
Learning from Mistakes:
Towards a Correctable Learning Algorithm

Karthik Raman
Cornell University
Ithaca, NY, USA

karthik@cs.cornell.edu

Krysta M. Svore, Ran Gilad-Bachrach, Chris J.C. Burges
Microsoft Research
Redmond, WA, USA

{ksvore,rang,cburges}@microsoft.com

ABSTRACT
Many learning algorithms generate complex models that are
difficult for a human to interpret, debug, and extend. In this
paper, we address this challenge by proposing a new learn-
ing paradigm called correctable learning, where the learning
algorithm receives external feedback about which data ex-
amples are incorrectly learned. We define a set of metrics
which measure the correctability of a learning algorithm. We
then propose a simple and efficient correctable learning al-
gorithm which learns local models for different regions of the
data space. Given an incorrect example, our method sam-
ples data in the neighborhood of that example and learns
a new, more correct local model over that region. Experi-
ments over multiple classification and ranking datasets show
that our correctable learning algorithm offers significant im-
provements over the state-of-the-art techniques.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning; H.3.3 [Information
Systems and Retrieval]: Search Process

General Terms
Algorithms, Experimentation, Theory

Keywords
Classification, Regression, Correctable learning

1. INTRODUCTION
Large machine learning systems are increasingly common

across a variety of tasks including Web Search, Advertising,
Social Networking, and Collaborative Filtering. Although
ensemble methods such as boosted trees [6] and random
forests are widely used for these tasks [3], these algorithms
have several drawbacks: (1) Training and testing is slow, (2)
The learned models are difficult to interpret, (3) The mod-
els are not well-suited for parallelization, (4) It is difficult
to incorporate feedback without retraining. Consequently,
debugging and correcting these models can be challenging.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’12, October 29–November 2, 2012, Maui, HI, USA.
Copyright 2012 ACM 978-1-4503-1156-4/12/10 ...$15.00.

A particularly poignant example stems from Web Search.
Training a commercial search engine over millions of exam-
ple queries is time-consuming. When a search engine user
reports that a query has failed, meaning that the returned
URLs do not fulfill the intent of the query, it can be difficult
to fix that particular query during training of the ranking
model. Namely, feedback on a single query has very little
effect among a pool of millions of training examples; even
if upon retraining of the model the feedback is added to
the training set, it is unlikely to change the learned model
at all. Furthermore, the models are extremely complicated,
non-linear, and non-intuitive to a human, making it almost
impossible to debug a failed query. How can we learn a
model that is easier to correct, and what are desirable prop-
erties for such a model?

In response to these challenges, we formalize a new learn-
ing paradigm called correctable learning. Our focus is three-
fold: (1) we focus on learning in the presence of feedback,
(2) we focus on addressing the poor-performing regions high-
lighted by this feedback by “learning from our mistakes”,
and (3) we develop criteria and metrics with which to eval-
uate the correctability of a model. We aim to fix examples
on which the current model makes a mistake, denoted as
MSTKs, without hurting other examples.

Our approach localizes the effect of a training point, such
that it only affects the performance of its local model and
points within its neighborhood. Our method partitions the
dataspace into regions and learns a separate local model for
each region. The key insight is that since there are relatively
few points “close” to the decision boundary defined by any
local model, changing the boundary of a local model is likely
to have less impact on other points than changing the bound-
ary of a single global model. We thus achieve correctability
by incrementally adding MSTK points to our training data.
Our method outperforms the correctability and performance
of far more complicated non-linear models.

2. RELATED WORK
Active Learning: Unlike passive supervised learning,

the goal of active learning is to both identify the data points
to label and learn a good model from them. A common way
to identify points is to choose the points with the most un-
certainty in the labels [5]. Our correctable learning method
also learns incrementally as MSTK points are added, but
there is no control over the next received point.

Online Learning: In online learning [4], examples are
revealed one at a time. The goal is to efficiently and incre-
mentally learn through simple updates to the model. There
are two key differences between (stochastic) online learning

and correctable learning: (1) online learning typically as-
sumes that points come from the same underlying distribu-
tion, while we do not assume that MSTK points match the
underlying distribution, and (2) most online learning meth-
ods do not store, and are thus prone to making mistakes
on, previously seen data, while instead we target generaliza-
tion and do not allow performance degradation on previously
seen data.

Localized Learning: Localized learning methods con-
sider the local neighborhood of a given point when predicting
its label and have been shown successful when used with var-
ious underlying learning techniques [9]. It has been shown
that consistent classifiers must be localized [11], and that
localizing linear methods such as SVMs [8] results in perfor-
mance comparable to more complex methods. Lazy Learning
[1] involves no a priori training; at test time, a classification
rule is determined based on the region around the test point.
Our approach is similar in spirit to lazy learning.

3. CORRECTABLE LEARNING
Today’s large-scale learning systems use complex learning

algorithms and vast amounts of training data to maximize
performance. Aside from retraining an entirely new model,
it is almost impossible to modify the learned models in an in-
tuitive manner due to their complexity. This is particularly
problematic when mistakes that the system makes upon de-
ployment need to be corrected. For example, consider this
real-world scenario: a senior administrator of a large search
engine discovers one morning that the ranking results for an
important query (e.g., british airlines) are poor. Due to the
scale of the search engine, there is no easy, principled way
to fix this query. While we could try using a whitelist (list
of known important results for such queries), doing so would
not generalize. Learning a new model typically would take
hours, if not days, which would be too long and may not
even fix the issue. Even if it did, retraining may very likely
adversely impact the ranking quality of another important
query, say superbowl sunday. In addition, the administrator
would hope that fixing the original mistake on british air-
lines would result in improvements to most similar queries
with mistakes, fixing say delta airlines if it also was of poor
quality.

Such a scenario motivates the need for what we refer to as
Correctable Learning. We believe this is a key problem
that could be of significant interest to the learning commu-
nity, and especially the IR community, in particular due to
its potential for high impact on today’s large-scale learning
systems. To the best of our knowledge, this problem has not
been previously identified or studied in the literature. Our
main focus is to introduce and define the problem of cor-
rectable learning, and propose ways to measure correctabil-
ity of a learned model. Below we introduce our notation:

t : {0 ≤ t ≤ n} Time
ki = (xi, y

∗
i) ith Mistake, i.e at time i.

τ Mistake Threshold
M0 Initial model learned
Mi {i ≥ 1} Model after ith MSTK seen
yi = Mi−1(xi) Predicted (Wrong) Label for ith

MSTK (i.e., just before seeing it)
∆(y, y∗) ∈ R Loss function
PT (M) Performance of model M on test set

i.e.
∑

(x,y∗)∈T ∆(M(x), y∗)

Definition 1. Given learned model M , we define point
(x, y∗) to be a mistake point (MSTK), where x is the fea-
ture vector and y∗ is the true label, iff ∆(y, y∗) ≥ τ , where
M(x) = y, y is the predicted label, ∆ is the loss function,
and τ is a pre-defined “error” threshold.

Note that for binary classification ∆(y, y∗) is the 0-1 loss
function with τ = 1 while for ranking we use 1−NDCG@3.
Definition 1 essentially says a MSTK is a point that the
model performs poorly on, where τ quantifies how poorly.

Definition 2. Given the current learned model M and a
MSTK point k = (xk, y

∗
k), we define correctable learning

to be the learning of a new model M ′ (via modification of
model M) such that the following hold:

MSTK corrected: ∆(M ′(xk), y∗k) < τ .
Stability maintained: M ′(x) = M(x) is guaranteed for

a previously known (large) fraction of the training samples,
and also for a known (large) fraction of the already observed
test samples.

Similar MSTKs fixed: Empirical risk of M ′ on test
samples in the neighborhood of xk is reduced.

Similar complexity: Model complexity increase is bounded
by a small (pre-determined) amount.

As illustrated in the search engine example, only when all
of the conditions are met can we be satisfied with the cor-
rectability of the algorithm. Given such an algorithm and a
stream of MSTKs, we can hope to improve the performance
of the learned system over time, without having to retrain a
new model from scratch every time a MSTK is received.

4. A CORRECTABLE ALGORITHM
We would like an algorithm that, given a MSTK point,

updates the current model in a simple manner while achiev-
ing the conditions required for correctability. A simple ap-
proach is to use an existing algorithm and add MSTK points
to the training data as they are received in an online fash-
ion. However, this may not correct the mistake since so
many points influence the model, or it may cause perfor-
mance on other points to drop (if many points are close to
the decision boundary, then changing the boundary can im-
pact performance). We can overcome these two problems by
using disjoint models for different regions of the data space,
which reduces the number of points affecting each decision
boundary (thus allowing for correction of a point), and also
reduces the number of points close to any boundary (reduc-
ing the risk of worsening the performance of other points
near the boundary).

In response, we propose a localized-learning-based algo-
rithm LocCL, detailed in Algorithm 1. First, we precom-
pute a good region function, which partitions the dataspace
into N regions1. For instance, this can be done using any
clustering algorithm, where the regions are given by the clus-
ters. Next, we train separate models over each region, which
we call local models, using an existing learning algorithm L2.
Testing returns the predicted label of a given point using the
model for the region in which the point belongs. To achieve
correctability, we add the MSTK point x to the training set

1In our experiments, this is done once at the start. This can
easily be extended to a dynamic partitioning which changes
with data or depends on the task.
2We assume TrainL(D) returns a model trained on dataset
D; TestL(M,x) returns the prediction for test point x using
model M . We refer to L as the Base Learning Method.

Algorithm 1 Correctable Learning Framework.

Notation: D: Training Data,
N : No. Regions, F : D → {1, .., N}: Region Fctn.,
L: Learning Method, {M1, ...,MN}: Local Models,
Dj = {(x, y)|x ∈ D,F (x) = j} : Local Training Data
TRAINING:
for j = 1 to N do

Output: Mj = TrainL(Dj)

TESTING:
Input: Datapoint x
Output: TestL(MF (x) , x)

CORRECTION:
Input: MSTK k = (x, y)
DF (x) = DF (x) ∪ {(x, y)}.
Update: MF (x) = TrainL(DF (x)).

of the region in which it belongs and update that local model
using the modified training set (as done in online learning).

Note that while the proposed algorithmic framework is
simple, it is a step towards obtaining an efficient algorithm
for this new learning paradigm. We also note that since
this framework relates closely to importance weighting, there
may exist alternate approaches to this problem as well.

In addition to correctability, our proposed method has the
following advantages:

Training is faster since each training set contains fewer
elements. Thus with N regions, an order d polynomial time
algorithm roughly achieves a speed-up factor of Nd with
parallelization and Nd−1 without it.

Parallelization is easy since training each local model
is an independent process. This is especially useful for meth-
ods that are inherently hard to parallelize.

Labeling cost savings are large since like active learn-
ing, desired performance can be achieved using much less
labeled data.

Flexibility is inherent since local models are indepen-
dent; this allows for different feature sets to be used in differ-
ent parts of the data space. This is particularly desirable for
a search engine, where different queries may require different
features.

Further, our experiments show that using linear methods
for learning can achieve comparable performance to ensem-
ble methods, while producing more interpretable models and
improved training times. Due to the partitioning of the data,
performance in any region depends only on a single model,
thus allowing for a better understanding of why we perform
poorly over a region, thus making it easier to debug. How-
ever, one should refrain from having too many regions which
will result in excess model complexity and over fitting. Over-
fitting can be controlled (to an extent), using the validation
set or by having a good partitioning of the data. Smoothness
of models across regions could also help.

5. MEASURING CORRECTABILITY
A key contribution of our work is a set of metrics which

measure the correctability of a learning algorithm. The def-
initions for these metrics are task-independent and can be
applied to ranking, binary and multi-class classification, and
so on.

Metric 1. Average Correction Rate (ACR) is de-

fined as the average change in error of a MSTK after correct-

ing it: ACR = 1
n

∑n
i=1

(
∆(Mi−1(xi), y

∗
i)−∆(Mi(xi), y

∗
i)
)

.

Metric 2. Average Performance Instability (API)
is defined as the average drop in test-set performance, i.e.,

API = 1
||W ||

∑
i∈W

(
PT (Mi−1)− PT (Mi)

)
, where W = {i :

PT (Mi) < PT (Mi−1)}.
Metric 3. Overall Performance Gain (OPG) is de-

fined as the overall increase in test-set performance over the

correction process, i.e., OPG = 1
n

(
PT (M0)− PT (Mn)

)
.

These measures address the key requirements of correctable
learning:

Correct the MSTK: ACR measures how often the
learning method corrects a MSTK. A higher value indicates
the ability of the method to easily fix MSTKs.

Do not hurt others: As we do not want performance
to worsen elsewhere, we use the API metric to measure any
decrease in test-set performance. A lower value indicates
the method is less likely to negatively impact performance
of others.

Learn from the MSTK: As we would like to learn from
the MSTK and correct other similar errors, we use the OPG
to measure the improvement in performance over the du-
ration of the correction process. A higher value indicates
better learning from the MSTKs.

6. EXPERIMENTS
In this section, we use our correctability metrics to evalu-

ate different learning methods versus our proposed LocCL
algorithm. We also evaluate the accuracy of the algorithms
across several binary classification and ranking datasets.

To evaluate correctability of MSTKs in a fair setting, we
divide each dataset into 4 parts:

1. Start-Train(STr): For training initial models (t = 0).
2. MSTK-Pool (MPl): Data from which MSTKs are drawn.
3. Validation (Val): Data for parameter validation.
4. Test (Tes) : Held-out data used for evaluation.

This split is performed randomly. For the ranking datasets,
we use the provided validation and test sets, and randomly
split the train set into the STr and MPl sets.

We first train a model on the STr set. Next, we iteratively
draw MSTKs from the MPl set and call the correction rou-
tine of the algorithm. Among all possible MSTKs in the cur-
rent MSTK pool, we choose one at random. Note that the
set of MSTKs depends on the current classifier, and hence
this set will vary for the different methods. This process is
repeated until the total number of labeled points used for
training reaches the predetermined budget (or there are no
more MSTKs to be found).

We experimented on multiple standard datasets for these
tasks, as given in Table 1. For classification, we chose hand-
writing recognition datasets to study correctability since a
human can easily recognize errors and provide MSTKs to the
system. We split the true labels into positive and negative
sets and perform binary classification.

We report performance on our three correctability met-
rics and on classification accuracy (denoted by Perf)3. We
choose parameters using the validation set. We partition the
dataspace using the K-Means++ algorithm [2] (k = 204). In

3Accuracy, ACR and OPG are reported as percentages.
4k = 20 was chosen arbitrarily. For OptDig we used k = 10
as k = 20 produced many empty clusters.

Dataset Description Task #Feat |STr| |Val| |MPl| |Tes| Budget
MNIST Digit-Recognition Classification 784 2400 12000 45600 10000 5960
USPS Digit-Recognition Classification 256 210 465 3975 4650 690
OptDig Digit-Recognition Classification 64 172 383 3440 1800 400
Letter Letter-Recognition Classification 16 800 2000 15200 2000 1800
MQ7 LETOR4-Million Query 07 Ranking 46 50 339 967 336 300
MQ8 LETOR4-Million Query 08 Ranking 46 50 157 421 156 200
YL1 Yahoo LTR Set 1 Ranking 519 200 2994 19744 6983 320
YL2 Yahoo LTR Set 2 Ranking 596 50 1266 1216 3798 150

Table 1: Datasets Used in experiments

Data Existing Methods - Baseline LocCL
Base Method ACR API OPG Perf NoCL ACR API OPG Perf NoCL

MNIST
Perceptron 87.50 5.13 7.40 82.80 79.73 81.64 0.28 4.25 89.52 86.44
Linear-SVM (LSVM) 32.45 0.138 -0.57 85.68 86.75 79.56 0.027 1.87 95.63 94.36
Kernel-SVM - - - 96.20 - 99.1* 0.024 3.50 97.73* 96.10

USPS

Perceptron 87.50 2.48 9.20 80.20 79.58 83.80 0.25 7.31 90.65 86.15
Linear-SVM (LSVM) 55.60 0.448 0.45 82.92 85.22 88.17 0.140 4.43 95.53 94.25
Kernel-SVM - - - 95.28 - 97.9* 0.130 7.23 96.26* 92.51

OptDig

Perceptron 89.80 1.63 4.47 79.65 79.30 90.50 0.69 2.46 92.42 87.70
Linear-SVM (LSVM) 57.14 0.528 -1.00 84.70 86.03 76.34 0.220 1.95 94.33 91.99
Kernel-SVM - - - 96.33 - 79.40 0.240 4.79 96.39 93.43

Letter

Perceptron 81.90 2.12 -4.2 64.95 66.27 82.10 2.04 -0.80 67.70 71.00
Linear-SVM (LSVM) 29.30 0.575 -3.01 69.41 71.42 66.60 0.189 3.25 82.12 82.06
Kernel-SVM - - - 90.41 - 98.8* 0.110 10.27 94.58* 88.25

Table 2: Correctability for classification and LocCL methods. Perf is test-set accuracy. NoCL is performance
on an unbiased dataset without addition of MSTKs. Kernel Perf is accuracy when trained once on an unbiased
sample (with size equal to the budget). Bold indicates best value, ∗ indicates stat. sig. over best baseline.

the correction step of our method we add only the MSTK
point to obtain a new model (though we study the effect of
adding neighbors later). Results reported are an average of
four independent runs5.

6.1 Correctability of Existing Methods
First we study how existing classification methods per-

form on the task of correctable learning. We use linear
SVMs6 [10], and two non-linear methods: Kernel SVMs
(representative of supervised learning) and the perceptron
(representative of online learning). Since we want to learn
from MSTKs, the simplest correction step is retraining on all
given training data (including the incoming MSTK points).
We then compute the different correctability metrics, shown
in Table 2.

As shown by the OPG measure, on many of the datasets
performance of the existing methods actually decreases over
the duration of this correctability process. In particular,
for the linear SVM we find that the correction rate for the
various datasets is low — on average less than half of the
MSTKs are corrected. Furthermore, we observe that for all
datasets, performance of the linear SVM after the correction
process (shown in the Perf column) is worse than using an
unbiased sample of the dataset of the same size (shown in the
NoCl column). Note that the results in the Perf and NoCl
columns are on the same test set. The poor performance of
these methods under correction shows that they are not well-
suited to learn from such an adversarial data distribution,
which is created due to the addition of MSTKs.

We find that the perceptron exhibits slightly better cor-
rectability; the method is able to improve overall perfor-
mance, and achieve high correction and low volatility. How-

5We do not report the variance in the numbers for brevity,
but found them to be small.
6http: //svmlight.joachims.org/svm perf.html

ever, despite high OPG values, it still performs poorly over-
all and is significantly worse than the Linear SVM. While
it achieves a high correction rate, it does so by overcom-
pensating for the MSTKs, as seen by the large API values,
which indicate that the performance is volatile and tends to
oscillate. This is true even for Linear SVMs (albeit on a
smaller scale), as seen in the left panel of Fig. 1. Overcom-
pensation is the primary reason why online learning methods
are unsuitable for correctable learning.

Determining the correctability of Kernel SVMs was in-
feasible due to the large computational overhead incurred
by the constant retraining of models as MSTKs are added
(even for the small datasets). This points to why more
complex methods, such as mixture-of-experts or nearest-
neighbor based methods, are not suitable for this task (and
hence not compared against), and do not generalize to other
tasks such as ranking and regression.

6.2 Correctability of LocCL: Classification
To overcome the problem of learning from a biased dis-

tribution, we use our localized correctable learning method
(LocCL). We experimented with different base-learning meth-
ods: Linear SVMs, Perceptron and Kernel SVMs. As seen in
Table 2, LocCL performs significantly better on the correc-
tion metrics compared to the corresponding baseline meth-
ods. In particular, LocCL-LSVM outperforms Linear SVMs
on all correction metrics for all datasets, indicating that
it is not only more stable, but also better at correcting
MSTKs while improving overall performance. In fact, for
three datasets, our method significantly outperforms com-
putationally more intense methods like Kernel SVMs and
has complexity similar to Linear-SVMs7(since the training
sets for each SVM is much smaller than the original set) and

7We found that the LocCL-LSVM method to be significantly
faster than Kernel-SVMs without parallelization.

0.835

0.84

0.845

0.85

0.855

0.86

0.865

0.87

1 501 1001 1501 2001 2501 3001 3501 4001 4501 5001 5501

Cl
as

si
fic

at
io

n
A

cc
ur

ac
y

No. of MSTKS Added

Change in Performance of Baseline(L-
SVM) on Adding MSTKs

0.935

0.94

0.945

0.95

0.955

0.96

1 501 1001 1501 2001 2501 3001 3501
No. of MSTKs added

Change in Performance of LocCL-
LSVM on Adding MSTKs

0.94

0.95

0.96

0.97

0.98

1 501 1001 1501 2001
No. of MSTKs Added

Change in Performance of LocCL-
Kernel on adding MSTKs

Figure 1: Change in MNIST test acc. on adding mistakes for a) Baseline; b) LocCL-LSVM ; c) LocCL-Kernel

the added advantage of being parallelizable. Given that Perf
is better than NoCL for all cases, it is apparent that mistake-
based learning provides significant advantages in the LocCL
framework.

Next, we ran experiments with Kernel SVMs as the base
method8. As seen in Table 2, the correction rates are highest
(with almost perfect ACR) and the volatility is lowest for
3 of the 4 datasets. This is further seen in Figure 1 (Right),
where LocCL-Kernel improves on the already low volatility
of the LocCL-LinearSVM method (Middle). Finally, the
performance achieved by the LocCL-Kernel method is the
highest among studied methods across all datasets, despite
using far less training data9.

Data SVM-Rank LocCL
ACR API OPG ACR API OPG

MQ7 1.39 0.26 0.78 5.51* 0.26 6.14
MQ8 4.30 0.53 1.30 7.50* 0.28 1.90
YL1 9.17 0.20 0.58 10.90 0.05 1.60
YL2 6.45 0.33 0.57 19.30* 0.17 2.50

Table 3: Correctability performance of LocCL for
the ranking datasets for NDCG@3.

6.3 Correctability of LocCL: Ranking
For ranking, we studied SVM-Rank[7], a well-known base-

line for the LETOR datasets, as the base method for LocCL.
The C parameter (10−5 to 10−3) is chosen using the vali-
dation data. To obtain a partitioning, we clustered queries
using features which depend only on the query. While the
MQ7 and MQ8 datasets have 5 such features, the YL1 and
YL2 have 20 and 18 respectively. For all datasets, we ran
the clustering algorithm after normalizing the query-only
features to zero mean, unit variance. Since the number of
queries is not large, we set k = 5 in the clustering algorithm.
Here, MSTKs for the current ranker are those examples with
an NDCG@3≤ 0.2. This corresponds to queries for which
the initial set of results is of poor quality (and thus corre-
sponds well to what a human would flag as a MSTK).

The results are shown in Table 3. We see that the baseline
is unable to improve much via the mistake-based learning
as seen from the low OPG scores. As seen from the API
and ACR values, the baseline SVM-Rank model is quite
volatile and is unable to significantly correct the MSTKs.
On the other hand, we find that the LocCL method is able
to significantly outperform the baseline with regards to the
ACR, API and OPG correctability metrics. In particular, we
find the ACR scores to be significantly better on all datasets,

8This is possible as LocCL-Kernel is computationally less
intensive than Kernel-SVMs.
9There are not enough MSTKs, hence the final training data
size is 4400/490/365 for MNIST/USPS/OptDig.

thus validating the claim that the method can better fix the
MSTK points. We also find that the method is far less
volatile on 3 of the 4 datasets, and is able to gain from the
mistake-based learning with much larger OPG scores.

7. CONCLUSIONS AND FUTURE WORK
We have defined a new machine learning paradigm, cor-

rectable learning, that is strongly motivated by real-world
challenges faced by practitioners. To evaluate characteristics
of algorithms within this new paradigm, we have introduced
three novel correctability metrics. We find that existing al-
gorithms are not suitable for this problem, so in response,
we have proposed a localized-learning-based framework that
partitions the data-space into regions and learns local mod-
els over each region while correcting the models based on
feedback. In addition to yielding improved correctability
and performance, our method provides other benefits, in-
cluding interpretability of models and easy parallelization.
As future work, we would like to dynamically determine the
partitioning of the data space. We would also like to share
model information across region boundaries, to achieve con-
tinuity in the decision boundaries and increase robustness.

8. REFERENCES
[1] D. W. Aha. Lazy learning. Kluwer Academic

Publishers, Norwell, MA, USA, 1997.

[2] D. Arthur and S. Vassilvitskii. k-means++: The
advantages of careful seeding. In SODA, pages
1027–1035, 2007.

[3] C. Burges, K. Svore, P. Bennett, A. Pastusiak, and
Q. Wu. Learning to Rank using an Ensemble of
Lambda-Gradient Models. JMLR, 14:25–35, 2011.

[4] N. Cesa-Bianchi and G. Lugosi. Prediction, Learning,
and Games. Cambridge University Press, 2006.

[5] S. Dasgupta and J. Langford. Tutorial summary:
Active learning. In ICML, page 178, 2009.

[6] Y. Freund and R. Schapire. A Short Introduction to
Boosting. In IJCAI, pages 1401–1406, 1999.

[7] T. Joachims. Training linear SVMs in linear time. In
KDD, pages 217–226. ACM, 2006.

[8] L. Ladicky and P. Torr. Locally Linear Support
Vector Machines. In ICML, pages 985–992, 2011.

[9] G. Shakhnarovich, T. Darrell, and P. Indyk.
Nearest-Neighbor Methods in Learning and Vision:
Theory and Practice. The MIT Press, 2006.

[10] I. Tsochantaridis, T. Joachims, T. Hofmann, and
Y. Altun. Large Margin Methods for Structured and
Interdependent Output Variables. JMLR,
6:1453–1484, 2005.

[11] A. Zakai and Y. Ritov. Consistency and Localizability.
JMLR, 10:827–856, Apr. 2009.

