
Robust Cardinality and Cost Estimation for Skyline Operator

Surajit Chaudhuri∗ Nilesh Dalvi† Raghav Kaushik∗

∗Microsoft Research, Redmond. †University of Washington, Seattle.

Abstract

Incorporating the skyline operator inside the relational
engine requires solving the cardinality estimation and the
cost estimation problem, hitherto unaddressed. We propose
robust techniques to estimate the cardinality and the compu-
tational cost of Skyline, and through an empirical compar-
ison, show that our technique is substantially more effec-
tive than traditional approaches. Finally, we show through
an implementation in Microsoft SQL Server that skyline
queries can substantially benefit from our techniques.

1 Introduction

Database searches often return empty answers when not
all of the user requirements are satisfied. This is the case
when a user wants to search for the best flight, the perfect
house or used car. In such cases, a user wants to specify
a set of preferences. Traditional database engines or query
languages do not have support for preferences. Recently,
many extensions to the SQL language have been proposed,
such as Preference SQL [6]. An example query with prefer-
ences looks as follows:

SELECT *
FROM UsedCars
WHERE make = ’Toyota’
PREFERRING mileage LOW, price LOW

This query represents a user looking for a used car with
make Toyota preferring low mileage and low price. The
query returns all Toyota cars which are not “dominated”,
in that there is no other Toyota car that has a lower
mileage and a lower price.

The Skyline operator has been proposed [15, 16, 5] to
implement preference queries. Skyline takes a set of prefer-
ences as input, and returns only those tuples for which there
is no other tuple that is better with respect to all preferences.

While the Skyline operator can be expressed in SQL, it is
widely recognized that an efficient implementation requires

introducing an operator inside the database engine for com-
puting the skyline [15]. Several physical implementations
for the Skyline operator have been proposed [15, 16, 5] that
significantly out-perform a direct implementation of skyline
using SQL. However, very little attention has been focused
on the other challenges associated with implementing sky-
line as an operator (both logical and physical) within a rela-
tional engine, namely cost and cardinality estimation.

We begin by discussing how it is not sufficient to have
skyline as the top-most operator in an operator tree, and
how the interaction of skyline with other relational opera-
tors can result in it being pushed down leading to significant
performance benefits. This motivates the need for robust
cardinality and cost estimation for the skyline operator. We
observe properties of skyline that distinguish it from tradi-
tional relational operators such as selection. We show, for
instance, that unlike selections where adding a new selec-
tion can only decrease the cardinality, adding a new prefer-
ence can increase the skyline cardinality, indeed up to the
size of the entire relation. We argue that these properties in-
troduce unique challenges in estimating the cardinality and
cost of the skyline operator.

We next address the cardinality estimation problem. We
begin by proving a theorem on the cardinality of skyline
when the data points are generated from an arbitrary distri-
bution. This provides us with a basis for cardinality estima-
tion in conjunction with any synopsis structure that captures
this distribution, such as single- and multi-dimensional his-
tograms, samples, wavelets, etc. Even under the attribute
value independence assumption commonly used in query
optimizers, skyline cardinality estimation poses substantial
challenges. Prior work [1, 3] has addressed the problem
of skyline cardinality estimation but only under strong as-
sumptions in addition to attribute value independence, such
as assuming that all attributes are unique and completely
ordered. Since categorical attributes are very common, this
assumption is severely restrictive. Our first contribution is
to apply the above theorem to relax this assumption and de-
rive cardinality estimates for categorical attributes.

Our next contribution is to relax the attribute value inde-
pendence assumption. While independence assumptions

1

are known to lead to erroneous cardinality estimates, the
problem is further exacerbated in the case of the Skyline
operator because of its distinctive properties noted above.
We use uniform random sampling to address correlation in
the data. We show that a naive application of sampling in-
curs high errors, and that sampling has to be used with care
for skyline cardinality estimation.

We then propose cost estimation solutions for two of the
physical implementations proposed so far in prior work —
Block-nested-loop Algorithm [15], and Block-nested-loop
with Presorting [5]. Prior work [15] has shown that the
skyline computation is CPU-intensive. Hence, we focus
on estimating the CPU cost of skyline computation. The
CPU cost estimation requires an estimate of the number of
comparisons performed during the execution of the skyline
operator. We provide a solution to this novel estimation
problem. Our solution has the interesting property that any
cardinality estimation algorithm can be plugged in to work
with it. Hence, further refinements of our cardinality esti-
mation solution and other approaches to skyline cardinality
estimation can all be integrated into our cost estimation so-
lution.

We study our solutions through an empirical evaluation
where we vary both the data distribution and the physical
implementation of the skyline. We show that our cost es-
timation and cardinality estimation techniques yield tolera-
bly low errors across the spectrum. We also implement our
techniques in Microsoft SQL Server and demonstrate that
our techniques yield substantial benefits in terms of query
answering time.

In Section 2, we define the skyline operator and review
the physical implementations we focus on in this paper. We
motivate the need for robust cardinality and cost estimation
in Section 3. We discuss techniques for estimating Skyline
cardinality in Section 4 and the cost of Skyline in Section 5.
Section 6 reports experiments, Section 7 related work, and
we conclude in Section 8.

2 Skyline Operator and Physical Implemen-
tation

In this section, we review the definition of the Sky-
line operator and previously proposed physical implemen-
tations.

2.1 Preferences

Let T be any relational table with a set of attributes. A
preference is a partial order on the set of tuples. In this pa-
per, we consider two ways to specify a preference: using
a predicate preference and using a numeric preference. A
predicate preference is a predicate on T , e.g. (color=’red’)

and (price < 10K), that defines a partial order where all tu-
ples that satisfy the predicate come before all other tuples.
A numeric preference is defined over a numeric attribute
using an ordering of the domain, where a tuple appears be-
fore another if it has a lower value as per the ordering. An
example of numeric preference is (price LOW). It defines a
partial order where a tuple comes before another tuple if it
has smaller price.

2.2 Skyline

Let P be a set of preferences. We say that a tuple t1
dominates another tuple t2 with respect to P if it appears
before t2 (i.e., is “better” than t2) with respect to at least one
atomic preference, and is not below (i.e., is at least as good
as) t2 in all other preferences. Given table T , the Skyline of
T with respect to preferences P , denoted as SP (T), is the
set of tuples in T that are not dominated by any other tuple.

Example 2.1 Consider a set of cars with attributes <price,
year>. Let the tuples in this set be {<15000,1999>,
<18000,2004>, <20000,2003>}. A skyline on price LOW
would return the cheapest car, i.e., <15000,1999>. A
skyline on year HIGH would return the newest car, i.e.,
<18000,2004>. On the other hand, a skyline on price
LOW, year HIGH would return two cars, {<15000,1999>,
<18000,2004>}, since each of these cars is better than the
other on at least one attribute. The car <20000,1997> is
not returned as it is dominated by the car <18000,2004>.

2.3 Algorithms for Computing Skyline

The problem of computing the Skyline has also been
studied under the name of maximum vector problem [8].
While this work assumed that the whole set of points fit into
memory, several algorithms suitable for a database system
have been proposed [15, 16, 5, 7, 12].

In this paper, our focus is on algorithms that can be
directly implemented in today’s commercial database sys-
tems without the addition of new access methods (which
would require addressing the associated challenges of main-
tenance with updates, concurrency control, etc.). Specif-
ically, we consider the Block-nested-loop Algorithm [15],
and the Block-nested-loop with Presorting [5]. There are
other algorithms that include Bitmap and Index[16], NN
[7] and BBS [12] which use specialized data structures like
extensions of B-trees and R∗-trees. We leave the cost anal-
ysis of these algorithms and indexes for future work.

2.3.1 Block-nested-loop Algorithm [15] (BNL)

This algorithm keeps a window of incomparable tuples in
main memory. When a tuple p is read from the input, p
is compared to all tuples of the window and, based on this

2

comparison, p is either eliminated or placed into the win-
dow. In the latter case, all the tuples in the window that
p dominates are discarded. At the end, everything that re-
mains in the window constitutes the Skyline. It is possi-
ble that the window grows bigger than the main-memory,
in which case, parts of the window are written to a tempo-
rary file. Further iterations of the algorithm are required to
process the temporary file.

2.3.2 Block-nested-loop with Presorting [5](SRT)

This algorithm first sorts the data using an appropriately
chosen monotone scoring function and then applies the BNL
algorithm. The advantage of sorting is that dominating
items are likely to appear at the top and hence, the window
size is expected to be small. Secondly, a data item cannot
be dominated by anything thats below it. Hence, anything
that is added to the window is in Skyline and can be imme-
diately outputted. Also, only buckets need to be stored in
the window rather than all data items.

3 Why Implement Skyline in the Relational
Engine?

Prior work [6] has shown that while skyline does not add
to the expressive power of SQL, an implementation of sky-
line using SQL is expensive, and that a physical implemen-
tation that is cognizant of the properties of skyline improves
performance significantly. However, we are still left with
the possibility that skyline is the top-most operation in an
operator tree, executed after all other operations below.

This section addresses this issue. We argue from three
points of view — the interaction of skyline with other op-
erators, the mapping of the logical operator to physical im-
plementations, and the usage of skyline in subqueries —
that a tighter integration of the skyline operator into the
relational server is required. We then move on to outline
the challenges in implementing the skyline operator in Mi-
crosoft SQL Server 2005.

3.1 Interaction of Skyline with Other Operators

We think of the skyline operator as an aggregating oper-
ator in the spirit of the relational groupby operator. Just like
groupby, the result size of skyline can vary anywhere from
very few tuples to the entire input relation. Owing to this
variation, pushing the skyline computation down can sig-
nificantly improve performance. We illustrate this through
an example.

Example 3.1 Consider a database with two re-
lations, Cars<make, price, year, dealer> and
Dealer<id,location>, where Cars.dealer is a for-
eign key pointing to Dealer.id. Consider the query:

SELECT *
FROM Cars, Dealer
WHERE make = ’Toyota’ and

Cars.dealer = Dealer.id
PREFERRING price LOW

The query performs a join between the Cars and Dealer
tables. If we execute Skyline as the top-most operation after
the join, then the full join has to be evaluated before the
Skyline computation. On the other hand, if we execute the
Skyline before the join, which is a correct transformation in
this example, far fewer tuples will have to be joined with
the Dealer relation. Indeed, if the prices are all unique,
then exactly one tuple will pass the skyline operation, and
hence if skyline is pushed down, only one tuple will have to
be joined with the Dealer relation, resulting in potentially
large savings.

In general, the interaction of skyline with other operators
is reminiscent of the interaction of groupby with other oper-
ators. For example, a skyline operator can be pushed below
a join [15] in many cases, in the same way groupby can. We
review this transformation below.

Consider the relational algebra expression, SP (T1 1

T2), and suppose the following conditions hold: (i) P only
refers to the attributes of T1 and (ii) the join from T1 to T2

is a full join, i.e. every tuple in T1 joins with some tuple
in T2 (for instance, a foreign key join). Then, we have the
following equivalence rule:

SP (T1 1 T2) ≡ (SP (T1)) 1 T2

We can similarly prove other equivalences that capture
the interaction of skyline with other operators, similar to
the equivalences involving groupby.

The key point we make from these transformations is that
a cost-based analysis is needed for the query optimizer to
decide whether to apply the transformation.

3.2 Mapping the Logical Operator to Physical Im-
plementation

We next examine the issue of deciding a physical imple-
mentation for the logical skyline operator. We study this
problem by comparing the running times of the algorithms
introduced in Section 2.3 — the block nested-loop join al-
gorithm (BNL) and the presorting algorithm (SRT). The
SRT algorithm has an extra overhead of sorting, but after
sorting it works faster than BNL. To compare their running
times, we perform a simple experiment. We generate a table
consisting of a million tuples, where each attribute is given
a integer value randomly and independently. We vary the
number of attributes and compare the running times of the
two algorithms. The result is shown in Fig 1. We observe
that there is no single winner and depending on the number

3

 0

 20

 40

 60

 80

 100

 120

 2 3 4 5 6 7 8

R
un

ni
ng

 T
im

e(
se

c)

Number of Atttributes

Running Times of Skyline Algorithms

SRT
BNL

Figure 1. Running times for SRT and BNL on
Numerical Data

of attributes, one algorithm significantly outperforms other.
Thus, even the choice of an optimal physical implementa-
tion necessarily involves a cost based analysis.

3.3 Using Skyline in Subqueries

Finally, having skyline as an operator in the relational en-
gine also gives the user the ability to express queries where
skyline is not the top most operator, such as in a subquery.
The following example query illustrates this.

SELECT *
FROM Cars
WHERE Cars.dealer in

(SELECT id
FROM Dealers
PREFERRING (Dealers.distance LOW),

(Dealers.rating HIGH))

From the above discussion, we can see that a tight in-
tegration of the skyline operator in the relational server is
called for. We next address the challenges involved in such
an implementation.

3.4 Challenges in Implementing Skyline in a Re-
lational Server

Incorporating the skyline operator in a relational server
involves changing the following components of a relational
server. We need to add the physical implementation of the
skyline operator as part of the execution engine. In addi-
tion, we need to change the query optimizer in the follow-
ing ways. We first need to add the algebraic equivalences
that describe the interaction of skyline with other operators.
Since our implementation is in Microsoft SQL Server 2005
(Beta version), we exploit the extensible query optimizer

based on the Cascades framework [4] to integrate the alge-
braic equivalences as transformation rules. We also make
changes to the parser to expose the Preference SQL syntax.

But the crucial component that yields the biggest chal-
lenge is the cardinality and cost estimation modules for the
skyline operator. This paper takes the first step in address-
ing these challenges.

Estimating the cardinality of Skyline operator is more
challenging than other operators for various reasons. First,
it is very sensitive to correlations among attributes. When
the attributes have perfect order correlation, i.e., sorting by
one implies that they are sorted by the others, the Skyline
is just a single tuple. On the other hand, when attributes
have perfect anti-correlation, the Skyline is the whole table.
In general, it could be anywhere in between. The effect
of correlation is much more significant for Skyline than for
selection predicates.

Correlations in numerical attributes do occur frequently
in practice. The higher the age of a car, the higher its
mileage and lower its price. Thus, a Skyline query (age
LOW, mileage LOW) is likely to have significantly fewer
answers than what is obtained using the independence as-
sumption. Similarly, the query (mileage LOW, price LOW)
is likely to have many more answers. Also, users tend to
optimize conflicting goals when specifying preferences. So
user preferences are expected to have anti-correlations.

Also, for Skyline operator, a tuple belonging to the out-
put of Skyline is dependent on every other tuple. This is
unlike selection operator where one can examine a tuple in
isolation and decide if it belongs to the output. A conse-
quence of this is that standard sampling techniques, used
for size estimation in presence of correlations, do not apply
to Skyline.

Similarly, estimating the Skyline computation cost is
more challenging than other physical operators because it
is CPU intensive [15]. It is known that if there is sufficient
memory to hold the Skyline, then Skyline can be computed
using a single scan of the data. However, processing each
tuple in memory requires a large amount of time and this
dominates the cost of a single scan. For instance, on a ran-
domly generated table with 100000 tuples, the total time
taken by BNL algorithm on 5 and 7 dimensions was 1.2 sec-
onds and 21 seconds respectively, while the time taken to
scan the input was just 0.09 seconds.

4 Skyline Cardinality Estimation

In this section, we consider the following problem: given
a table T , and a set of preferences P , compute the ex-
pected size of SP (T). With abuse of notation, we will use
SP (n) to denote the expected size of SP (T) when the size
of the T is n, We will differentiate between (i) numeric
preferences over continuous attributes, e.g. (price LOW)

4

and (mileage LOW) and (ii) predicate preferences like
(color=’red’) and (price between 5K and 10K).

We first describe the current work on cardinality estima-
tion, which assumes that all preferences are independent
and numeric. We then show how to extend them to han-
dle predicate preferences and correlations among attributes.
In this process, we also give a generic expression that com-
putes Skyline cardinality for any given data distribution.

4.1 Independent Numeric Preferences

The problem of estimating the size of Skyline has been
considered [1, 3] when all the preferences are numeric pref-
erences under the further assumption that all attributes are
independent. The assumption of independence of attributes
is standard in the estimates of most of the relational engines.
Under these assumptions, |SP (T)| only depends on the size
of T and the number of attributes in P . Let s(n, d) denote
the expected size of the Skyline with d attributes and n data
points. It is shown [1] that s(n, d) satisfies the following
recurrence:

s(n, d) =
1
n

s(n, d− 1) + s(n− 1, d) (1)

To see why the recurrence holds, consider the tuple that
has the smallest value with respect to the first preference.
For this tuple to be in the Skyline, it must be in the Sky-
line of the remaining preferences. The probability of this is
1
ns(n, d−1) since there are n total tuples and s(n, d−1) of
them are in the Skyline of the remaining preferences. Also,
this tuple cannot dominate any other tuple. So, out of the
remaining n − 1 tuples, s(n − 1, d) are expected to be in
the Skyline. Hence, we get the above recurrence equation.
While there is no closed form for the above formula, its
known [3] that s(n, d) is Θ((ln n)d−1/(d− 1)!).

The above formula does not hold when the set of prefer-
ences P also contains predicate preferences. Eq (1) holds
only under the assumption that no two tuples are equally
good with respect to any preference, i.e. each preference
totally orders the set of tuples. This is completely violated
by predicate preferences which only divide the tuples into
two sets: those tuples who satisfy the predicate and those
who do not. Eq (1) also fails to hold when there are corre-
lations among attributes.

4.2 A general formula

We give the formula for the cardinality of Skyline given
any underlying data distribution for the tuples. We assume
that the tuples are independently and identically distributed
according to some distribution, though attributes may have
correlations between them. Let X1, X2, · · ·Xd be the set
of attributes on which skyline is computed. Without loss

of generality, we assume that the attributes take values be-
tween 0 and 1 and further, each of the attribute is minimized
in the skyline. Let F (x1, x2, · · ·xd) denote the joint distri-
bution function of the d variables, i.e. it denotes the proba-
bility [X1 ≤ x1, · · ·Xd ≤ xd]. Similarly, let f(x1, · · ·xd)
denote the joint density function. In vector notation, we
write them as f(x̄) and F (x̄), where x̄ = (x1, · · · , xd).

To calculate the size of Skyline, let us look at a data item
ti. Suppose it has values x̄ = x1, · · ·xd. Then, for ti to
be in the skyline, none of the other n− 1 data points should
have all the attributes smaller than ti. The probability of this
is (1− F (x̄))n−1. Since ti itself comes from a distribution
with density f(x̄), the probability that a randomly chosen
data point belongs to the Skyline is∫

[0,1]d
f(x̄)(1− F (x̄))n−1dx̄

Since we draw n tuples, by the linearity of expectations,
we get the following result.

Theorem 4.1. Let t1, t2 · · · tn be n tuples drawn from the
above probability distribution. Then, the expected value of
SP (n) is

n

∫
[0,1]d

f(x̄)(1− F (x̄))n−1dx̄ (2)

The above theorem is a generic result that applies to any
data distribution. It gives us a tool to derive the expres-
sion for Skyline cardinality under various settings, when
the preferences are numeric or predicate and independent
or correlated, as we describe in the following sections.

4.3 Independent Numeric and Predicate Prefer-
ences

We now relax the condition of numeric preferences. We
give an expression for the cardinality of the Skyline, still un-
der the independence assumption, when both numeric and
predicate preferences are present.

Let us start with the case when all the preferences are
numeric.

Theorem 4.2. Let s(n, d) denote the cardinality of skyline
over n tuples and d numeric independent preferences. Then,

s(n, d) = n

∫
[0,1]d

(1− x1x2 · · ·xd)n−1dx1 · · · dxd

Proof. (Sketch) We apply Theorem 4.1. Observe that
under independence, f(x1, · · · , xd) can be written as
f1(x1)f2(x2) · · · fd(xd) and F (x1, · · · , xd) can be writ-
ten as F1(x1) · · ·Fd(xd), where fi(xi) is the density and

5

Fi(xi) is the distribution of attribute Xi. Further, we know
that if fi is continuous, then fi(xi) = F ′

i (xi). Substituting
this into Eq (2), and using a change of variable, we obtain
the above expression for s(n, d).

Theorem 4.2 gives us an alternative expression for
s(n, d) that is equivalent to the solution of the recurrence
in Eq (1). The integral has no closed form, but several nu-
merical methods exist to evaluate the integral [14, 17].

Now suppose we want a Skyline when P = {Y1, · · ·Yk,
X1, · · ·Xd}, where Yi are predicate preferences and Xi are
numeric preferences. We assume that Yi is 1 when the pred-
icate is satisfied and 0 otherwise. Let pi denote the selectiv-
ity of the predicate Yi, i.e. the probability that Yi = 1.

We need some notation. Let v ∈ {0, 1}k be any vector
and let vi denote its i component. Define

P1(v) =
∏

i

pvi
i (1− pi)1−vi

P2(v) =
∏

i

p1−vi
i

P1(v) denotes the probability that the attributes
{Y1, · · · , Yk} have value given by the vector v. Sim-
ilarly, P2(v) denotes the probability that the attributes
{Y1, · · · , Yk} have value less than or equal to the vector
v. We have the following result.

Theorem 4.3. Let the set of preferences P be as defined
above. Then, the expected value of |SP (n)| is

n
∑

v∈{0,1}d

∫
[0,1]d

P1(v)(1− P2(v)x1 · · ·xd)ndx1 · · · dxd

The proof borrows ideas from Theorem 4.1 and 4.2. We
omit the details of the proof, but instead give an example.

Example 4.4 Consider a Skyline query (make = ’Toyota’,
year > 2001, price LOW, mileage LOW). It has two
predicate preferences and two numeric preferences. Sup-
pose the predicate make = ’Toyota’ has 0.15 selectivity
and the predicate year > 2001 has 0.4 selectivity. If all
the attributes are assumed to be independent, the expected
cardinality given by Theorem 4.3 is

n

∫
[0,1]2

(f1 + f2 + f3 + f4)dx1dx2

where

f1(x1, x2) = 0.15 ∗ 0.4(1− x1x2)n

f2(x1, x2) = 0.15 ∗ 0.6(1− 0.4 ∗ x1x2)n

f3(x1, x2) = 0.85 ∗ 0.4(1− 0.15 ∗ x1x2)n

f4(x1, x2) = 0.85 ∗ 0.6(1− 0.15 ∗ 0.4x1x2)n

4.4 Relaxing Independence

As we have discussed, there can be large errors in the
estimates of skyline cardinality in presence of correlations
between attributes. The skyline size can vary from a single
tuple (when attributes are perfectly correlated) to the whole
relation (when attributes are perfectly anti-correlated).

We present two techniques to estimate skyline size in the
presence of correlations, sampling and histograms.

Sampling Sampling techniques for selectivity estima-
tion [11] and query size estimation in general [10] have been
known for a long time.

A naive method of sampling is as follows: compute the
Skyline size on a small random sample of the data and
scale it linearly to the actual data size. This does not work
for the reason that the size of the Skyline is not a linear
function of the data size. However, sampling still tells us
something: if the sample has larger Skyline than what we
would expect assuming independence, there must be anti-
correlations among attributes and the Skyline on the whole
data must also be larger that expected.

It is known than when the attributes are independent, the
skyline size on d attributes is Θ(logd n). We found that in
presence of correlations/anti-correlations that are not very
large, the skyline size still grows as some power of log n
(see Section 6). We use this hypothesis to estimate the sky-
line cardinality in the following way: assume that the sky-
line size on a give set of attributes is A logB n. Compute
the skyline on a small sample of the data to estimate the
parameters A and B and use them to calculate the size of
skyline on the whole data. Note that this does not hold near
perfect anti-correlations, when the skyline contains all tu-
ples. However, it still gives us a much better estimate than
simply using independence assumption. We leave the theo-
retical investigation of this behavior for future work.

Histograms Histograms have been extensively studied
in the database community for query size estimation. There
have been various techniques [9, 13] for using and effi-
ciently constructing multidimensional histograms to model
attribute correlations.

In the context of Skyline size estimation, we can use
these structures to estimate the joint distribution function
of the attributes, i.e. the functions F (x̄) and f(x̄) in Eq 2.
The idea is to divide the joint domain of all the attributes
into small buckets and maintain a histogram that counts the
number of points in each bucket. We can then approximate
f(x̄) on a bucket as the fraction of the points in that bucket
and F (x̄) as the fraction of points that lie in buckets below
the given bucket. Thus, we can approximate the integral in
Eq (2). An alternative to maintaining joint histograms is
to use sampling to estimate the number of points in each
bucket, and use that in turn to approximate the joint distri-
bution.

6

5 Skyline Cost Estimation

Costing the Skyline operator is more challenging than
other physical operators because it is CPU intensive. If
there is sufficient memory to hold the Skyline, then Skyline
can be computed using a single scan of the data. However,
processing each tuple in memory requires a large amount of
time as each tuple is compared with all the maximal tuples
found so far.

5.1 Cost estimation for BNL algorithm

We consider the basic BNL algorithm and assume that
the Skyline operator completes after a single scan of data.
There are two components to the cost: the I/O cost of scan-
ning the data and the CPU cost of processing it. The I/O
cost can be computed in a straightforward manner from the
size of the relation. The CPU cost is directly proportional
to the number of comparisons performed in memory. In this
section, we will derive an expression for the expected num-
ber of comparisons performed by BNL algorithm.

Consider the operator SP (T) that computes Skyline over
table T with respect to the set of preferences P . P may con-
tain both numeric and predicate preferences. We assume
that there is some underlying data distribution for the tuples
in T , which may have correlations between attribute val-
ues. We assume that the tuples in table T are not laid out
in any particular order, so that the tuples that constitute the
Skyline have equal chance of occurring anywhere in the ta-
ble. Let s(n, P) denote the function that gives the expected
value of |SP (T)| when T contains n tuples selected from
the underlying data distribution. Similarly, let cBNL(n, P)
denote the expected number of comparisons performed by
BNL. We will derive an expression for cBNL(n, P) in terms
of s(n, P).

Let the data items be numbered from 1 to n. For 1 ≤ i <
j ≤ n, let Pi,j denote the probability that the data items
i and j are compared. For this to happen, i should be in
the memory when j comes and j should not get discarded
before it is compared with i. For the former to happen, i
must be in the Skyline of the first j − 1 data items. The
probability of this is s(j−1,P)

j−1 since s(j−1, P) out of the j−
1 elements are expected in the Skyline, and we assume that
tuples in T are ordered randomly. For the latter to happen,
j should be in the Skyline of data items i + 1 to j − 1.
This is because j will be compared to all the data items
numbered greater than i before it is compared to i. The
probability of this, using the same argument, is s(j−i−1,P)

j−i−1 .
We approximate Pi,j using the following approximation:

Pi,j ≈
s(j − 1, P)

j − 1
∗ s(j − i− 1, P)

j − i− 1

Note that the equality need not be exact because the event

that i is in the skyline of first j − 1 data items is not inde-
pendent from the event that j is in the skyline of i + 1 to
j − 1. However, we empirically show that this approxima-
tion works well in practice.

Finally, by linearity of expectations, the expected num-
ber of comparisons is

cBNL(n, P) =
n∑

i=1

n∑
j=i+1

Pi,j

Substituting the expression for Pi,j in the equation, we get
the following expression for the expected number of com-
parisons performed by BNL algorithm on n data points is

cBNL(n, P) ≈
n∑

i=1

n∑
j=i+1

s(j − 1, P)
j − 1

∗ s(j − i− 1, P)
j − i− 1

(3)

where s(x, P) denotes the expected cardinality of Skyline
for the preferences P on x data points.

Note that we did not use independence of attributes in
the above derivation. The expression is applicable irrespec-
tive of whether we have numeric or predicate preferences
and whether the attributes are correlated. We just need the
correct expression for s(n, P).

Approximating cBNL(n, P): Eq (3) gives the exact ex-
pression for the expected number of comparisons performed
by BNL algorithm. When n is large, the computation be-
comes expensive. However, the following method can be
used to efficiently approximate the cost. If we denote
f(i, j) the function s(j−1,P)

j−1 ∗ s(j−i−1,P)
j−i−1 , then cBNL(n, P)

is
∑n

i=1

∑n
j=i+1 f(i, j). To approximate this function, we

divide the domain of the summation into small parts, and in
each part, we assume f(i, j) to be a constant. This is analo-
gous to the mid-point method for numerical integration, and
gives the following expression:

cBNL(n, P) ≈
k∑

i=1

k∑
j=i+1

k2 ∗ f(i
n

k
+

k

2
, j

n

k
+

k

2
)

As a final remark, if a Skyline contains only numeric
preferences, we can use Eq 1 to further simplify Eq (3) to
get the following:

cBNL(n, P) ≈
n∑

j=2

s(j − 1, d)
j − 1

s(j − 1, d + 1)

5.2 Cost Estimation of SRT algorithm

The SRT algorithm consists of a sorting phase followed
by skyline computation. The cost of sorting can be com-
puted using standard existing techniques. The skyline

7

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 0.05 0.1 0.15 0.2 0.25

S
ky

lin
e

si
ze

Selectivity

Skyline size vs Selectivity

Expected Size of Skyline
Expected Size of Exact Query

Using Numeric Formula

Figure 2. Expected Skyline size for predicate
preferences

cost, similar to the BNL algorithm, requires an estimate
of the number of comparisons performed in memory. Let
cSRT,A(n, P) denote the expected number of comparisons
performed by a Skyline on n points with P as the set of
preferences, when the data is sorted on attribute A.

Let s(x, P) denote the expected cardinality of Skyline
for the preferences P on x data points. Suppose the data is
sorted on attribute A. Let P ′ be the preferences obtained
by deleting from P the preference on A. If A is not order-
correlated with the rest of the attributes, we have

cSRT(n, P) ≈
n∑

i=1

n∑
j=i+1

s(j − 1, P ′)
i− 1

∗ s(j − i− 1, P ′)
j − i− 1

Thus, sorting the data on an attribute roughly incurs the
cost of computing the Skyline on remaining attributes.

6 Experiments

Effect of Predicate Preferences In the first set of ex-
periments, we study the effect of predicate preferences over
the cardinality of Skyline. We consider a table T with 5
attributes and with n = 100000 tuples. We consider a
Skyline query consisting of 5 independent predicate pref-
erences, each having a selectivity p. Figure 2 shows the
plots of expected size of the Skyline as a function of p.

Note that the Skyline size is a direct function of the se-
lectivity. On the other hand, if we ignore the fact that the
Skyline has predicate preferences, and use the expression
for numerical preferences, we get a constant number, which
is plotted in the above figure.

It is also interesting to compare the Skyline size with the
expected size of the exact query, i.e. the query that wants
all the predicates to be satisfied. Since we have 5 indepen-
dent predicates each with selectivity p, the expected size
of the query is n ∗ p5. Now, if there is at least one data

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

QC1 QC2 QC3

S
ky

lin
e

S
iz

e

Queries

Skyline Size for Correlated Queries

Actual Size
Log Sampling

With Independence
Linear Sampling

Figure 3. Expected Skyline size for correlated
queries

 0
 10000
 20000
 30000
 40000
 50000
 60000
 70000
 80000
 90000

 100000

QA1 QA2 QA3

Sk
yli

ne
 S

ize

Queries

Skyline Size for Anti-Correlated Attributes

Actual Size
Log Sampling

With Independence
Linear Sampling

Figure 4. Expected Skyline size for anti-
correlated queries

item that satisfies all the predicates, all such data items de-
fine the Skyline. So, if n ∗ p5 ≥ 1, we should expect the
Skyline size to be very close 1 to n ∗ p5. Figure 2 shows
that indeed the two curves coincide for large values of p.
The figure also shows that for smaller values of p, the Sky-
line size is larger that the expected query size, but not too
large. We conclude that for practical purposes, if the Sky-
line query contains only predicate preferences, we can use
the exact query size (which is much easier to estimate by
the database) to approximate the Skyline size.

Sampling for Cardinality Estimation In order to have
a controlled environment we created a simple bench-
mark of data and queries. We constructed a single table
T (a1, · · · , a9) having 9 numeric attributes. Attributes a1,
a2 and a3 were generated independently, a4, a5 and a6 were
correlated to the first three attributes and a7, a8 and a9 were
anti-correlated to the first three attributes. We considered
six queries, each specifying numeric preferences over a sub-

1The expected Skyline size will not be exactly n ∗ p5 because even if
n ∗ p5 ≥ 1, there is a finite but very small probability that no item has all
attributes 1. This probability will quickly converge to 0 as p increases

8

set of attributes as described below:

QC1 : a1, a2, a3, a4

QC2 : a1, a2, a3, a4, a5

QC3 : a1, a2, a3, a4, a5, a6

QA1 : a1, a2, a3, a7

QA2 : a1, a2, a3, a7, a8

QA3 : a1, a2, a3, a7, a8, a9

We used three methods to estimate the size of Skyline in
each case:

1. Using Independence: we assume that all attributes are
independent and use Eq 1 to estimate the size.

2. Using Naive Sampling: we compute the Skyline on a
small random sample of the table, and scale it linearly
to the table size.

3. Using Log Sampling, as described in Section 4.4. The
size of the random sample is 1% of the total table size.

Figure 3 shows the results of the three techniques on the
correlated queries QC1, QC2 and QC3. Figure 4 shows the
same graph for the anti-correlated queries QA1, QA2 and
QA3.

For correlated queries, the Skyline size is much smaller
than that using independence assumption, while for anticor-
related queries, the size is much larger. In both the cases,
log-sampling gives a reasonable estimate of the correct size.
Note that a simple linear scaling always overestimates by a
large factor. This is because the Skyline size is a sub-linear
function of the table size in all these cases.

Cost Estimates for BNL and SRT algorithms: We con-
sider a Skyline on a table with 7 independent numeric at-
tributes, and we plot the expected number of comparisons
as a function of the number of tuples using our cost esti-
mates. Figure 5 shows this graph for BNL algorithm and
Figure 6 shows the same graph for SRT. The graph vali-
dates our cost estimates. It also shows that the variation in
Skyline size is small, so the expected Skyline size is within
tolerable error bounds of the actual size.

Impact on Actual Plans Finally, we study the impact
of our cardinality and cost estimation techniques on the
plans produced by the query optimizer, and the resulting
running times of skyline queries in a real implementation.
For this purpose, we implement the skyline operator in Mi-
crosoft SQL Server 2005 (Beta version). We implement
both the physical implementations addressed in this pa-
per, and all the transformation rules discussed in Section 3.
We implement the cardinality estimation based on attribute
value independence, which does not need the maintenance
of any synopsis structures. For the sampling based approach
(both naive and log-scaling), we maintain samples of base

0

1e+07

2e+07

3e+07

4e+07

5e+07

6e+07

7e+07

8e+07

0 20000 40000 60000 80000 100000 120000 140000

N
o

of
 c

om
pa

ris
io

ns

Number of input tuples

Expected vs Actual comparisions

Actual Comparisions
Expected Comparisions

Figure 5. Costing of BNL algorithm

0

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

0 20000 40000 60000 80000 100000 120000 140000
N

o
of

 c
om

pa
ris

io
ns

Number of input tuples

Expected vs Actual comparisions

Actual Comparisions
Expected Comparisions

Figure 6. Costing of SRT algorithm

tables and use the sampling based cardinality estimation
only when skyline is the leaf operator. The problem of prop-
agating the cardinality estimates given base table samples is
left for future work.

We use the data described earlier in this section. Since
we want to study the impact on actual plans, we modify the
queries to include joins. We create a large table U in the
database that fully joins with T . We also create an unclus-
tered index on the joining columns in U .

We consider a skyline on T ./ U where the pref-
erences are expressed over the following columns in T :
a1, a2, a3, a4, a5, a6. Note that this kind of join is quite re-
alistic. For instance, T could be a table of cars and U could
be a table of dealers, and the above join would express pref-
erences on cars and find the corresponding dealers.

We first find that for all cardinality estimation methods,
the skyline gets pushed below the join to be evaluated on T
before it joins with U . This illustrates the benefit of imple-
menting the skyline operator in the server, where the inter-
action with other operators can yield to efficient plans.

The question arises which join method the optimizer
picks to implement T ./ U . If the skyline cardinality is
small, then it goes with an index nested loops implementa-
tion. On the other hand, if the skyline cardinality is large, it
picks a hash join since an index nested loops would result

9

in too many unclustered index lookups.
Since the columns a4, a5, a6 are correlated to the first

three attributes, the real skyline cardinality is small — the
skyline has 481 tuples. For this value of the cardinality, the
optimal plan is based on index nested loops.

However, assuming attribute value independence tends
to overestimate the skyline cardinality to be 2432 (note
that this is in contrast with traditional selectivity estima-
tion where attribute value independence typically tends to
underestimate selectivities). The naive sampling approach
also overestimates the skyline cardinality. Hence, when we
use either of these cardinality estimation methods, the query
optimizer picks a hash join to implement T ./ U .

On the other hand, log sampling estimates the cardinality
to be 290 and the query optimizer picks an index nested
loops join. In terms of running times, the hash join turns
out to be slower by a factor of 1.62 times.

This experiment illustrates that using log sampling to
capture correlations yields substantial benefits in actual run-
ning times for skyline queries.

7 Related Work

The problem of computing the Skyline has been studied
under the name of maximum vector problem [8]. Earlier
work [8, 1] on computing the Skyline was algorithmic in
nature where all the data was assumed to be available in
memory. Several algorithms suitable for a database sys-
tem have recently been proposed [15, 16, 5, 7]. Some of
the algorithms use special index structures likes variants of
B-trees [16] or R-trees [7, 12]. Chomicki et al. observed
that a simple sorting of data before computing Skyline can
substantially reduce the cost of Skyline computation. The
problem of estimating the size of Skyline has been consid-
ered [1, 3] under the assumption that no two data items have
the same value on any attribute and all attributes are inde-
pendent. Chan et al. [2] show how to evaluate skylines effi-
ciently over partially-ordered domains. Kossman [15] gives
some optimizations for Skyline over joins. Kiebling et al.
[6] propose an extension of SQL language to include user
preferences.

8 Conclusions

In this paper, we considered the issues with the imple-
mentation of Skyline as a operator in relation engine. We
showed that the current methods for cardinality estimations
are not adequate for a real database implementation and
we provided robust techniques for this purpose. We con-
sidered two physical algorithms discussed in the literature,
the Block-nested-loop algorithms and the Presorting algo-
rithms, and we showed how these algorithms can be costed.

Finally, we implemented our techniques in a prototype Mi-
crosoft SQL Server and showed that Skyline queries can
significantly benefit from such an implementation.

References

[1] J. L. Bentley, H. T. Kung, M. Schkolnick, and C. D. Thomp-
son. On the average number of maxima in a set of vectors
and applications. J. ACM, 25(4):536–543, 1978.

[2] C.-Y. Chan, P.-K. Eng, and K.-L. Tan. Stratified computa-
tion of skylines with partially-ordered domains. In SIGMOD
’05: Proceedings of the 2005 ACM SIGMOD international
conference on Management of data, pages 203–214, 2005.

[3] P. Godfrey. Skyline cardinality for relational processing. In
Foundations of Information and Knowledge Systems, 2004.

[4] G. Graefe. The cascades framework for query optimization.
IEEE Data Eng. Bull., 18(3):19–29, 1995.

[5] J. G. Jan Chomicki, Parke Godfrey and D. Liang. Skyline
with presorting. In Proceedings of the 19th Int. Conf. on
Data Engineering, Banglore, India, 2003.

[6] W. Kiebling and G. Kostler. Preference sql - design, imple-
mentation, experiences. In VLDB, pages 990–1001, 2002.

[7] D. Kossmann, F. Ramsak, and S. Rost. Shooting stars in
the sky: An online algorithm for skyline queries. In VLDB,
2002.

[8] H. T. Kung, F. Luccio, and F. P. Preparata. On finding the
maxima of a set of vectors. J. ACM, 22(4):469–476, 1975.

[9] J.-H. Lee, D.-H. Kim, and C.-W. Chung. Multi-dimensional
selectivity estimation using compressed histogram informa-
tion. In SIGMOD, pages 205–214, 1999.

[10] R. J. Lipton and J. F. Naughton. Query size estimation by
adaptive sampling. In PODS, pages 40–46, 1990.

[11] R. J. Lipton, J. F. Naughton, and D. A. Schneider. Practical
selectivity estimation through adaptive sampling. In Pro-
ceedings of the 1990 ACM SIGMOD International Confer-
ence on Management of Data, Atlantic City, NJ, May 23-25,
1990, pages 1–11, 1990.

[12] D. Papadias, Y. Tao, G. Fu, and B. Seeger. An optimal and
progressive algorithm for skyline queries. In SIGMOD ’03:
Proceedings of the 2003 ACM SIGMOD international con-
ference on Management of data, pages 467–478, 2003.

[13] V. Poosala and Y. E. Ioannidis. Selectivity estimation with-
out the attribute value independence assumption. In VLDB
’97: Proceedings of the 23rd International Conference on
Very Large Data Bases, pages 486–495, 1997.

[14] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vet-
terling. Numerical Recipes in FORTRAN: The Art of Scien-
tific Computing. Cambridge University Press, 3rd edition,
1992.

[15] D. K. Stephan Brzsnyi and K. Stocker. The skyline operator.
In Proceedings of the 17th International Conference on Data
Engineering, Heidelberg, Germany, 2001.

[16] K.-L. Tan, P.-K. Eng, and B. C. Ooi. Efficient progressive
skyline computation. In Proceedings of the 27th Interna-
tional Conference on Very Large Data Bases, pages 301–
310, 2001.

[17] C. W. Ueberhuber. Numerical Computation 2: Methods,
Software, and Analysis. Springer-Verlag, 1997.

10

