
Compositional May-Must Program Analysis:
Unleashing the Power of Alternation

Patrice Godefroid Aditya V. Nori Sriram K. Rajamani Sai Deep Tetali
Microsoft Research

{pg, adityan, sriram, v-saitet}@microsoft.com

Abstract
Program analysis tools typically compute two types of informa-
tion: (1) may information that is true of all program executions and
is used to prove the absence of bugs in the program, and (2) must
information that is true of some program executions and is used to
prove the existence of bugs in the program. In this paper, we pro-
pose a new algorithm, dubbed SMASH, which computes both may
and must information compositionally. At each procedure bound-
ary, may and must information is represented and stored as may and
must summaries, respectively. Those summaries are computed in a
demand-driven manner and possibly using summaries of the oppo-
site type. We have implemented SMASH using predicate abstraction
(as in SLAM) for the may part and using dynamic test generation
(as in DART) for the must part. Results of experiments with 69
Microsoft Windows Vista device drivers show that SMASH can sig-
nificantly outperform may-only, must-only and non-compositional
may-must algorithms. Indeed, our empirical results indicate that
most complex code fragments in large programs are actually often
either easy to prove irrelevant to the specific property of interest
using may analysis or easy to traverse using directed testing. The
fine-grained coupling and alternation of may (universal) and must
(existential) summaries allows SMASH to easily navigate through
these code fragments while traditional may-only, must-only or non-
compositional may-must algorithms are stuck in their specific anal-
yses.

1. Introduction
The use of static analysis and dynamic analysis to find bugs and
prove properties of programs has received a lot of attention in the
past decade. Tools that came out of research in this area [7, 11,
22, 4, 16, 18] are now routinely used for ensuring quality control in
industrial-strength software development projects.

Program analysis tools typically compute two types of informa-
tion. May information captures facts that are true about all execu-
tions of the program. For example, static whole-program may-alias
analysis is used to bound all possible pointer aliases that can occur
during a program execution. For efficiency and scalability reasons,
the may information computed is typically over-approximate. Thus,
if a may-alias analysis says that pointer p may alias pointer q, it is
possible that no execution exists where p and q actually alias. Be-

[Copyright notice will appear here once ’preprint’ option is removed.]

cause it is over-approximate, may information can be used to prove
properties of programs. For example, consider the following code
snippet that is a part of some larger program:

1: *p = 4;
2: *q = 5;
3: assert(*p == 4);

If the may-alias set of pointer p does not include pointer q, then
we know for sure that p and q never alias, and we can use this
information to prove that the assertion in line 3 always holds.

Dually, must information captures facts that are guaranteed to
hold on particular executions of the program. For example, dy-
namic must-alias analysis can detect aliases that occur during spe-
cific executions of the program. For large programs, the must in-
formation computed is typically under-approximate, since it is in-
feasible to cover all executions. Thus, in the previous example, if a
must-alias analysis determines that p and q must alias in some exe-
cution, then we can use this information to prove that the assertion
assert(*p == 4) can be violated.

In this paper, we focus on the problem of checking whether a
sequential program P satisfies an assertion ϕ, called the property
checking problem. May and must analyses offer complementary
approaches to solve this problem. A may analysis can be used to
prove that all executions of the program satisfy assertion ϕ, while a
must analysis can be used to prove the existence of some program
execution that violates the assertion ϕ.

Compositional approaches to property checking involve decom-
posing the whole-program analysis into several sub-analyses of
individual components (such as program blocks or procedures),
summarizing the results of these sub-analyses, and memoizing
(caching) those summaries for possible later re-use in other calling
contexts. Summarizing at procedure boundaries is indispensable
for scalability. A may summary of a procedure P is of the form
〈ϕ1

may
=⇒P ϕ2〉, where ϕ1 and ϕ2 are predicates over program

states. The may summary 〈ϕ1
may
=⇒P ϕ2〉 means that, if we invoke

procedure P from any state satisfying ϕ1, the set of all possible
states of the program on termination of P is over-approximated by
the set of states ϕ2. This implies that no states satisfying ¬ϕ2 are
reachable from states satisfying ϕ1 by executing P . Dually, a must
summary of a procedure P is of the form 〈ϕ1

must
=⇒ P ϕ2〉, which

means that, if we invoke procedure P from any state satisfying ϕ1,
the set of all possible states of the program on termination of P is
under-approximated by the set of states ϕ2. This implies that any
state satisfying ϕ2 is guaranteed to be reachable from some state
satisfying ϕ1 by executing P .

Intuitively, a may summary of a procedure represents a property
that is guaranteed to be true about all executions of the procedure,
and a must summary of a procedure represents witness executions
of the procedure that are guaranteed to exist. May summaries pro-

1 2009/7/15

vide obvious benefits to improving the efficiency of may analy-
sis: when a compositional may analysis requires a sub-query for a
procedure P , a previously-computed may summary for P can po-
tentially be re-used to answer that query without re-analyzing the
procedure. Similarly, must summaries can also considerably speed-
up must analysis: when a compositional must analysis requires a
sub-query for a procedure P , an existing must summary for P can
potentially be re-used to answer that query.

In this paper, we present a new algorithm, named SMASH, that
performs both may analysis and must analysis simultaneously, and
uses both may summaries and must summaries to improve the ef-
fectiveness as well as the efficiency of the analysis. The key novel
feature of SMASH is its inherent use of alternation: both may anal-
ysis and must analysis in SMASH use both may summaries and
must summaries. Surprisingly, this feature of the algorithm enables
SMASH to often significantly outperform compositional may-only,
compositional must-only and non-compositional may-must algo-
rithms, and hence to handle larger as well as complex programs.
From our experiments, we observed that the gain in efficiency is
due to alternation in may-must reasoning in SMASH and can be ex-
plained as follows: most complex code fragments in large programs
are actually often either easy to prove irrelevant to the specific
property of interest using may analysis or easy to traverse using
directed testing. Those fragments that are easy to prove irrelevant
can often cause a must analysis to needlessly explore a large num-
ber of paths searching for a path that violates the property, whereas
a may analysis can inexpensively conclude that no such path ex-
ists. Dually, those fragments that are easy to traverse using directed
testing often cause may analyses to needlessly refine program may-
abstractions and get stuck while trying to discover complex loop in-
variants. This fined-grained coupling and alternation of may (uni-
versal) and must (existential) summaries allow SMASH to easily
navigate through these code fragments while traditional may-only,
must-only or non-compositional may-must algorithms are stuck in
their specific analyses.

We support the above intuition with significant empirical evi-
dence from checking 85 properties on 69 Windows Vista drivers.
With a non-compositional may-must analysis, all these checks take
117 hours (these include 61 checks timing out after 30 minutes).
With SMASH, the same checks take only 44 hours, with only 9
time-outs. To drill down into the gains, we also implemented com-
positional may-only and compositional must-only algorithms, and
compare them with SMASH in detail. Our data clearly indicates and
quantifies the gains due to the interplay between may summaries
and must summaries in SMASH.

Though the main goal of this paper is to describe the design,
implementation and evaluation of SMASH, we have another aux-
iliary goal of placing SMASH in the context of the large and di-
verse amount of existing work in this area. Over the past 10 years,
there have been a variety of analysis techniques proposed to per-
form may analysis, such as SLAM [4], BLAST [23] and ESP [11],
and a variety of analysis techniques to perform must analysis, such
as DART [16], EXE [8] and SMART [14], and some combinations
of the two, such as SYNERGY [19] and DASH [5]. Even if the
reader is unfamiliar with this prior work, this paper includes a de-
tailed overview of the entire landscape of such analyses, and places
SMASH in the context of all these analyses in a very precise manner.
We consider this unified framework another valuable contribution
of this paper, given the breadth and depth of these tools.

The remainder of the paper is organized as follows. Section 2
motivates and explains the SMASH algorithm using examples. Sec-
tion 3 reviews may-must analysis for single-procedure programs.
Section 4 presents the SMASH algorithm formally as a set of declar-
ative rules. Section 5 describes our implementation of SMASH and

empirical results from running SMASH on several examples. Sec-
tion 6 surveys related work.

2. Overview
We illustrate using examples the benefit of may summaries, must
summaries, and the interplay between may and must summaries in
the SMASH algorithm.

The input to SMASH is a sequential program P and an asser-
tion in P . The goal of SMASH is either to prove that the assertion
holds for all executions of P , or to find an execution of P that
violates the assertion. The verification question “do all program
executions satisfy the assertion?” is reduced to a dual reachabil-
ity question, or query, “can some program execution lead to an
assertion violation?” SMASH performs a modular interprocedural
analysis and incrementally decomposes this reachability query into
several sub-queries that are generated in a demand-driven manner.
Each sub-query is of the form of 〈ϕ1

?
=⇒f ϕ2〉, where ϕ1 and ϕ2

are state predicates representing respectively a precondition (call-
ing context) and postcondition (return context) for a procedure f
(or block) in P . The answer to such a query is “yes” if there exists
an execution of f starting in some state σ1 ∈ ϕ1 and terminat-
ing in some state σ2 ∈ ϕ2, “no” if such an execution does not
exist, and “unknown” (“maybe”) if the algorithm is unable to deci-
sively conclude either way (the last option is needed since program
verification is undecidable in general). SMASH uses may and must
summaries to answer queries.

A may summary 〈ψ1
may
=⇒f ψ2〉 implies that, for any state

x ∈ ψ1, for any state y such that the execution of f starting in
state x terminates in state y, we have y ∈ ψ2. For technical conve-
nience (explained in Section 3.1), SMASH maintains negated may
summaries, called not-may summaries, where the postcondition is
complemented. Thus, a not-may summary 〈ψ1

¬may
=⇒ f ψ2〉 implies

that for any state x ∈ ψ1, there does not exist a state y ∈ ψ2

such that the execution of f starting in state x terminates in state y.
Clearly, a not-may summary 〈ψ1

¬may
=⇒ f ψ2〉 can be used to give a

“no” answer to a query 〈ϕ1
?

=⇒f ϕ2〉 for f provided that ϕ1 ⊆ ψ1

and ϕ2 ⊆ ψ2.
A must summary 〈ψ1

must
=⇒ f ψ2〉 implies that, for every state

y ∈ ψ2, there exists a state x ∈ ψ1 such that the execution of
f starting in state x ∈ ψ1 terminates in state y ∈ ψ2 (this is
also called must− in the literature [2]). Thus, a must summary
〈ψ1

must
=⇒ f ψ2〉 can be used to give a “yes” answer to a query

〈ϕ1
?

=⇒f ϕ2〉 provided that ψ1 ⊆ ϕ1 and ψ2 ∩ ϕ2 6= {}.
SMASH computes not-may summaries on abstract state sets,

called regions, using predicate abstraction and automatic parti-
tion refinement (as in SLAM [4]), and it computes must sum-
maries using symbolic execution along whole-program paths (as
in DART [16]). SMASH starts with an empty set of summaries for
each function. As the SMASH algorithm proceeds, it progressively
refines the not-may summaries and must summaries of each func-
tion on demand, in order to prove that the assertion is never vio-
lated, or to find an execution that violates the assertion. The exact
algorithm is described using declarative rules in Section 4. Here,
we illustrate SMASH using small examples.

Example 1. Consider the example in Figure 1. The inputs of this
program are the arguments passed to the function main. Since
function g always returns non-negative values, the assertion at line
5 of function main can never be reached. This can be proved
using a not-may summary for the function g. Given the assertion
in line 5 of function main as a goal, SMASH first tries to find an
execution along the path 1, 2, 3, 4, 5. After some analysis,
SMASH generates the query 〈true

?
=⇒g (retval < 0)〉. Since all

2 2009/7/15

void main(int i1,i2,i3)
{
0: int x1,x2,x3;
1: x1 = g(i1);
2: x2 = g(i2);
3: x3 = g(i3);
4: if ((x1 < 0)||(x2 < 0)||(x3 < 0))
5: assert(false);
}

int g(int i)
{
11: if (i > 0)
12: return i;
13: else
14: return -i;
}

Figure 1. Example to illustrate benefits of not-may summaries.
void main(int i1,i2,i3)
{
0: int x1,x2,x3;
1: x1 = f(i1);
2: x2 = f(i2);
3: x3 = f(i3);
4: if (x1 > 0)
5: if (x2 > 0)
6: if (x3 > 0)
7: assert(false);
}

int f(int i)
{
11: if (i > 0)
12: return i;

else
13: return h(i);
// h(i) is a complex function
// such as a hash function

}

Figure 2. Example to illustrate benefits of must summaries.

void main(int j)
{
1: int i = 0;
2: x = foo(i,j);
3: if (x == 1)
4: assert(false);
}

int foo(int i,j)
{
11: if (j > 0)
12: return bar(i)+1;
13: else
14: return i+1;
}

Figure 3. Example of must summary benefiting from not-may
summary.

paths in g result in a return value greater than or equal to 0, this
result is encoded as a not-may summary 〈true

¬may
=⇒ g (retval <

0)〉. Once this not-may summary is computed, it can be used at all
the call-sites of g in function main (at lines 1,2 and 3) to show that
the assertion failure in line 5 can never be reached.

Example 2. Consider the example program in Figure 2. Function f
has two branches, one of which (the else branch) is hard to analyze
since it invokes a complicated or even unknown hash function h.
As before, SMASH first tries to find an execution along the path
1, 2, 3, 4, 5, 6, 7. From the conditions in lines 4, 5 and 6,
it incrementally collects the constraints x1 > 0, x2 > 0, and
x3 > 0, and generates a query 〈true

?
=⇒f (retval > 0)〉 for

function f where retval denotes the return value of that function.
SMASH now searches for an execution path in f that satisfies
the postcondition (retval > 0) and computes the must summary
〈(i > 0)

must
=⇒ f (retval > 0)〉 by exploring only the “if” branch

of the conditional at line 11 and avoiding the exploration of the
complex function h in the “else” branch. Once this must summary
is computed for f, a symbolic execution along the path 1, 2,
3, 4, 5, 6, 7 can reuse this summary (as in SMART [14, 1])
at the call sites at lines 1,2 and 3 without descending into f any
further. Next, SMASH generates a test input for main satisfying the
constraints i1 > 0 ∧ i2 > 0 ∧ i3 > 0 to prove that the assertion
violation in line 7 can be reached.

Next, we illustrate the interplay between not-may summaries
and must summaries using simple examples.

Example 3. Consider the example in Figure 3. In this example,
suppose bar is a complex function with nested function calls and
a large number of paths, but one which already has a not-may
summary 〈(i = 0)

¬may
=⇒ bar (retval = 0)〉. We show how this

not-may summary can help with computing a must summary of
foo.

During the analysis of main, SMASH tries to generate an ex-
ecution that goes along the path 1,2,3,4 in function main. This

void main(int i,j)
{
0: int x;
1: if (i > 2 && j > 2) {
2: x = foo(i,j);
3: if (x < 0)
4: assert(false);

}
}

int g(int j)
{
20: if (j > 0)
21: return j;
22: else
23: return -j;
}

int foo(int i,j)
{
10: int r,y;
11: y = bar(i);
12: if (y > 10)
13: r = g(j);
14: else
15: r = y;
16: return r;
}

Figure 4. Example of not-may summary benefiting from must
summary.

results in the query 〈(i = 0)
?

=⇒foo (retval = 1)〉. This query
results in SMASH searching through paths in foo for an execution
satisfying the query. However, due to the not-may summary 〈(i =

0)
¬may
=⇒ bar (retval = 0)〉, SMASH is immediately able to conclude

that none of the paths through bar can result in the desired post-
condition (retval = 1) for foo given that i=0. Thus, it explores
only the “else” branch of the if statement in line 11 and generates
the must summary 〈(i = 0 ∧ j ≤ 0)

must
=⇒ foo (retval = 1)〉. Note

that while computing such a must summary, the SMASH algorithm
uses the not-may summary of bar to conclude that no path through
bar would result in the desired post condition, hence avoiding a
wasteful search through the large number of paths in bar. Once the
must summary for 〈(i = 0 ∧ j ≤ 0)

must
=⇒ foo (retval = 1)〉 is

computed, SMASH uses it to analyze main and establish that any
test case j ≤ 0 violates the assertion in line 4.

Example 4. Consider the example in Figure 4. In this example,
suppose bar is a complex function (with loops etc.) whose set of
possible return values is hard to characterize precisely (perhaps
because the integers returned are prime numbers). Assume that a
prior analysis of bar results in the following must summaries 〈(i >
5)

must
=⇒ bar (retval > 20)〉 and 〈(i < 5)

must
=⇒ bar (retval < 5)〉,

obtained by symbolically executing specific paths (tests) in bar, as
well as the not-may summary 〈(true) ¬may

=⇒ bar (retval < 0)〉. We
now show how SMASH uses these must and not-may summaries for
bar in order to compute a not-may summary for foo proving that
the assertion in line 4 of main can never be reached.

SMASH first tries to find an execution along the path 0,1,2,3,4
in main. In order to do this, it generates a query 〈(i > 2 ∧ j >
2)

?
=⇒foo (x < 0)〉 which leads to an analysis of foo. While

analyzing foo, SMASH uses the available must-summaries 〈(i >
5)

must
=⇒ bar (retval > 20)〉 and 〈(i < 5)

must
=⇒ bar (retval < 5)〉

in order to prove that lines 13 and 15, respectively, are reachable
(and therefore prevent a possibly expensive and hopeless not-may
proof that one of those two branches is not feasible). Next, SMASH

generates a query 〈(j > 2)
?

=⇒g (retval < 0)〉. While analyz-
ing the body of g with precondition j > 2, SMASH concludes that
the return value retval of g is always greater than 0, thus generat-
ing the not-may summary 〈(j > 2)

¬may
=⇒ g (retval < 0)〉. Subse-

quently, while analyzing the path 10,11,12,14,15,16, SMASH

generates the query 〈(i > 2)
?

=⇒bar (retval < 0)〉 and uses
the not-may summary 〈(true) ¬may

=⇒ bar (retval < 0)〉 to answer
this query. This results in the not-may summary 〈(i > 2 ∧ j >
2)
¬may
=⇒ foo (retval < 0)〉 for foo. Using this not-may summary

for foo, SMASH is able to prove that the assertion in line 4 of main
cannot be reached.

3 2009/7/15

While it is intuitive that building not-may summaries improves
may analysis, and must summaries improve must-analysis, our
empirical results (see Section 5) revealed that using both not-may
and must summaries together scaled better than just using may
summaries or must summaries individually. We discovered the
power of alternation in the process of understanding these empirical
results. In Example 3, a not-may summary of bar was used to
compute a must-summary of foo. In Example 4, a must-summary
of bar was used to avoid a may-analysis over the return value of
bar while still being able to build a not-may analysis of foo. Even
though these examples are simple, they illustrate common patterns
exhibited in large programs (see Section 5): some parts of large
programs are more amenable to may analysis while other parts are
more amenable to must analysis. In particular, for functions with
many paths due to nested calls, conditionals and loops, but simple
postconditions established in a post-dominator of all paths (such
as the last statement before return), not-may summaries can be
easy to compute. Such not-may summaries can be used to avoid an
expensive search of (possibly infinitely many) explicit paths during
must analysis, as we saw in Example 3. On the other hand, if a
function has complex loops with complex loop invariants, a may
analysis tends not to converge, while a must analysis of the same
code can easily identify be a few feasible paths that traverse entirely
the function and generate usable must summaries for those paths.
Such must summaries can be used to avoid an expensive search
for proofs in these parts of the code, as illustrated in Example
4. The tight integration between may and must summaries allows
SMASH to alternate between both in a flexible and unprecedented
manner. Further, our empirical results (see Figure 12 in Section
5) even quantify the amount of interaction between may analysis
and must-analysis for our data set. On an average (1) to generate a
proof, 68% of summaries used were not-may summaries and 32%
of the summaries used were must summaries, and (2) to identify a
bug, 64% of summaries used were must summaries and 36% of the
summaries used were not-may summaries.

Note that must summaries are existential while not-may sum-
maries are universal. Higher-level summaries of one type (existen-
tial or universal) are built up from lower-level summaries of the
same type. The role played by lower-level summaries of one type
when computing higher-level summaries of the other type is “only”
to prove the non-existence of lower-level summaries of that other
type, since any query cannot simultaneously have both a match-
ing must-summary and a matching not-may summary. For instance,
lower-level existential summaries help prove the non-existence of
matching not-may lower-level summaries, hence avoiding unnec-
essary not-may analyses, and vice versa. With this in mind, using
must− (backward) or must (forward) summaries does not make
much difference, as both summaries imply the non-existence of a
matching not-may summary. In this paper, we use must− sum-
maries for technical convenience. These considerations are formal-
ized and discussed in detail in Section 4.

3. Single-Procedure Programs and May-Must
Analysis

A program P has a finite set of variables VP . Each of these vari-
ables take values from an infinite domain D (such as integers or
pointers). Informally, a program is specified by its variables and its
control flow graph, which may contain cycles representing program
loops. Each edge of the control flow graph maps to a statement. Ini-
tially, we consider only two types of statements: assignments and
assume statements. Later we will add procedure calls and returns,
when we consider multi-procedure programs.

Formally, a sequential program P is defined as a 6-tuple
〈VP , NP , EP , n0

P , n
x
P , λP〉 where

1. VP is a finite set of variables that the program manipulates (each
variable takes values from an infinite domain D),

2. NP is a finite set of nodes (or program locations),

3. EP ⊆ NP ×NP is a finite set of edges,

4. n0
P ∈ NP is a distinguished entry node,

5. nx
P ∈ NP is a distinguished exit node,

6. λP : EP → Stmts, maps each edge to a statement in the
program,

We consider two types of statements: (1) assignment statements
are of the form x := e where x is a variable and e is a side-effect
free expression over variables and constants, and (2) assume (or
conditional) statements are of the form assume(e), where e is a
side-effect free expression. A configuration of a program P is a
pair 〈n, σ〉 where n ∈ NP and σ is a state, defined below. A state
of a program P is a valuation to the program variables VP . The set
of all states of P is denoted by ΣP .

An assignment statement is a function ΣP → ΣP since it maps
every state σ to a state obtained by executing the assignment. An
assume statement assume(e) is a partial function over ΣP . If e
evaluates to true in a state σ, then the function maps σ to itself.
Otherwise, it is undefined over σ.

Thus, every edge e ∈ EP can be thought of as a relation
Γe ⊆ ΣP × ΣP . So far, Γe is actually a partial function, but it
is convenient to think of it as a relation and the generality will help
when we consider multi-procedure programs.

Note that though each statement of the program is deterministic
(i.e, Γe is a partial function), the program P has control nondeter-
minism, since nodes in NP can have multiple outgoing edges in
EP .

The initial configurations of a program P are given by the set
{〈n0
P , σ〉 | σ ∈ ΣP}. That is, the node n0

P is the entry node of the
program, and the state σ is any possible state where variables can
take any values. From any configuration 〈n, σ〉, the program can
execute a step by taking any outgoing edge of e = 〈n, n′〉 out of
n and transitioning to a state obtained by computing the image of
the relation Γe with respect to the state σ. That is, if there exists σ′

such that Γe(σ, σ′), then the program can transition to the config-
uration 〈n′, σ′〉. Starting from an initial configuration, a program
can execute several steps producing several configurations.

A verification question for program P is formalized as a reach-
ability query of the form 〈ϕ1

?
=⇒P ϕ2〉, where ϕ1 represents a set

of initial states at entry node n0
P , and ϕ2 represents a set of states at

a exit node nx
P . The reachability query evaluates to “yes” (meaning

the program is incorrect) if there exists an execution which starts at
a configuration 〈n0

P , σ1〉 with σ1 ∈ ϕ1 and ends at a configuration
〈nx
P , σ2〉 with σ2 ∈ ϕ2, it evaluates to “no” if such an execution

provably does not exist, or it evaluates to “unknown” otherwise.
Indeed, the verification question is undecidable in general, particu-
larly if the domain D of values taken by variables is infinite. Even
if D is finite, the number of configurations is exponential in the
number of variables VP making an exact answer to this question
computationally difficult to ascertain. Thus, in practice, approxi-
mate methods are used to answer the verification question.

Note that specifications in the style of Hoare triples such as
{ϕ1} P {ϕ2}, where we want all executions starting from states
in ϕ1 to end in states from ϕ2, can be expressed in our notation
as the query 〈ϕ1

?
=⇒P ¬ϕ2〉. Assertions in the form used in the

example programs from Section 2 can also be expressed in this
form by adding a special boolean variable error which is set to
false initially and set to true if an assertion fails, enabling us to
state an equivalent specification 〈ΣP

?
=⇒P error〉.

4 2009/7/15

〈ϕ̂1
?

=⇒P ϕ̂2〉
Ω

n0
P

:= ϕ̂1 ∀n ∈ NP \ {n0
P}.Ωn := {}

[INIT-OMEGA]

e = 〈n1, n2〉 ∈ EP θ ⊆ Post(Γe,Ωn1)

Ωn2 := Ωn2 ∪ θ
[MUST-POST]

〈ϕ̂1
?

=⇒P ϕ̂2〉 Ωnx
P
∩ ϕ̂2 6= {}

〈ϕ̂1
?

=⇒P ϕ̂2〉 = yes
[BUGFOUND]

Figure 6. Must analysis.

We recall the formal definitions of the preimage Pre and post-
condition Post operators that will be used later. Suppose Γe ⊆
ΣP × ΣP , and ϕ ⊆ ΣP . The precondition of ϕ with respect to
Γe (denoted Pre(Γe, ϕ)) is the set of all predecessors of states in ϕ
given by

Pre(Γe, ϕ)
def
= {σ ∈ ΣP | ∃σ′∈ϕ.Γe(σ, σ′)}

In a dual way, the postcondition ofϕwith respect to Γe (denoted
Post(Γe, ϕ)) is given by

Post(Γe, ϕ)
def
= {σ ∈ ΣP | ∃σ′∈ϕ.Γe(σ′, σ)}

3.1 May Analysis
A may analysis of a program is used to prove that the program
never reaches an error node during any execution. Formally, a may
analysis of a programP associates every node n inNP with a finite
partition Πn of ΣP , and every edge e = 〈n1, n2〉 ∈ EP with a set
of edges Πe ⊆ Πn1 × Πn2 , such that, for any region π1 in Πn1 ,
and any region π2 in Πn2 , if ∃σ1 ∈ π1.∃σ2 ∈ π2.Γe(σ1, σ2) then
〈π1, π2〉 ∈ Πe.

By construction, the edges Πe over-approximate the transition
relation of the program, and are called may edges or transitions. A
partition Πn for a node n is defined as a set of regions. Associated
with every program edge e = 〈n1, n2〉, initially there is a may
edge from every region of the partition Πn1 to every region of
the partition Πn2 . As the algorithm proceeds, partitions get refined
and may edges get deleted. Instead of deleting edges, we find it
notationally convenient to maintain the complement of may edges,
called Ne edges below. The set of Ne edges grows monotonically
as the algorithm proceeds.

In response to a query 〈ϕ̂1
?

=⇒P ϕ̂2〉, if there is no path through
the edges Πe from every regionϕ1 associated program’s entry node
n0
P such that ϕ1 ∩ ϕ̂1 6= {} to every region ϕ̂2 associated with the

exit node nx
P such that ϕ2∩ ϕ̂2 6= {}, then the may analysis proves

that none of the states in ϕ̂2 can be reached at the exit node of P
by starting the program with states from ϕ̂1. Figure 5 gives a set
of declarative rules to perform a may analysis which automatically
refines partitions in a demand-driven manner.

In response to a query 〈ϕ̂1
?

=⇒P ϕ̂2〉, the rule INIT-PI-NE
initializes the exit node nx

P with a partition consisting of two
regions ϕ̂2 and ΣP \ ϕ̂2. All other nodes are initialized to have a
single partition with all possible states ΣP . The current set of rules
performs backward may analysis, using the Pre operator. Thus, to
allow maximum flexibility, we do not partition the initial node with
the precondition ϕ̂1 from the query. The precondition ϕ̂1 is used in
the last rule VERIFIED described below. The rule also initializes an
empty relation Ne associated with each program edge e. Relation
Ne is the complement of Πe and is used to keep track of may edges
that we know for sure do not exist.

Abstract partition refinement is performed using the rule NOTMAY-
PRE. The rule NOTMAY-PRE chooses two nodes n1 and n2, a re-
gion ϕ1 in the partition Πn1 of n1, and a region ϕ2 in the partition

Πn2 of n2, and then splits ϕ1 using the precondition θ of ϕ2 with
respect to the transition relation on the edge e = 〈n1, n2〉. We de-
note splitting the region ϕ1 in partition Πn1 into two sub-regions
ϕ1∩θ and ϕ1∩¬θ by Πn1 := (Πn1 \{ϕ1})∪{ϕ1∩θ, ϕ1∩¬θ}.
After the split, we know by construction and the definition of Pre
that any state in the new region ϕ1 ∩ ¬ θ cannot possibly lead to a
state in region ϕ2, and we record this in relation Ne accordingly.
Note that a superset of the precondition can be used as valid ap-
proximations to do splits. Such approximations are necessary in
practice whenever Pre cannot be computed precisely.

A dual rule NOTMAY-POST for splitting regions using the op-
erator Post in the forward direction exists but is omitted here.

The IMPL-RIGHT rule allows Ne edges of the form (ϕ1, ϕ2) to
be maintained as the post-regions ϕ2 get refined. The rules IMPL-
LEFT rule allows Ne edges of the form (ϕ1, ϕ2) to be maintained
as the pre-regions ϕ1 get refined.

The VERIFIED rule says that as soon as all paths from the entry
node regions that intersect with the precondition of the query ϕ̂1

to the exit node region that intersects with the postcondition of the
query ϕ̂2 have at least one step where the may analysis shows that
the edge does not exist, then we have verified that the answer to the
query 〈ϕ̂1

?
=⇒P ϕ̂2〉 is “no” and hence that the program is correct.

It is easy to show that, at every refinement step, the transition
system defined over the partitioned regions simulates the program
P . Thus, the incremental inference of relation Ne made by the
may analysis is always guaranteed to be sound with respect to P .
However, there is no guarantee that, if the program is correct, the
refinement process will ever converge to such an answer. For finite-
state programs, the process is guaranteed to terminate.

The partition splits specified in the rules of Figure 5 are nonde-
terministic. Specific abstraction-refinement tools such as SLAM [4]
can be viewed as instantiating this framework by refining regions
only along abstract counterexamples that lead from the starting
node to the error node.

3.2 Must Analysis
A must analysis of a program is used to prove that the program
reaches a given set of states during some execution. While a may
analysis over-approximates reachability information in order to
prove the absence of errors, a must analysis under-approximates
reachability information in order to prove the existence of execu-
tion paths leading to an error. A must analysis based on succes-
sive partition refinements can be defined by dualizing the rules pre-
sented in the previous section. However, splitting must partitions is
no longer guaranteed to preserve previously-computed must transi-
tions and other techniques (such as hyper-must transitions or carte-
sian abstraction) are needed to restore the monotonicity of must-
partition refinement [15].

In this paper, we consider a specific type of must abstractions
which avoid the issues above. Specifically, a must analysis of a
program P associates every node n in NP with a set Ωn of states
that are all guaranteed to be reachable from the initial state of the
program. The set Ωn of states associated with a node n increases
monotonically during the must analysis and is never partitioned.

Figure 6 gives a set of declarative rules to perform a must
analysis using sets Ωn.

In response to a query 〈ϕ̂1
?

=⇒P ϕ̂2〉, we initialize Ωn0
P

with
ϕ̂1 and for all other nodes n we initialize Ωn to be the empty set
(rule INIT-OMEGA).

The rule MUST-POST specifies how to perform a forward must-
analysis using the postcondition operator Post: the postcondition
θ of Ωn1 with respect to the transition relation associated with an
edge e from node n1 to node n2 can be safely added to Ωn2 . If the
postcondition Post cannot be computed precisely, any subset is a

5 2009/7/15

〈ϕ̂1
?

=⇒P ϕ̂2〉
Πnx

P
:= {ϕ̂2,ΣP \ ϕ̂2} ∀n ∈ NP \ {nx

P}.Πn := {ΣP} ∀e ∈ EP .Ne := {}
[INIT-PI-NE]

ϕ1 ∈ Πn1 ϕ2 ∈ Πn2 e = 〈n1, n2〉 ∈ EP θ ⊇ Pre(Γe, ϕ2)

Πn1 := (Πn1 \ {ϕ1}) ∪ {ϕ1 ∩ θ, ϕ1 ∩ ¬θ} Ne := Ne ∪ {(ϕ1 ∩ ¬ θ, ϕ2)}
[NOTMAY-PRE]

(ϕ1, ϕ2) ∈ Ne ϕ′1 ⊆ ϕ1

Ne := Ne ∪ {(ϕ′1, ϕ2)}
[IMPL-LEFT]

(ϕ1, ϕ2) ∈ Ne ϕ′2 ⊆ ϕ2

Ne := Ne ∪ {(ϕ1, ϕ′2)}
[IMPL-RIGHT]

〈ϕ̂1
?

=⇒P ϕ̂2〉
∀n0, . . . , nk.∀ϕ0, . . . , ϕk. n0 = n0

P ∧ nk = nx
P ∧ ϕ0 ∈ Πn0 ∧ ϕ1 ∈ Πn1 · · ·ϕk ∈ Πnk

∧ ϕ0 ∩ ϕ̂1 6= {} ∧ ϕk ∩ ϕ̂2 6= {}
⇒ ∃0 ≤ i ≤ k − 1.e = 〈ni, ni+1〉 ∈ EP ⇒ (ϕi, ϕi+1) ∈ Ne

〈ϕ̂1
?

=⇒P ϕ̂2〉 = no
[VERIFIED]

Figure 5. May analysis.

ϕ1 ∈ Πn1 ϕ2 ∈ Πn2 e = 〈n1, n2〉 ∈ EP
Ωn1 ∩ ϕ1 6= {} Ωn2 ∩ ϕ2 = {} θ ⊆ Post(Γe,Ωn1 ∩ ϕ1) ϕ2 ∩ θ 6= {}

Ωn2 := Ωn2 ∪ θ
[MUST-POST]

ϕ1 ∈ Πn1 ϕ2 ∈ Πn2 e = 〈n1, n2〉 ∈ EP
Ωn1 ∩ ϕ1 6= {} Ωn2 ∩ ϕ2 = {} β ⊇ Pre(Γe, ϕ2) β ∩ Ωn1 = {}

Πn1 := (Πn1 \ {ϕ1}) ∪ {ϕ1 ∩ β, ϕ1 ∩ ¬β} Ne := Ne ∪ {(ϕ1 ∩ ¬β, ϕ2)}
[NOTMAY-PRE]

Figure 7. May-must analysis. Rules INIT-PI-NE, IMPL-LEFT, IMPL-RIGHT and VERIFIED are assumed to be included from Figure 5, and
rules INIT-OMEGA and BUGFOUND are assumed to be included from Figure 6.

valid approximation. This formalization includes as a specific case
DART [16], where complex constraints are simplified by substitut-
ing symbolic expressions with concrete values observed dynami-
cally during testing.

A rule MUST-PRE for backward must-analysis using the pre-
condition operator Pre can be written as the dual of rule MUST-
POST, but is omitted here.

During the analysis of a query 〈ϕ̂1
?

=⇒P ϕ̂2〉, if Ωnx
P

ever
intersects with ϕ̂2, then we can conclude that the answer to the
query is “yes” (rule BUGFOUND).

3.3 May-Must Analysis
May and must analysis have complementary properties – the for-
mer is used for verification and the latter for bug finding. Figure 7
shows a set of rules that combine may and must rules in order
to perform both a may and a must analysis simultaneously. The
rules INIT-PI-NE, IMPL-LEFT, IMPL-RIGHT and VERIFIED are
included “as is” from Figure 5, and rules INIT-OMEGA and BUG-
FOUND are included “as is” from Figure 6, so we do not repeat
them here.

The interesting rules are MUST-POST and NOTMAY-PRE. Sup-
pose edge e = 〈n1, n2〉 is such that ϕ1 ∈ Πn1 and ϕ2 ∈ Πn2 .
Furthermore, suppose that ϕ1 ∩ Ωn1 6= {}, and ϕ2 ∩ Ωn2 = {}.
This means that we know that the partition ϕ1 ∈ Πn1 is indeed
reachable (since it intersects with the region Ωn1), and we do not
know if ϕ2 ∈ Πn2 is reachable (since it does not intersect with
the region Ωn2). If we can compute a subset of the postcondi-
tion θ ⊆ Post(Γe, ϕ1 ∩ Ωn1) such that θ intersects with ϕ2, then
we simply augment Ωn2 with θ, as specified in the rule MUST-
POST. Dually, if we can compute a superset of the precondition
β ⊃ Pre(Γe, ϕ2) such that β does not intersect with Ωn1 , then
we split the region ϕ1 ∈ Πn1 using β and we know that region
ϕ2 is not reachable from region ϕ1 ∩ ¬β, as specified in the rule
NOTMAY-PRE. Note that any interpolant (see [26]) between the
sets Pre(Γe, ϕ2) and Ωn1 satisfies the conditions to be used as β,
and can be used to split the region ϕ1.

These rules can be instantiated to obtain the SYNERGY [19] and
DASH [5] algorithms. These algorithms have the specific property

that, whenever one can compute precisely Post, equivalently Pre,
then either rule MUST-POST or rule NOTMAY-PRE must be en-
abled, and a single call to a theorem prover to compute Post/Pre
is then sufficient to refine either the current must or may (respec-
tively) program abstraction.

4. Multi-Procedure Programs and Compositional
May-Must Analysis

In programs with multiple procedures, compositional analyses,
which analyze one procedure at a time and build summaries for
each procedure for possible re-use in other calling contexts, are de-
sired for scalability. We describe how to do compositional analysis
with may abstractions, must abstractions and by combining may-
must abstractions. First, we extend our program notation to allow
programs with multiple procedures.

A multi-procedure program P is a set of single-procedure pro-
grams {P0,P1, . . . ,Pn}. Each of the single-procedure programs
follows the notation described earlier, with the following modi-
fications. There are global variables common to all procedures,
and local variables private to each procedure (more precisely, pri-
vate to each invocation of a procedure). Thus, for any single-
procedure program Pi (also called procedure Pi), we have that
Pi = 〈VPi , NPi , EPi , n

0
Pi
, nx
Pi
, λPi〉 where VPi is the disjoint

union of global variables V G and local variables V L
Pi

. Parameters
and return values can be simulated using global variables, so we do
not explicitly model these. Without loss of generality, we assume
each procedure has a single entry node n0

Pi
and a single exit node

nx
Pi

. For any two distinct procedures Pi and Pj , we assume that
NPi and NPj are disjoint. Thus a node unambiguously identifies
which procedure it is in.

In addition to the assignment and assume statements, we add a
new statement call p where p is the name of the procedure being
called. Procedure P0 is the “main” procedure where the program
starts executing. As before, all global variables initialize nonde-
terministically to any value in the initial configuration. Whenever
a procedure is entered, its local variables are initialized nondeter-
ministically. Unlike local variables, global variables get initialized

6 2009/7/15

procedure Pi ∈ P
¬may
=⇒ Pi

:= {}
[INIT-NOTMAYSUM]

ϕ1 ∈ Πn1 ϕ2 ∈ Πn2 e = 〈n1, n2〉 ∈ EPi
is a call to procedure Pj

(ϕ̂1, ϕ̂2) ∈ ¬may
=⇒ Pj

ϕ2 ⊆ ϕ̂2 θ ⊆ ϕ̂1

Πn1 := (Πn1 \ {ϕ1}) ∪ {ϕ1 ∩ θ, ϕ1 ∩ ¬θ} Ne := Ne ∪ {(ϕ1 ∩ θ, ϕ2)}
[NOTMAY-PRE-USESUMMARY]

ϕ1 ∈ Πn1 ϕ2 ∈ Πn2 e = 〈n1, n2〉 ∈ EPi
is a call to procedure Pj

ψ1 = ∃V L
Pi
.ϕ1 ψ2 = ∃V L

Pi
.ϕ2

〈ψ1
?

=⇒Pj
ψ2〉

[MAY-CALL]

〈ϕ̂1
?

=⇒Pi
ϕ̂2〉

∀n0, . . . , nk.∀ϕ0, . . . , ϕk. n0 = n0
Pi
∧ nk = nx

Pi
∧ ϕ0 ∈ Πn0 ∧ ϕ1 ∈ Πn1 · · ·ϕk ∈ Πnk

∧ ϕ0 ∩ ϕ̂1 6= {} ∧ ϕk ∩ ϕ̂2 6= {}
⇒ ∃0 ≤ i ≤ k − 1.e = 〈ni, ni+1〉 ∈ EP ⇒ (ϕi, ϕi+1) ∈ Ne

¬may
=⇒ Pi

:=
¬may
=⇒ Pi

∪ (∃V L
Pi
.ϕ0, ∃V L

Pi
.ϕk)

[CREATE-NOTMAYSUMMARY]

(ϕ1, ϕ) ∈ ¬may
=⇒ Pi

(ϕ2, ϕ) ∈ ¬may
=⇒ Pi

¬may
=⇒ Pi

:=
¬may
=⇒ Pi

∪ {(ϕ1 ∪ ϕ2, ϕ)}
[MERGE-MAYSUMMARY]

Figure 8. Compositional may analysis. Rules from Figure 5 are assumed to be included, but not shown.

only once at the beginning of execution, and can be used for com-
munication between procedures.

We use the query notation to specify verification questions
for multi-procedure programs as well. In particular, for multi-
procedure programs, we assume that the query is asked in terms
of the main procedure P0, and is of the form 〈ϕ1

?
=⇒P0 ϕ2〉. Our

compositional analyses solve the verification question by formu-
lating various sub-queries to procedures that are called from P0,
and then sub-queries to procedures called by those procedures and
so on. Each sub-query is defined in the context of a particular pro-
cedure, and is solved by analyzing the code of that procedure in
combination with summaries for other called procedures.

We have presented the rules in Section 3 in such a way that they
can easily be extended to work with summaries. In particular, the
edges Ne from Figure 5 can be used to build not-may summaries,
and the sets Ωn from Figure 6 can be used to build must summaries.

Given a set S ⊆ ΣPi , we use ∃V L
Pi
.S to denote the set of global

states obtained by considering only the values of global variables
of each state in S.

4.1 Compositional May Analysis
Figure 8 gives the rules for compositional may analysis. The rules
for intraprocedural may analysis from Figure 5 are assumed to be
included and are not repeated.

The rules maintain a set
¬may
=⇒ Pi of not-may summaries for

each procedure Pi. The rule INIT-NOTMAYSUM initializes the set
of not-may summaries of all procedures to empty sets. The rule
NOTMAY-PRE-USESUMMARY uses an existing not-may summary
to split a region ϕ ∈ Πn1 along the lines of the NOTMAY-PRE rule.
Recall that if 〈ϕ̂1

¬may
=⇒ Pi ϕ̂2〉 is a not-may summary, then there is

no transition from any state in ϕ̂1 to any state in ϕ̂2. Thus, for any
subset θ of ϕ̂1 there exists no transition from any state in θ to any
state in ϕ2 ⊆ ϕ̂2. This justifies the Ne edge {(ϕ1 ∩ θ, ϕ2)} in the
consequent of the rule.

The rule MAY-CALL generates a query in the context of a called
procedure after existentially quantifying local variables of the caller
since those are not in the scope of the callee. For notational conve-
nience, we assume that the partitions Πn for each node n and the
edgesNe are computed afresh for each invocation of a query. (Note
that intraprocedural inference steps could themselves be summa-
rized and re-used across multiple query invocations.)

The rule CREATE-NOTMAYSUMMARY is used to generate a
not-may summary from Ne edges. If all paths from some region

ϕ0 in Πn0
Pi

to some region ϕk in Πnx
Pi

pass through at least one
Ne edge, we can conclude that there are no paths from states in
ϕ0 to states in ϕk. Thus, we can add a not-may summary between
these two sets of states after quantifying out the local variables that
are irrelevant to the calling contexts.

The rule MERGE-MAYSUMMARY allows not-may summaries
to be merged. The correctness of this rule follows from the defini-
tion of not-may summaries. If there are no paths from states in ϕ1

to states in ϕ, and there are no paths from states in ϕ2 to states in
ϕ, we can conclude that there are no paths from states in ϕ1∪ϕ2 to
states in ϕ. Merged summaries can contribute to larger sets θ used
to split regions in the NOTMAY-PRE-USESUMMARY rule.

4.2 Compositional Must Analysis
The rules in Figure 9 along with the intraprocedural rules described
in Figure 6 define compositional must analysis.

The set of must-summaries for each procedure Pi is denoted
by must

=⇒Pi . This set is initialized to the empty set in the rule
INIT-NOTMAYSUM, and it monotonically increases as the analysis
proceeds.

The rule MUST-POST-USESUMMARY is very similar to the rule
MUST-POST in the intraprocedural must analysis. The only differ-
ence here is that the node n1 is a call node, representing a call to
another procedure Pj . If a suitable must summary (ϕ1, ϕ2) exists,
the rule uses the must summary to compute an underapproximation
to the postcondition.

The rule MUST-CALL creates a new sub-query for a called
procedure Pj , which can result in new summaries created for Pj .
As in the compositional may analysis case, we assume again for
notational simplicity that the sets Ωn for each node n are computed
afresh for each query.

The rule CREATE-MUSTSUMMARY creates must summaries
in the context of the current query for the procedure. Suppose
〈ϕ̂1

?
=⇒Pi ϕ̂2〉 is the current query for the procedure Pi. Suppose

θ = ∃V L
Pi
.Ωnx

Pi
represents the global state reached at the exit point

of the procedure Pi by using must analysis. Further suppose that θ
intersects with the post-state of the query ϕ2. Then, we add the
must summary {(ϕ̂1, θ)} since every state in θ can be obtained by
executing the procedure starting at some state in ϕ1.

Finally the rule MERGE-MUSTSUMMARY allows merging
must summaries. The correctness of this rule follows from the
definition of must summaries. If every state in ϕ1 can be reached
from some state in ϕ, and every state in ϕ2 can be reached from

7 2009/7/15

procedure Pi ∈ P
must
=⇒ Pi

:= {}
[INIT-MUSTSUMMARY]

e = 〈n1, n2〉 ∈ EPi
is a call to procedure Pj

(ϕ1, ϕ2) ∈ must
=⇒ Pj

Ωn1 ⊇ ϕ1 θ ⊆ ϕ2

Ωn2 := Ωn2 ∪ θ
[MUST-POST-USESUMMARY]

e = 〈n1, n2〉 ∈ EPi
is a call to procedure Pj θ = ∃V L

Pi
.Ωn1

〈θ ?
=⇒Pj

ΣP〉
[MUST-CALL]

〈ϕ̂1
?

=⇒Pi
ϕ̂2〉 θ = ∃V L

Pi
.Ωnx

Pi
θ ∩ ϕ̂2 6= {}

must
=⇒ Pi

:=
must
=⇒ Pi

∪ {(ϕ̂1, θ)}
[CREATE-MUSTSUMMARY]

(ϕ, ϕ1) ∈ must
=⇒ Pi

(ϕ, ϕ2) ∈ must
=⇒ Pi

must
=⇒ Pi

:=
must
=⇒ Pi

∪ {(ϕ, ϕ1 ∪ ϕ2)}
[MERGE-MUSTSUMMARY]

Figure 9. Compositional must analysis. Rules from Figure 6 are assumed to be included, but not shown.

some state in ϕ, it follows that every state in ϕ1∪ϕ2 can be reached
from some state in ϕ.

These set of rules can be instantiated to obtain a variant of the
SMART algorithm [14], a compositional version of the DART al-
gorithm. Indeed, our rules compute summaries for specific calling
contexts (see θ in rule MUST-CALL) and record those in the pre-
conditions of summaries. In contrast, preconditions of summaries
in SMART are expressed exclusively in terms of the procedure’s in-
put variables and calling contexts themselves are not recorded. The
summaries of SMART can therefore be more general (hence more
re-usable), while our summaries record must-reachability informa-
tion more precisely, which in turns simplifies the formalization and
the combination with not-may summaries, as is discussed next.

4.3 SMASH: Compositional May-Must Analysis
The rules for compositional may-must analysis combine the may
rules and the must rules in the same way as in the single proce-
dure case. The set of rules is shown in Figure 10. All rules from
compositional may analysis (Figure 8), compositional must analy-
sis (Figure 9), and intraprocedural may-must analysis (Figure 7) are
included but not shown, except the rules MAY-CALL and MUST-
CALL which are replaced by the new rule MAYMUST-CALL, and
except the rules MUST-POST-USESUMMARY and NOTMAY-PRE-
USESUMMARY which are modified as shown in Figure 10.

The succinctness of these rules hides how not-may summaries
and must summaries interact, so we explain this in more detail.
Each query made to SMASH can be answered with either a not-may
summary or a must summary, but not both. Whenever SMASH ana-
lyzes a procedurePi and encounters an edge e inPi calling another
procedure Pj , SMASH can either use an existing must summary
for procedure Pj (using the rule MUST-POST-USESUMMARY), or
an existing not-may summary for Pj (using the rule NOTMAY-
PRE-USESUMMARY), or initiate a fresh query to Pj (using the
rule MAY-MUST-CALL). Note that when the rule MAY-MUST-
CALL generates a query for the called procedure Pj , we do not
know if the query will result in creating not-may summaries or
must summaries. If the body of Pj calls another procedure Pk, an-
other query can be potentially generated for that procedure as well.
Eventually, some of the calls could be handled using must sum-
maries (using the rule MOST-POST-USESUMMARY), and some of
the calls using not-may summaries (using the rule NOTMAY-PRE-
USESUMMARY). Thus, not-may summaries can be used to create
must summaries and vice versa, as illustrated in Section 2 with Ex-
amples 3 and 4.

The rule MUST-POST-USESUMMARY is similar to the rule
MUST-POST in Figure 7. The main difference is that the edge e is

a call to another procedure Pj . Assuming a suitable must summary
exists, the rule uses the must summary as the transition relation
of the procedure call in order to perform the equivalent of a Post
computation. Suppose edge e = 〈n1, n2〉 is such that ϕ1 ∈ Πn1

and ϕ2 ∈ Πn2 . Furthermore, suppose that ϕ1 ∩ Ωn1 6= {},
ϕ2 ∩ Ωn2 = {}, and (ϕ̂1, ϕ̂2) is a must-summary for Pj , with
Ωn1 ⊇ ϕ̂1. Since (ϕ̂1, ϕ̂2) is a must-summary, we know that all
the states in ϕ̂2 are reachable by executions of Pj from states in
ϕ̂1. Since Ωn1 ⊇ ϕ̂1, this implies that any subset θ ⊆ ϕ̂2 can be
reached from the set of sates Ωn1 by executing the procedure Pj .
Thus, we can add θ to the set of states Ωn2 , which are the set of
states that are guaranteed to be reachable at node n2 during this
execution of procedure Pj .

Similarly, the rule NOTMAY-PRE-USESUMMARY is like the
rule NOTMAY-PRE in Figure 7. The main difference is again that
the edge e is a call to another procedure Pj . Assuming a suitable
not-may summary exists, the rule uses the not-may summary as the
transition relation of the procedure call to perform the equivalent
of a Pre computation. Suppose e, ϕ1 and ϕ2 satisfy the same
assumptions as above, and there is a not-may summary (ϕ̂1, ϕ̂2)
with ϕ2 ⊆ ϕ̂2. Since (ϕ̂1, ϕ̂2) is a not-may summary, we know that
there are no executions of the procedure Pj starting at any subset
θ ⊆ ϕ̂1 resulting in states in ϕ̂2. Thus, we can partition the region
ϕ1 ∈ Πn1 with the guarantee that there are no transitions from
ϕ1∩θ to ϕ2, and hence we can add (ϕ1∩θ, ϕ2) toNe. We can use
interpolants (as discussed in Section 3.3) to choose possible values
for θ.

Given e, ϕ1, ϕ2,Ωn1 , we can show that both rules MUST-
POST-SUMMARY and NOTMAY-PRE-USESUMMARY can never
be simultaneously enabled since, by construction, it is not possible
to both have a must summary (ϕ̂1, ϕ̂2) and a not-may summary
(ψ1, ψ2) for a procedure such that ψ1 ⊇ ϕ̂1 and ψ2 ⊇ ϕ̂2.

Recursion. To avoid clutter, the rules for our compositional algo-
rithms (Figures 8, 9 and 10) have been written for non-recursive
programs. To handle recursive programs, we need to keep track for
each function for which queries are in progress, and also constrain
the order in which rules are applied. When a query 〈ϕ̂1

?
=⇒P ϕ̂2〉

is made, in addition to checking whether existing not-may or must
summaries can be used to answer the queries (using rules MUST-
POST-SUMMARY and NOTMAY-PRE-USESUMMARY), we need
to also check if this query can be answered by another “in-progress”
query 〈ϕ1

?
=⇒P ϕ2〉, and start computations for the current query

only if no such in-progress query exists. Such a check would guar-
antee termination of the SMASH algorithm for recursive programs
where data types are over a finite domain and no dynamic alloca-

8 2009/7/15

ϕ1 ∈ Πn1 ϕ2 ∈ Πn2 ϕ1 ∩ Ωn1 6= {} ϕ2 ∩ Ωn2 = {}
e = 〈n1, n2〉 ∈ EPi

is a call to procedure Pj

(ϕ̂1, ϕ̂2) ∈ must
=⇒ Pj

Ωn1 ⊇ ϕ̂1 θ ⊆ ϕ̂2 ϕ2 ∩ θ 6= {}
Ωn2 := Ωn2 ∪ θ

[MUST-POST-USESUMMARY]

ϕ1 ∈ Πn1 ϕ2 ∈ Πn2 ϕ1 ∩ Ωn1 6= {} ϕ2 ∩ Ωn2 = {}
e = 〈n1, n2〉 ∈ EPi

is a call to procedure Pj

(ϕ̂1, ϕ̂2) ∈ ¬may
=⇒ Pj

ϕ2 ⊆ ϕ̂2 θ ⊆ ϕ̂1 ¬θ ∩ Ωn1 = {}
Πn1 := (Πn1 \ {ϕ1}) ∪ {ϕ1 ∩ θ, ϕ1 ∩ ¬θ} Ne := Ne ∪ {(ϕ1 ∩ θ, ϕ2)}

[NOTMAY-PRE-USESUMMARY]

ϕ1 ∈ Πn1 ϕ2 ∈ Πn2 ϕ1 ∩ Ωn1 6= {} ϕ2 ∩ Ωn2 = {}
e = 〈n1, n2〉 ∈ EPi

is a call to procedure Pj ψ1 = ∃V L
Pi
.(ϕ1 ∩ Ωn1) ψ2 = ∃V L

Pi
.ϕ2

〈ψ1
?

=⇒Pj
ψ2〉

[MAYMUST-CALL]

Figure 10. SMASH: Compositional may-must analysis. All rules from compositional may analysis (Figure 8), compositional must analysis
(Figure 9), and intraprocedural may-must analysis (Figure 7) are included but not shown, except the rules MAY-CALL and MUST-
CALL which are replaced by the new rule MAYMUST-CALL, and except the rules MUST-POST-USESUMMARY and NOTMAY-PRE-
USESUMMARY which are modified as shown above.

tion is allowed (for instance, as in boolean programs [3]). However,
if data types are unbounded or if dynamic allocation is allowed,
checking a query is undecidable and SMASH is not guaranteed to
terminate.

Soundness. To establish soundness, we assert the following five
invariants over the data structures of the SMASH algorithm:

I1. For every node n ∈ NPi , Πn is a partition of ΣPi .

I2. For every node n ∈ NPi and every state σ ∈ Ωn, σ is reachable
by some program execution at node n starting from initial state
of the program.

I3. For every (ϕ1, ϕ2) ∈ Ne, and any σ1 ∈ ϕ1, it is not possible to
execute the statement at edge e starting from state σ1 and reach
a state σ2 ∈ ϕ2.

I4. For every (ϕ1, ϕ2) ∈ ¬may
=⇒ Pi , for any state σ1 ∈ ϕ1, it is not

possible to execute procedure Pi starting at state σ1 and reach
a state σ2 ∈ ϕ2 after completing the execution of Pi.

I5. For every (ϕ1, ϕ2) ∈ must
=⇒Pi , for any state σ2 ∈ ϕ2, there

exists a state σ1 ∈ ϕ1 such that executing the procedure Pi

starting at state σ1 leads to the state σ2.

The correctness of these invariants is established by induction over
each of the rules of the SMASH algorithm. As an example, we show
the induction step for the rule NOTMAY-PRE-USESUMMARY from
Figure 10. We need to establish that the refinement to Πn1 respects
invariant I1, and the new edge added to Ne respects the invariant
I3. Due to the induction hypothesis, we can assume that Πn1 before
execution of the rule is a partition. For any ϕ1 ∈ Πn1 , and any
value of θ, since Πn1 is a partition, we have that (Πn1 \ {ϕ1}) ∪
{ϕ1 ∩ θ, ϕ1 ∩ ¬θ} is a partition, hence preserving invariant I1.
Next, consider the edge (ϕ1 ∩ θ, ϕ2) that is added to Ne. Due
to the antecedent of the rule, since (ϕ̂1, ϕ̂2) ∈ ¬may

=⇒ Pj , due to
induction hypothesis I4 we know that no state in ϕ̂1 can reach any
state in ϕ̂2 by executing procedure Pj . Since θ ⊆ ϕ̂1, we have that
ϕ1 ∩ θ ⊆ ϕ̂1. Consequently, we have that no state in ϕ1 ∩ θ can
reach any state in ϕ2 ⊆ ϕ̂2 by executing Pj , and it follows that
the updated Ne satisfies the invariant I3. The soundness of all the
other rules is proved in a similar way.

5. Evaluation
In this section, we describe our implementation of SMASH and
present results of experiments with several Microsoft Windows
Vista device drivers.

Statistics
DASH

(Figure 7)
SMASH

(Figure 10)
Average
Not-May Summaries/driver 0 39

Average
Must Summaries/driver 0 12

Number of proofs 2176 2228
Number of bugs 64 64
Time-outs 61 9
Time (hours) 117 44

Table 1. SMASH vs. DASH on 69 drivers (342000 LOC) and 85
properties.

5.1 Implementation
Our tool SMASH is a deterministic implementation of the declara-
tive rules of Figure 10, developed in the F# programming language
and using the Z3 theorem prover [12] . Recall that every reachabil-
ity query 〈ϕ1

?
=⇒Pi ϕ2〉 for a procedurePi can be answered exclu-

sively by either a must summary or a not-may summary. Therefore,
the SMASH implementation makes the rules given in Figure 10 de-
terministic as shown below:

1. If some previously computed must summary 〈ϕ̂1
must
=⇒Pi ϕ̂2〉

is applicable, return “yes”.

2. If some previously computed not-may summary 〈ϕ̂1
¬may
=⇒ Pi ϕ̂2〉

is applicable, return “no”.

3. Otherwise, analyze the procedure Pi using the rule MAY-
MUST-CALL. The result of this analysis could be itself ei-
ther a “yes” (computation of a must summary for Pi given
by the rule CREATE-MUSTSUMMARY) or a “no” (computa-
tion of a not-may summary for Pi given by the rule CREATE-
MAYSUMMARY).

SMASH’s intraprocedural analysis implements the DASH algo-
rithm [5] which is an instance of the may-must analysis shown in
Figure 7. We have implemented SMASH using the YOGI frame-
work [28] which handles C programs with primitive data types,
structs, pointers, function pointers and procedures. Pointer arith-
metic is not handled— *(p+i) is treated as *p, similar to SLAM [4]
and BLAST [23]. All predicates used to build may and must pro-
gram abstractions are propositional logic formulas defined over lin-
ear arithmetic and uninterpreted functions stored in Z3’s internal
representation. With these assumptions, the logic is decidable and
therefore every satisfiability/validity query to the theorem prover
results in either a “yes” or “no” answer.

9 2009/7/15

Program Lines Properties
DASH

(Figure 7)

COMPOSITIONAL-MAY-DASH

(Figure 8)

COMPOSITIONAL-MUST-DASH

(Figure 9)

SMASH

(Figure 10)

(LOC) Summaries Time-outs Time Summaries Time-outs Time Summaries Time-outs Time Summaries Time-outs Time

(min) (min) (min) Not-May Must (min)

parport 33987 8 0 0 45 0 0 14 6 0 44 0 6 0 14
serial1 32385 18 0 11 420 64 7 310 8 7 278 64 7 0 59
serial2 31861 17 0 11 414 83 4 204 11 7 283 21 11 0 39
sys1 12124 19 0 9 340 7 9 340 12 3 144 2 13 0 19
sys2 8593 13 0 5 206 0 5 205 10 0 9 0 9 0 6
flpydisk 6747 37 0 0 59 317 0 47 32 0 43 240 32 0 43
pscr2 5799 21 0 6 264 57 2 124 21 0 27 47 17 0 24
pscr1 5480 25 0 3 154 57 2 133 16 0 57 40 22 0 26
modem 3432 15 0 5 208 35 0 55 1 4 178 45 1 0 15
1394vdev 2746 15 0 2 129 140 2 126 8 1 101 10 7 0 26
1394diag 2745 19 0 3 158 23 3 156 7 2 131 10 9 1 115
featured2 2512 21 0 3 202 54 2 158 32 0 52 2 28 0 20
featured2a 2465 16 0 3 167 30 3 156 20 0 49 2 24 0 14
func fail 2131 24 0 4 184 34 4 186 21 2 120 5 19 0 19
featured1 1880 16 0 3 149 36 3 146 17 1 79 3 19 0 8
featured1a 1838 19 0 5 217 30 2 130 25 3 145 2 25 0 27

Table 2. Empirical evaluation of SMASH on 16 device drivers.

5.2 Experiments
We evaluated SMASH on 69 Microsoft Windows Vista device
drivers and 85 properties. We performed our experiments using
a system with a 2.66 GHz Intel Xeon quad core processor with
4GB RAM running Microsoft Windows Server 2003.

Overall comparison. A comparison of SMASH with DASH [5]
(this is the non-compositional may-must analysis described in Fig-
ure 7) on all 69 device drivers and 85 properties is shown in Ta-
ble 1. The total number of lines of code analyzed is 342000 lines of
code. The total number of checks (we will refer to every verification
question involving a driver and a property1 as a check) performed
by both analyses is 2301 (the rest correspond to checks where the
property is not applicable to the driver). The average number of
not-may summaries per driver used by SMASH is 39 and the aver-
age number of must summaries per driver equals 12. With a time-
out limit of 30 minutes, there are 61 checks where DASH times out
while SMASH times out only on 9 checks. The total time taken for
the analysis by DASH is 117 hours while SMASH takes only 44
hours, including time-outs. It is worth emphasizing that our non-
compositional analysis baseline DASH is already an improvement
over SLAM [4] (see [5]).

Detailed comparison on 16 drivers. To understand the effective-
ness of SMASH, we drill down into empirical data for 16 drivers
(arbitrarily picked from the 69 drivers) in Table 2. Every row
of this table shows a driver along with its number of lines of
code and the number of properties checked. We compare SMASH
against DASH, DASH with compositional may analysis (denoted
by COMPOSITIONAL-MAY-DASH), and DASH with compositional
must analysis (denoted by COMPOSITIONAL-MUST-DASH). The
total time taken by each analysis is reported in minutes. We also
report the average number of not-may/must summaries used by
each analysis for each driver. It is clear from Table 2 that SMASH
outperforms COMPOSITIONAL-MAY-DASH, COMPOSITIONAL-
MUST-DASH and DASH on all 16 drivers. This is further elucidated
in Figure 11 where each point (x, y) in the graph denotes the fact
that there are y checks that take an average time of x minutes. As
indicated by the curve for SMASH, a large number of checks take
a relatively short amount of time with SMASH. In contrast, with
DASH, a large number of checks take a large amount of time. The
curves for COMPOSITIONAL-MAY-DASH and COMPOSITIONAL-
MUST-DASH are better than DASH, but are outperformed by

1 Properties are typestate properties for device drivers as described in http:
//msdn.microsoft.com/en-us/library/aa469136.aspx.

Figure 11. Comparison of SMASH with COMPOSITIONAL-MAY-
DASH, COMPOSITIONAL-MUST-DASH and DASH on 303 checks.

SMASH. This data indicates that in addition to gains obtained
by COMPOSITIONAL-MAY-DASH and COMPOSITIONAL-MUST-
DASH analyses, extra gains are obtained in SMASH due to the
interplay between may analysis and must analysis.

There are a number of checks where DASH, COMPOSITIONAL-
MAY-DASH and COMPOSITIONAL-MUST-DASH time out while
SMASH does not. These correspond to patterns like those out-
lined in Figures 3 and 4, which illustrate how the intricate inter-
play between not-may summaries and must summaries can prevent
SMASH from getting “stuck”. However, SMASH does timeout on 1
check for the driver 1394diag and the reason for this (as well as all
the 9 time-outs in Table 1) is that it is unable to discover the right
invariant to prove the property.

Table 2 also shows that the total number of summaries used
by SMASH is less than the total number of summaries used
by COMPOSITIONAL-MAY-DASH and COMPOSITIONAL-MUST-
DASH put together. Since the number of summaries is related to the
number of queries (every distinct query that cannot be answered us-
ing an existing summary results in a new summary), this data points
to reduced number of queries in SMASH, indicating that a combi-
nation of may and must analyses can drastically reduce the number
of queries in the analysis.

10 2009/7/15

Figure 12. Average summary population for SMASH.

Interplay between not-may and must summaries. Finally, to
quantify the interplay between not-may and must summaries in
SMASH, we examine the average summary population for top-level
queries/checks (those that result in proofs or bugs) for all the 16
drivers in Table 2. This data is presented in Figure 12— the first
column in this figure represents the average number of not-may
summaries and must summaries used to answer queries that re-
sulted in a “no” answer (a proof/not-may answer), while the sec-
ond column represents the average number of not-may summaries
and must summaries used to answer queries that resulted in a “yes”
(a bug/must answer). On an average, to generate a proof, 68% of
summaries used were not-may summaries and 32% of the sum-
maries used were must summaries. On an average, to identify a bug,
64% of summaries used were must summaries and 36% of the sum-
maries used were not-may summaries. Indeed, it is this fine-grained
coupling and alternation of not-may and must summary applica-
tions that allows SMASH to easily navigate through code fragments
that are typically hard to analyze using COMPOSITIONAL-MAY-
DASH, COMPOSITIONAL-MUST-DASH and DASH.

The experiments reported here were performed in an experi-
mental setup similar to the one used in [5]: (1) environment mod-
els/code are used to simulate the effects of the operating system
visible to the device drivers considered, and (2) “concrete” execu-
tions of the drivers (and of the environment code) are simulated
by an interpreter. Note that assumption (1) is an inherent limita-
tion to all may static program analysis: the impact of the exter-
nal environment must be modeled abstractly somehow. In contrast,
testing-based approaches [16] can simply run the actual environ-
ment code (assuming it is available) as a blackbox, although this
typically makes the analysis incomplete, i.e., the analysis may miss
bugs. Because of assumption (2), the level of precision when com-
puting preconditions Pre and postconditions Post in the rules of
Figure 7 is always the same, and one of the two rules MUST-POST
or NOTMAY-PRE is always guaranteed to be applicable.

6. Related Work
As mentioned earlier, the SMASH algorithm generalizes and ex-
tends several existing algorithms.2 SLAM [4] performs a composi-
tional may analysis using predicate abstraction and partition refine-
ment, but does not perform a must analysis. SMART [14] performs
a compositional must analysis, extending the non-compositional
must analysis of DART [16], but does not perform a may analy-
sis. SYNERGY [19] combines SLAM and DART for intraprocedu-
ral analysis only. DASH [5] performs an interprocedural may-must
analysis, extending the intraprocedural SYNERGY algorithm [19],
but is non-compositional, i.e., it does not memoize (cache) interme-
diate results in the form of reusable summaries. Also, the formal-

2 The name SMASH is a combination of the names SMART and DASH.

ization of the DASH algorithm in [5] does not account for impreci-
sion in symbolic execution and constraint solving while computing
preconditions Pre or postconditions Post.

To the best of our knowledge, SMASH is the first 3-valued com-
positional may-must analysis algorithm. Its key novel feature is its
fined-grained coupling between may and must summaries, which
allows using either type of summaries in a flexible and demand-
driven manner. As shown in the experiments of the previous sec-
tion, this alternation is the key feature that allows SMASH to out-
perform previous algorithms.

Several other algorithms and tools combine static and dy-
namic program analyses for property checking and test generation,
e.g., [27, 31, 10, 6]. Most of these looser combinations perform
a static analysis before a dynamic analysis, while some [6] al-
low for some feedback to flow between both. But none support
fine-grained alternation between the may/static and must/dynamic
parts, and most are not compositional.

Compositional may program analysis has been amply discussed
in the literature [24], and has recently been extended to the must
case [14, 1]. Our work combines both compositional may and com-
positional must analyses in a tight unified framework and shows
how to leverage their complementarity.

Three-valued may-must program analysis using predicate ab-
straction has been proposed before [15, 21]. However, this earlier
work used the same abstract states (sets of predicates) to define both
may and must abstractions, and was not compositional. In contrast,
SMASH is compositional and uses two different abstract domains
for its may and must analyses (as in SYNERGY and DASH): may
abstract states are defined using predicate abstraction and are iter-
atively refined by adding new predicates to split abstract regions;
while must abstract states are defined using symbolic execution
along program paths executed with concrete tests and are incremen-
tally computed with more tests but without refining must abstract
states.

Program analysis using three-valued shape graphs as abstract
states has also been proposed for shape analysis [29]. There, ab-
stract states are richer three-valued structures, while transitions be-
tween those states are traditional two-valued may transitions.

In the context of verification-condition-generation-style pro-
gram verification, [13] discusses how to over-approximate and
under-approximate recursive logic formulas representing whole
programs and generated by a static program analysis for a fixed
set of predicates. In contrast, our approach builds up a logical pro-
gram representation incrementally, by refining simultaneously dual
may over-approximate and must under-approximate compositional
program abstractions defined by varying sets of predicates. More-
over, unlike [13], we do not suffer from false positives since our
must analysis is grounded in concrete executions through program
testing.

In this work, we focus on checking safety properties, which can
be reduced to evaluating reachability queries, and arguably repre-
sent most properties one wants to check in practice. It is well known
that may-must abstractions can also be used to check more expres-
sive properties, such as liveness and termination properties, as well
as properties represented by µ-calculus formulas with arbitrary al-
ternation of universal and existential path quantifiers [15]. How-
ever, in order to check liveness properties with finite-state abstrac-
tions, more elaborate abstraction techniques, such as the generation
of fairness constraints, are in general necessary [30, 25].

We assume in this paper that all concrete program executions
terminate. In practice, this assumption can easily be checked for
specific executions at run-time using timers. In other words, we as-
sume and check for termination using the must part of our program
analysis, but we do not attempt to prove that all program executions
always terminate using the may part [9], nor do we try to find some

11 2009/7/15

non-terminating execution [20]. It would be interesting to combine
techniques for proving termination [9] and non-termination [20]
with compositional may-must program analysis.

SMASH fits in the category of property-guided algorithms and
tools: each experiment reported in the previous section is aimed at
either proving or disproving that a program (device driver) satisfies
a specific property (assertion) of interest. In contrast, the approach
taken in [16, 8, 18] is aimed at exercising as many program paths
as possible while checking many properties simultaneously along
each of those paths [17].

7. Conclusions
We have presented a unified framework for compositional may-
must program analysis and a specific algorithm, SMASH, instantiat-
ing this framework. We have implemented SMASH using predicate
abstraction for the may part and using dynamic test generation for
the must part. Results of experiments with 69 Microsoft Windows
Vista device drivers show that SMASH can significantly outperform
may-only, must-only and non-compositional may-must algorithms.

The key technical novelty of SMASH is the tight integration
of may and must analyses using interchangeable not-may/must
summaries. Although the general idea of combining compositional
may and must analyses is natural, the outcome of the experimental
evaluation was surprising as SMASH performed much better than
adding compositionality separately to may and must analyses. This
led us to uncover the previously-unnoticed power of alternation of
may and must summaries in the context of compositional program
analysis. We have also been able to quantify the amount of interplay
that happens between may and must summaries in our data set.

SMASH is implemented in YOGI [28] which is one of the tools
in the Static Driver Verifier (SDV) toolkit for analyzing Windows
device drivers and will eventually be shipped with Windows.

References
[1] S. Anand, P. Godefroid, and N. Tillmann. Demand-driven composi-

tional symbolic execution. In TACAS ’08: Tools and Algorithms for
the Construction and Analysis of Systems, pages 367–381, 2008.

[2] T. Ball, O. Kupferman, and G. Yorsh. Abstraction for falsification. In
CAV ’05: Computer-Aided Verification, 2005.

[3] T. Ball and S. K. Rajamani. Bebop: A symbolic model checker for
boolean programs. In SPIN ’00: International SPIN Workshop, pages
113–130, 2000.

[4] T. Ball and S. K. Rajamani. Automatically validating temporal safety
properties of interfaces. In SPIN ’01: SPIN workshop on Model
checking of Software, pages 103–122, 2001.

[5] N. E. Beckman, A. V. Nori, S. K. Rajamani, and R. J. Simmons.
Proofs from tests. In ISSTA’08: International Symposium on Software
Testing and Analysis, pages 3–14, 2008.

[6] D. Beyer, T. A. Henzinger, and G. Theoduloz. Program analysis
with dynamic precision adjustment. In ASE ’08: Automated Software
Engineering, 2008.

[7] W.R. Bush, J.D. Pincus, and D.J. Sielaff. A static analyzer for finding
dynamic programming errors. Software Practice and Experience,
30(7):775–802, 2000.

[8] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R.
Engler. EXE: Automatically generating inputs of death. In CCS
’06: Computer and Communications Security Conference, 2006.

[9] B. Cook, A. Podelski, and A. Rybalchenko. Termination proofs for
systems code. In PLDI ’06: Programming Language Design and
Implementation, 2006.

[10] C. Csallner and Y. Smaragdakis. Check’n Crash: Combining static
checking and testing. In ICSE ’05: International Conference on
Software Engineering, 2005.

[11] M. Das, S. Lerner, and M. Seigle. ESP: Path-sensitive program
verification in polynomial time. In PLDI’02: Programming Language
Design and Implementation, pages 57–69, 2002.

[12] L. de Moura and N. Bjorner. Z3: An Efficient SMT Solver. In
TACAS ’08: Tools and Algorithms for the Construction and Analysis
of Systems, 2008.

[13] I. Dillig, T. Dillig, and A. Aiken. Sound, complete and scalable path-
sensitive analysis. In PLDI ’08: Programming Language Design and
Implementation, pages 270–280, 2008.

[14] P. Godefroid. Compositional dynamic test generation. In POPL ’07:
Principles of Programming Languages, pages 47–54, 2007.

[15] P. Godefroid, M. Huth, and R. Jagadeesan. Abstraction-based
model checking using modal transition systems. In CONCUR ’01:
International Conference on Concurrency Theory, pages 426–440,
2001.

[16] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed Automated
Random Testing. In PLDI ’05: Programming Language Design and
Implementation, pages 213–223, 2005.

[17] P. Godefroid, M.Y. Levin, and D. Molnar. Active property checking.
In EMSOFT ’08: Annual Conference on Embedded Software, pages
207–216, 2008.

[18] P. Godefroid, M.Y. Levin, and D. Molnar. Automated whitebox fuzz
testing. In NDSS ’08: Network and Distributed Systems Security,
pages 151–166, 2008.

[19] B. S. Gulavani, T. A. Henzinger, Y. Kannan, A. V. Nori, and S. K.
Rajamani. SYNERGY: A new algorithm for property checking. In
FSE ’06: Foundations of Software Engineering, pages 117–127, 2006.

[20] A. K. Gupta, T. A. Henzinger, R. Majumdar, A. Rybalchenko, and
R-G. Xu. Proving non-termination. In POPL ’08: Principles of
Programming Languages, pages 147–158, 2008.

[21] A. Gurfinkel, O. Wei, and M. Chechik. Yasm: A software model
checker for verification and refutation. In CAV ’06: Computer-Aided
Verification, pages 170–174, 2006.

[22] S. Hallem, B. Chelf, Y. Xie, and D. Engler. A system and language for
building system-specific static analyses. In PLDI’02: Programming
Language Design and Implementation, pages 69–82, 2002.

[23] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy
abstraction. In POPL ’02: Principles of Programming Languages,
pages 58–70, 2002.

[24] S. Horwitz, T. Reps, and M. Sagiv. Demand interprocedural dataflow
analysis. In FSE ’95: Foundations of Software Engineering, pages
104–115, 1995.

[25] Y. Kesten and A. Pnueli. Verification by augmented finitary
abstraction. Information and Computation, 163(1), 2000.

[26] K. L. McMillan. Interpolation and SAT-based model checking. In
CAV ’03: Computer-Aid Verification, pages 1–13, 2003.

[27] G. C. Necula, S. McPeak, and W. Weimer. CCured: Type-safe
retrofitting of legacy code. In POPL ’02: Principles of Programming
Languages, pages 128–139, 2002.

[28] A. V. Nori, S. K Rajamani, S. Tetali, and A. V. Thakur. The Yogi
Project: Software property checking via static analysis and testing. In
TACAS ’09: Tools and Algorithms for the Construction and Analysis
of Systems, pages 178–181, 2009.

[29] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via
3-valued logic. In POPL ’99: Principles of Programming Languages,
pages 105–118, 1999.

[30] T. Uribe. Abstraction-based Deductive-Algorithmic Verification of
Reactive Systems. PhD thesis, Stanford University, 1999.

[31] W. Visser, C. Pasareanu, and S. Khurshid. Test input generation with
java pathfinder. In ISSTA ’04: International Symposium on Software
Testing and Analysis, 2004.

12 2009/7/15

