argument
to the system call is the handle related to the executable file, which
lets the executable’s name to be determined. Although the identifi-
cation of the executable’s name from the handle is straightforward
using Windows kernel functions, we had to traverse the kernel data
structures directly to extract this information in both the SIM-based
and out-of-VM approach-based security monitors.

The security monitoring tool first extracts the ETHREAD struc-
ture of the current thread of the current process by traversing the
Thread Information Block (TIB) pointed to by the FS segment se-
lector. The ETHREAD structure is traversed to extract the EPROCESS
structure related to the current executing process that performed the
system call. We then traverse the object handle data structures to
identify the object relevant to the object handle sent as an argu-
ment to the NtCreateSection system call. Once this object is
identified as a file, the path name is extracted and compared with
a list of allowed process images predefined in the tool. Depending
on whether it is allowed or not, the original system call handler is
called or skipped with a failure indication, respectively.

The SIM-based tool was written to directly access the system ad-
dress space to traverse kernel data structures. However, the out-of-
VM version requires introspection like functionality. Since KVM
does not come with an introspection API, we implemented a lim-
ited form of introspection functionality in KVM ourselves. A driver
in a guest VM calls a hypercall to map a page in its current system
address space to the physical frame corresponding to a virtual ad-
dress in the system address space of another VM. We were able to
support this functionality in the hypervisor by simply updating the
shadow page table corresponding to the guest VM’s current guest
page table with the requested mapping.

The performance micro benchmark results of the process exe-
cution monitor are provided in Table 2. We compared the perfor-
mances of the SIM-based and the out-of-VM monitor with a tra-
ditional monitor that resides in the guest VM without any isola-
tion. The out-of-VM version has almost 700% overhead over the
traditional one. Our analysis revealed that the additional overhead
beyond the invocation cost was due to additional hypercalls made
for introspection purposes. With our SIM-based implementation,

Table 2: Process creation monitor performance results
Monitor type Average time Relative overhead

(� sec) (%)
Traditional 3.487 ×

Out-of-VM approach 28.039 690.5%
SIM approach 3.967 13.7%

Table 3: System call tracing macrobenchmarks
Benchmark Bare Out-of-VM SIM

Bare approach approach
Memory Latency 10.42 MAcc/s 84.58% 7.97%
HTML Render 1.12 pg/s 52.42% 5.83%
File Compress 3.4 MB/s 3.97% 0.59%
File Encrypt 20.56 MB/s 7.85% 0.89%
File Decrypt 78.21 MB/s 2.53% 0.45%

HDD 15.29 MB/s 41.68% 3.74%
Text Edit 82.73 pg/s 128.84% 9.64%
Average × 46.10% 4.15%

we only incurred an overhead of 13.7%, which is magnitudes lower
than the out-of-VM approach. This overhead is primarily due to the
cost of switching address spaces, which also invalidates the proces-
sor TLB cache, requiring additional memory accesses to page table.
The results show that, besides reducing switching costs (as shown
in Section 5.1), our SIM approach provides significant gains in per-
formance in practical settings by providing the ability to access the
monitored kernel data structure directly rather than the costly intro-
spection methods used by out-of-VM approaches.

5.2.2 System Call Tracing

To evaluate the performance advantages of using SIM when fre-
quent invocations are necessary, we developed a system call mon-
itoring security tool and measured the run-time overhead on a sys-
tem using a set of macrobenchmarks. To hook every system call oc-
curring in the guest VM, we modified the SYSENTER_EIP MSR.
In our prototype, we did not perform any specific system call in-
spection but read the stack to emulate the processing time a system
call check would require.

For our SIM-based tool, we modified the MSR to point to code
snippet that disables interrupts, jumps to the entry gate for the sys-
tem call handler inside the monitor and upon return from the exit
gate, jumps to the original system call handler. The system call
handler code in the SIM extracts the userland stack address from
register values saved on the stack by the entry gate. The handler
stores the system call number together with a fixed number of ar-
guments on the stack in a circular queue statically allocated in the
SIM data region. After every 10,000 system calls, a hypercall is
made to output a trace of the system calls via the SIM APIs.

In the out-of-VM approach, we pointed the SYSENTER_EIP
MSR to a code snippet that performs a hypercall with the syscall
number and the current userland stack address (that contains the
arguments of the system call). The hypercall initiates communica-
tion with a driver in another VM that performs introspection on the
userland stack to retrieve the arguments. The driver places the sys-
tem call information in the circular queue which is sent to a kernel
log after every 10,000 calls.

For performing the macrobenchmarks, we chose PCMark 05 [18]
as the benchmarks suite. We did not include any graphics or audio
tests because the drivers in KVM mostly emulate these hardware
components. We first ran the benchmark in a guest VM without
any system call monitoring tool installed. Then we performed the
same tests with our SIM-based monitoring tool and the out-of-VM

tool. The results are shown in Table 3. Regardless of applications,
the SIM approach had overhead a magnitude less than the out-of-
VM approach. The overhead varied significantly among the ap-
plications for both the SIM and the out-of-VM versions, which was
primarily due to the varying rate of system call invocations. The av-
erage overhead introduced by SIM was 4.15% compared to 46.10%
of the out-of-VM version.

Since we did not parse the system call arguments based on their
types, the amount of introspection required by the out-of-VM ap-
proach was fairly limited. Only one introspection VMCall was
required per system call. In a full-fledged system call tracer that
utilizes the argument type information, the overhead for introspec-
tion will have a significant impact on performance and our SIM
approach should then show an even larger degree of performance
advantage over out-of-VM approaches.

6 Related Work
Virtualization technology has played an important role in sys-

tems security. The security benefits gained by using virtualization
has been first studied in [12,15]. Several approaches have then been
proposed to use virtual machines for providing security in produc-
tion systems [6, 7, 13, 16, 19]. In general, these approaches utilize
the advantage of isolation from the guest VM, and monitor some
properties in the guest system to provide security. While passive
monitoring has been widely used in the past, Lares [16] recently
proposed the method of actively monitoring events in a guest VM.
Lares provides the framework of inserting hooks inside the guest
OS that can invoke a security application residing in another VM
when a particular event occurs. The design of Lares enables com-
plex and large security tools such as Antivirus programs [20] or
intrusion detection systems to run on the security VM. However,
the cost in communicating an event notification from one VM to
another via the hypervisor makes it inappropriate for use in fine-
grained active monitoring. Our approach is similar to Lares in in-
serting hooks inside the kernel code to invoke a monitor and pro-
vides the same security benefits. However, in our approach the
monitor invocation does not require the hypervisor to be involved
and the monitoring code executes with kernel-level privileges in
the same guest VM. Moreover, we have the entire kernel address
space visible to the monitor’s address space, whereas Lares-like
approaches would incur additional costs for requesting the hyper-
visors to map in memory belonging to another VM.

Previously most approaches used paravirtualization or software-
based virtualization. The recently introduced hardware virtualiza-
tion features have gained attraction in the security research commu-
nity. One recent approach that uses hardware virtualization tech-
nology is Ether [4]. The goal of Ether is to a provide a transparent
malware analysis environment by hiding side-effects introduced by
the dynamic analyzer that monitors the run-time events at the fine-
grained level. By using various features in Intel VT and carefully
introducing only privileged side-effects in the guest VM, Ether can
intercept accesses to these side-effects and hide them from the mal-
ware. While transparency is very important for offline malware
analysis environments to prevent malware from evading analysis,
it is not so for production systems. As any other security system
installed in a production system, the kernel-level instrumentation
and entry and exit gates of our mechanism are visible to the mal-
ware. The threat model in this scenario is the neutralization of the
security mechanism instead of evasion. Our security requirements
are, therefore, targeted towards this threat.

Our SIM framework can be considered as a method for enabling
inlined-reference monitoring(IRM) for the kenel where the in-lined
monitor is protected using hardware features. IRM has been widely
adopted as a faster method of ensuring safety properties in pro-

grams by including the monitor inside the program it is monitor-
ing. This is a far more efficient way than to have a reference mon-
itor that resides in the kernel for user-space programs, or in the
hypervisor for kernel-space programs. Traditional approaches of
ensuring the integrity of the monitor itself for IRM techniques has
been to ensure specific data-flow and control-flow safety properties
throughout the program. For example, SFI [22] (Software Fault
Isolation) is a method for having untrusted program share the same
address space and provide isolation. This is achieved by rewrit-
ing specific store operations at compile time so that the address is
masked in a way that it cannot write to an address region. SFI is
well suited for application programs that can be modified during
compile time. Achieving it for the kernel, which might have vary-
ing policies, is a hard problem. Control Flow Integrity (CFI) [1]
instruments control-flow instructions with checks and their possi-
ble targets with labels at compile-time so that at run-time the checks
enforce control-flow to be in the static CFG of the program. Since
CFI covers all control-flow instructions, it also prevents circum-
vention of any of its checks. XFI [5] is an extensible fault isola-
tion framework that provides fine-grained byte level memory ac-
cess control. These features along with the protection of the XFI
monitoring code is achieved by combining SFI and CFI. Finally,
WIT [2] (Write Integrity Testing) provides protection from memory
corruption attacks by verifying whether targets of write operations
are valid by comparing with a statically and dynamically defined
color table. Since write operations also encompass control-data, it
provides integrity of monitoring code as well as protection from
control-flow attacks without requiring CFI. Our approach of SIM
provides the same isolation of the monitoring code in the kernel
without having to guarantee properties such as SFI or CFI for all
kernel level code.

7 Conclusion
In this paper, we have presented SIM, a general-purpose Secure

In-VM Monitoring framework that by design provides the same
security guarantees of out-of-VM monitoring and yet incurs similar
low performance overhead of in-VM monitoring. We described the
design of SIM and presented a comprehensive security analysis.

We have implemented a prototype SIM on KVM, and performed
benchmarks on two representative security monitoring applications
to compare the SIM approach with a typical out-of-VM one. Our
microbenchmark results show that the SIM framework can reduce
monitoring overhead by almost 11 times if only monitor invoca-
tion time is considered. The microbenchmarks on an introspection-
heavy security application shows that SIM only introduces an over-
head of 13.7% compared to 690.5% for an out-of-VM approach.
In terms of the overall overhead on a system with a large num-
ber of event hooks and hence frequent invocations of the monitor,
SIM keeps the overall overhead below 10% while an out-of-VM
approach has overhead as high as 128%.

Acknowledgments
The authors would like to thank Artem Dinaburg for his help and

support during the implementation and the anonymous reviewers
for their constructive feedback. This material is based upon work
supported in part by the National Science Foundation under grants
no. 0716570 and 0831300, and the Department of Homeland Secu-
rity under contract no. FA8750-08-2-0141. Any opinions, findings,
and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of the
National Science Foundation or the Department of Homeland Se-
curity.

8 References
[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti.

Control-flow integrity. In Proceedings of the ACM
Conference on Computer and Communication Security
(CCS), 2005.

[2] P. Akritidis, C. Cadar, C. Raiciu, M. Costa, and M. Castro.
Preventing memory error exploits with wit. In Proceedings
of the IEEE Symposium on Security and Privacy, 2008.

[3] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen and the
art of virtualization. In Proceedings of the Symposium on
Operating System Principles, October 2003.

[4] A. Dinaburg, P. Royal, M. Sharif, and W. Lee. Ether:
Malware analysis via hardware virtualization extensions. In
In Proceedings of The 15th ACM Conference on Computer
and Communications Security (CCS 2008), Alexandria, VA,
October 2008, 2008.

[5] U. Erlingsson, M. Abadi, M. Vrable, M. Budiu, and G. C.
Necula. Xfi: software guards for system address spaces. In
Proceedings of the 7th Symposium on Operating Systems
Design and Implementation, 2006.

[6] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and
D. Boneh. Terra: A virtual machine-based platform for
trusted computing. In Proceedings of ACM Symposium on
Operating Systems Principles, 2003.

[7] T. Garfinkel and M. Rosenblum. A virtual machine
introspection based architecture for intrusion detection. In
Proceedings of the Network and Distributed Systems Security
Symposium, 2003.

[8] Intel. IA-32 Intel Architecture Software Developer’s Manual
Volume 3B: System Programming Guide, Part 1, January
2006. Order Number: 253668-018.

[9] Intel Virtualization Technology. http://www.intel.
com/technology/virtualization.

[10] X. Jiang, D. Xu, and X. Wang. Stealthy malware detection
through vmm-based Şout-of-the-boxŤ semantic view
reconstruction. In Proceedings of the ACM Conference on
Computer and Communications Security, 2007.

[11] S. T. Jones, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau. Antfarm: Tracking processes in a virtual
machine environment. In Proceedings of the USENIX Annual
Technical Conference, 2006.

[12] N. L. Kelem and R. J. Feiertag. A separation model for
virtual machine monitors. In Proceedings of the IEEE
Symposium on Research in Security and Privacy, 1991.

[13] K. Kourai and S. Chiba. Hyperspector: Virtual distributed
monitoring environments for secure intrusion detection. In
Proceedings of the ACM/USENIX International Conference
on Virtual Execution Environments, 2005.

[14] Kernel based Virtual Machine.
http://www.linux-kvm.org/page/Main_Page.
Last accessed Apr. 20, 2009.

[15] S. E. Madnick and J. J. Donovan. Application and analysis of
the virtual machine approach to information system security
and isolation. In Proceedings of theWorkshop on Virtual
Computer Systems, 1973.

[16] B. Payne, M. Carbone, M. Sharif, and W. Lee. Lares: An
architecture for secure active monitoring using virtualization.
In Proceedings of the IEEE Symposium on Security and
Privacy, 2008.

[17] B. D. Payne, M. Carbone, and W. Lee. Secure and flexible
monitoring of virtual machines. In Proceedings of the 23rd
Annual Computer Security Applications Conference, pages
385 – 397, December 2007.

[18] Futuremark PCMark 05. http:
//www.futuremark.com/products/pcmark05/.
Last accessed Apr. 20, 2009.

[19] N. L. Petroni and M. Hicks. Automated detection of
persistent kernel control-flow attacks. In Proceedings of the
ACM conference on Computer and Communications
Security, 2007.

[20] P. Szor. The Art of Computer Virus Research and Defense.
2005.

[21] VMWare Virtualization Technology.
http://www.vmware.com/.

[22] R. Wahbe, S. Lucco, T. Anderson, and S. Graham.
Interprocedural control dependence. ACM SIGOPS
Operating Systems Review, 27(5):203–216, 1993.

[23] C. Wright, C. Cowan, S. Smalley, J. Morris, and
G. Kroah-Hartman. Linux security modules: General
security support for the linux kernel. 2002.

