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Abstract 

To address the emerging needs of applications that require 
access to and retrieval of multimedia objects, we are develop- 
ing the Multimedia Analysis and Retrieval System (MARS) 
in our group at the University of Illinois [13]. In this paper, 
we concentrate on the retrieval subsystem of MARS and 
its support for content-based queries over image databases. 
Content-based retrieval techniques have been extensively 
studied for textual documents in the area of automatic in- 
formation retrieval [24, 21. This paper describes how these 
techniques can be adapted for ranked retried over image 
databases. Specifically, we discuss the ranking and retrieval 
algorithms developed in MARS based on the Boolean re- 
trievaI model and describe the results of our experiments 
that demonstrate the effectiveness of the developed model 
for image retrieval. 

1 Introduction 

While advances in technology allow us to generate, transmit, 
and store large amounts of digital images, and video, re- 
search in content based retrieval over multimedia databases 
is still at its infancy. Due to the difficulty in capturing 
the content of multimedia objects using textual annotations 
and the non-scalability of the approach to large data sets 
(due to a high degree of manual effort required in defin- 
ing the annotations), the approach based on supporting 
content-based retrieval over visual features has become a 
promising research direction. This is evidenced by several 
prototypes[25, 18, 12, 131 and commercial systems[‘l, l] that 
have been built recently. Such an approach can be summa- 
rized as follows: 

1. Computer vision techniques are used to extract visual 
features from multimedia objects. For example, color, 
texture, shape features for images, and motion param- 
eters for video. 

2. For a given feature, a representation of the feature and 
a notion of similarity measure are determined. For ex- 
ample, color histogram is used to represent color fea- 

ture, and intersection distance is used for similarity 
measure. 

3. Objects are represented as a collection of features and 
retrieval of objects is performed based on computing 
similarity in the feature space. The results are ranked 
on the similarity values computed. 

Since automatically extracted visual features (e.g., color, 
texture etc.) are too low level to be useful to the users in 
specifying their information needs directly, content-based re- 
trieval using visual features requires development of effective 
techniques to map higher-level user queries (e.g., retrieve 
images containing field of yellow flowers) to visual features. 
Mapping a user’s information need to a set of features ex- 
tracted from textual documents have been extensively stud- 
ied in the information retrieval literature [24]. This pa- 
per describes how we have generalized these approaches for 
content-based retrieval over image features in the Multime- 
dia Analysis and Retrieval System (MARS) being developed 
in our group at the University of Illinois. 

1.1 Information Retrieval Models 

Before we describe the retrieval approach used in MARS, we 
briefly review the retrieval process in modern information re- 
trieval (IR) systems [24]. In an IR system, a document is 
represented as a collection of features (also referred to as 
terms). Examples of features include words in a document, 
citations, bibliographic references, etc. A user specifies his 
information needs to the system in the form of a query. 
Given a representation of the user’s information need and 
a document collection, the IR system estimates the likeli- 
hood that a given document matches the users information 
needs. The representation of documents and queries, and 
the mechanism used to compare their similarity forms the 
retrieval model of the system. Existing retrieval models can 
be broadly classified into the following categories: 

Boolean Models Let (~1, rz, . . . , ok} be the set of terms in 
a collection. Each document is represented as a binary- 
valued vector of length k where the ith element of the 
vector is assigned true if ri is assigned to the docu- 
ment. All elements corresponding to features/terms 
not assigned to a document are set to false. A query 
is a Boolean expression in which operands are terms. 
A document whose set of terms satisfies the Boolean 
expression is deemed to be relevant to the user and all 
other documents are considered not relevant. 
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Vector-based Models Let {TI,~,...,T~} be the set of 
terms in a collection. Both documents and queries are 
represented as a vector of k dimensions where each ele- 
ment in the vector corresponds to a real-valued weight 
assigned to a term. Several techniques have been pro- 
posed to compute these weights, the most common 
being tf.idf weights [24], where if refers to the term 
frequency in the document, and idf is a measure pro- 
portional to the inverse of its frequency in the collkc- 
tion. Similarly, many similarity measures have been 
proposed between the document and the query [24] the 
most common being the cosine of the angle between 
the document and the query vectors. 

PI :obabilistic Retrieval Models In these models the 
system estimates the probability of relevance of a docu- 
ment to the user’s information need specified as a query. 
Documents are ranked in decreasing order of the rele- 
vance estimate. Given a document and a query, the 
system computes P(R]d, q) which represents the prob- 
ability that the document d will be’deemed relevant 
to query q. Using Bayes’ thkorem and a set’ of inde- 
pendence assumptions about the distribution of terms 
in documents these probabilities are computed and the 
documents are ranked based on these probabihties. , 

Traditionally, commercial IR systems have used, the 
Boolean model. Systems based on Boolean retrieval par- 
tition the set of documents into either being relevant or not 
relevant and do not provide any estimate as to the rele- 
vance of any document in a partition to the users informa- 
tion need. To overcome this problem, many variations of 
the term-weighting models and probabilistic retrieval mod- 
els that provide ranked retrieval have been developed. The 
boolean model has also been extended to allow for ranking 
in the text domain (p-norm model [23]). Vector-based mod- 
els and probabilistic retrieval models are in a sense related 
and provide similar performance. The primary difference 
being that while the vector models are ad hoc and based on 
intuitive reasoning, probability based models have ,a more 
rigorous theoretical base. 

1.2 Overview of the Retrieval Approach used in 
MARS 

With a large number of retrieval models in the information 
retrieval literature, MARS attempts to exploit this research 
for content-based retrieval over images. In MARS, .an im- 
age is represented as a collection of low-level image features 
(e.g., color features, texture features, sh,ape and layout fea- 
tures extracted automatically) as well as a manual text de- 
scription of the image. A user graphically constructs a query 
by selecting certain images from the collection. A user may 
choose specific features from the selected images. For ex: 
ample, using a point-and-click interface a user can specify 
a query to retrieve images similar to an image A in color 
and similar to an image B in texture. A user’s query is in- 
terpreted as a Boolean expression over image featuresand a 
Boolean retrieval model (adapted for retrieval over images) 
is used to retrieve a set of images ranked based on the de- 
gree of match. Boolean queries provide a natural interface 
for the user to formulate and refine conceptual queries to the 
system using lower-level image features. For example, high 
level concepts like fields of yellow flowers or a sunset by a 
lake can be expressed as a boolean combination of lower level 

features. Such a mapping of high to low level concepts can 
be provided explicitly by the user or alternatively learned via 
user interaction by a relevance feedback mechanism. Being 
able to support such conceptual queries is critical for tha 
versatility of large image databases. 

To see how MARS adapts the Boolean model for image 
retrieval, consider first a query Q over a single feature 8’4 
(say color represented as a color histogram). Let H(I) be tho 
color histogram of image I and H(Q) be the color histogram 
specified in the query and dist(.H(I), H(Q)) be the distance 
between the two histograms. The simplest way to adapt the 
Boolean model for image retrieval is to associate a degree of 
tolerance 6; with each feature Fi such that: 

Imatches Q = true,if dist(H(I), H(Q)) < & 

= false,if dist(H(I),H(Q)) > 6; 

Given the above interpretation of a match based on a single 
feature Fi, an image I matches a given query Q if it satisfies 
the Boolean expression associated with Q. For example, let 
Q = 211 h us, where vr is some color histogram, and us is a 
texture representation. Image I matches Q if its color and 
texture representations are within the specified tolerances of 
v1 and vs. 

While the above straightforward adaptation of Boolean 
retrieval cau be used, it suffers from many potential prob- 
lems. First, it is not clear how the degree of tolerance &, 
for a given feature Fi, should be determined. If an a priori 
value is set for &, it may result in poor performance - twp 
images Ir and Is at the distance of 6; - E and 8; f c from 
a query q, where E + 0, are essentially very similar will bo 
considered as very different by the system. ,While 11 will 
be considered relevant to the query, Is will be considered as 
not relevant. This problem may be alleviated if instead of 
fixed a priori values for tolerance for a given feature, SC was 
computed dynamically for each query based on the imaga 
collection. However, the approach would still suffer from 
the fundamental restriction,of the basic Boolean retrieval in 
that it produces a unranked set of answers. 

To overcome the above discussed problems, in developing 
MARS, we have adopted the following two extensions to the 
basic Boolean model that produce ranked list of answers. 

Fuzzy Boolean Retrieval distance between the image 
and the query feature is considered to be the degree 
of membership’of the image to the fuzzy set of im- 
ages that match the query feature. Fuzzy set theory is 
used to interpret the Boolean query and the images are 
ranked based on the their degree of membership in the 
set. 

Probabilistic Boolean Retrieval distance between the 
image and the query feature is considered to be a mea- 

7 sure of probability that the image matches the user’s 
information need. Feature independence is exploited 
to compute the probability of an image satisfying the 
query which is used to rank the images. 

Unlike the basic Boolean model, both the fuzzy and prob- 
abilistic Boolean models provide a ranked retrieval over the 
image sets. Furthermore, as one expects from Boolean mod- 
els, both the fuzzy and the probabilistic Boolean models 
rank images based on queries corresponding to semantically 
equivalent Boolean expressions in the same order. 

The rest of the paper is developed as follows. In SCC- 
tion 2, we describe the set of basic image features used in 
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MARS including technique used to measure similarity be- 
tween images based on a single feature. Section 3 is devoted 
to defining the Boolean retrieval models used in MARS and 
discussing the issues related to their efficient implementa- 
tion. Section 4 discusses normalization of the low level fea- 
tures necessary to combine with each other. Experimental 
results that show the retrieval effectiveness of the developed 
models are discussed in Section 5 and finally Section 6 of- 
fers concluding remarks including a discussion of the work 
we are pursuing in the future. 

2 Image Features Used in MARS 

The retrieval performance of an image database is inherently 
limited by the nature and the quality of the features used 
to represent the image content. In this section, we briefly 
describe the image features used in MARS and the corre- 
sponding distance functions used for comparing similarity of 
images based on the features. The discussion is kept short 
since the purpose of this section is only to provide a back- 
ground for discussing issues related to normalization and 
ranked retrieval based on Boolean queries. Detailed discus- 
sion on the rationale and the quality of the chosen features 
can be found in references [6, 26, 13, 15, 221. 

Color Features: To represent color, we choose the HSV 
space due to its de-correlated and uniform coordinates. The 
color feature is represented using a color histogram. Since V 
coordinate is easily affected by the lighting condition, we use 
only HS coordinates to form an 8 x 8 two-dimensional his- 
togram. To measure distance between two color histograms, 
we compute the amount of non-overlap between the two his- 
tograms which is defined as follows: 

i=N 

distcolDr = 1- Cmin(Hr(i),IIz(i)) (1) 
i=l 

where Hr and Hz are the two histograms and N is the num- 
ber of bins used in the histogram. The above intersection 
based measure of distance provides an accurate and efficient 
measure of (dis)similarity between two images based on their 
color [25]. 

Texture Features: To represent texture of an image, a 
COD (coarseness, contrast, and direction&y) texture fea- 
ture representation has developed in [26, 61. Coarseness is 
a measure of granularity of the texture, i.e. fine vs coarse. 
Contrast represents the distribution of luminance of the im- 
age and is defined as 

contrast = ~/(ad)“~ (2) 

where a4 = u4/u4. Here c and 7~4 are the standard devi- 
ation and the fourth central moment of the luminance, re- 
spectively. Directionality is a measure of how “directional” 
the image is. Using the above definitions of CCD, texture is 
represented as a set of three numbers. A problem with the 
above described CCD features is that it is sensitive to noise. 
We have developed and implemented an enhanced version of 
CCD by using histogram-base features [13]. Experimental 
results show that our enhanced version is much more robust 
and accurate than the original definition of CCD [13]. 

Shape Features: Shape of an object in an image is repre- 
sented by its boundary. A technique for storing the bound- 
ary of an object using modified Fourier descriptor (MFD) is 

described in [22]. To measure similarity between two shapes, 
the Euclidean distance between two shape features can be 
used. In [22], however, we proposed a standard deviation 
based similarity measure that performs significantly better 
compared to the simple Euclidean distance. The proposed 
representation and similarity measure provide invariance to 
translation, rotation, and scaling of shapes, as well as the 
starting point used in defining the boundary sequence. 

Layout Features: The features discussed so far only de- 
scribe the global properties of the image. Besides these 
global properties, MARS also supports features that de- 
scribe the layout of color and texture in an image. To extract 
the layout features, the whole image is first split into 5 x 5 
sub-images. Then color and texture features are extracted 
from each sub-image and stored in the database. For color 
layout, a two-dimensional HS histogram is constructed for 
each sub-image, similar to the procedure described earlier. 

Since the enhanced CCD representation uses a histogram 
based measure, it is not suitable for texture layout. This is 
because the small sub-images may not produce good his- 
tograms. Instead, a wavelet-based representation is used, in 
which the mean and the standard deviation at 10 sub bands 
are used to represent the texture of each sub-image. The 
Euclidean distance is used to compute the texture similar- 
ity distance for the corresponding sub-images. A weighted 
sum is then used to form the texture layout distance. 

3 Retrieval Models Used In MARS 

This section will discuss how to support the Boolean query 
based on the simple feature distances. MAR8 supports two 
mechanisms for generating the ranking of Boolean queries - 
the first is based on the fuzzy interpretation of the distance 
and the second is based on a probabilistic interpretation. 
In the discussion below, we will use the following notation. 
Images in the collection are represented as 11, Iz, . . . ,I,. 
Features over the images are represented as FI, Fz, . . . , Fp, 
where Fi is used to represent both the name of the fea- 
ture as well as the domain of values that the feature can 
take. For example, say FI is the color feature which is rep- 
resented in the database using an HS histogram. In that 
case, Fl is also used to represent the set of all the color his- 
tograms. A query is a Boolean expression Q(vr,vs,. . . , v,), 
where v~,vp,...,v,, are variables. Each variable vi takes 
its value from some domain Fj. For example, a query, 
Q(vr,vz) = vr A vz may be a query where vr has a value 
equal to the color histogram associated with image 12 and 
212 has a value of the texture feature associated with Is. The 
query Q then represents a desire to retrieve images whose 
color matches that of image 12 and whose texture matches 
that of image IS. 

3.1 Fuzzy Boolean Model 

Let Q(v1, ~2,. . . , vn) be a query and I be an image. In the 
fuzzy retrieval model, a query variable vi is considered to 
be a fuzzy set of images I such that the distance between 
the variable vi and the corresponding feature in I is used ’ 
to compute the degree of membership of I in the fuzzy set. 
That is: 

f&l) = 1 - dist(1, v;) (3) 

where dist(l,vi) represents the distance measure between 
vi and the corresponding feature in the image I. With 
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the above internretation of the distance measure between 
the image feat&e and the feature specified in the query, a 
Boolean query Q is interpreted as an expression in fuzzy 
logic and fuzzy set theory is used to’compute the de&e of 
membership of an image to the fuzzy set represented by the 
query Q. Specifically, the degree of membership for a query, 
Q is computed as follows: 

Not: f~=~ot~~ (I) = 1 - f~, (I) t 

Consider for example a queryQ: 

Q = (VI V 02 v ‘us) i (y V (us A G)) 

The membership of an image I in the fuzzy set correspond- 
ing to Q can be determined as follows: I 

fQ(I) = m%m4fu, (0, fu, (,Wv, m, (4) 

m&v, (I)P4fv&~), ft;, (m 

The value fvvi(I) in the above ‘formula is determined us- 
ing the equation (3). Once the membership value of the 
image in the fuzzy set associated with the query have been 
determined, these vaIues are used to rank the images, where 
a higher value of fQ(I) re p resents’s better match of the im- 
age I to the query Q. We refer to the fuzzy Boolean model 
as model Fl. I 

3.2 Probabilistic Boolean Model 

Let Q(u1, v2, . . . , vn) be a query, ‘and I be an image. In 
the probabilistic Boolean model, the distance &st(l,v;) be- 
tween the query variable vi and the corresponding feature in 
the image is used to compute the probability of the image 1 
matching the query variable vi, denoted ,by P(vi]l). These 
probability measures are then used to compute the proba- 
bility that 1 satisfies the query Q(v1, ~2,. . . , v~) (denoted 
by P(Q(v1, ~2,. . . , v,,)]1)) whijl is in turn used to rank the 
images. To be able to compute P(Q(vl,vz,,. . . ,v,,)]l), an 
assumption of feature independence is made. That is, we 
assume that for all variables v;,vj such that the domain of 
vi is not the same as the domain of uj, the following holds: 

P(Vi A VjlI) ,= P(Vill) X P(VjII) 

Before the probabilistic Boolean model can be used, how- 
ever, we need to map the distance measure between a query 
variable and’the image into a measure ofprobability that the 
image matches the query variable. There are many ways iir 
which such a mapping can be achieved. Three such mech- 
anisms (depicted in Figure 1) implemented in MARS are 
described below. 

P(Vil1) = ’ l 
( 

‘1 ! 
1+ c&&(1, Vi), T Z > 

x2 (5) 

P(ViII) = 1 - diSt(l, Vi) (6) 

P(VilI) = 1 - (diSt(l,‘Vi))2 (7) 

It is easy to verify that for each of the above interpre- 
tations of probability, the range of P(ui]I) is [0, 11. In ad-, 
dition, when dist(l,v;) equals 0 (best match), P(v;II) = 1; 

Figure 1: Distance to probability transformation functions. 

when dist(l,ui) equals 1 (worst match), P(v;lI) = 0. Also, 
P(vilI) is a monotonic decreasing function of dist(l,vi), 
which fits the physical meanings of dist(l, v;) and P(vilZ). 

The choice of the mapping has an impact on the image 
ranking and as a result on the retrieval performance. We will 
discuss this further in the section on experimental results, 
We will refer to the three different probabilistic Boolean 
models resulting from the above equations as models Pl, 
P2; and P3 respectively. 

Once distance between image and the query variable’has 
been converted to a probability measure, we next need&o 
estimate the probability that the image satisfies the Boolean 
query Q (~1, ~2, . . ..v.,), denoted by P(QII). If Q is a dis- 
junction (Q = Qr V Qz), following the laws of probability, 
P(& V Qzll) can be estimated as follows: 

P(Ql V Q2ll) = P(Q,II) +P(QaII) - P(Q, A &all) 

Since all probabilities are conditioned on the image 1, we 
will omit this for brevity from now on. Similarly, P(-Q) 
can be computed as follows: 

+&I) = 1 - J’(Ql ) 

To compute conjunction queries, i.e.’ Q = Qr A Qs 
it is desirable that Qi and Qz are independent so that 
p(Q) = P(QdP(Qd. H owever even though features arc 
independent, the sub queries &I and 9s may not be indepen- 
dent. To see this consider for example, a query Q = Qr AQs, 
where Qr = (vr V vz) and Qz = (VI V VJ). In such a case 
since Qr and Qz are not independent, P(Ql A Qz) cannot 
be replaced by the product of P(Q,) and P(Q2). 

The’above motivates us to convert the query into n dis- 
junctive normal form (DNF) in which a query is represented 
as a disjunction of conjuncts’. Once the query has been con- 
verted to a DNF expression, we can compute the probability 
of animage satisfying the query based on the probability 
that the image satisfies query feature variables. We illus- 
trate how computation is done using an example. Consider 
aqueryQ=(v~Avs)V(v~Avs)V(v~A~vsAv4). 

‘The number of disjuncts, in general, may be exponential in tho 
size of the query. However, if queries are reasonably small, WC do not 
consider this to be an issue. In MARS, we overcome the oxponon- 
tiality problem by forcing users to input Boolean queries in the DNF 
form when the probabilistic model is used to rank images. 
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p(Q) = P((v1 A v2) v (vl A v3) v (vl A -Iv3 A lJ4)) 

= P(u1 A ~2) + P(v1 A “3) + P(v1 A -103 A 7~4) 

-P(vlAv2AvlAv3)-P(vlAv2AvlA~v3Av4)-~(vlAv3AvlA~v3Av4) 

-l-P(vlAv2AvlAv3AvlA--rv3Av4) 

= P(vl)P(v2) + P(vl)P(v3) + P(vl)(l - P(v3))P(v4) 

-P(vl)P(v2)P(vS) - P(vl)P(v2)(1- P(v3))P(v4) - P(fdse) + P(false) 

= P(vl)P(v2) + P(zJlpJ(v3) + P(vl)P(v4) - P(zJl)P(v3)P(v4) 

-P(vl)P(v2)P(v3) - P(vl)P(v2)P(v4) + P(vl)P(v2)P(v3)P(v4) 

Figure 2: Example Derivation 

In the derivation shown in figure 2, we have made the 
assumption that each pair of variables v;,vj are over inde- 
pendent features. For example, vi may be a color histogram 
and uj may be the shape feature. Notice that, in general, 
the two variables may be over the same feature space. For 
example, in a query Q = vr A ~2, VI and vz may corre- 
spond to two color histograms. Our retrieval results (see 
Section 5) show that even if these variables are considered 
as independent, the resulting retrieval performance is quite 
good. Developing a feature dependence model and incorpo- 
rating it in the system may improve retrieval performance 
further and is an important extension to our current work. 

3.3 Finding the Best N Matches 

While the above developed Boolean retrieval models pro- 
vide a mechanism for ranking the given images based on the 
query, for the approach to be useful, techniques must be de- 
veloped to retrieve the best N matches efficiently without 
having to rank each image. Such a technique consists of two 
steps: 

l retrieve images in a rank order based on each feature 
variable vi in the query. 

l combine the results of the single feature variable queries 
to generate ranked retrieval for the entire query. 

The images can be efficiently retrieved ranked based on 
a single feature by maintaining an index based on that fea- 
ture. Since all features in MARS are represented as feature 
vectors with multiple feature elements, retrieval of images 
ranked based on a single feature requires search using the 
values of all the elements in the feature vector. For exam- 
ple, the color feature in MARS is a 64element vector (8 x 8 
histogram). An alternative is to use several single-attribute 
indexes, one for each feature element of the feature vec- 
tor. This is extremely inefficient in terms of the number of 
I/O accesses needed for the search. The other alternative 
is to use one or more of the existing multidimensional data 
structures [16, 10, 41. H owever, these data structures do 
not scale to the high dimensionality of the feature vectors 
used in MARS. Moreover, since these data structures can 
only be used to index Euclidean feature vectors, they can- 
not be used for features defined over non-Euclidean distance 
measures (e.g. color histograms for which the intersection 
distance metric is used). Instead MARS uses an incremental 
clustering approach described in [19]. 

Once efficient ranked retrieval based on a single feature 
has been achieved, the ranked lists are normalized and then 

the normalized ranked lists are merged into a ranked set of 
images corresponding to a query. The normalization pro- 
cess used in MARS is described in the following section. To 
merge the normalized ranked lists, a query Q(vr , vr , . . . , vn) 
is viewed as a query tree whose leaves correspond to single 
feature variable queries. Internal nodes of the tree corre- 
spond to the Boolean operators. Specifically, nodes are of ei- 
ther of the three forms: A(v1, ~2,. . . , v~) which is a conjunc- 
tion of positive literal; A(v1, ~2,. . . ,v*, ~v,+r . . . , YV,,), 
which is a conjunction consisting of both positive and neg- 
ative literals; and V(v1, ~2,. . . , v~) which is a disjunction of 
positive literala. The query tree is evaluated as a pipeline 
from the leaf to the root. Each node in the tree provides to 
its parent a ranked list of images, where the ranking corre- 
sponds to the degree of membership (in the fuzzy model), 
or the measure of probability (in the probabilistic model). 
For example, in the fuzzy model, a node n in a tree provides 
to its parent a ranked list (I,fpueryInI(l)), where query(n) 
corresponds to the query associated with the node n. 

The algorithms used to combine the ranked lists of im- 
ages from the child to generate a list for parents depend 
upon the retrieval model used. The algorithms for the fuzzy 
model are discussed in the Appendix. The corresponding al- 
gorithms for the probabilistic model are more complex and 
not included due to space restrictions. They can be found 
in [17]. 

4 Feature Sequence Normalization 

The normalization process serves two purposes: 

It puts an equal emphasis on each feature element 
within a feature vector. To see the importance of this, 
notice that in texture layout representation, the fea- 
ture elements may be totally different physical quanti- 
ties. For example, one feature cau be a mean while the 
other can be a standard deviation. Their magnitudes 
can vary drastically, thereby biasing the Euclidean dis- 
tance measure. This is overcome by the process of 
intra-feature normalization. 

It maps the distance values of the query from each 
atomic feature into the range [OJ] so that they can be 
interpreted as the degree of membership in the fuzzy 
model or relevance probability in the probability model. 
While some similarity functions return a value in the 
range of [0, 11, e.g. the color histogram intersection, 
others do not, e.g. the Euclidean distance used in tex- 
ture layout. In the latter case the distances need to be 
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converted to the range of [0, l] before they can be used. 
This is referred to as inter-feature normalization. 

4.1 Intra-feature Normalization 

This normalization process is only needed for vector based 
feature representation, as in the case of wavelet texture fea- 
ture representation. In other cases, such as color histogram 
intersection, where all the feature elements are defined over 
the same physical domain, no intra-feature normalization is 
needed. 

For the vector based feature representation, let F = 

[fl,f2,--,fj,-2 fN] be the feature vector, where N is the 
number of feature elements in the feature vector and 
Il,IZ,..., 1~ be the images. For image Ii, we refer the 
corresponding feature F a~ Fi = [fi,l, fi,2, . . . . fi,j ,..., fi,N]e 

Since there are M images in the database, we can form a 
M x N feature matrix F = fi,j, where fi,j is the jth feature 
element in feature vector Fi. Now, each column of F is a 
length-M sequence of the jth feature element, represented 
as Fj. Our goal is to normalize the entries in each column to 
the same range so as to ensure that each individual feature 
element receives equal weight in determining the Euclidean 
distance between the two vectors. One way of normalizing 
the sequence Fj is to find the maximum and minimum values 
of Fj and normalize the sequence to [0, l] as follows: 

where minj and mozj refer to the smallest and the biggest 
Vdlle Offi,j, i = 1,2,..., M. Although simple, this is not a 
desirable normalization. Considering the sequence (1.0, 1.1, 
1.2, 1.3, loo}, if we use (8) to normalize the sequence, most 
of the [0, l] range will be taken away by a single element 
100, and most of the useful informat,ion in (1.0, 1.1,1.2,1.3} 
will be warped into a very narrow range. 

A better approach is to use the Gaussian normaliza- 
tion. Assuming the feature sequence Fj to be a Gaussian 
sequence, we compute the mean mj and standard deviation 
Qj of the sequence. We then normalize the original sequence 
to a N(O,l) sequence as follows: 

f. . = fi’j; mj w 

It is easy to prove that after the normalization according 
to (9), the probability of a feature element value being in the 
range of [-1, l] is 68%. If we use 3uj in the denominator, ac- 
cording to the 3-u rule, the probability of a feature element 
value being in the range of [-1, l] is approximately 99%. In 
practice, we can consider all of the feature element values are 
within the range of [-l,l] by mapping the out-of-range values 
to either -1 or 1. The advantage of this normalization pro- 
cess over (3) is that the presence of a few abnormally large 
or small values does not bias the importance of the feature 
element in computing the distance between feature vectors. 

4.2 Inter-feature Normalization 

Intra-feature normalization ensures equal emphasis of each 
feature element within a feature. On the other hand, inter- 
feature normalization ensures equal emphasis of each feature 
within a composite query. 

The feature representations used in MARS are of various 
forms, such as vector based (wavelet texture representation), 

histogram based (histogram color representation), irregular 
(MFD shape representation). To map the distance compu- 
tations of the heterogeneous features to the same scale and 
into the range [O,l] the following inter-feature normalization 

rity 

process is used for each feature Fi. 

1. For any pair of images Ii and 1j, compute the simila 
distance D(<,j) between them: 

'D(i,j) = di+'r~,F~,) ( 

i,j = l,..., M, 

i # i 

10) 

where Fzi and Fxj are the feature representations of 
images 1; and 1j. 

2. For the C,” - MX(M--1) - possible distance values be- 
tween any pair of i&ages, treat them as a value se- 
quence and find the mean m and standard deviation u 
of the sequence. Store m and Q in the database to be 
used in later normalization. 

3. After a query Q is presented, compute the raw (u:- 
normalized) similarity value between Q and the images 
in the database. Let 81, . . . . sM denote the raw similarity 
values. 

4. Normalize the raw similarity values as follows: 

9; -m 
8: = - 

3u 01) 

As explained in the intra-feature normalization section, 
this Gaussian normalization will ensure 99% of 3; to 
be within the range of [-&I]. An additional shift will 
guarantee that 99% of similarity values are within [OJ]: 

s: + 1 8:’ = - 
2 

After this shift, in practice, we can consider all the ml- 
ues are within the range of [OJ], since an image whose 
distance from the query is greater than 1 is very dis- 
similar and can be considered to be at a distance of 1 
without affecting retrieval. 

4.3 Weights for feature and feature elements 

After the ’ intra- and inter-feature normalization processes 
discussed above, the feature elements within a feature as 
well as the features within a composite query are of equal 
weights. Thisobjective equality allows us to further nsse 
ciate subjective unequal intra- and inter-feature weights for 
a particular query. 

Inter-feature weights associated with the composite 
query reflect the user’s different emphasis of the atomic fca- 
ture in the composite query. For example, for a composita 
query based on color and texture, a user may put the weight 
for color equals 90% and weight for texture equals 10%. The 
support of different inter-feature weights enables the user to 
specify his/her information need more precisely. 

Intra-feature weights associated with each feature vec- 
tor reflect the different contributions of the feature elements 
to ‘the feature vector. For example, in the wavelet texture 
representation, we know that the mean of a sub-band may 
be corrupted by the lighting condition, while the standard 
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(a) Sample 1 (b) Sample 2 (c) Sample 2 

Figure 4: Three sample images used in conjunction with 
known relevant sets to evaluate precision and recall 

deviation of a sub-band is independent of the lighting con- 
dition. Therefore the user may want to put more weight 
on the standard deviation feature element, and less weight 
on the mean feature element. The support of the differ- 
ent intra-feature weights enables the system to have more 
reliable feature representation and thus better retrieval per- 
formance. 

In MARS, we have explored many techniques to associate 
subjective weights with feature elements and feature vec- 
tors. Associating subjective weights improves the retrieval 
performance considerably. Due to page limitations we do 
not discuss this any further. Instead we refer the readers 
to [21, 201. 

5 Experimental Evaluation 

For our experiments we used a collection of images of an- 
cient African artifacts from the Fowler Museum of Cultural 
History. We used a total of 286 images of such artifacts. A 
sample of our collection is shown as the result of a query in 
figure 3. 

To demonstrate the retrieval quality of our system, we 
chose 13 typical conceptual queries, three examples of which 
are “all stools” , “stone masks” or “golden pots”. Sample 
images satisfying these three concept queries are shown in 
figure 4. 

To determine the relevant answer sets for each of the 
conceptual queries, we browsed through the collection and 
marked those images relevant to a concept. The concept 
queries were then mapped into a Boolean formulation that 
best represents them (e.g. stone masks are expressed as 
‘texture=image X and shapezimage Y’). 

As in the text based retrieval systems, the retrieval per- 
formance is defined based on precision and recall [24, 21. 

Precision is the ratio of the number of relevant images 
retrieved to the total number of images retrieved. 

Perfect precision (100%) means that all retrieved im- 
ages are relevant. 

Recall is the ratio of the number of relevant images re- 
trieved to the total number of relevant images. 

lrelevant retrieved1 

jrelevantl 

Perfect recall (100%) can be obtained by retrieving the 
entire collection, but the precision will be poor. 

Figure 5: Precision for various levels of recall averaged over 
13 queries 

We have conducted experiments in which we calculate 
precision at various levels of recall. These results are re- 
ported in figure 5. 

As we can see from the figure, the probability mod- 
els consistently outperform the fuzzy model at equal recall 
or precision points. An interpretation of this is that the 
fuzzy model includes only partial information. For and (or) 
queries, the fuzzy model uses the min (max) operation that 
selects an image based on the worst (best) degree of mem- 
bership in both operand sets. This ignores any contribu- 
tion of the other operand set in computing the final degree 
of membership of an image. The probability model instead 
combines the information provided by both terms in a better 
way. This allows for an improved ranking as more informa- 
tion about an image is captured. 

We can also see that Pl is the best among the three prob- 
ability models. This relates to figure 1 where Pl < P2 < P3 
at the same distance. Model Pl has a sharper drop in prob- 
ability for distance less than 0.414. This has the effect of 
“warping” space close to the optimum match (Pr = 1) which 
results in slight ranking differences in the and and or oper- 
ations. By this effect, good matches are drawn closer by 
a larger factor which has the effect of increasing precision. 
Pl gives more importance to images ranking good in any of 
the operand sets while models P2 and P3 give progressively 
less importance to good rankings, trying to equate them to 
worse rankings in the hope that the combination might be 
better. A faster decreasing function will negatively impact 
recall. In the limiting case ([l - dist(l,v~)]Prp + co) preci- 
sion will be 1, but recall very low since even small distance 
reductions between a feature and the query feature will re- 
sult in a large probability drop. As a result, similar images 
(unless they match perfectly) would rank lower and thus not 
be returned. 

6 Related Work 

Content-based retrieval of images is an active area of 
research being pursued independently by many research 
teams. Similar to MARS, most existing content-based im- 
age retrieval systems also extract low-level image features 
like color, texture, shape, and structure [6,26, 13, 7, 15, 12, 
18, 251. However, compared to MARS the retrieval tech- 
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Figure 3: Screen shot of the query “texture or shape” with a stool image as parameter 

niques supported in some of these systems are quite primi- 
tive. Many of these systems support queries only on single 
features separately. Certain other systems allow queries over 
multiple feature sets by associating a degree of tolerance 
with each feature. An image is deemed similar to the query 
if it is within the specified tolerance on all the query fea- 
tures. As discussed in section 1.2, this approach has many 
drawbacks. 

Some commercial systems have been developed. QBIC 
[7], standing for Query By Image Content, is the first com- 
mercial content-based Image Retrieval system. Its system 
framework and techniques had profound effects on later Im- 
age Retrieval systems. QBIC supports queries based on ex- 
ample images, user-constructed sketches and drawings and 
selected color and texture patterns, etc. The color features 
used in QBIC are the average (R,G,B), (Y,i,q),(L,a,b) and 
MTM (Mathematical Transform, to Munsell) coordinates, 
and a Ic element Color Histogram. Its texture feature is 
an improved version of the Tamura texture representation 
[26], i.e. combinations of coarseness, contrast and direction- 
ality. Its shape feature consists of shape area, circularity, 
eccentricity, major axis orientation and a set of algebraic 

moments invariants. QBIC is one of the few systems which 
take into account high dimensional feature indexing. In its 
‘indexing subsystem, the KL transform is first used to per- 
form dimension reduction and then Z-tree is used as the 
multi-dimensional indexing structure. 

Virage is a content-based image search engine developed 
at Virage Inc. Similar to QBIC, Virage [l] supports visual 
queries based on color, composition (color layout), texture, 
and structure (object boundary information). But Virago 
goes one step further than QBIC. It also supports arbitrary 
combinations of the above four atomic queries. Users can 
adjust the weights associated with the atomic features ac- 
cording to their own emphasis. In [l], Jeffrey et al. further 
proposed an open framework for image management. They 
classified the visual features (“primitive”) as general (such 

as color, shape, or texture) and domain specific (face recog- 
nition, cancer cell detection, etc.). Various useful “primi- 
tives” can be added to the open structure depending on the 
domain requirements. To go beyond the query-by-example 
mode, Gupta and Jain proposed a nine-component ~UWV 
fangupge framework in [9]. 

Photobook [18] is a set of interactive tools for brows- 
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ing and searching images developed at the MIT Media Lab. 
Photobook consists of three sub-books, from which shape, 
texture, and face features are extracted respectively. Users 
can then query based on corresponding features in each of 
the three sub-books. In its more recent version of Photc- 
book, FourEyes, Picard et al. proposed to include human 
in the image annotation and retrieval loop [14]. The moti- 
vation of this was based on the observation that there was 
no single feature which can best model images from each 
and every domain. Furthermore, human perception is sub- 
jective. They proposed a “society of models” approach to 
incorporate the human factor. Experimental results show 
that this approach is very effective in interactive image an- 
notation. 

In [ll] the authors propose an image retrieval system 
based on color and shape. Their color measure is based on 
the RGB color space and euclidean and histogram intersec- 
tion measures are used. For shape, they use a polygonal de- 
scription that is resilient to scaling, translation and rotation. 
The proposed integration uses a weighted sum of shape and 
color to arrive at the final result. They address high dimen- 
sional feature indexing with a clustering approach, where 
clusters are build upon database creation time. 

To date, no systematic approach to answering content 
based queries based on image features has emerged. To ad- 
dress this challenge, similar to the approaches taken in infor- 
mation retrieval system, the approach we have taken in de- 
veloping MARS is to support an “intelligent retrieval” model 
using which a user can specify their information need to the 
image database and the database provides a ranked retrieval 
of images to user’s request. The retrieval model supported 
is a variation of the Boolean model based on probabilistic 
and fuzzy interpretation of distances between the image and 
the query. 

Recently, in parallel to our work, the problem of process- 
ing boolean queries over multimedia repositories has also 
been studied in [5] and [3]. These approaches have, how- 
ever, restricted themselves to a boolean model based on a 
fuzzy interpretation of boolean operators. Our experimental 
results illustrate that the probabilistic model outperforms 
the fuzzy model in terms of retrieval performance (see fig- 
ure 5). Furthermore, the query evaluation approach used in 
MARS differs significantly from the approaches developed 
in [5, 31. As will become clear in the appendix, MARS 
follows a demand-driven data flow approach [S]; i.e., data 
items are never produced before they are needed. So the 
wait in a temporary file or buffer between operators in the 
query tree for each item is minimized. This model is efficient 
in its time-space-product memory costs [S]. In this model, 
the operators are implemented as iterators which can be ef- 
fectively combined with parallel query processing. On the 
other hand, the strategy presented in [5] requires interme- 
diate storage of data items at internal nodes of the query 
tree to evaluate the best N answers. This is also true for the 
approach followed in [3]. 

7 Conclusions 

To address the emerging needs of applications that require 
access to and retrieval of multimedia objects, we are develop- 
ing the Multimedia Analysis and Retrieval System (MARS) 
in our group at the University of Illinois [13]. In this pa- 
per, we described the retrieval subsystem of MARS and its 
support for content-based queries over image databases. To 

support content-based retrieval, in MARS many visual fea- 
tures are extracted from images- color, texture, shape, color 
and texture layout. Information retrieval (IR) techniques, 
modified to work over visual features, are then used to map 
user’s queries to a collection of relevant images. Specifi- 
cally, extended boolean models based on a probabilistic and 
fuzzy interpretation of boolean operators are used to support 
ranked retrieval. Our results show that using IR techniques 
for content-based retrieval in image databases is a promising 
approach. 

The work reported in this paper is being extended in 
many important directions. In our current system, we have 
concentrated on adapting the boolean retrieval model for 
content-based retrieval of images. Many other retrieval 
models that have a better retrieval performance compared 
to the boolean approach have been developed in the IR liter- 
ature for textual databases [24,2,27]. We are currently ex- 
ploring how these models can be adapted for content-based 
image retrieval. Furthermore, our current work has concen- 
trated on image databases. We are also generalizing our ap- 
proach to content-based retrieval in multimedia databases. 
Finally, we are also exploring the use of relevance feedback 
techniques in our extended boolean model. 
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A Fuzzy model evaluation algorithms 

In this appendix, we present the algorithms used to compute 
the nodes in the query tree in the case of the fuzzy Boolean 
retrieval model. For simplicity we restrict ourselves to com- 
pute,only binary nodes. That is, we assume that the query 
node Q has exactly two children, A, and B. Algorithms 
are presented for the following three cases: Q = A A B, 
Q = A A +? and Q = A V B. Notice that we do not present 
an algorithm for only an unguarded negation (i.e., Q = -A) 
or a negation in the disjunction (i.e., Q = (A V +I)). Prcs- 
ence of an unguarded negation or negation in a disjunction 
does not make much intuitive sense. Typically, a very large 
number of images will satisfy the query and if such a nega- 
tion is present in the query, it is best to rank each image 
and sort the answer set based on this ranking. We therefore 
only consider a restricted notion of negation when it appears 
within a conjunctive query. 

In describing the algorithms the following notation is 
used. 

An image I is represented by two components, a key 
(I.&age) and a degree of membership (Idegree). The 
key identifies the image and the degree of membership 
describes the match between the query feature and the 
database entries. 

A’ and B are assumed to be image streams from the 
child nodes. Each of these streams support the opcra- 
tions Peek and GetNezt which look at and extract the 
next best element based on the degree of memborship 

( i.e. they are retrieved in sorted order by degrea of 
membership). 
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. Associated with each query node Q are three sets S,, 
sb and S,,,. Initially each of these sets are empty. The 
query node Q extracts images from the child streams 
(that is, A and B) and may buffer them into S, and Sb. 
The set S,.. acts as a buffer of the images for the query 
node Q. Once a query node Q is able to estimate the 
degree of membership of image I for Q (that is, fQ(I)), 

it places I in S,,.. Thus, I.degree refers to the degree 
of membership of I according to Q, where I E S,,,. 

In describing the algorithms below we omit some criti- 
cal error and boundary checking for clarity purposes, which 
have been addressed in the implementation. 

A.1 Conjunctive Query with Positive Sub queries 

The following algorithm computes the set of images ranked 
on their degree of membership to the query Q = A A B, 
given input streams A and B which are ranked based on 
the degree of membership of images in A and B. In the 
algorithm, at each stage, the best image out of the sources 
A and B is chosen and added to a set of images S, and sb 
which function as buffers of images already observed from 
the corresponding stream. When an image is found that was 
already observed in the other stream, the loop is terminated 
since this is the next best image according to the query node 
Q. The resulting image is returned (that is, placed in the 
set S,.,) with the degree equal to the minimum degree of 
the image in both streams. 

Algorithm CetNextAnd-Fnzzy(A, B) 
;returns: next best image in A and B 
uhile (TRUE) 
I,,= Peek (A), Ib= Peek (Bl 
if I,,.degree > Ib.degree then 
I,= GetNext 
s, = s, u Ia 
if I,.image c Sb then ;image already seen in B 

Ib= image sb &image] 
exit loop 

end if 
else 
if &degree > Ldegree then 
Ib" GetNext 
&, = sb u Ib 
if Ib.imoge c S,, then ;image already seen in A 

I,,= image sa [zb.image] 
exit loop 

end if 
end if 

end while 
; reached upon finding a common image in S, and Sb 
I.image =I,.image 
id?;: _= yin(&d;gree, &degree) 

a- 0, b - Ibr &es = .%e. u I 

return I 

A.2 Conjunctive Query with Negative Sub query 

We next develop the algorithm for computing the query 
Q = A A -IB. The algorithm is different compared to the 
one developed for the conjunctive query with no negative 
sub query. Unlike the algorithm discussed earlier, only the 
stream for the node A is used in computing the degree of 
membership of images according to A A 47. Images are 
retrieved from the input stream A in ranked order. For a 
given image I its degree of membership in the set associated 
with -tB is evaluated using the following function: 

Probe{& query): the Probe function returns the 
degree of membership of the image identified by 
I.image in the fuzzy set associated with the query. 

Let I be the image in S,., with the highest degree ac- 
cording to Q and let I, be the next best image in rank order 
in stream A. An image is the next best match if either of 
the two conditions hold: 

1. If I-degree > &degree then I is the next best match 
according to Q since all other images to follow will 
have the degree of membership according to Q less than 
I..degree. 

2. If Idegree 2 I,.degree but l&egree < Probe(Io, -3) 
then I, is the next best match according to Q since the 
membership of I, is better than all the images already 
in sr,,, and is also higher than all other images that 
will be produced in the future. 

To find the next best match according to Q, As stream is 
traversed until one of the two conditions become true. 

Algorithm GetNextAnd-Not-Fozxy(A, B) 
;returas: next best image in A and not B 
while CIRug) 

IO= Peek (A) 
if S,,, # @A I,.degree < MaximamOegree(S,,,) then 

I = image from .!& pith meximtm degree 
S - sre. - I re* - 
exit loop 

else 
I,,= GetNext ; consume from A 
&image = &image 
Ib.degree = Probe&, -B) 
if &degree 5 Ib.degree then 

I = I, 
exit loop 

else 
S x-es = St-., u Ib 

end if 
end if 

end while 
return I 

A.3 Disjunctive Query 

The following algorithm computes the set of images ranked 
on their degree of membership to the query Q = A V B, 
given input streams A and B which are ranked based on the 
degree of membership of images in A and B. The algorithm 
essentially consists of a merge but makes sure that an image 
that was already retrieved is ignored. This accomplishes the 
desired maze behavior of the degree function associated with 
the disjunction in the fuzzy model. 

Algorithm GetNextOrJnxxy(A. B) 
;retnrns: next best image in A or B 
flag = TRUE 
while (flag) 
I,= Peek (A), Ib= Peek (B) 
if I,,.degree > Ib.degree then 

I= G&Next(A) 
else 
I= G&Next(B) 

end if 
flag =FALSB 
if I.image c S,,, then 
flag = IRUE 

end if 
end while 
S l-es = &es u I 
return I 
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