
Characterizing, Modeling, and Generating
Workload Spikes for Stateful Services

Peter Bodík, Armando Fox, Michael J. Franklin, Michael I. Jordan, David A. Patterson
EECS Department, UC Berkeley, Berkeley, CA, USA

{bodikp,fox,franklin,jordan,patterson}@cs.berkeley.edu

ABSTRACT
Evaluating the resiliency of stateful Internet services to sig-
nificant workload spikes and data hotspots requires realistic
workload traces that are usually very difficult to obtain. A
popular approach is to create a workload model and gen-
erate synthetic workload, however, there exists no charac-
terization and model of stateful spikes. In this paper we
analyze five workload and data spikes and find that they
vary significantly in many important aspects such as steep-
ness, magnitude, duration, and spatial locality. We propose
and validate a model of stateful spikes that allows us to
synthesize volume and data spikes and could thus be used
by both cloud computing users and providers to stress-test
their infrastructure.

Categories and Subject Descriptors
H.3.5 [Online Information Services]: Web-based services

General Terms
Measurement

1. INTRODUCTION
A public-facing Internet-scale service available to tens of

millions of users can experience extremely rapid and unex-
pected shifts in workload patterns. Handling such spikes
is extremely challenging. Provisioning for them in advance
is analogous to preparing for earthquakes: while designing
for a magnitude-9 earthquake is theoretically possible, it is
economically infeasible because such an event is very un-
likely. Instead, engineers use statistical characterizations
of earthquakes—distributions of magnitude, frequency, and
phase—to design buildings that can withstand most earth-
quakes. Similarly, while overprovisioning an Internet service
to handle the largest possible spike is infeasible, pay-as-you-
go cloud computing offers the option to quickly add capacity
to deal with spikes. However, exploiting this feature requires
understanding the nature of unexpected events—how fast
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they ramp up, how they peak, etc.—and testing the service
under such scenarios.

Workload modeling and synthesis has always been impor-
tant in systems R&D for stress-testing new production sys-
tems, as well as in academic research because of the difficulty
of obtaining real commercial workload traces that might re-
veal confidential company information. The challenge of un-
derstanding and modeling spikes and the need to synthesize
realistic “spiky” workloads motivate the present work.

The term “spike,” or “volume spike,” is commonly used
to refer to an unexpected sustained increase in aggregate
workload volume. In the case of stateless servers such as
Web servers, such spikes can in principle be “absorbed” by a
combination of adding more servers and using a combination
of L7 switches, DNS, and geo-replication to redirect load
to the new servers. Much work has focused on using both
reactive and proactive approaches to do this [26].

However, Internet-scale data-intensive sites—social net-
working (Facebook, Twitter), reference content (Wikipedia),
and search engines (Google)—must also deal with data spikes:
a sudden increase in demand for certain objects, or more
generally, a pronounced change in the distribution of object
popularity on the site. Even data spikes that are not ac-
companied by an overall surge in volume may have severe
effects on the system internally. For example, consider a par-
titioned database in which all objects are equally popular,
but a sudden event causes 90% of all queries to go to one or
two objects even though the total request volume does not
increase.

Although volume spikes and data spikes can arise inde-
pendently, it is becoming increasingly common for the two
phenomena to occur together. For example, at the peak of
the spike following Michael Jackson’s death in 2009, 22%
of all tweets on Twitter mentioned Michael Jackson [7] (the
largest Twitter spike in 2009), 15% of traffic to Wikipedia
was directed at the article about Michael Jackson (see Sec-
tion 4), and Google initially mistook it for an automated
attack [5]. The second and third most significant spikes on
Twitter were Kanye West and the Oscars with 14.3% and
13.1% of all tweets [7]. During the inauguration of Presi-
dent Obama, the number of tweets per second was five times
higher than on a regular day [3].

Such events are becoming more regular and larger in scale.
They pose new challenges beyond those of modeling and
stress-testing volume spikes for two reasons. First, as men-
tioned previously, the effect of a data spike may be se-
vere even if the aggregate workload volume does not change
much. Second, unlike stateless systems, simply adding more



machines may not be enough to handle data spikes: data
may need to be moved or copied onto those machines. De-
ciding what to copy requires information not only about the
distribution of object popularities during a data spike, but
about the locality of accesses: if a group of objects becomes
popular rather than a single object, are the popular objects
grouped together on storage servers or scattered across the
system?

Thus, for modeling Internet-scale workload spikes in full
generality, we must be able to model a volume spike, a data
spike, and their superposition. To this end, we make three
contributions:

1. An analysis of five spikes from four real workload traces,
showing that the range of volume and data spike be-
haviors is more varied than one might expect and does
not necessarily match existing assumptions about ob-
ject popularity;

2. A methodology for capturing both volume and data
spikes with a simple seven-parameter model based on
a sound statistical foundation;

3. A closed-loop workload generator that uses these mod-
els to synthesize realistic workloads that include vol-
ume and data spikes.

Contribution 1: analysis of five spikes from four
real Web server traces. We identify several important
spike characteristics that suggest that volume spikes and
data spikes are more varied than one might expect. The
five spikes we analyzed represent a wide range of behaviors,
including data spikes with little volume change, data spikes
accompanied by volume spikes, and different distributions
of object popularity and locality during data spikes. The
spike durations vary from hours to days, and the workload
volume increases (peak of the spike) vary from insignificant
to factors of 5 or more. We also find that, in accordance
with intuition, the onset shapes and peak values of volume
spikes for “anticipated”events such as holidays or the Oscars
differ substantially from those for unexpected events such
as the death of Michael Jackson or the Balloon Boy hoax.
This suggests that “stress testing for spikes” (especially for
stateful services) is more subtle and involves more degrees
of freedom than previously thought.

Contribution 2: a methodology for capturing vol-
ume and data spikes with a simple yet statistically
sound model. We model the spikes in three steps. First,
we model normal workload without spikes based on work-
load volume and baseline object popularity. Second, we add
a workload volume spike with a particular steepness, dura-
tion, and magnitude. Finally, we select a set of hot objects
with a particular spatial locality and increase their popu-
larity. A particular novel aspect of our methodology is the
identification and representation of popularity distribution
change and data locality during a data spike:

(1) How does the distribution of object popularities change
after spike onset and throughout the spike? What is the
shape of this distribution—do the top N objects increase
equally in popularity, or is there a significant tail?

(2) Given a simple representation of how data objects are
mapped to storage nodes, what locality is present in accesses
to groups of popular objects during the spike? That is, when
a group of objects increases in popularity, do accesses to

the group tend to cluster on one or two servers, or do they
require touching multiple servers across the installation?

Contribution 3: synthesis of realistic workloads
from the model. We built a closed-loop workload genera-
tor that uses our models to synthesize realistic volume and
data spikes. We show that by properly setting the model
parameter values, we can generate workload with any de-
sired characteristics. In particular, we show that the total
workload volume, workload volume seen by the hottest ob-
ject, and workload variance generated by the model match
those characteristics in the real traces we analyzed.

Our goal is not to create an intricate model that imitates
every detail of the real traces, but a simple yet statistically
sound model that is experimentally practical and captures
the important characteristics of workload and data spikes.
Note that the goal of the model is not to predict the occur-
rence of spikes, but to model the changes in workload volume
and popularity of individual objects when spikes occur. Re-
calling the comparison to earthquakes, while we may not be
able to predict individual earthquakes, it is useful to char-
acterize general properties of earthquakes so as to provision
appropriately.

2. RELATED WORK
Web server workloads have been thoroughly studied in

many papers, such as [10, 15]. Most of these papers, how-
ever, analyze workload for stateless Web servers in context
of caching, prefetching, or content distribution networks.
While some papers study surges, spikes, or flash crowds [25,
19], they concentrate only on the increase in workload vol-
ume to the Web server.

Most of the workload generators [4, 13, 2, 1, 6] used to
evaluate computer systems or Web sites do not support ei-
ther volume or data spikes. Httperf [2] provides a simple
tool for generating http workload for evaluating Web server
performance. Httperf, however, generates requests only at
a fixed rate specified by the user. Rubis [6] is a Web ap-
plication benchmark with a workload generator that uses a
fixed number of clients and thus cannot generate a volume
spike. Faban [1] is a flexible workload-generation framework
in which volume and data spikes could be implemented, but
are not supported out of the box.

Similar to our notion of data spikes is the concept of tem-
poral stability of workload patterns in a Web server described
in [23]. The authors analyze Web server traces from a large
commercial web site mostly in the context of caching. They
define temporal stability as the overlap of the top N most
popular pages during two days and find that the stability
is reasonably high on the scale of days. While the idea of
popularity of the top N pages is similar to data spikes, we
are interested in changes on time scale of minutes, not days
or weeks. Also, the authors do not provide a model or a
workload generator to simulate such changes.

The authors of [22] propose a methodology and a work-
load generator to introduce burstiness to a stateless, Web
server workload. The authors characterize burstiness us-
ing the index of dispersion—a metric used in network engi-
neering. The workload-generating clients are in one of two
states—high or low—with transitions between the two states
governed by a simple Markov process. The clients in high
state generate requests at high frequency and vice versa,
thus introducing burstiness into the workload. However, the
proposed model does not increase popularity of individual



objects and one cannot easily change the steepness and mag-
nitude of the bursts.

The papers [18, 20] characterize workload for storage sys-
tems at disk-level, but do not analyze volume or data spikes.
Finally, many researchers in the networking community have
focused on characterizing and modeling self-similarity in
network traffic [16] (burstiness over a wide range of time
scales) or anomalies in network traffic volume [21]. All of
these efforts, however, concentrate on workload volume and
not on data popularity.

3. METHODOLOGY
Although obtaining real workload traces of public Inter-

net sites is extremely difficult, we were able to obtain four
traces and some partial data from a fifth source. Since our
goal is to characterize data spikes as well as volume spikes,
for each trace we identify the fundamental underlying object
served by the site and extract per-object access information
from the logs. For example, for a site such as Wikipedia
or a photo sharing site, the object of interest can be rep-
resented by a static URL; for a site that serves dynamic
content identified by embedding parameters in a common
base URL, such as http://www.site.com?merchant_id=99,
the object would be identified by the value of the relevant
embedded parameter(s). Because we want to characterize
sustained workload spikes lasting at least several minutes,
we aggregate the traffic into five-minute intervals. We are
also forced to aggregate because of the low workload volume
in some of the datasets.

In the rest of the paper, workload volume represents the
total workload rate during a five-minute interval. Object
popularity represents the fraction of workload directed at a
particular object. A volume spike is a large sustained in-
crease in workload volume in a short period of time, while
a data spike is a significant shift in popularity of individ-
ual objects. We provide no formal definition of a volume
and data spikes and identify the spikes manually by visual
inspection. Hotspots or hot objects refer to objects in the
system whose workload increases significantly. We provide
a formal definition in Section 4.3.

3.1 Datasets
Our datasets are described below and summarized in Ta-

ble 1. The spikes are summarized in Table 2.
World Cup 1998. Web server logs from week four of the

World Cup 1998 [10]. The logs contain time of individual
requests along with the file that was accessed. We use the
path of the file as the name of the object.

UC Berkeley EECS Website. Web server logs from
the UC Berkeley, EECS Department website hosting fac-
ulty, student, class web pages, technical reports and other
content. The logs contain time of individual requests along
with the file that was accessed. We use the path of the file
as the name of the object.

Ebates.com. Web server logs from Ebates.com used
in [14]. The logs contain the time of individual requests
along with the full URL. We use the value of the merchant id
URL parameter as the object. The merchants are repre-
sented as arbitrary integers.

Wikipedia.org. Wikipedia.org periodically publishes the
hourly number of hits to individual Wikipedia articles [8].
We use the individual articles as objects. While Wikipedia is
one of the most popular Web sites, the disadvantage of this

dataset is that it only contains hourly aggregates of work-
load instead of individual requests. We have only two days
of data surrounding the Michael Jackson spike.

Partial sources of data from Twitter. We also use
data from [3], which contains plots of workload at Twit-
ter during the inauguration of President Obama, and from
[7], which contains hourly popularity of the top 20 trends
on Twitter in 2009. Because both of these are incomplete
sources of data, we do not use them in our full analysis. How-
ever, they still demonstrate important properties of work-
load spikes.

4. ANALYSIS OF REAL SPIKES
In this section we characterize the important aspects of a

workload spike. Since the change in workload volume and
change in data popularity could occur independently, we an-
alyze them separately. We first analyze the change in work-
load volume (Section 4.1) and object popularity during a
normal period before a spike (Section 4.2). Next we define
data hotspots (Section 4.3), analyze change in their popu-
larity during a spike (Section 4.4) and examine their spatial
locality (Section 4.5). In Section 5 we propose quantitative
metrics that capture the phenomena we measured.

4.1 Steepness of volume spikes
Figure 1 shows the increase in workload volume for each

spike normalized to the beginning of the spikes.1 We observe
that the workload increase during the spikes varies signifi-
cantly. The workload increased by a factor of almost four
in the EECS-photos and WorldCup spikes, while it stayed
almost flat in the Ebates, Above-the-Clouds, and Michael
Jackson spikes. The steepness also varies; during the EECS-
image and WorldCup spikes, the workload reached its peak
in 20 and 60 minutes, respectively.

4.2 Static object popularity
Much has been written about objects’ popularities in the

World Wide Web following a Zipf law [27, 23], which states
that the popularity of the ith most popular object is propor-
tional to i−α, where α is the power-law parameter. Power-
law distributions are linear when object popularities are
plotted against their ranks on log-log scale. Figure 2 shows
the object popularity distribution for our four datasets along
with a line fit to the data.2

If the data were from a power-law distribution, the dashed
lines would coincide with the black curves. We observe that
this occurs in none of the four datasets: either the most pop-
ular objects are not as popular as the power law predicts,
or the tail of the distribution falls off much faster than the
power law predicts. The EECS data come closest, followed
by the Wikipedia articles, while the Ebates and WorldCup
datasets show the most significant differences. (The flat re-
gion in the EECS dataset corresponds to a set of faculty
photos periodically displayed on a digital board; their pop-
ularities are thus almost identical.)

Table 1 summarizes the fraction of traffic that corresponds
to the most popular 1% and 10% of objects in all four
datasets and shows significant differences among the datasets.

1We do not have raw workload data for the Twitter spikes.
2We do not have popularity data for all the topics on Twitter.



dataset granularity objects # objects
% traffic to top % traffic to top

1% objects 10% objects
World Cup 1998 requests files 29,475 88% 99%
EECS website requests files 338,276 83% 93%
Ebates.com requests merchant id 877 38% 82%
Wikipedia hourly articles 3,160,492 32% 67%
Twitter [3] aggr. workload N/A N/A N/A N/A
Twitter [7] top popularity topics N/A N/A N/A

Table 1: List of datasets and their various statistics

dataset name of spike description
WorldCup WorldCup spike at the beginning of a soccer match
EECS Above-the-Clouds Above the Clouds [11] paper is mentioned on Slashdot.org
EECS EECS-photos spike in traffic to about 50 photos on a student’s page
Ebates Ebates spike change in popularity of merchants in ad campaign
Wikipedia Michael Jackson spike after the death of Michael Jackson
Twitter [3] inauguration inauguration of President Obama
Twitter [7] top 20 trends top 20 trends on Twitter according to trendistic.com

Table 2: List of spikes
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Figure 1: Workload volume profile of spikes normalized to the volume at start of spike at time 0.
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Figure 2: Object popularity distribution plotted on log-log scale along with the best-fit Zipf curve (red, dashed line).

x-axis represents the rank of an object, y-axis the number of hits to that object. The most popular objects receive

significantly fewer hits than the Zipf curve would predict.
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Figure 3: Topic popularity (percent) during 4 of the top 20 Twitter spikes. Spike steepness varies significantly.

4.3 Detecting data spikes
To analyze the change in object popularity during a spike,

we first define the objects that are construed as hotspots. We
consider an object to be a hotspot if the change of workload
to this object during the first hour of the spike is significant
compared to a normal period before the spike. We define the
normal period to be one day before the spike, as it represents

a typical interval during which various workload patterns
repeat. We analyze the workload increase during the first
hour of the spike since all of our spikes are longer than an
hour and it is a long enough period to observe data hotspots.

More formally, let Δi,t be the change in workload to ob-
ject i between time t and t+1 hour, and Δmax,t = maxi Δi,t

be the maximum change in workload to any object at time t.
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Figure 4: Left: difference in popularity of all hot ob-

jects. Right: popularity of the single hottest object

(dashed) and all hot objects (solid) during spike.

We define a threshold D as the median of Δmax,t for times
t during the normal period before the spike. Intuitively, D
represents the typical value of maximum workload increase
during the normal period. The median is a robust statis-
tic that is not affected by outliers; using the median thus
accounts for normal variability of the Δmax,t statistic. We
consider object i to be a hotspot if (and only if) Δi,Ts > D,
where Ts is the start of the spike. For each hotspot i, we
define the change in popularity as the difference between the

popularity of i one hour after the start of the spike and the
popularity of i at the beginning of the spike.

4.4 Change in object popularity during spikes
In this section we analyze the magnitude of changes in

popularity of the hot objects during the spike and the tem-
poral profile of these changes. The first column in Figure 4
shows the change in popularity of all the hot objects between
the normal period before the spike started and during the
spike. We observe a significant shift in popularity during the
spikes. For example, the popularity of the Michael Jackson
article increased by 13 percentage points during that spike.
During the EECS-photo spike, the popularity of the 50 stu-
dent photos increased by at least 1 point.

We notice two important differences between the spikes.
In the Ebates, Above-the-Clouds, and Michael Jackson spikes,
the number of hot objects is very small, while the remaining
two spikes have more hot objects. However, the number of
hot objects is very small compared to the total number of
objects in each dataset. Also, there are significant differ-
ences in the magnitude of change among the hot objects. In
the Ebates and Above-the-Clouds spikes, a single hot object
is responsible for most of the shift in popularity. However, in
the EECS-photo and WorldCup spikes, the change in popu-
larity is spread out more uniformly among the hot objects.
Finally, the popularity of some of the hot objects actually de-
creased during a spike (WorldCup and EECS-photos spikes).

The second column in Figure 4 shows the popularity of
the hottest object and the total popularity of all the hot
objects. Figure 3 shows the popularity of the hottest topic
in four of Twitter spikes.3 Notice that the steepness of the
popularity varies significantly.

4.5 Spatial locality of data spikes
The response to data spikes is affected by the spatial local-

ity of the hotspots. Some storage systems such as Amazon
Dynamo [17] handle data in blocks and can only replicate
whole blocks. Other systems such as SCADS [12] support
range queries and thus store the objects in logical order. In
such systems, if all the hot objects live on a single server or
are logically close to each other, one could react to a spike
by replicating a very small fraction of the data. However,
if the hot objects are spread over many servers, one would
have to copy data from multiple servers.

While we do not know how the individual objects are
stored, to evaluate the spatial locality of data hotspots, we
order them lexicographically by their name. This ordering
preserves the logical structure of the objects; for example,
files in the same directory will stay close to each other. Fig-
ure 5 shows the spatial locality of the hotspots. The x-axis
represents the individual ordered hotspots and the y-axis
represents the relative location of a hotspot in the range of
all objects. Flat regions in these graphs thus represent hot
objects located very close to each other.

We observe that the WorldCup and EECS-photos spikes
have significant spatial locality. In the WorldCup spike, we
notice three large clusters of hotspots. In the EECS-photos
spike, all the objects except one form a contiguous range.

4.6 Summary
Before presenting our proposed quantitative characteriza-

3We do not have popularity data for the inauguration spike.
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Figure 5: Spatial locality of hotspots. X-axis represents

hotspots sorted lexicographically, y-axis shows their rel-

ative location. We do not show the Ebates spike that has

only a single hotspot.

tion of spikes, we summarize the key observations emerging
from our analysis:

In all spikes, the number of hot objects is a small
fraction of the total number of objects in the system.
We believe this is because the workload and spikes are gen-
erated by human users whose actions are independent of the
total size of the dataset. In other words, even if Wikipedia
had ten times more articles, Michael Jackson’s death would
likely still result in Wikipedia users visiting just the single
article, not ten times as many articles. Therefore, we char-
acterize the number of hot objects as an absolute number
instead as a fraction of all objects.

Aside from this commonality, there is tremendous
variation in volume and data spikes. The duration of
the spikes varies from hours to days, the increase in workload
volume ranges from insignificant increases to factors for five,
and the slope of workload volume and popularity of hottest
objects also varies drastically. This supports the claim that
methods for automatic scaling of web applications cannot be
tested on a single workload, but rather must be evaluated
across a range of different and realistic spikes.

Object popularity is not necessarily Zipfian. The
popularity distributions tend to be heavy-tailed, but there
are significant differences from power-law distributions.

Anticipated spikes are both gentler and smaller
than unanticipated spikes. In the top 20 Twitter trends,
surprising events shoot up quickly from zero to peak, ex-
hibiting 1-hour changes in popularity close to the maximum
popularity. Examples include celebrity deaths (Michael Jack-
son, Patrick Swayze, Brittany Murphy, and Billy Mays)
or other unexpected sensations (Nobel Prize for President
Obama or the Balloon Boy). On the other hand, anticipated
events such as holidays or other well known events (the Os-
cars, Eurovision) slowly build up their popularity.

5. QUANTITATIVE CHARACTERIZATION
In this section we define a set of quantitative metrics to

describe the important aspects of a workload and data spike
based on observations in Section 4. We present the results
in Tables 3 and 4.

Number of hot objects represents the number of ob-
jects identified as hotspots (see Section 4.3).

Normalized entropy of the popularity of hot objects
represents the skewness of the change in popularity of hot
objects. Letting c1, . . . , cn denote the change in popularity
of n hot objects (column 1 in Figure 4), the normalized
entropy H0 is defined as follows (see Appendix):

H0 = −
nX

i=1

ci log2 ci/ log2 n, 0 ≤ H0 ≤ 1.

H0 close to 1 corresponds to distributions where all the hot
objects have almost equal increase in popularity, such as
in the EECS-photos spike (column 1, row 2 in Figure 4).
H0 close to 0 corresponds to distributions where a single
hot object has most of the popularity, such as the Michael
Jackson spike (column 1, row 5 in Figure 4).

Time to peak represents the time from the start to the
peak of the spike. We first manually identify the start of the
spike by visually inspecting the workload profile and changes
in popularity of the hot objects. Then we find the peak time
as time when the object with the most significant change in
popularity (object h) reached the maximum popularity.

Duration of the spike is the time between the start of
the spike and its end. We define the end of a spike to be
the time when the popularity of object h returns to the level
seen before the spike. We do not use the workload volume to
identify the peak and end of the spike since in some cases the
increase in workload volume is not large enough and using
it to identify start and end of spike would be unreliable.
However, the popularity profile of object h is a clear signal
of the peak and end of spikes.

Relative increase in workload volume represents the
workload volume increase at the peak of the spike relative
to the workload at the start of the spike.

Max slope captures the increase in workload volume dur-
ing the steepest part of the spike. We first normalize the
workload to the start of the spike, find the steepest part,
and represent its slope as change in relative workload per
minute. Thus, a max slope of 7%/min means that during
the steepest part of the spike, the workload volume was in-
creasing by 7% every minute (relative to the workload at
the start of the spike). We note that this only captures the
slope of the workload volume, not the slope of workload to
the individual hot objects.

Spatial locality represents the degree to which the hot
objects are clustered. Let l1, . . . , ln represent the relative
location of hot objects in the logical address space of all
objects sorted lexicographically. For a given value of δ, we
consider two objects i and j to be close if |li − lj | < δ.
Finally, let Cδ be the minimal number of clusters of hot
objects, such that each cluster contains only objects that
are close. Intuitively, if we need few clusters to cover all hot
objects, the hot objects exhibit high spatial locality, and vice
versa. We thus define spatial locality as

Lδ = 1 − Cδ − 1

n − 1
, 0 ≤ L ≤ 1.

In Table 3, we report values for δ = 0.1%.



parameter WorldCup
Above EECS

Ebates
Michael

inauguration
the Clouds photos Jackson

number of hot objects 159 2 50 1 64 n/a
0.1%-spatial locality 0.639 0.0 0.980 n/a 0.254 n/a
normalized entropy 0.765 0.695 0.990 0.0 0.478 n/a
time of peak [min] 105 40 55 130 60 n/a
duration [min] 190 800 1000 7000 >1560 n/a
relative increase in aggr. 4.97 0.97 2.43 1.13 1.05 ≈ 5
max slope [%/min] of aggr. 8.7 7.0 25.4 2.9 0.09 ≈ 140

Table 3: Characterization of spikes using metrics described in Section 5. The metrics for the spike inauguration were

estimated from a post on Twitter’s blog [3].

spike
change in pop. maximum
in 1 hour [pp] pop. [%]

WorldCup 1.14 1.53
EECS photos 1.47 1.48

Above the Clouds 5.77 6.42
Ebates 12.50 55.63

Michael Jackson 12.76 15.12
michael jackson (twitter) 11.52 22.61

kanye 12.64 14.39
oscars 6.03 13.08

balloon (boy) 11.76 12.89
demi lovato 10.86 12.68
thanksgiving 2.91 12.09
jonas brothers 10.42 12.06

fireworks (July 4th) 5.22 11.72
eurovision 5.36 9.93

happy easter 1.96 9.78
patrick swayze 9.67 9.67

aplusk 5.16 8.50
obama (nobel) 8.09 8.39

iphone 5.80 8.27
facebook 6.03 8.09

brittany murphy 7.60 8.01
lakers 4.47 7.56

yankees 4.62 7.14
halloween 0.92 7.11
billy mays 5.09 5.85

Table 4: Summary of change in popularity and max-

imum popularity of the single most popular object in

each spike. The first five spikes correspond to spikes de-

scribed in Table 2. The following 20 spikes are based on

hourly data from the Top 20 Trending Topics of 2009 [7].

Change in popularity in 1 hour is the biggest change
in popularity of the hottest object during one hour in per-
centage points (pp); i.e., a change from 2% to 10% is 8pp.

Maximum popularity represents the peak popularity
of the hottest object achieved during the spike.

Together, these metrics capture the most important as-
pects of a spike. The number of hot objects, normalized en-
tropy, change in popularity, and maximum popularity char-
acterize the hot objects, while the rest of the parameters
characterize the changes in workload volume. We present
partial results for data from [3, 7]. For the inauguration
spike we only have approximate values of the relative in-
crease in workload volume, while for the top 20 trending
topics we only have the changes in their popularity over
time and not the workload volume.

6. WORKLOAD MODEL
In this section we build on a baseline workload model for

normal periods without any spikes or data hotspots, extend-
ing this model to support workload spikes and changes in
popularity of objects. We then extend the model to support
a notion of data locality. We describe the parameters of the
model, explain how they control the various spike character-
istics (see Table 5), and show that our model can generate
workload similar to the spikes described in Section 4.

We emphasize that it is not our goal to create a com-
plex workload model that imitates every detail of the real
traces analyzed in Section 4. Instead, our goal is a model
that is simple to use and captures the important aspects
of volume spikes and data spikes that emerged from our
analysis. To this end we use the Pitman-Yor stick-breaking
process [24] to generate popularity profiles, the Dirichlet dis-
tribution to model popularities during data hotspots, and
the Chinese Restaurant Process [9] to generate locations of
hotspots (clusters). In the following sections we explain,
justify, and validate these choices.

6.1 Model of normal workload
A model of normal workload consists of a workload volume

time series U and a popularity profile for individual objects.
We do not focus on the workload volume time series U , as
this can be based on other studies of Web workloads, such
as [10]. Instead we concentrate on the novel challenge that
arises in data spike modeling: creating a realistic character-
ization of object popularity. We note at the outset that the
popularities, while drawn from a distribution, are held con-
stant during workload generation. The transformation from
popularity profile to workload, however, is also stochastic,
and this stochastic process is responsible for capturing the
variance of the workloads of individual objects.

We showed in Section 4.2 that the popularity profiles in
our datasets do not tend to follow the Zipf law often assumed
for Web data. Therefore we instead use stick-breaking, a
probabilistic modeling method used to generate heavy-tailed
distributions. The idea is straightforward—one starts with
stick of unit length and breaks off a piece according to a
draw from a beta distribution. This procedure is applied
recursively to the remaining segment of the stick. The result
is a set of increasingly small pieces of the stick whose lengths
are taken to represent the popularity profile of our objects.

The particular form of stick-breaking we use is the Pitman-
Yor process [24]. This process, denoted PY(d, α), is param-
eterized by a discount parameter d, 0 ≤ d < 1, and a con-
centration parameter α > −d. To generate the popularity
profile of n objects, we first generate n beta random vari-



ables as follows:

βi ∼ Beta(1 − d, α + id), i = 1, . . . , n, 0 ≤ βi ≤ 1.

Next, we set the length of the first piece of stick as π1 = β1,
and set the lengths of the remaining pieces as follows:

πi = βi

i−1Y

l=1

(1 − βl), i = 2, . . . , n

Intuitively, the length πi of the i’th piece is the length of the
stick after breaking off the first i−1 pieces multiplied by βi.
It turns out that the lengths of the pieces generated by this
procedure follow a power-law distribution with parameter
1/d in expectation. However, an individual stick-breaking
realization generates πi’s whose lengths drop off faster than a
power law. This behavior more closely matches the behavior
we observed in real workload traces in Figure 2.

To generate a popularity profile for n objects with pa-
rameter a, we first generate a vector (π1, . . . , πn) using the
PY(1/a, 0.5) process, and we then set the object populari-
ties, (b1, . . . , bn), as a random permutation of the πi’s.

6.2 Modeling volume spikes and data spikes
To add a spike to a normal workload, we need to increase

the workload volume during the spike and create a new ob-
ject popularity distribution with a higher popularity for the
hotspots. This process is parameterized by the following
parameters: t0, t1, t2, and t3 represent the times when the
spike starts, when it reaches its peak, the end of peak period
with flat workload, and the end of the spike, respectively. M
represents the magnitude of the spike, or relative increase
in workload volume. N represents the number of hotspots
and V the variance of hotspot popularity (which determines
the normalized entropy described in Section 5). We first
describe how we adjust the workload profile and then the
object popularity during a spike.

The four ti parameters and the magnitude parameter de-
fine the change in the workload profile. The workload profile
is multiplied by a factor ct to obtain the new workload profile
during a spike. ct is 1.0 for times t before t0, increases lin-
early between t0 and t1 up to M , stays flat between t1 and
t2, decreases linearly to 1.0 between t2 and t3, and is 1.0
after t3 (see Figure 6). We model the change in workload
volume using a piece-wise linear factor to keep the model
simple and minimize the number of parameters. Figure 1
also justifies this decision as most of the workload profiles
can be approximated well using a piece-wise linear function.

To generate object popularity during a spike, we take the
baseline popularity B = (b1, . . . , bn) and adjust it by putting
more weight on the hotspots. In particular, we construct a
vector H = (h1, . . . , hn) that represents the popularity of
only the hotspots during a spike. The final object popularity
profile at time t is Pt = (1−c∗t )B+c∗t H—a weighted average
of the baseline popularity and the increased popularity of the
hotspots. For times t before and after the spike, c∗t = 0, so
that the object popularity will be the baseline B. During the
spike, c∗t is adjusted in a piece-wise linear fashion (similar to
ct) such that at the peak of the spike c∗t = (M − 1)/M. This
guarantees that as the workload volume increases by a factor
of M , all the additional traffic will be directed towards the
hotspots using distribution H. For example, for M = 3, 2/3
of the workload at the peak will be directed to hotspots.

We generate the popularity of hotspots H as follows. We
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Figure 7: Popularity of N = 20 hot objects for different

values of the variance parameter V resulting in different

values of entropy.

first pick locations l1, . . . , lN of N hotspots uniformly at
random; H has non-zero popularity only at these locations.
The values of popularity of the hotspots, hl1 , . . . , hlN , are
obtained as a sample from a Dirichlet distribution (see Ap-
pendix): (hl1 , . . . , hlN ) ∼ Dir(α1, . . . , αN ). A sample from
a Dirichlet distribution results in N non-negative numbers
that sum to 1 and thus represent valid object popularities.

As described in Section 4, different spikes have different
values of normalized entropy of the hot object popularity
distribution. In the workload model, we control the entropy
of the hot object popularity distribution by adjusting the
variance of the Dirichlet distribution. We set the parameters
of the Dirichlet distribution as follows:

αi =
N − 1 − V N2

V N3
.

With this setting of the αi parameters, the expected value
of all hli is equal to 1/N and variance is equal to V ; E[hli ] =
1/N, Var[hli ] = V . High variance V results in a distribution
with high entropy and vice versa, which allows us to control
the normalized entropy of the hot objects. This process is
illustrated in Figure 7.
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Figure 8: Locations of hot spots generated using a Chi-

nese Restaurant Process. The title of each plot shows the

L parameter used, number of clusters, and the resulting

0.1%-spatial-locality characteristic.

6.3 Adding spatial locality to data spikes
The model of a spike described in Section 6.2 picks the

locations of the hot objects uniformly at random. However,
as we demonstrated in Section 4.5, hot objects often exhibit
significant spatial locality. Here we describe a process that
clusters the locations of the hotspots in two steps.

We first create clusters of hotspots using an iterative pro-
cess known as the Chinese Restaurant Process (CRP) [9],
a statistical model of clustering that is parameterized by a
single parameter 0 ≤ L ≤ 1. We start with a single cluster
that contains the first hotspot. All the subsequent hotspots
are either assigned to a new cluster, with probability propor-
tional to 1/L − 1, or pick an existing cluster i, with proba-
bility proportional to ki, which is the number of hotspots in
cluster i. The parameter L thus determines the number of
clusters; in particular, large values of L imply a low proba-
bility of starting a new cluster and thus a smaller number of
clusters. Given N hotspots, the expected number of clusters
turns out to grow logarithmically as O((1/L − 1) log N).

Second, we pick the location of cluster i, li, uniformly
at random from all the available objects, and mark objects
li, . . . , li + ki − 1 as hotspots. After selecting the locations
of hot objects, we assign their probabilities as described in
Section 6.2. Figure 8 shows sample locations of hot objects
for different values of the locality parameter L. Since CRP
is a stochastic process, the cluster sizes vary across multiple
runs with the same L parameter. If we wish to control the
variance of the cluster sizes we can run the CRP multiple
times and average the sizes of clusters.

6.4 Summary of workload model
To model a workload without spikes, we select the num-

ber of active users at each point in time, u1, . . . , uT , from
a section of an existing workload trace. The popularity of
individual objects, bi, is constructed using the Pitman-Yor
stick-breaking process. We add a volume spike by multiply-

ing the number of active users by a piece-wise linear func-
tion (Figure 6). Finally, we add a data spike by selecting N
hotspots with a particular spatial locality and entropy.

The model parameters are summarized in Table 5. For
most of the parameters, the effect on the various spike char-
acteristics is straightforward. In particular, the magnitude
and number of hot objects are directly the spike character-
istics. The spike coordinates t0, . . . , t3 determine the maxi-
mum slope and duration. As for the normalized entropy and
the spatial locality of the hotspots, these are controlled by
the V and L parameters. As we show in Figures 7 and 8,
there is a mapping between these quantities such that we
can control the normalized entropy and spatial locality of
the hotspots by the choice of V and L. In summary, for any
values of the spike characteristics (see Table 3), we can find
model parameters that generate such a spike.

6.5 Model validation
In this section we validate our workload model in two

ways. First, we compare the variance of workload to indi-
vidual objects in real traces with the variance obtained using
our model. Second, we compare the workload volume and
workload to the hottest object observed during the EECS-
photos spike with workload generated from our model.

Short-term volatility of object popularity
As described above, the popularity of an object i that is not
a hotspot is bi and is thus independent of time t. One might
be concerned that this implies that the actual workload re-
ceived by object i over time will either be constant or have
variance much smaller than observed in real traces. Here we
demonstrate that the variance of workload generated by our
model is comparable to variance in real workloads.

Generating k requests to n objects with popularities of
B = (b1, . . . , bn) is equivalent to taking k samples from a
multinomial distribution Mult(B). The expected value and
variance of the number of hits to object i, wi can be ex-
pressed as follows: E[wi] = kbi, Var[wi] = kbi(1 − bi). In
Figure 9, we compare the variance observed during a nor-
mal workload period before the WorldCup spike with vari-
ance of a multinomial distribution. We see that the variance
of a multinomial distribution closely matches the variance of
most of the objects.

Comparing real and generated workload
To compare real and generated workload during the EECS-
photos spike, we set the model parameters such that the
spike characteristics match values presented in Table 3 and
generate requests to objects based on the workload volume.
In Figure 10 we compare the workload volume and the work-
load to the hotspot with the largest increase in workload
during the spike. We note that while the generated curves
do not exactly match the observed workload, the overall
profile is very similar. We reiterate that our goal was not
to replicate every detail of the real workloads, but only to
capture the most important aspects of the spikes.

7. WORKLOAD GENERATION
We built a closed-loop workload generator in which a sin-

gle user is simulated by a single client thread that creates
and executes requests in a loop, a common design for work-
load generators [1, 6]. Each thread selects a request type
(such as read or write), selects request parameters using our



parameter contraint description spike characteristic section
n n > 0 total number of objects - 6.1
U ui ≥ 0 workload profile - 6.1
a a > 1 power-law parameter - 6.1
N 0 < N ≤ n number of hot objects number of hot objects 6.2
V 0 < V < N−1

N2 variance of hot object popularity normalized entropy 6.2
(t0,) t1, t2, t3 t0 ≤ t1 ≤ t2 ≤ t3 spike coordinates time of peak, duration, max slope 6.2

M 0 < M magnitude of spike relative increase in workload volume 6.2
L 0 ≤ L ≤ 1 spatial locality 0.1%-spatial locality 6.3

Table 5: Parameters of the workload model, their description, the corresponding spike characteristics that they control,

and the section in the paper that describes the parameter in more detail. The first three parameters model the normal

workload and thus do not correspond to any spike characteristic. The spike model has seven main parameters (N, V,

t1, t2, t3, M, and L) and the start of the spike (t0) that has no effect on spike characteristics.
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Figure 10: Comparison of real and generated workload

for the EECS-photos spike. Top, actual and generated

workload volume. Bottom, actual and generated work-

load to the hotspot with largest increase in workload.

model, sends the request to the system under test, waits for
a response, and repeats.

We discretize time into T short intervals to create the
volume profile, a time series u1, . . . , uT in which ut is the
number of users active during interval t. Each thread stores
a copy of this profile; to simulate changes in the number of
active users, a thread sleeps during interval t if its thread
ID is larger than ut. Otherwise, at time t, the workload
generator selects object i with probability pi,t.

We remark that while open-loop workload generation would
allow specifying a particular workload rate (e.g., 2000 re-
quests per second), a closed-loop workload generator only
allows us to specify the number of active users; the resulting
workload rate depends on the number of users, their think
times, and the latency of the individual requests. For ex-
ample, when 100 active users generate requests that take
100ms to execute, the workload rate would be 1000 requests
per second. If the request latencies drop to 10 ms, the work-
load rate would increase to 10,000 requests per second.

Initializing the model for the experiment in Section 6.5
with 338276 objects and 50 hotspots took 14.5 seconds. Gen-
erating 20 hours of workload took 2.1 seconds.

8. EXTENDING THE MODEL
Longer-term trends in object popularity. As demon-

strated above, the variance in workload to individual objects
on a time scale of five minutes is well modeled by a multino-
mial distribution. However, on longer time scales (hours),
we notice slow upward and downward trends in workloads to
many objects. We can simulate these trends by perturbing
the object popularity using the Dirichlet distribution. Let
(b1, . . . , bn) be the baseline popularity of all objects in the
system and let (p1,t, . . . , pn,t) be the actual popularity of ob-
jects used at time t. To simulate trends in popularity that
change every T minutes, we update (p1,t, . . . , pn,t) every T
minutes by sampling from the following Dirichlet distribu-
tion: Dir(Kb1, . . . , Kbn). For any value of K, the expected
value of pi is bi, which means that the sampled values of pi,t

will oscillate around the baseline popularity bi. However,
the value of K affects the variance of pi,t; smaller values of
K imply larger variance and thus more significant trends in
object popularity and vice versa (see Appendix).

Other extensions. The Chinese Restaurant Process
could be used to add spatial locality even to the baseline
object popularity bi by first creating some number of clus-
ters and then assigning the objects with the largest popu-
larity to these clusters. Second, the current model assumes
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that only the additional workload (with magnitude M) is
directed at the hotspots. By increasing the values of c∗t (see
Section 6.2), we can redirect more workload at the hotspots.
Finally, we can easily create a mixed spikes by creating new
hotspots while other spikes are still in progress.

9. CONJECTURES
Below we present two conjectures based on initial analysis

of spike magnitudes and frequencies; validating or refuting
them is our future work. We studied the daily change in page
popularities on Wikipedia during one month and treated
spikes on individual pages during one day as separate events.
The spike magnitude represents the increase in popularity of
a particular page.

Spike magnitudes follow Zipf’s law. Figure 11 shows
that the spike magnitudes on Wikipedia during one month
follow Zipf’s law; there are many spikes with small magni-
tude and few spikes with large magnitude. By fitting the
distribution (red line in Figure 11), we could predict the
frequency of spikes of larger magnitudes.

More popular objects are more likely to become
hotspots. In Figure 12, we first bin Wikipedia pages based
on their popularity one day before the spike and compute
the empirical probability of observing a spike of certain mag-
nitude. We see that the more popular pages have higher
likelihood of getting a larger spike.

10. CONCLUSION
As significant workload spikes are becoming the norm for

popular Web sites such as Facebook or Twitter, it is im-
portant to evaluate computer systems using workloads that
resemble these events. In many cases a surge in workload
occurs together with the emergence of data hotspots, which
has a crucial impact on stateful systems. Because it is very
difficult to obtain realistic traces of such events, it is impor-
tant to model and synthesize workloads that contain realistic
spikes in workload volume and changes in data popularity.

In this paper we provide a methodology for characterizing
the most important aspects of spikes in stateful systems.
We characterize a spike in terms of changes in workload
volume (maximum slope, relative increase, time to peak,
and duration) and changes in data popularity (the number
of hot objects, spatial locality, and normalized entropy).

We use this methodology to analyze five spikes in four
datasets and observe two important facts. First, the num-
ber of hotspots in all the spikes is a very small fraction of the
total number of objects in the system. Second, the spikes
differ dramatically in all of the other characteristics. This
suggests that there is no “typical” workload spike and com-
puter systems should be evaluated using a wide range of
spiky workloads.

Our workload model uses a small number of parameters
to capture the most important aspects of spikes in stateful
systems using well-known probability distributions and gen-
erative processes. We first model a typical workload with no
spikes using a workload profile and a distribution describing
the object popularity. Second, we add a volume spike by
increasing the workload and add a data spike by increasing
popularity of a small number of objects. Finally, we add a
spatial locality of hotspots using a simple clustering process.
The workload model serves as input to a closed-loop work-
load generator, where simulated clients select objects based
on the generated object popularity that evolves over time.

Appendix: Terms and Models Used in Paper
Entropy. In information theory, entropy is a measure of
the uncertainty associated with a random variable. En-
tropy H of a discrete random variable X with possible values
x1, . . . , xn measured in bits is H(X) = −P

i p(xi) log2 p(xi).
Entropy achieves the minimum of 0 if one of the values xi has
probability 1 (no uncertainty). Entropy achieve the maxi-
mum of log2 n if all the values have equal probability of 1/n
(maximal uncertainty about the outcome of the random vari-
able X). The normalized entropy with values between 0 and
1 is thus defined as H0(X) = H(X)/ log2 n.

Beta distribution. The beta distribution with two pa-
rameters α and β is a continuous probability distribution
defined on an interval (0, 1). Examples of the beta density
are shown in Figure 13. The mean and variance are

E[X] =
α

α + β
, Var[X] =

αβ

(α + β)2(α + β + 1)
.

Multinomial distribution. The multinomial distribu-
tion is a probability distribution of the number of occur-
rences of events 1 through k in n independent trials, when
the events have probabilities p1, . . . , pk, and

P
i pi = 1. The

mean and variance of number of occurrences of event i, Xi,
are

E[Xi] = npi, Var[Xi] = npi(1 − pi).
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Figure 13: Probability density function of a Beta distri-

bution for different α and β parameters. All three distri-

butions have the same mean, 1/3, but different variance.

Figure 14: Five samples from three different

Dirichlet distributions; Dir(0.1, 0.3, 0.6), Dir(1, 3, 6), and

Dir(10, 30, 60). Each sample (X1, X2, X3) ∼ Dir(α) is rep-

resented by a single bar with three components with

heights X1, X2, and X3. Each of the distributions has

the same expected values of the three components, 0.1,

0.3, and 0.6, but the variance varies significantly.

Dirichlet distribution. The Dirichlet distribution is
a continuous multivariate probability distribution, denoted
Dir(α), parameterized by vector α = (α1, . . . , αK), αi > 0.
A single sample from a Dirichlet distribution is vector of
numbers: X = (X1, . . . , XK) ∼ Dir(α), where

P
i Xi = 1.

Samples from three different Dirichlet distributions are il-
lustrated in Figure 14. The mean and variance of Xi are

E[Xi] =
αi

α0
, Var[Xi] =

αi(α0 − αi)

α2
0(α0 + 1)

.
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