
Generic author design sample pages 2000/08/14 13:12

12 Fast Training of Support Vector Machines

using Sequential Minimal Optimization

John C. Platt

Microsoft Research

1 Microsoft Way, Redmond, WA 98052, USA

jplatt@microsoft.com

http://www.research.microsoft.com/�jplatt

This chapter describes a new algorithm for training Support Vector Machines:

Sequential Minimal Optimization, or SMO. Training a Support Vector Machine

(SVM) requires the solution of a very large quadratic programming (QP) optimiza-

tion problem. SMO breaks this large QP problem into a series of smallest possible

QP problems. These small QP problems are solved analytically, which avoids us-

ing a time-consuming numerical QP optimization as an inner loop. The amount of

memory required for SMO is linear in the training set size, which allows SMO to

handle very large training sets. Because large matrix computation is avoided, SMO

scales somewhere between linear and quadratic in the training set size for various

test problems, while a standard projected conjugate gradient (PCG) chunking al-

gorithm scales somewhere between linear and cubic in the training set size. SMO's

computation time is dominated by SVM evaluation, hence SMO is fastest for lin-

ear SVMs and sparse data sets. For the MNIST database, SMO is as fast as PCG

chunking; while for the UCI Adult database and linear SVMs, SMO can be more

than 1000 times faster than the PCG chunking algorithm.

12.1 Introduction

SVMs are starting to enjoy increasing adoption in the machine learning (27; 24)

and computer vision research communities (33; 35). However, SVMs have not yet

enjoyed widespread adoption in the engineering community. There are two possible

reasons for the limited use by engineers. First, the training of SVMs is slow,

especially for large problems. Second, SVM training algorithms are complex, subtle,

Generic author design sample pages 2000/08/14 13:12

42 Fast Training of Support Vector Machines using Sequential Minimal Optimization

and sometimes diÆcult to implement.

This chapter describes a new SVM learning algorithm that is conceptually

simple, easy to implement, is often faster, and has better scaling properties than a

standard \chunking" algorithm that uses projected conjugate gradient (PCG) (9).

The new SVM learning algorithm is called Sequential Minimal Optimization (or

SMO). Unlike previous SVM learning algorithms, which use numerical quadratic

programming (QP) as an inner loop, SMO uses an analytic QP step. Because SMO

spends most of its time evaluating the decision function, rather than performing

QP, it can exploit data sets which contain a substantial number of zero elements.

In this chapter, these data sets are called sparse. SMO does particularly well for

sparse data sets, with either binary or non-binary input data.

This chapter �rst reviews current SVM training algorithms in section 12.1.1.

The SMO algorithm is then described in detail in section 12.2, which includes

the solution to the analytic QP step, heuristics for choosing which variables to

optimize in the inner loop, a description of how to set the threshold of the SVM, and

some optimizations for special cases. Section 12.3 contains the pseudo-code of the

algorithm, while section 12.4 discusses the relationship of SMO to other algorithms.

Section 12.5 presents results for timing SMO versus a standard PCG chunking

algorithm for various real-world and arti�cial data sets. Conclusions are drawn

based on these timings in section 12.6. Two appendices (sections 12.7 and 12.8)

contain the derivation of the analytic optimization and detailed tables of SMO

versus PCG chunking timings.

For an overview of SVMs, please consult chapter 1. For completeness, the QP

problem to train an SVM is shown below:Quadratic

Program

max
�

W (�) =
X̀
i=1

�i �
1

2

X̀
i=1

X̀
j=1

yiyjk(~xi; ~xj)�i�j ;

0 � �i � C; 8i; (12.1)

X̀
i=1

yi�i = 0:

The QP problem in equation (12.1) is solved by the SMO algorithm. A point is an

optimal point of (12.1) if and only if the Karush-Kuhn-Tucker (KKT) conditions

are ful�lled and Qij = yiyjk(~xi; ~xj) is positive semi-de�nite. Such a point may

be a non-unique and non-isolated optimum. The KKT conditions are particularly

simple; the QP problem is solved when, for all i:KKT

Conditions
�i = 0) yif(~xi) � 1;

0 < �i < C) yif(~xi) = 1; (12.2)

�i = C) yif(~xi) � 1:

The KKT conditions can be evaluated one example at a time, which is useful in

the construction of the SMO algorithm.

Generic author design sample pages 2000/08/14 13:12

12.1 Introduction 43

12.1.1 Previous Methods for Training Support Vector Machines

Due to its immense size, the QP problem (12.1) that arises from SVMs cannot

easily be solved via standard QP techniques. The quadratic form in (12.1) involves

a matrix that has a number of elements equal to the square of the number of training

examples. This matrix cannot �t into 128 Megabytes if there are more than 4000

training examples (assuming each element is stored as an 8-byte double precision

number).

(52) describes a method to solve the SVM QP, which has since been known asChunking

\chunking." The chunking algorithm uses the fact that the value of the quadratic

form is the same if you remove the rows and columns of the matrix that correspond

to zero Lagrange multipliers. Therefore, the large QP problem can be broken down

into a series of smaller QP problems, whose ultimate goal is to identify all of the

non-zero Lagrange multipliers and discard all of the zero Lagrange multipliers. At

every step, chunking solves a QP problem that consists of the following examples:

every non-zero Lagrange multiplier from the last step, and the M worst examples

that violate the KKT conditions (12.2) (9), for some value of M (see �gure 12.1). If

there are fewer than M examples that violate the KKT conditions at a step, all of

the violating examples are added in. Each QP sub-problem is initialized with the

results of the previous sub-problem. The size of the QP sub-problem tends to grow

with time, but can also shrink. At the last step, the entire set of non-zero Lagrange

multipliers has been identi�ed; hence, the last step solves the large QP problem.

Chunking seriously reduces the size of the matrix from the number of training

examples squared to approximately the number of non-zero Lagrange multipliers

squared. However, chunking still may not handle large-scale training problems, since

even this reduced matrix may not �t into memory. One way to solve this problem is

to use sophisticated data structures in the QP method (see, e.g., chapter 10). These

data structures avoid the need to store the entire Hessian. The inner loop of such

QP methods perform dot products between vectors and rows (or columns) of the

Hessian, instead of a full matrix-vector multiply. In this chapter, the chunking

benchmarks were implemented using the PCG algorithm, as suggested in the

tutorial by (9).

(34) suggested a new strategy for solving the SVM QP problem. Osuna showedDecomposition

Algorithm that the large QP problem can be broken down into a series of smaller QP sub-

problems. As long as at least one example that violates the KKT conditions is

added to the examples for the previous sub-problem, each step reduces the overall

objective function and maintains a feasible point that obeys all of the constraints.

Therefore, a sequence of QP sub-problems that always add at least one violator

will asymptotically converge.

Osuna et al. suggest keeping a constant size matrix for every QP sub-problem,

which implies adding and deleting the same number of examples at every step (34)

(see �gure 12.1). Using a constant-size matrix allows the training of arbitrarily

sized data sets. The algorithm given in Osuna's paper (34) suggests adding one

example and subtracting one example at every step. In practice, researchers add

Generic author design sample pages 2000/08/14 13:12

44 Fast Training of Support Vector Machines using Sequential Minimal Optimization

Chunking

Osuna

SMO

Figure 12.1 Three alternative methods for training SVMs: Chunking, Osuna's

algorithm, and SMO. For each method, three steps are illustrated. The horizontal

thin line at every step represents the training set, while the thick boxes represent

the Lagrange multipliers being optimized at that step. A given group of three lines

corresponds to three training iterations, with the �rst iteration at the top.

and subtract multiple examples using various techniques (see, e.g., chapter 11). In

any event, a numerical QP solver is required for all of these methods. Numerical

QP is tricky to get right; there are many numerical precision issues that need to be

addressed.

12.2 Sequential Minimal Optimization

Sequential Minimal Optimization (SMO) is a simple algorithm that quickly solves

the SVM QP problem without any extra matrix storage and without invoking an

iterative numerical routine for each sub-problem. SMO decomposes the overall QP

problem into QP sub-problems similar to Osuna's method.

Unlike the previous methods, SMO chooses to solve the smallest possible opti-SMO

mization problem at every step. For the standard SVM QP problem, the smallest

possible optimization problem involves two Lagrange multipliers because the La-

grange multipliers must obey a linear equality constraint. At every step, SMO

chooses two Lagrange multipliers to jointly optimize, �nds the optimal values for

these multipliers, and updates the SVM to reect the new optimal values (see �g-

ure 12.1) 1

1. It is possible to analytically optimize a small number of Lagrange multipliers that is
greater than 2 (say, 3 or 4). No experiments have been done to test the e�ectiveness of such
a strategy. See chapter 11 for an algorithm that numerically optimizes a small number of

Generic author design sample pages 2000/08/14 13:12

12.2 Sequential Minimal Optimization 45

The advantage of SMO lies in the fact that solving for two Lagrange multipliers

can be done analytically. Thus, an entire inner iteration due to numerical QP

optimization is avoided. The inner loop of the algorithm can be expressed in a small

amount of C code, rather than invoking an entire iterative QP library routine. Even

though more optimization sub-problems are solved in the course of the algorithm,

each sub-problem is so fast that the overall QP problem can be solved quickly.

In addition, SMO does not require extra matrix storage (ignoring the minor

amounts of memory required to store any 2x2 matrices required by SMO). Thus,

very large SVM training problems can �t inside of the memory of an ordinary per-

sonal computer or workstation. Because manipulation of large matrices is avoided,

SMO may be less susceptible to numerical precision problems.

There are three components to SMO: an analytic method to solve for the two

Lagrange multipliers (described in section 12.2.1), a heuristic for choosing which

multipliers to optimize (described in section 12.2.2), and a method for computing b

(described in section 12.2.3). In addition, SMO can be accelerated using techniques

described in section 12.2.4.

C=1α01 =α

02 =α

C=2α

01 =α C=1α

02 =α

C=2α

γyy =+⇒= 2121 ααγyy =−⇒≠ 2121 αα

Figure 12.2 The two Lagrange multipliers must ful�ll all of the constraints of the

full problem. The inequality constraints cause the Lagrange multipliers to lie in the

box. The linear equality constraint causes them to lie on a diagonal line. Therefore,

one step of SMO must �nd an optimum of the objective function on a diagonal line

segment. In this �gure, = �old
1 + s�old

2 ; is a constant that depends on the previous

values of �1 and �2, and s = y1y2:

multipliers.

Generic author design sample pages 2000/08/14 13:12

46 Fast Training of Support Vector Machines using Sequential Minimal Optimization

12.2.1 Solving for Two Lagrange Multipliers

In order to solve for the two Lagrange multipliers, SMO �rst computes the con-

straints on these multipliers and then solves for the constrained maximum. For

convenience, all quantities that refer to the �rst multiplier will have a subscript

1, while all quantities that refer to the second multiplier will have a subscript 2.

Because there are only two multipliers, the constraints can easily be displayed in

two dimensions (see �gure 12.2). The bound constraints in (12.1) cause the La-

grange multipliers to lie within a box, while the linear equality constraint in (12.1)

causes the Lagrange multipliers to lie on a diagonal line. Thus, the constrained

maximum of the objective function must lie on a diagonal line segment (as shown

in �gure 12.2). This constraint explains why two is the minimum number of La-

grange multipliers that can be optimized: if SMO optimized only one multiplier, it

could not ful�ll the linear equality constraint at every step.

The ends of the diagonal line segment can be expressed quite simply. WithoutConstraints

on �2 loss of generality, the algorithm �rst computes the second Lagrange multiplier �2
and computes the ends of the diagonal line segment in terms of �2. If the target y1
does not equal the target y2, then the following bounds apply to �2:

L = max(0; �old2 � �old1); H = min(C;C + �old2 � �old1): (12.3)

If the target y1 equals the target y2, then the following bounds apply to �2:

L = max(0; �old1 + �old2 � C); H = min(C;�old1 + �old2): (12.4)

The second derivative of the objective function along the diagonal line can be

expressed as:

� = 2k(~x1; ~x2)� k(~x1; ~x1)� k(~x2; ~x2): (12.5)

The next step of SMO is to compute the location of the constrained maximum of

the objective function in equation (12.1) while allowing only two Lagrange multi-

pliers to change. The derivation of the maximum location is shown in section 12.7.

Under normal circumstances, there will be a maximum along the direction of the

linear equality constraint, and � will be less than zero. In this case, SMO computes

the maximum along the direction of the constraint:Unconstrained

Maximum
�new2 = �old2 �

y2(E1 �E2)

�
; (12.6)

where Ei = fold(~xi) � yi is the error on the ith training example. Next, the

constrained maximum is found by clipping the unconstrained maximum to the

ends of the line segment:Constrained

Maximum

�
new;clipped
2 =

8<
:
H; if �new2 � H ;

�new2 ; if L < �new2 < H ;

L; if �new2 � L.

(12.7)

Now, let s = y1y2. The value of �1 is computed from the new, clipped, �2:�1 Computation

Generic author design sample pages 2000/08/14 13:12

12.2 Sequential Minimal Optimization 47

�new1 = �old1 + s(�old2 � �
new;clipped
2): (12.8)

Under unusual circumstances, � will not be negative. A zero � can occur if more than

one training example has the same input vector ~x. In any event, SMO will work even

when � is not negative, in which case the objective function W should be evaluated

at each end of the line segment. Only those terms in the objective function that

depend on �2 need be evaluated (see equation (12.23)). SMO moves the Lagrange

multipliers to the end point with the highest value of the objective function. If the

objective function is the same at both ends (within a small � for round-o� error)

and the kernel obeys Mercer's conditions, then the joint maximization cannot make

progress. That scenario is described below.

12.2.2 Heuristics for Choosing Which Multipliers to Optimize

SMO will always optimize two Lagrange multipliers at every step, with one of the

Lagrange multipliers having previously violated the KKT conditions before the

step. That is, SMO will always alter two Lagrange multipliers to move uphill in

the objective function projected into the one-dimensional feasible subspace. SMO

will also always maintain a feasible Lagrange multiplier vector. Therefore, the

overall objective function will increase at every step and the algorithm will converge

asymptotically (34). In order to speed convergence, SMO uses heuristics to choose

which two Lagrange multipliers to jointly optimize.

There are two separate choice heuristics: one for the �rst Lagrange multiplier

and one for the second. The choice of the �rst heuristic provides the outer loopFirst

Choice

Heuristic

of the SMO algorithm. The outer loop �rst iterates over the entire training set,

determining whether each example violates the KKT conditions (12.2). If an

example violates the KKT conditions, it is then eligible for immediate optimization.

Once a violated example is found, a second multiplier is chosen using the second

choice heuristic, and the two multipliers are jointly optimized. The feasibility of the

dual QP (12.1) is always maintained. The SVM is then updated using these two

new multiplier values, and the outer loop resumes looking for KKT violators.

To speed training, the outer loop does not always iterate through the entireOuter

Loop training set. After one pass through the training set, the outer loop iterates over

only those examples whose Lagrange multipliers are neither 0 nor C (the non-

bound examples). Again, each example is checked against the KKT conditions, and

violating examples are eligible for immediate optimization and update. The outer

loop makes repeated passes over the non-bound examples until all of the non-bound

examples obey the KKT conditions within �. The outer loop then iterates over the

entire training set again. The outer loop keeps alternating between single passes

over the entire training set and multiple passes over the non-bound subset until the

entire training set obeys the KKT conditions within �. At that point, the algorithm

terminates.

The �rst choice heuristic concentrates the CPU time on the examples that are

most likely to violate the KKT conditions: the non-bound subset. As the SMO

Generic author design sample pages 2000/08/14 13:12

48 Fast Training of Support Vector Machines using Sequential Minimal Optimization

algorithm progresses, Lagrange multipliers that are at the bounds are likely to stay

at the bounds, while Lagrange multipliers that are not at the bounds will change

as other examples are optimized. The SMO algorithm will thus iterate over the

non-bound subset until that subset is self-consistent, then SMO will scan the entire

data set to search for any bound examples that have become KKT-violated due to

optimizing the non-bound subset.

SMO veri�es that the KKT conditions are ful�lled within �. Typically, � canLoose

KKT

Conditions

typically be set in the range 10�2 to 10�3. Recognition systems typically do not

need to have the KKT conditions ful�lled to high accuracy: it is acceptable for

examples on the positive margin to have outputs between 0:999 and 1:001. The

SMO algorithm (and other SVM algorithms) will not converge as quickly if required

to produce very high accuracy output.

Once a �rst Lagrange multiplier is chosen, SMO chooses the second Lagrange

multiplier to maximize the size of the step taken during joint optimization. Evalu-Second

Choice

Heuristic

ating the kernel function k is time consuming, so SMO approximates the step size

by the absolute value of the numerator in equation (12.6): jE1 � E2j. SMO keeps

a cached error value E for every non-bound example in the training set and then

chooses an error to approximately maximize the step size. If E1 is positive, SMO

chooses an example with minimum error E2. If E1 is negative, SMO chooses an

example with maximum error E2.

Under unusual circumstances, SMO cannot make positive progress using theSecond

Choice

Hierarchy

second choice heuristic described above. For example, positive progress cannot be

made if the �rst and second training examples share identical input vectors ~x, which

causes the objective function to become at along the direction of optimization.

To avoid this problem, SMO uses a hierarchy of second choice heuristics until

it �nds a pair of Lagrange multipliers that can make positive progress. Positive

progress can be determined by making a non-zero step upon joint optimization of

the two Lagrange multipliers. The hierarchy of second choice heuristics consists of

the following: (A) if the above heuristic does not make positive progress, then SMO

starts iterating through the non-bound examples, searching for a second example

that can make positive progress; (B) if none of the non-bound examples make

positive progress, then SMO starts iterating through the entire training set until

an example is found that makes positive progress. Both the iteration through the

non-bound examples (A) and the iteration through the entire training set (B) are

started at random locations in order not to bias SMO towards the examples at

the beginning of the training set. In extremely degenerate circumstances, none of

the examples will make an adequate second example. When this happens, the �rst

example is skipped and SMO continues with another chosen �rst example.

12.2.3 The Threshold and the Error Cache

Solving (12.1) for the Lagrange multipliers � does not determine the threshold b of

the SVM, so b must be computed separately. After each step, b is re-computed, so

that the KKT conditions are ful�lled for both optimized examples. The following

Generic author design sample pages 2000/08/14 13:12

12.2 Sequential Minimal Optimization 49

threshold b1 is valid when the new �1 is not at the bounds, because it forces the

output of the SVM to be y1 when the input is ~x1:

b1 = E1 + y1(�
new
1 � �old1)k(~x1; ~x1) + y2(�

new;clipped
2 � �old2)k(~x1; ~x2) + bold: (12.9)

The following threshold b2 is valid when the new �2 is not at the bounds, because

it forces the output of the SVM to be y2 when the input is ~x2:

b2 = E2 + y1(�
new
1 � �old1)k(~x1; ~x2) + y2(�

new;clipped
2 � �old2)k(~x2; ~x2) + bold: (12.10)

When both b1 and b2 are valid, they are equal. When both new Lagrange multipliers

are at bound and if L is not equal to H , then the interval between b1 and b2 are all

thresholds that are consistent with the KKT conditions. In this case, SMO chooses

the threshold to be halfway in between b1 and b2. Note that these formulae hold

for the case when b is subtracted from the weighted sum of the kernels, not added.

As discussed in section 12.2.2, a cached error value E is kept for every exampleError

Cache whose Lagrange multiplier is neither zero nor C. When a Lagrange multiplier

is non-bound and is involved in a joint optimization, its cached error is set to

zero. Whenever a joint optimization occurs, the stored errors for all non-bound

multipliers �k that are not involved in the optimization are updated according to

Enew
k = Eold

k + y1(�
new
1 � �old1)k(~x1; ~xk)

+y2(�
new;clipped
2 � �old2)k(~x2; ~xk) + bold � bnew: (12.11)

When an error E is required by SMO, it will look up the error in the error cache if

the corresponding Lagrange multiplier is not at bound. Otherwise, it will evaluate

the current SVM decision function based on the current � vector.

12.2.4 Speeding Up SMO

A linear SVM can be sped up by only storing a single weight vector, rather than all

of the training examples that correspond to non-zero Lagrange multipliers. If the

joint optimization succeeds, this stored weight vector must be updated to reect

the new Lagrange multiplier values. The weight vector update is easy, due to the

linearity of the SVM:

~wnew = ~wold + y1(�
new
1 � �old1)~x1 + y2(�

new;clipped
2 � �old2)~x2: (12.12)

Because much of the computation time of SMO is spent evaluating the decision

function, anything that can speed up the decision function will speed up SMO. If

the input data is sparse, then SMO can be sped up substantially.

Normally, an input vector is stored as a vector of oating-point numbers. A sparse

input vector is stored as two arrays: id and val. The id array is an integer array

that stores the location of the non-zero inputs, while the val array is a oating-

point array that stores the corresponding non-zero values. The length of both arrays

is the number of non-zero inputs.

Generic author design sample pages 2000/08/14 13:12

50 Fast Training of Support Vector Machines using Sequential Minimal Optimization

The dot product for two sparse vectors (id1, val1, length = num1) and (id2,

val2, length = num2) can be computed quite quickly by scanning through both

vectors, as shown in the pseudo-code below:Sparse

Dot

Product
p1 = 0, p2 = 0, dot = 0

while (p1 < num1 && p2 < num2)

{

a1 = id1[p1], a2 = id2[p2]

if (a1 == a2)

{

dot += val1[p1]*val2[p2]

p1++, p2++

}

else if (a1 > a2)

p2++

else

p1++;

}

The sparse dot product code can be used to compute linear kernels and poly-

nomial kernels directly. Gaussian kernels can also use the sparse dot product code

through the use of the following identity:

jj~x� ~yjj2 = ~x � ~x� 2~x � ~y + ~y � ~y: (12.13)

For every input, the dot product of each input with itself is pre-computed and

stored to speed up Gaussians even further.

For a linear SVM, the weight vector is not stored as a sparse array. The dotSparse

Linear

SVM

product of the weight vector w with a sparse input vector (id,val) can be expressed

as
numX
i=0

w[id[i]] � val[i]: (12.14)

For binary inputs, storing the array val is not even necessary, since it is always

1. In the sparse dot product code, the oating-point multiplication becomes an

increment. For a linear SVM, the dot product of the weight vector with a sparse

input vector becomes

numX
i=0

w[id[i]]: (12.15)

Notice that other code optimizations can be used, such as using look-up tables

for the non-linearities or placing the dot products in a cache. Using a dot product

cache can substantially speed up many of the SVM QP algorithms, at the expense

of added code complexity and memory usage. In chapter 11, using a dot-product

cache sped up SVM lightby a factor of 2.8 in one experiment. Combining SMO with

a dot-product cache has not yet been tried.

Generic author design sample pages 2000/08/14 13:12

12.3 Pseudo-Code 51

12.3 Pseudo-Code

The pseudo-code for the overall SMO algorithm is presented below:

target = desired output vector

point = training point matrix

procedure takeStep(i1,i2)

if (i1 == i2) return 0

alph1 = Lagrange multiplier for i1

y1 = target[i1]

E1 = SVM output on point[i1] - y1 (check in error cache)

s = y1*y2

Compute L, H

if (L == H)

return 0

k11 = kernel(point[i1],point[i1])

k12 = kernel(point[i1],point[i2])

k22 = kernel(point[i2],point[i2])

eta = 2*k12-k11-k22

if (eta < 0)

{

a2 = alph2 - y2*(E1-E2)/eta

if (a2 < L) a2 = L

else if (a2 > H) a2 = H

}

else

{

Lobj = objective function at a2=L

Hobj = objective function at a2=H

if (Lobj > Hobj+eps)

a2 = L

else if (Lobj < Hobj-eps)

a2 = H

else

a2 = alph2

}

if (a2 < 1e-8)

a2 = 0

else if (a2 > C-1e-8)

a2 = C

if (|a2-alph2| < eps*(a2+alph2+eps))

return 0

a1 = alph1+s*(alph2-a2)

Generic author design sample pages 2000/08/14 13:12

52 Fast Training of Support Vector Machines using Sequential Minimal Optimization

Update threshold to reflect change in Lagrange multipliers

Update weight vector to reflect change in a1 & a2, if linear SVM

Update error cache using new Lagrange multipliers

Store a1 in the alpha array

Store a2 in the alpha array

return 1

endprocedure

procedure examineExample(i2)

y2 = target[i2]

alph2 = Lagrange multiplier for i2

E2 = SVM output on point[i2] - y2 (check in error cache)

r2 = E2*y2

if ((r2 < -tol && alph2 < C) || (r2 > tol && alph2 > 0))

{

if (number of non-zero & non-C alpha > 1)

{

i1 = result of second choice heuristic

if takeStep(i1,i2)

return 1

}

loop over all non-zero and non-C alpha, starting at random point

{

i1 = identity of current alpha

if takeStep(i1,i2)

return 1

}

loop over all possible i1, starting at a random point

{

i1 = loop variable

if takeStep(i1,i2)

return 1

}

}

return 0

endprocedure

main routine:

initialize alpha array to all zero

initialize threshold to zero

numChanged = 0;

examineAll = 1;

while (numChanged > 0 | examineAll)

{

Generic author design sample pages 2000/08/14 13:12

12.4 Relationship to Previous Algorithms 53

numChanged = 0;

if (examineAll)

loop I over all training examples

numChanged += examineExample(I)

else

loop I over examples where alpha is not 0 & not C

numChanged += examineExample(I)

if (examineAll == 1)

examineAll = 0

else if (numChanged == 0)

examineAll = 1

}

12.4 Relationship to Previous Algorithms

The SMO algorithm is related both to previous SVM and optimization algorithms.

SMO can be considered a special case of the Osuna algorithm, where the size of the

working set is two and both Lagrange multipliers are replaced at every step with

new multipliers that are chosen via good heuristics.

SMO is closely related to a family of optimization algorithms called BregmanBregman

Methods methods (6) or row-action methods (10). The classic Bregman method will minimize

a function F (~x) subject to multiple constraints
P

i ~x �~ai � bi. The Bregman method

is iterative and updates an estimate of the optimum, ~p. The method de�nes a

function D(~x; ~y):

D(~x; ~y) = F (~x)� F (~y)�rF (~y) � (~x � ~y): (12.16)

The Bregman method iterates through all constraints. For each constraint, it �nds

the point, ~z, that lies on the constraint and minimizes D(~p; ~z). The estimate ~p is

then set to ~z: Each step is called a D-projection. Given certain conditions on F ,

including the requirement that the D-projection is unique, the Bregman method

will converge (6; 11).

Unfortunately, the classic Bregman method does not work on an SVM with a

threshold b. The input space of the function F must be the joint space (~w; b). The

function F would be the primal objective function � which minimizes the norm of

the weight vector in equation (1.9). In this case,

D([~w1; b1]; [~w2; b2]) =
1

2
jj~w1 � ~w2jj

2; (12.17)

and theD-projection is not unique, because it cannot determine b. Hence, the classic

Bregman method would not converge. Another way of explaining this outcome is

that there is a linear equality constraint in the dual problem caused by b. Row-

action methods can only vary one Lagrange multiplier at a time, hence they cannot

ful�ll the linear equality constraint.

Generic author design sample pages 2000/08/14 13:12

54 Fast Training of Support Vector Machines using Sequential Minimal Optimization

It is interesting to consider an SVM where b is held �xed at zero, rather thanFixed-b

SVMs being a solved variable. A �xed-b SVM would not have a linear equality constraint

in (12.1). Therefore, only one Lagrange multiplier would need to be updated at

a time and a row-action method can be used. A traditional Bregman method is

still not applicable to such SVMs, due to the slack variables �i in equation (1.37).

The presence of the slack variables causes the Bregman D-projection to become

non-unique in the combined space of weight vectors and slack variables �i.

Fortunately, SMO can be modi�ed to solve �xed-b SVMs. SMO will update indi-

vidual Lagrange multipliers to be the maximum of W (�) along the corresponding

dimension. The update rule is

�new1 = �old1 �
y1E1

k(~x1; ~x1)
: (12.18)

This update equation forces the output of the SVM to be y1 (similar to Bregman

methods or Hildreth's QP method (23)). After the new �1 is computed, it is

clipped to the [0; C] interval (unlike previous methods). The choice of which

Lagrange multiplier to optimize is the same as the �rst choice heuristic described

in section 12.2.2.

Fixed-b SMO for a linear SVM is similar in concept to the perceptron relaxation

rule (16), where the output of a perceptron is adjusted whenever there is an error,

so that the output exactly lies on the margin. However, the �xed-b SMO algorithm

will sometimes reduce the proportion of a training input in the weight vector in

order to maximize margin. The relaxation rule constantly increases the amount of

a training input in the weight vector and hence is not maximum margin.

Fixed-b SMO for Gaussian kernels is also related to the Resource Allocating

Network (RAN) algorithm (36). When RAN detects certain kinds of errors, it

will allocate a basis function to exactly �x the error. SMO will perform similarly.

However SMO/SVM will adjust the height of the basis functions to maximize the

margin in a feature space, while RAN will simply use LMS to adjust the heights of

the basis functions.

12.5 Benchmarking SMO

The SMO algorithm was tested against a standard PCG chunking SVM learning

algorithm (9) on a series of benchmarks. Both algorithms were written in C++,

using Microsoft's Visual C++ 5.0 compiler. Both algorithms were run on an

unloaded 266 MHz Pentium II processor running Windows NT 4. The CPU time

for both algorithms are measured. The CPU time covers the execution of the entire

algorithm, including kernel evaluation time, but excluding �le I/O time.

The code for both algorithms is written to exploit the sparseness of the input

vector and the linearity of the SVM, as described in section 12.2.4.

The chunking algorithm uses the PCG (18) algorithm as its QP solver (9). ThePCG

chunk size was chosen to be 500. When the PCG code is initialized for a chunk, it

Generic author design sample pages 2000/08/14 13:12

12.5 Benchmarking SMO 55

assumes that all multipliers that are at bound have active equality constraints. It

then releases those multipliers one at a time. This initialization causes the solver to

avoid spuriously releasing and re-binding a large number of at-bound multipliers.

Furthermore, the chunking algorithm re-uses the Hessian matrix elements from one

chunk to the next, in order to minimize the number of extraneous dot products

evaluated. In order to limit the amount of memory used by the algorithms, neither

the chunking nor the SMO code use kernel caching to evaluate the decision function

over the entire training set. Kernel caching for the decision function would favor

SMO, because most of the computation time in SMO is spent in computing the

decision function.

To further speed up PCG, the computation of the gradient is done sparsely: only

those rows or columns of the Hessian that correspond to non-zero Lagrange multi-

pliers are multiplied by the estimated Lagrange multiplier vector (see chapter 10).

The computation of the quadratic form in the PCG algorithm is also performed

sparsely: the computation is only performed over the active variables.

In order to ensure that the chunking algorithm is a fair benchmark, Burges

compared the speed of his PCG chunking code on a 200 MHz Pentium II running

Solaris with the speed of the benchmark chunking code (with the sparse dot product

code turned o�). The speeds were found to be comparable, which indicates that

the benchmark chunking code is a reasonable benchmark.

Ensuring that the chunking code and the SMO code attain the same accuracyStopping

Criteria takes some care. The SMO code and the chunking code will both identify an example

as violating the KKT condition if the output is more than 10�3 away from its correct

value or half-space. The threshold of 10�3 was chosen to be an insigni�cant error in

classi�cation tasks. A larger threshold may be equally insigni�cant and cause both

QP algorithms to become faster.

The PCG code has a stopping threshold which describes the minimum relative

improvement in the objective function at every step (9). If the PCG takes a

step where the relative improvement is smaller than this minimum, the conjugate

gradient code terminates and another chunking step is taken. (9) recommends using

a constant 10�10 for this minimum, which works well with a KKT tolerance of

2� 10�2.

In the experiments below, stopping the PCG at an accuracy of 10�10 sometimes

left KKT violations larger than 10�3, especially for the very large scale problems.

Hence, the benchmark chunking algorithm used the following heuristic to set the

conjugate gradient stopping threshold. The threshold starts at 3�10�10. After every

chunking step, the output is computed for all examples whose Lagrange multipliers

are not at bound. These outputs are computed in order to determine the value

for b (see 9). Every example suggests a proposed threshold. If the largest proposed

threshold is more than 2 � 10�3 above the smallest proposed threshold, then the

KKT conditions cannot possibly be ful�lled within 10�3. Therefore, starting at the

next chunk, the conjugate gradient stopping threshold is decreased by a factor of

3. This heuristic will optimize the speed of the conjugate gradient; it will only use

high precision on the most diÆcult problems. For most of the tests described below,

Generic author design sample pages 2000/08/14 13:12

56 Fast Training of Support Vector Machines using Sequential Minimal Optimization

Experiment Kernel Sparse Training C %

Code Set Sparse

Used Size

Adult Linear Small Linear Y 11221 0.05 89%

Adult Linear Large Linear Y 32562 0.05 89%

Web Linear Linear Y 49749 1 96%

Lin. Sep. Sparse Linear Y 20000 100 90%

Lin. Sep. Dense Linear N 20000 100 0%

Random Linear Sparse Linear Y 10000 0.1 90%

Random Linear Dense Linear N 10000 0.1 0%

Adult Gaussian Small Gaussian Y 11221 1 89%

Adult Gaussian Large Gaussian Y 32562 1 89%

Web Gaussian Gaussian Y 49749 5 96%

Random Gaussian Sparse Gaussian Y 5000 0.1 90%

Random Gaussian Dense Gaussian N 5000 0.1 90%

MNIST Polynomial Y 60000 100 81%

Table 12.1 Parameters for various experiments

the threshold stayed at 3 � 10�10. The smallest threshold used was 3:7 � 10�12,

which occurred at the end of the chunking for the largest web page classi�cation

problem.

12.5.1 Experimental Results

The SMO algorithm was tested on the UCI Adult benchmark set, a web page

classi�cation task, the MNIST database, and two di�erent arti�cial data sets. A

summary of the experimental results are shown in tables 12.1 and 12.2.

In table 12.2, the scaling of each algorithm is measured as a function of the

training set size, which was varied by taking random nested subsets of the full

training set. A line was �tted to the log of the training time versus the log of the

training set size. The slope of the line is an empirical scaling exponent.

The \N/A" entries in the chunking time column of table 12.2 had matrices that

were too large to �t into 128 Megabytes, hence could not be timed due to memory

thrashing.

All of the data sets (except for MNIST and the linearly separable data sets) were

trained both with linear SVMs and Gaussian SVMs with a variance of 10. For the

Adult and Web data sets, the C parameter and the Gaussian variance were chosen

to optimize accuracy on a validation set.

The �rst data set used to test SMO's speed was the UCI Adult data set (30).UCI Adult

Data Set The SVM was given 14 attributes of a census form of a household and asked to

predict whether that household has an income greater than $50,000. Out of the

14 attributes, eight are categorical and six are continuous. The six continuous

Generic author design sample pages 2000/08/14 13:12

12.5 Benchmarking SMO 57

Experiment SMO Chunking SMO PCG

Time Time Scaling Scaling

(sec) (sec) Exponent Exponent

Adult Linear Small 17.0 20711.3 1.9 3.1

Adult Linear Large 163.6 N/A 1.9 3.1

Web Linear 268.3 17164.7 1.6 2.5

Lin. Sep. Sparse 280.0 374.1 1.0 1.2

Lin. Sep. Dense 3293.9 397.0 1.1 1.2

Random Linear Sparse 67.6 10353.3 1.8 3.2

Random Linear Dense 400.0 10597.7 1.7 3.2

Adult Gaussian Small 781.4 11910.6 2.1 2.9

Adult Gaussian Large 7749.6 N/A 2.1 2.9

Web Gaussian 3863.5 23877.6 1.7 2.0

Random Gaussian Sparse 986.5 13532.2 2.2 3.4

Random Gaussian Dense 3957.2 14418.2 2.3 3.1

MNIST 29471.0 33109.0 N/A N/A

Table 12.2 Summary of Timings of SMO versus PCG Chunking on various data

sets.

attributes were discretized into quintiles, which yielded a total of 123 binary

attributes. The full timings for the Adult data set are shown in tables 12.3 and 12.4

in section 12.8. For this data set, the scaling for SMO is approximately one order

in the exponent faster than PCG chunking. For the entire Adult training set,

SMO is more than 1000 times faster than PCG chunking for a linear SVM and

approximately 15 times faster than PCG chunking for the Gaussian SVM. The adult

data set shows that, for real-world sparse problems with many support vectors at

bound, SMO is much faster than PCG chunking.

Another test of SMO was on text categorization: classifying whether a web pageWeb Page

Data Set belongs to a category or not. Each input was 300 sparse binary keyword attributes

extracted from each web page. The full timings are shown in tables 12.5 and 12.6.

For the linear SVM, the scaling for SMO is one order better than PCG chunking. For

the non-linear SVM, SMO is between two and six times faster than PCG chunking.

The non-linear test shows that SMO is still faster than PCG chunking when the

number of non-bound support vectors is large and the input data set is sparse.

Yet another test of SMO was the MNIST database of 60,000 handwritten digits,MNIST

Data Set from AT&T Research Labs (27). One classi�er of MNIST was trained: class 8. The

inputs are non-binary and are stored as a sparse vector. A �fth-order polynomial

kernel, a C of 100, and a KKT tolerance of 0.02 was used to match the AT&T

accuracy results. There were 3450 support vectors, with no support vectors at upper

bound. Scaling experiments were not done on the MNIST database. However, the

MNIST data was trained with both C = 100 and C = 10: The results for both

of these training runs is shown in table 12.7. The MNIST experiment shows that

SMO is competitive with PCG chunking for non-linear SVMs trained on moderately

Generic author design sample pages 2000/08/14 13:12

58 Fast Training of Support Vector Machines using Sequential Minimal Optimization

sparse data sets with none or very few support vectors at the upper bound.

SMO was also tested on arti�cially generated data sets to explore the performanceLinearly

Separable

Data Set

of SMO in extreme scenarios. The �rst arti�cial data set was a perfectly linearly

separable data set. The input data consisted of random binary 300-dimensional

vectors, with a 10% fraction of \1" inputs. If the dot product of a stored vector

(uniform random in [�1; 1]) with an input point was greater than 1, then a positive

label was assigned to the input point. If the dot product was less than -1, then a

negative label was assigned. If the dot product lay between -1 and 1, the point was

discarded. A linear SVM was �t to this data set. The full timing table is shown

in table 12.8.

The linearly separable data set is the simplest possible problem for a linear SVM.

Not surprisingly, the scaling with training set size is excellent for both SMO and

PCG chunking. For this easy sparse problem, therefore, PCG chunking and SMO

are generally comparable.

The acceleration of both the SMO algorithm and the PCG chunking algorithmSparse

vs.

Non-Sparse

due to the sparse dot product code can be measured on this easy data set. The

same data set was tested with and without the sparse dot product code. In the case

of the non-sparse experiment, each input point was stored as a 300-dimensional

vector of oats. The full timing table for this experiment is shown in table 12.9.

For SMO, use of the sparse data structure speeds up the code by more than a

factor of 10, which shows that the evaluation time of the decision function totally

dominates the SMO computation time. The sparse dot product code only speeds

up PCG chunking by about 6%, which shows that the evaluation of the numerical

QP steps dominates the PCG chunking computation. For the linearly separable

case, there are absolutely no Lagrange multipliers at bound, which is the worst

case for SMO. Thus, the poor performance of non-sparse SMO versus non-sparse

PCG chunking in this experiment should be considered a worst case.

The sparse versus non-sparse experiment shows that part of the superiority of

SMO over PCG chunking comes from the exploitation of sparse dot product code.

Fortunately, real-world problems with sparse input are not rare. Any quantized

or fuzzy-membership-encoded problems will be sparse. Also, optical character

recognition (27), handwritten character recognition (3), and wavelet transform

coeÆcients of natural images (33; 28) can be naturally expressed as sparse data.

The second arti�cial data set was generated with random 300-dimensional binaryRandom

Data Set input points (10% \1") and random output labels. Timing experiments were

performed for both linear and Gaussian SVMs and for both sparse and non-sparse

code. The results of the timings are shown in tables 12.10 through 12.13. Scaling

for SMO and PCG chunking is much higher on the second data set both for the

linear and Gaussian SVMs. The second data set shows that SMO excels when most

of the support vectors are at bound.

For the second data set, non-sparse SMO is still faster than PCG chunking. For

the linear SVM, sparse dot product code sped up SMO by about a factor of 6.

For the Gaussian SVM, the sparse dot product code sped up SMO by about a

factor of 4. In neither case did the PCG chunking code have a noticable speed

Generic author design sample pages 2000/08/14 13:12

12.6 Conclusions 59

up. These experiments illustrate that the dot product speed is still dominating the

SMO computation time for both linear and non-linear SVMs.

12.6 Conclusions

As can be seen in table 12.2, SMO has better scaling with training set size than

PCG chunking for all data sets and kernels tried. Also, the memory footprint of

SMO grows only linearly with the training set size. SMO should thus perform well

on the largest problems, because it scales very well.

Table 12.2 also shows the e�ect of sparseness on the speed of SMO. Linear SVMs

with 90% sparseness are a factor of 6 to 12 times faster using sparse binary SMO

code over standard oating-point array SMO code. Even non-linear SVMs with

90% sparseness are a factor of 4 times faster. These results show that SMO is

dominated by decision function evaluation time, and hence bene�ts from sparseness

and binary inputs. In contrast, PCG chunking is dominated by numerical QP time:

PCG chunking only speeds up by 6% by exploiting sparse decision function code.

These experiments indicate that SMO is well-suited for sparse data sets.

SMO is up to a factor of 1200 times faster for linear SVMs, while up to a factor of

15 times faster for non-linear SVMs. Linear SVMs bene�t from the acceleration of

the decision function as described in section 12.2.4. Therefore, SMO is well-suited

for learning linear SVMs.

Finally, SMO can be implemented without requiring a QP library function, which

leads to simpli�cation of the code and may lead to more widespread use of SVMs

in the engineering community. While SMO is not faster than PCG chunking for all

possible problems, its potential for speed-up should make it a key element in an

SVM toolbox.

Acknowledgements

Thanks to Lisa Heilbron for assistance with the preparation of the text. Thanks

to Chris Burges for running a data set through his PCG code. Thanks to Leonid

Gurvits for pointing out the similarity of SMO with Bregman methods.

12.7 Appendix: Derivation of Two-Example Maximization

Each step of SMO will optimize two Lagrangemultipliers. Without loss of generality,

let these two multipliers be �1 and �2. The objective function from equation (12.1)

can thus be written as

W (�1; �2) = �1 + �2 �
1

2
K11�

2
1 �

1

2
K22�

2
2 � sK12�1�2

�y1�1v1 � y2�2v2 +Wconstant; (12.19)

Generic author design sample pages 2000/08/14 13:12

60 Fast Training of Support Vector Machines using Sequential Minimal Optimization

where

Kij = k(~xi; ~xj); (12.20)

vi =
X̀
j=3

yj�
old
j Kij = fold(~xi) + bold � y1�

old
1 K1i � y2�

old
2 K2i; (12.21)

and the variables with \old" superscripts indicate values at the end of the previous

iteration. Wconstant are terms that do not depend on either �1 or �2.

Each step will �nd the maximum along the line de�ned by the linear equality

constraint in (12.1). That linear equality constraint can be expressed as

�1 + s�2 = �old1 + s�old2 = : (12.22)

The objective function along the linear equality constraint can be expressed in

terms of �2 alone:

W = � s�2 + �2 �
1

2
K11(� s�2)

2 �
1

2
K22�

2
2 � sK12(� s�2)�2

�y1(� s�2)v1 � y2�2v2 +Wconstant: (12.23)

The stationary point of the objective function is at

dW

d�2
= sK11(� s�2)�K22�2 +K12�2 � sK12(� s�2)

+y2v1 � s� y2v2 + 1 = 0: (12.24)

If the second derivative along the linear equality constraint is negative, then the

maximum of the objective function can be expressed as

�new2 (K11 +K22 � 2K12) = s(K11 �K12) + y2(v1 � v2) + 1� s: (12.25)

Expanding the equations for and v yields

�new2 (K11 +K22 � 2K12) = �old2 (K11 +K22 � 2K12)

+y2(f(~x1)� f(~x2) + y2 � y1): (12.26)

More algebra yields equation (12.6).

12.8 Appendix: SMO vs. PCG Chunking Tables

This section contains the timing tables for the experiments described in this chapter.

A column labeled \Non-Bound SVs" contains the number of examples whose

Lagrange multipliers lie in the open interval (0; C). A column labeled \Bound SVs"

contains the number of examples whose Lagrange multipliers exactly equal C. These

numbers are produced by SMO: the number of support vector produced by PCG

chunking is slightly di�erent, due to the loose KKT stopping conditions.

A column labeled \SMO Iterations" contains the number of successful joint

Generic author design sample pages 2000/08/14 13:12

12.8 Appendix: SMO vs. PCG Chunking Tables 61

optimizations taken (joint optimizations that do not make progress are excluded).

A column labeled \PCG Iterations" contains the number of projected conjugate

gradient steps taken, summed over all chunks.

Training Set SMO Time PCG Time Non-Bound Bound SMO PCG

Size (CPU sec) (CPU sec) SVs SVs Iterations Iterations

1605 0.4 37.1 42 633 3230 1328

2265 0.9 228.3 47 930 4635 3964

3185 1.8 596.2 57 1210 6950 6742

4781 3.6 1954.2 63 1791 9847 10550

6414 5.5 3684.6 61 2370 10669 12263

11221 17.0 20711.3 79 4079 17128 25400

16101 35.3 N/A 67 5854 22770 N/A

22697 85.7 N/A 88 8209 35822 N/A

32562 163.6 N/A 149 11558 44774 N/A

Table 12.3 SMO and PCG Chunking for a linear SVM on the Adult data set.

Training Set SMO Time PCG Time Non-Bound Bound SMO PCG

Size (CPU sec) (CPU sec) SVs SVs Iterations Iterations

1605 15.8 34.8 106 585 3349 1064

2265 32.1 144.7 165 845 5149 2159

3185 66.2 380.5 181 1115 6773 3353

4781 146.6 1137.2 238 1650 10820 5164

6414 258.8 2530.6 298 2181 14832 8085

11221 781.4 11910.6 460 3746 25082 14479

16101 1784.4 N/A 567 5371 34002 N/A

22697 4126.4 N/A 813 7526 51316 N/A

32562 7749.6 N/A 1011 10663 77103 N/A

Table 12.4 SMO and PCG Chunking for a Gaussian SVM on the Adult data set.

Generic author design sample pages 2000/08/14 13:12

62 Fast Training of Support Vector Machines using Sequential Minimal Optimization

Training Set SMO Time PCG Time Non-Bound Bound SMO PCG

Size (CPU sec) (CPU sec) SVs SVs Iterations Iterations

2477 2.2 13.1 123 47 25296 1929

3470 4.9 16.1 147 72 46830 2379

4912 8.1 40.6 169 107 66890 4110

7366 12.7 140.7 194 166 88948 7416

9888 24.7 239.3 214 245 141538 8700

17188 65.4 1633.3 252 480 268907 27074

24692 104.9 3369.7 273 698 345736 32014

49749 268.3 17164.7 315 1408 489302 63817

Table 12.5 SMO and PCG Chunking for a linear SVM on the Web data set.

Training Set SMO Time PCG Time Non-Bound Bound SMO PCG

Size (CPU sec) (CPU sec) SVs SVs Iterations Iterations

2477 26.3 64.9 439 43 10838 1888

3470 44.1 110.4 544 66 13975 2270

4912 83.6 372.5 616 90 18978 5460

7366 156.7 545.4 914 125 27492 5274

9888 248.1 907.6 1118 172 29751 5972

17188 581.0 3317.9 1780 316 42026 9413

24692 1214.0 6659.7 2300 419 55499 14412

49749 3863.5 23877.6 3720 764 93358 24235

Table 12.6 SMO and PCG Chunking for a Gaussian SVM on the Web data set.

C SMO Chunking Non-Bound Bound

(CPU sec) (CPU sec) SVs SVs

10 25096 29350 3263 149

100 29471 33109 3450 0

Table 12.7 CPU time for MNIST while varying C

Generic author design sample pages 2000/08/14 13:12

12.8 Appendix: SMO vs. PCG Chunking Tables 63

Training Set SMO Time PCG Time Non-Bound Bound SMO PCG

Size (CPU sec) (CPU sec) SVs SVs Iterations Iterations

1000 15.3 10.4 275 0 66920 1305

2000 33.4 33.0 286 0 134636 2755

5000 103.0 108.3 299 0 380395 7110

10000 186.8 226.0 309 0 658514 14386

20000 280.0 374.1 329 0 896303 20794

Table 12.8 SMO and PCG Chunking for a linear SVM on a linearly separable

data set.

Training Set Sparse Non-Sparse Sparse Non-Sparse

Size SMO SMO Chunking Chunking

(CPU sec) (CPU sec) (CPU sec) (CPU sec)

1000 15.3 145.1 10.4 11.7

2000 33.4 345.4 33.0 36.8

5000 103.0 1118.1 108.3 117.9

10000 186.8 2163.7 226.0 241.6

20000 280.0 3293.9 374.1 397.0

Table 12.9 Comparison of sparse and non-sparse training time for a linearly

separable data set.

Training Set SMO Time PCG Time Non-Bound Bound SMO PCG

Size (CPU sec) (CPU sec) SVs SVs Iterations Iterations

500 1.0 6.4 162 263 5697 548

1000 3.5 57.9 220 632 12976 1529

2000 15.7 593.8 264 1476 38107 3720

5000 67.6 10353.3 283 4201 87109 7815

10000 187.1 N/A 293 9034 130774 N/A

Table 12.10 SMO and PCG Chunking for a linear SVM on a random data set.

Generic author design sample pages 2000/08/14 13:12

64 Fast Training of Support Vector Machines using Sequential Minimal Optimization

Training Set Sparse Non-Sparse Sparse Non-Sparse

Size SMO SMO Chunking Chunking

(CPU sec) (CPU sec) (CPU sec) (CPU sec)

500 1.0 6.0 6.4 6.8

1000 3.5 21.7 57.9 62.1

2000 15.7 99.3 593.8 614.0

5000 67.6 400.0 10353.3 10597.7

10000 187.1 1007.6 N/A N/A

Table 12.11 Comparison of sparse and non-sparse training time for linear SVM

applied to a random data set.

Training Set SMO Time PCG Time Non-Bound Bound SMO PCG

Size (CPU sec) (CPU sec) SVs SVs Iterations Iterations

500 5.6 5.8 22 476 901 511

1000 21.1 41.9 82 888 1840 1078

2000 131.4 635.7 75 1905 3564 3738

5000 986.5 13532.2 30 4942 7815 14178

10000 4226.7 N/A 48 9897 15213 N/A

Table 12.12 SMO and PCG Chunking for a Gaussian SVM on a random problem.

Generic author design sample pages 2000/08/14 13:12

12.8 Appendix: SMO vs. PCG Chunking Tables 65

Training Set Sparse Non-Sparse Sparse Non-Sparse

Size SMO SMO Chunking Chunking

(CPU sec) (CPU sec) (CPU sec) (CPU sec)

500 5.6 19.8 5.8 6.8

1000 21.1 87.8 41.9 53.0

2000 131.4 554.6 635.7 729.3

5000 986.5 3957.2 13532.2 14418.2

10000 4226.7 15743.8 N/A N/A

Table 12.13 Comparison of sparse and non-sparse training time for a Gaussian

SVM applied to a random data set.

