
Efficient Online Scheduling for Deadline-Sensitive Jobs

[Extended Abstract]

Brendan Lucier
Microsoft Research

Cambridge, MA, USA
brlucier@microsoft.com

Ishai Menache
Microsoft Research
Redmond, WA, USA

ishai@microsoft.com

Joseph (Seffi) Naor
∗

CS Department, Technion
Haifa, Israel

naor@cs.technion.ac.il

Jonathan Yaniv
CS Department, Technion

Haifa, Israel
jyaniv@cs.technion.ac.il

ABSTRACT
We consider mechanisms for online deadline-aware scheduling in
large computing clusters. Batch jobs that run on such clusters of-
ten require guarantees on their completion time (i.e., deadlines).
However, most existing scheduling systems implement fair-share
resource allocation between users, an approach that ignores hetero-
geneity in job requirements and may cause deadlines to be missed.

In our framework, jobs arrive dynamically and are characterized
by their value and total resource demand (or estimation thereof),
along with their reported deadlines. The scheduler’s objective is to
maximize the aggregate value of jobs completed by their deadlines.
We circumvent known lower bounds for this problem by assuming
that the input has slack, meaning that any job could be delayed
and still finish by its deadline. Under the slackness assumption,
we design a preemptive scheduler with a constant-factor worst-case
performance guarantee. Along the way, we pay close attention to
practical aspects, such as runtime efficiency, data locality and de-
mand uncertainty. We evaluate the algorithm via simulations over
real job traces taken from a large production cluster, and show that
its actual performance is significantly better than other heuristics
used in practice.

We then extend our framework to handle provider commitments:
the requirement that jobs admitted to service must be executed un-
til completion. We prove that no algorithm can obtain worst-case
guarantees when enforcing the commitment decision to the job ar-
rival time. Nevertheless, we design efficient heuristics that commit
on job admission, in the spirit of our basic algorithm. We show
empirically that these heuristics perform just as well as (or better
than) the original algorithm. Finally, we discuss how our schedul-
ing framework can be used to design truthful scheduling mecha-
nisms, motivated by applications to commercial public cloud offer-
ings.

∗Work supported in part by the Technion-Microsoft Electronic
Commerce Research Center, and by ISF grant 954/11.

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SPAA’13, July 23–25 2013, Montréal, Québec, Canada.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
Copyright 2013 ACM 978-1-4503-1572-2/13/07 ...$15.00.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complexity]: Non-
numerical Algorithms and Problems—sequencing and scheduling;
K.6.2 [Management of Computing and Information Systems]:
Installation Management—pricing and resource allocation

General Terms
Algorithms

Keywords
Online Scheduling, Resource Allocation, Scheduling Algorithms,
Truthful Mechanisms

1. INTRODUCTION

1.1 Background and Motivation
Batch processing constitutes a significant portion of the comput-

ing load across both large internal clusters and public clouds. Ex-
amples include data processing jobs (e.g., MapReduce, DryadLINQ,
SCOPE), web search index updates, eScience applications, monte
carlo simulations, and data analytics. Such jobs are often business-
critical and time-sensitive, mandating strict service level agreements
on completion time. Moreover, these jobs are not homogeneous in
their timing requirements or value. For example, delays in updating
website content must be minimized as they can lead to a significant
loss in revenue, and financial trading firms must deliver the output
of their analytics before the next trading day commences, but many
simulation and rendering tasks are less urgent and can be completed
at any time between two business days.

The promise of batch computing is that by centralizing the ex-
ecution of diverse tasks, one can make efficient use of computing
resources. For example, one could delay low-priority and time-
insensitive tasks when usage peaks, responding dynamically as new
jobs arrive in an online fashion. Unfortunately, resource allocation
schemes currently used in practice do not live up to this promise. A
common approach is to simply divide computing resources in some
fair manner between applications (e.g., [7]), neglecting deadline
awareness. Another approach is to give strict priority to deadline-
sensitive jobs, but such heavy-handed schemes risk terminating
low-priority jobs unnecessarily, lowering overall throughput; see
[3] for an overview. Finally, external (i.e. paid) clouds generally
eschew scheduling concerns, offloading the task of allocating suffi-
cient resources for completing a job by its deadline to the customer.

The mismatch between current approaches and the evident need
for deadline-aware scheduling mechanisms is due, in part, to the
algorithmic difficulties of online scheduling. From a worst-case
perspective, the problem of scheduling deadline-sensitive, online-
arriving jobs with the goal of maximizing the value of completed
jobs is inherently difficult. In its most general form, the problem
admits a polylogarithmic lower bound on the competitive ratio of
any randomized algorithm [2]. Previous works [12, 13, 2] have
constructed algorithms with competitive ratios depending on the
ratio κ between the maximal and minimal value, with the best one
providing bound polylogarithmic in κ; however, as κ can be ar-
bitrarily high, these bounds are unrealistic in practice. Constant
competitive ratios are only known for special cases, e.g., identical
job sizes [6], or job values which are proportional to their sizes
[1]; yet both cases do not encompass realistic settings. A natural
goal, then, is to develop constant-factor approximations under as-
sumptions that can reasonably be assumed to hold for realistic input
profiles in practice.

Any reasonable solution, in addition to overcoming the theoret-
ical difficulty, must cope with practical constraints, such as inac-
curate estimation of resource requirements, the need to complete
admitted jobs (provider commitments), and resuming preempted
jobs at the same physical location (to avoid large data transfers).
This has lead the community to use heuristic methods, which do
not have explicit worst-case guarantees but work well empirically,
despite the known lower bounds. What aspects of practical input
enable such heuristics to perform well? As it turns out, the lower
bound demonstrated in [2] has an extreme property of requiring a
job to start executing immediately upon arrival to meet its deadline.
In “natural” inputs for which deadlines are not unreasonably tight,
one might expect natural heuristics to perform reasonably well. The
lack of completely tight deadlines is generally referred to as “slack-
ness” in the input.

Our contribution is based on the following idea: if the existence
of slackness in deadline constraints provides an empirical means
of escape from worst-case lower bounds, then one can also revisit
the theoretical problem under this assumption of slackness. Specifi-
cally, we assume that admissible jobs have lax time constraints, i.e.,
no job extremely pressures the system by requiring immediate and
continuous execution in order to meet its deadline. This is a natural
and justifiable assumption in practice. With this assumption, we
find that a natural algorithmic approach provides strong theoretical
guarantees, circumventing the prior polylogarithmic lower bound
examples [2]. Moreover, our algorithmic approach performs well
empirically, and is simple and robust enough for practical use. We
therefore believe that this work provides an important step towards
an efficient deadline-aware “ecosystem", which may capture com-
plicated job models, as well as economic considerations such as
user truthfulness.

We note that previous work by Garay et al. [4] considers online
scheduling with input slackness, but under the assumption that the
value of a job equals its size (for which constant factor approxima-
tions exist without slackness). Our work generalizes the schedul-
ing model to incorporate arbitrary job values and demands (sizes),
where it is necessary to circumvent the known barrier to constant
factor approximation.

1.2 Our Results
We consider the following scheduling model. A service provider

(scheduler), in charge of a computer cluster with multiple servers,
receives processing requests of batch jobs that arrive online (over
time); jobs are known to the system only upon arrival. Each job is
characterized by a value for completion, the total resource demand

(or estimation thereof) and a deadline. The goal of the scheduler
is to maximize the throughput of the system, i.e., the total value
of fully-completed jobs. The main body of the paper focuses on
the simplified case of a single server that has to be shared between
multiple users. We do so to ease the exposition of the algorithm
and proofs. The extension to multiple servers is elaborated on in
Section 3.3.

The performance guarantees of our online algorithms depend on
the slackness of the input jobs, denoted s, which is the minimum
allowed ratio between a job’s availability time (interval between
arrival and deadline) and its minimal execution time. Our contri-
bution can be classified into two domains, differing by the level of
commitment required from the scheduler. A committed scheduler
must finish executing any job that it begins to process, whereas a
non-committed scheduler is not required to do so.

Non-Committed Scheduling. The main theoretical contribution
we provide is a worst-case performance guarantee on the com-
petitive ratio of our algorithm for online preemptive scheduling.
Specifically, we design in Section 3 an algorithmA with a compet-
itive ratio bounded by:

cr(A) ≤

3 +O
(

1
(s−1)2

)
1 < s < 2

2 +O
(

1
3√s

)
s ≥ 2,

where we recall that s is the slack. We emphasize that algorithms
obtaining constant competitive ratios for online preemptive schedul-
ing under slackness assumptions with general job specifications
have not been previously known, and that our work closes a large
gap open for nearly a decade between positive and negative results
related to this fundamental online scheduling problem.

To obtain the main result, we rely on a proof methodology we
developed in our previous work [10] for offline scheduling with
identical arrival times problem under slackness assumptions. In this
work the scheduling problem is formulated as a linear program with
strengthened constraints which are somewhat reminiscent of knap-
sack constraints. Using insights from [10], we approach the more
challenging online scheduling problem and develop a novel algo-
rithm for it. We note that although the online problem is completely
different in its algorithmic nature from the offline version consid-
ered in [10], our proof techniques do share some common concepts.
We provide performance guarantees for the online problem using
the dual fitting technique together with sophisticated charging ar-
guments tailored to this specific context.

From a practical viewpoint, our algorithm incorporates impor-
tant design principles, which could be easily tracked and imple-
mented in real systems. First, the job’s value density (the ratio
between the job value and demand) is the major factor which de-
termines its precedence, rather than its deadline. Accordingly, an
executing job j is preempted only if a newly arriving job has a value
density which is at least γ times higher than the value density of j,
where γ is a tunable threshold parameter of the algorithm. Further,
due to input slackness, the scheduler need not decide whether to
schedule a job right upon arrival, and may take a pre-defined lag
for its decision. This principle is incorporated into our algorithm,
by starting job execution only if the remaining time until its dead-
line is sufficiently large with respect to a gap parameter µ.

Committed Scheduling. In Section 4 we consider two variants of
committed scheduling, in which the scheduler commits to jobs it
decides to process: (1) commitment on job arrival, in which the
scheduler decides upon job arrival whether it commits to the job or
rejects it; for this model, we prove that no algorithm can provide

any worst-case guarantee, even under a slackness assumption. (2)
commitment on job admission, in which the scheduler guarantees
job completion only once it begins processing it; that is, once a
job is admitted (which need not happen immediately upon arrival),
the scheduler must meet its deadline. Unfortunately, the theoretical
guarantees we obtained for non-committed scheduling do not apply
in this setting. Hence, we use insights gleaned from our theoretical
result in order to design a heuristic solution. Specifically, we apply
our original algorithm with a small change: we do not admit a new
job whose execution would prevent the cluster from completing
jobs to which it already committed to. While this heuristic does
not have worst-case guarantees, we find that it performs very well
in practice. We evaluate our solutions (both for non-committed
and committed scheduling) through comprehensive simulations on
empirical traces (extracted from a Microsoft cluster). Appealingly,
our algorithms outperform other plausible heuristics, typically by
10− 50x.

Finally, we extend our heuristic for committed scheduling to
accommodate economic considerations emerging from paid cloud
service applications. We design a truthful scheduling mechanism,
in which participants are incentivized not to manipulate the system
for personal interest by misreporting their true job values and pa-
rameters (demands and deadlines). We show experimentally that
our modified solution comes without utility loss for realistic input
profiles.

1.3 Related Work
We provide a brief overview of recent related work in the context

of datacenter resource allocation. Resource allocation is becoming
a vital and central problem in today’s large clusters. Quincy [8]
is an algorithmic framework for assigning resources to batch jobs
based on locality and fairness constraints. However, this work does
not cover deadline considerations. Similarly, [5] the multi-resource
allocation problem has been studied in the context of datacenters
with fairness being the main performance criterion. Jockey [3] is
a system that aims at finishing data-processing jobs (SCOPE) by
their deadlines using dynamic allocation of CPU resources, based
on offline and online profiling of jobs. However, Jockey focuses
on the single job case, and does not explicitly address the schedul-
ing of multiple jobs. Bazaar [11] considers the assignment of both
bandwidth and CPU resources for meeting deadlines of multiple
batch jobs. The basic idea is to profile jobs in advance and form an
estimate of job completion time as a function of (bandwidth, CPU),
then heuristically allocate these resources to maximize the number
of jobs that complete by their deadlines. Unlike our model, all jobs
are assumed to have equal value, and consequently resource allo-
cation is kept static and job preemption is not required.

2. PRELIMINARIES

2.1 Problem Description
Job requests are submitted to a cluster consisting of C identi-

cal servers (resources), denoted 1, 2, . . . , C. All servers are fully
available throughout time and each server can process at most one
job at any given time. The cluster is managed by a service provider
(scheduler), which also determines the resource allocation. The in-
put is a finite set1 of batch jobs, denoted J . These jobs arrive to the
system online, over the (continuous) time interval R+ = [0,∞).
Every job j ∈ J is revealed to the system only upon its arrival

1Algorithms described in this paper are well-defined for infinite job
sequences; we assume finiteness for notational convenience.

time aj . Upon arrival, each job specifies its deadline, demand and
value. The deadline dj indicates the latest acceptable completion
time for job j. The interval Wj = [aj , dj] is called the availability
window of job j.

The sizeDj of job j, also referred to as the demand of the job, is
the total resource amount required to complete the job (e.g., in CPU
hours). In the bulk of the paper, we assume thatDj is deterministic.
The case of demand uncertainty is treated separately in Appendix
3.4. A value of vj is gained by the system if and only if job j is fully
executed by its deadline (i.e., allocatedDj units of resource by time
dj). We emphasize that partial execution does not result in partial
value. For any set of jobs S ⊆ J , we denote by v(S) =

∑
j∈S vj

its aggregate value. We denote ρj , vj/Dj as the value-density
of job j (i.e., the ratio between its value and its demand). Value-
densities will play a significant role in the design of our algorithms.

The goal of the scheduler is to maximize the throughput: total
value of jobs fully completed by their deadlines. The scheduler is
not required to complete all jobs. Specifically, if a job reaches its
deadline without being completed, there is no benefit to allocating
additional servers to it. We assume that at most k servers can be al-
located to a single job at any given time. This parameter may stand
for a common parallelism bound across jobs2, or represent a man-
agement constraint such as a virtual cluster. For example, k = 1
means that every job can be processed on at most one server at
any time. At any given time, the scheduler may allocate any num-
ber of servers between 0 and k to any job, subject to the capacity
constraint C. In particular, jobs may be preempted. Execution of
preempted jobs may be resumed from the point at which they were
preempted (assuming proper checkpointing of intermediate states).

The performance guarantees of our online algorithms depend on
a parameter s ≥ 1 called the slackness of the input. We say that
the input has slackness s if for each job j, dj − aj ≥ s · (Dj/k).
The slackness parameter s limits the tightness of a job’s deadline
with respect to its minimal execution time Dj/k. From a practical
perspective, we can think of slackness either as a feature of the
input or as a constraint imposed by the system (by declaring s).
As we shall see, the performance of our algorithms improves as s
increases.

2.2 Definitions
The following definitions refer to the execution of an online al-

location algorithm A over an input set J of jobs. We drop A and
J from notation when they are clear from context.

Competitive Ratio. For an online algorithm A and an input se-
quence of jobs J , denote by A(J) the set of jobs that are fully
completed by A over an online sequence of arriving jobs J . The
throughput gained by A is v(A(J)). Let OPT (J) denote the set
of jobs completed by an optimal offline allocation, i.e., one that has
full knowledge ofJ in advance. We are interested in the worst-case
performance guarantees of online algorithms, namely their compet-
itive ratios:

cr(A) = max
J

{
v(OPT (J))

v(A(J))

}
.

The competitive ratio is a standard measurement of the performance
of online algorithms. Note that cr(A) ≥ 1, and that a smaller com-
petitive ratio implies better performance guarantees.
2E.g., if jobs have different parallelism bounds, then k is the mini-
mum thereof. We note that more involved parallelism models, such
as Amdahl’s law, are beyond the scope of our paper. Nevertheless,
we believe that the insights and design principles obtained here may
carry over to such models.

Job Allocations. Denote by jiA(t) the job running on server i at
time t and by ρiA(t) its value-density. We use yij(t) as a binary3

variable indicating whether job j is running on server i at time t,
i.e., whether j = jiA(t) or not. We often refer to the function yij
as the allocation of job j on server i. Define yj(t) =

∑C
i=1 y

i
j(t)

to be the total number of servers allocated to j at time t, and define
∆j to be the overall amount of resources allocated to job j. The
starting point st(yij) = min

{
{t | yij(t) = 1} ∪ {∞}

}
of job j

on server i is the first time at which j is allocated to server i. If no
such t exists, st(yij) =∞.

Job Availability and Status. For a job j, write W−µj for the time
interval [aj , dj − µ · (Dj/k)]. Note W 0

j = Wj is the availability
window of j. Correspondingly, A−µ(t) =

{
j ∈ J | t ∈ W−µj

}
is defined as the set of jobs j at time t whose remaining availability
time is at least µ times their minimal execution time Dj/k. The
algorithms we design in this paper limit the starting time of jobs by
selecting jobs to be processed only from the set A−µ(t).

We divide the job set J into three sets, depending on the jobs’
final execution status: (1) completed (fully processed) jobs J F ,
which have been completed by their corresponding job deadlines;
(2) partially processed jobs J P , which have begun their execution
but were not completed on time; and (3) unprocessed (empty) jobs
J E , which have not been processed at all. We say that a job has
been admitted (allocated) if it has begun execution, i.e., it is in
J \ J E . We denote by J Pi the set of jobs that have been partially
processed on server i.

2.3 The Dual Fitting Technique
A core element of our analysis is a dual fitting argument. Dual

fitting is a common technique for bounding the performance of al-
gorithms (the competitive ratio in our case). The technique uses
weak duality, originating from optimization theory, to obtain an up-
per bound on the value gained by the optimal solution OPT (J).
In the field of algorithmic design, the dual fitting technique is typi-
cally applied over linear programming relaxations to combinatorial
optimization problems. In our context, the relaxed formulation we
use takes a slightly different form compared to standard linear pro-
grams, as a result of the non-discreteness of time. In the sequel we
describe the dual fitting technique through its specific application
to the scheduling model considered in the paper.

In the first step of this technique, we describe an optimization
problem over linear constraints, called the primal program. The
primal program is a relaxed formulation of the scheduling problem,
i.e., every possible schedule of jobs in our scheduling problem is
also a feasible solution to the primal program. The primal program
may allow additional feasible solutions. As a consequence, the op-
timal solution to the primal program may have higher value than
the optimal schedule. Formally, we denote by OPT ∗(J) the opti-
mal solution to the primal program. This solution is super-optimal,
meaning that v(OPT (J)) ≤ v(OPT ∗(J)). We now describe the
primal program used in context of our scheduling model.

Primal Program. The primal program is presented in equations
(1)-(5). Notice that some of the constraints of the original problem
were relaxed and replaced by a linear constraint. For example, the
primal program does not constrain the variable yj(t) to be binary.
Instead, the variable yj(t) may receive any number from the range
[0, 1]. The objective function (1) represents the value gained from
scheduled jobs. Notice that as a consequence of relaxing the vari-

3In Section 2.3 we extend the range of values yij(t) may receive.
However, we will always treat it as an allocation indicator.

ables yj(t), the objective function represents the total partial value
gained from jobs. In other words, according to the primal program,
the scheduler may gain partial value over partially completed jobs.

max
∑
j∈J

ρj∆j (1)

∆j =

dj∫
aj

C∑
i=1

yij(t)dt ≤ Dj ∀j (2)

∑
j:t∈Wj

yij(t) ≤ 1 ∀i, t ∈ R+ (3)

C∑
i=1

yij(t)− k ·
∆j

Dj
≤ 0 ∀j, t ∈Wj (4)

yij(t) ≥ 0 ∀j, i, t ∈Wj (5)

Recall that ∆j represents the total amount of resources allocated to
job j, and that the gain from a completed job is exactly ρjDj = vj .
The primal program maximizes the throughput (1) under the fol-
lowing constraints: demand constraints (2), capacity constraints (3)
and parallel execution constraints (4). Note that (3) implicitly re-
quires that yij(t) ≤ 1. The last set of constraints, suggested by
[9], are strengthened parallelism constraints. That is, instead of
naturally bounding the amount of resources a job j may receive
per time by k, we scale down the amount of servers the job may
receive by ∆j/Dj . Notice that a feasible solution to the relaxed
formulation does not necessarily require that an executed job will
necessarily be fully completed. Intuitively, according to these con-
straints, a job that is 50% completed may be allocated at most 0.5k
servers at every moment. These set of strengthened constraints al-
low us to obtain better results, as we will see.

Dual Program. The dual optimization problem is associated with
the primal program. By weak duality, every feasible solution to the
dual program defines an upper bound to v(OPT ∗(J)).

min
∑
j∈J

Djαj +

C∑
i=1

∞∫
0

βi(t)dt (6)

s.t. αj + βi(t) + πj(t)−

− k

Dj

dj∫
aj

πj(τ)dτ ≥ ρj ∀j, i, t ∈Wj (7)

αj , βi(t), πj(t) ≥ 0 ∀j, i, t ∈Wj (8)

For a solution (α, β, π) to the dual program, we refer to the value
of the objective function induced by the solution as the dual cost
of the solution. For every job j, the dual program defines a set of
covering constraints (7) over its availability window Wj . We say
that a constraint is covered by a solution if the constraint is satisfied.

There are three kinds of dual variables. Every job j has a variable
αj that appears in all of its covering constraints. Notice that by
setting αj = ρj , all of the constraints of job j can be satisfied
at a dual cost of Djαj = Djρj = vj . The second set of dual
variables βi(t) are used to cover the remaining constraints, and can
be thought of as a set of continuous functions βi : R+ → R+,
one per server. The last set of variables πj(t) are a result of the
gap decreasing constraints (4). These dual variables are used in the
analysis for the case of multiple servers; in the analysis for a single
server they will be set to 0.

In Section 3 we present online algorithms for preemptive schedul-
ing without commitments. To bound the competitive ratios of each
algorithm, we will first consider the total value gained by the algo-
rithm, v(J F). We will then use the structure of J F to construct a
feasible solution to the dual program and evaluate its dual cost (the
value of the solution according to the dual objective function). We
will show that the constructed dual solution has cost r · v(J F) for
some constant r > 1, which then implies (by the duality principle)
that v(OPT (J)) ≤ r ·v(J F). This will allow us to conclude that
the competitive ratio of the algorithm is at most r. We summarize
our discussion in the following standard theorem.

THEOREM 2.1. LetA be an online scheduling algorithm. If for
every job input set J there exists a feasible solution (α, β, π) to the
dual program with a dual cost of r · v(A(J)), then cr(A) ≤ r.

3. NON-COMMITTED SCHEDULING
In this section we present our main theoretical results: online

algorithms for non-committed scheduling with guaranteed compet-
itive ratio. We first present an algorithm for the single server case
(Section 3.1) and analyze its performance Section 3.2. We then
consider the extension to multiple servers in Section 3.3, and fi-
nally handle demand uncertainties in Section 3.4.

3.1 Single Server Algorithm
Throughout this subsection we assume there is a single server, so

we drop the server index i from our notation. We define two param-
eters, each representing a simple principle that our scheduling al-
gorithm will follow. The first principle incorporates the conditions
for preempting a running job, and it is characterized by a threshold
parameter γ > 1.

PRINCIPLE 3.1. A pending job j′ can preempt a running job j
only if ρj′ > γρj .

Roughly, jobs are prioritized according to value-densities. This
may seem counter-intuitive at first, since a small job can preempt
a large job with much higher value. Presumably, such a scenario
might lead to a great loss of value. However, we take advantage of
the slackness assumption to compensate for the lost value. To do so,
we incorporate a second principle, which restricts the starting time
of jobs and is parameterized by a gap parameter µ (1 ≤ µ ≤ s).

PRINCIPLE 3.2. A job j cannot begin its execution after time
dj − µDj .

We provide brief intuition for the selection of these two princi-
ples. First, for a job j to be unprocessed, any job executed during
[aj , dj −µDj] must have a value-density of at least ρj/γ. Second,
for a job j to be partially processed (yet incomplete), any other job
executed during [dj − µDj , dj] must have a value-density of at
least γρj . This intuition will become more clear once we analyze
the performance of the algorithm.

The algorithm A presented here for online preemptive single
server scheduling (Algorithm 1) follows these two principles. The
decision points of the algorithm occur at one of two events: either
upon the arrival of a new job, or at the completion of the processed
job. The algorithm handles both events similarly. When a new job
arrives, the algorithm invokes a threshold preemption rule, which
decides whether or not to preempt the currently running job. The
preemption rule selects the pending job j∗ ∈ A−µ(t) of maximal
value-density, and replaces the currently running job j with j∗ only
if ρj∗ > γρj ; ties broken arbitrarily. Note that it is always possible
to complete any j∗ ∈ A−µ(t) before its deadline, since µ ≥ 1.

Algorithm 1: Single Server Algorithm A
Event: On arrival of job j at time t = aj :

1. Call the threshold preemption rule.

Event: On job completion at time t:
1. Resume execution of the preempted job with highest

value-density.
2. Call the threshold preemption rule.

Threshold Preemption Rule (t):
1. j ← job currently being processed.
2. j∗ ← arg max

{
ρj∗ | j∗ ∈ A−µ(t)

}
.

3. if (ρj∗ > γ · ρj)
3.1. Preempt j and run j∗.

When a job is completed, the second type of event, the preemption
rule is also called. Here, j is selected as the preempted job with the
highest value-density among the partially processed jobs. Before
we proceed to analyze the competitive factor of A, we summarize
some of the properties of the algorithm in the following claim.

CLAIM 3.3. The following properties of A hold:

1. Any allocated job j 6∈ J E satisfies st(yj) ≤ dj − µDj .

2. For any t, let j be the job running at time t and let j′ ∈
A−µ(t) be a job that has not been completed by time t. Then
ρj′ ≤ γρj .

3. Let j′ ∈ J P be a job partially processed by A. Any job j
running at some time t such that st(yj′) ≤ t ≤ dj′ satisfies
st(yj′) < st(yj).

PROOF. Claim 1 follows directly from the threshold preemption
rule. For the algorithm to start a job j at time t, job j must satisfy
j ∈ A−µ(t), which implies that t ≤ dj − µDj .

To prove Claim 2, assume toward contradiction that ρj′ > γρj .
Consider the first time in the interval

[
aj′ , t

]
that j is being pro-

cessed. There must be such a time, since j is being processed at
time t. This first time cannot be aj′ , since j′ would preempt j at
time aj′ if j were being processed at that time. It is also impossible
that j started its execution after aj′ , since j′ is not complete by time
t and j′ would be preferred over j by the threshold preemption rule.
Therefore, j must have been preempted before aj′ . This yields a
contradiction, since j would not have resumed its execution as long
as j′ is present in the system.

For Claim 3, suppose for contradiction that st(yj′) ≥ st(yj).
Since j continues executing at t > st(yj′), this implies that j′ was
chosen for execution over j at time st(yj′), and hence ρj′ > ρj .
However, since j′ ∈ J P , it must be that j was chosen for execution
over j′ at time t, and hence ρj ≥ ρj′ , a contradiction.

3.2 Analysis of Single Server Algorithm

3.2.1 Competitive Ratio
Our competitive ratio analysis of the single server algorithm A

relies on the dual fitting technique described in Section 2.3. Our
analysis is post factum, that is, we retrospectively analyze the per-
formance of the online algorithm after it has finished admitting
jobs. Recall that ρA(t) represents the value-density of the job that
was processed by A at time t. The analysis proceeds in two parts.
In the first part of our analysis we show how to construct a feasible
solution to the dual program, and bound its dual cost in terms of

∫∞
0
ρA(t)dt. Notice that time intervals in which incomplete jobs

were processed do not contribute to the total value gained by the al-
gorithm. Hence, the expression

∫∞
0
ρA(t)dt does not represent the

throughput of the algorithm. Therefore, in the second part of our
analysis, we bound the ratio between

∫∞
0
ρA(t)dt and the value

v(A(J)) gained by the algorithm; the later can be simply writ-
ten as v(J F). The first part of our analysis is summarized in the
following theorem.

THEOREM 3.4. Consider an execution of A over an input set
of arriving jobs J . Let ρA : R → R be a function representing
the value-density of the job that was executed by A at every time t.
Then, there exists a solution

(
α, β, π

)
to the dual program with a

dual cost of at most:

v(J F) + γ · s

s− µ ·
∞∫
0

ρA(t)dt.

Before proving Theorem 3.4 we need to make several prelim-
inary observations and develop additional machinery. The πj(t)
variables are not necessary for the single server analysis of our al-
gorithm, so for the remainder of this section we set them to 0. The
dual constraints (7) then reduce to the following form:

αj + β(t) ≥ ρj ∀j, t ∈Wj (9)

Our goal is to construct a feasible solution to the dual program,
that is, a solution that covers (satisfies) all of the dual constraints
(9). Notice that by setting αj = ρj for each completed job j ∈ J F
we cover all of the dual constraints corresponding to j. This step in-
creases the dual cost by exactly

∑
j∈JF Djαj =

∑
j∈JF Djρj =

v(J F). To cover the remaining dual constraints of incomplete
jobs, we use the β function. Notice that the variable β(t) appears
in all of the dual constraints (9) corresponding to time t. The β
function allows us to cover the dual constraints of incomplete jobs
j 6∈ J F without having to pay for them separately using their cor-
responding αj variables, as we did for completed jobs. To obtain a
feasible solution to the dual program, we require that β satisfies for
every time t ∈ R+: β(t) ≥ max

{
ρj | j ∈ A(t) ∧ j 6∈ J F

}
.

Consider the following function β−µ : R+ → R+, defined by:

β−µ(t) = max
{
ρj | j ∈ A−µ(t) ∧ j 6∈ J F

}
. (10)

The function β−µ satisfies two useful properties. First, by Claim
3.3-2 we have β−µ(t) ≤ γ · ρA(t) for every time t ∈ R+. Second,
the function β−µ covers the dual constraints of every incomplete
job j 6∈ J F and time t ∈ W−µj = [aj , dj − µDj]. This nearly
completes the analysis, since we can cover most of the dual con-
straints (9) using the β−µ function, and bound its cost in terms of
ρA. To cover the remaining constraints, we “stretch" the function
β−µ by using the following lemma.

LEMMA 3.5 (STRETCHING LEMMA). Let β−µ : R+ → R+

be a function satisfying: β−µ(t) ≥ ρj for every j 6∈ J F and
t ∈ W−µj . Then, there exists a function β : R+ → R+ satisfying:
β(t) ≥ ρj for every j 6∈ J F and t ∈Wj , such that

∞∫
0

β(t)dt ≤ s

s− µ ·
∞∫
0

β−µ(t)dt.

By combining the above observations with the stretching lemma,
we construct a feasible solution to the dual program. The remaining
details are given in the following proof.

PROOF OF THEOREM 3.4: Set αj = ρj for every completed
job j ∈ J F , and αj = 0 otherwise. To cover the remaining dual
constraints, we apply the stretching lemma on the function β−µ

defined in (10) and obtain the function β. The πj(t) variables are
all set to 0. The total cost of the dual solution (α, β, π) is bounded
by:

∑
j∈J

Djαj +

∞∫
0

β(t)dt ≤ v(J F) +
s

s− µ

∞∫
0

β−µ(t)dt

≤ v(J F) + γ · s

s− µ

∞∫
0

ρA(t)dt.

The last inequality follows since β−µ(t) ≤ γ · ρA(t) for every
t ∈ R+.

This completes the first part of the analysis. In the second part of
the analysis, we bound the total cost of

∫∞
0
ρA(t)dt by applying a

charging argument motivated by principles 3.1 and 3.2. This leads
to the following theorem.

THEOREM 3.6. Let J F be the set of jobs completed by A with
input J , and let v(J F) denote the total value gained by the algo-
rithm. Let ρA(t) represent the value density of the job executed by
A at time t. Then:

∞∫
0

ρA(t)dt ≤ v(J F) ·
[

(γ − 1)(µ− 1)

(γ − 1)(µ− 1)− 1
.

]

Our goal is to bound the expression
∫∞
0
ρA(t)dt. We divide

the timeline into two sets: T F , times during which the algorithm
processed jobs that were eventually completed; and T P .

T F =
{
t ∈ R+ | jA(t) ∈ J F

}
; T P = T \ T F

We can break the integral
∫∞
0
ρA(t)dt into two, according to T F

and T P . Notice that integrating ρA(t) over T F gives us exactly
v(J F). Hence, it remains to bound

∫
T P ρA(t)dt. This expres-

sion represents the partial value that was lost over incomplete jobs,
or formally:

∑
j∈JP ρj∆j . Consider a partially processed job

j ∈ J P . Define the admission window Adj = [st(yj), dj] of
job j as the interval between the job admission time (i.e., execution
starting time) and its deadline. By Claim 3.3-1, the size of the ad-
mission window is at least µDj . Let Ij ⊆ Adj represent the times
during which job j has been processed. Since job j has not been
completed, its total execution time is at most Dj . Hence, the total
time in Adj during which A processed jobs different than j is at
least (µ−1)Dj ; denote this set of times byOj . According to Claim
3.3-3, each of the jobs executed during Oj has a value-density at
least γ times larger than ρj . Integrating ρA(t) over Oj gives us
a total value of at least γ(µ − 1)vj . Intuitively, the value gained
during Oj can used to “pay" over the partial value ρj∆j ≤ vj that
the algorithm lost by not completing job j. However, there is a flaw
in the argument, since jobs that were processed during Oj have not
necessarily been completed. To succeed, a more rigorous analysis
is required.

We bound
∫∞
0
ρA(t)dt using a charging argument, which is mo-

tivated by the last paragraph. Initially, we charge every job running
at some time t a value of ρA(t). We then apply a charging proce-
dure that iteratively transfers charges away from incomplete jobs,
until finally only completed jobs are charged. Finally, we bound
the total amount each completed job is charged for (Lemma 3.7).

The Charging Procedure. Let ch : R+ → R+ be a charging func-
tion, representing an amount charged from the job that has been
processed per time t. Initially, we set ch(t) = ρA(t) for every time
t. We describe a procedure that shifts values of ch(t) towards com-
pleted jobs, that is, time slots in T F . After initializing ch, we sort
the partially executed jobs in J P according to their starting time
st(yj). For each job j ∈ J P in this order, we do the following:

1. Define: Ij =
{
t ∈ R+ | j = jA(t)

}
.

2. Define: Oj = Adj \ Ij .

3. Let ψj : Ij → Oj be some bijection from Ij to Oj .

4. For every t ∈ Ij , increase ch (ψ(t)) by (|Ij | / |Oj |) ch(t)
and set ch(t) to 0.

Let ch′(t) denote the value of ch(t) at the end of the procedure.
At each iteration of the charging procedure, some incomplete job
j ∈ J P transfers all of the charges associated with it towards jobs
that execute duringOj . Claim 3.3 implies that jobs processed inOj
have either been completed or have started executing after j. Since
we sorted jobs by start times, this implies that after we transfer
charges away from a job j ∈ J P , we never subsequently transfer
charges back to j. This will imply that, at the end of the procedure,
only jobs in J F are charged. Our goal now is to obtain a good
bound on ch′(t) as a function of ch(t). This goal is complicated
by the fact that charges can be transferred multiple times, and along
multiple paths, before reaching jobs fromJ F . The following is our
main technical lemma, which analyzes the structure of the charging
procedure in order to bound ch′(t).

LEMMA 3.7. At the end of the charging procedure:

1.
∫∞
0
ρA(t)dt =

∫∞
0
ch′(t)dt.

2. For every t ∈ T F , ch′(t) ≤ ρA(t) · (γ−1)(µ−1)
(γ−1)(µ−1)−1

.

3. For every t 6∈ T F , ch′(t) = 0.

PROOF. Claim 1 holds since every iteration of the charging pro-
cedure (lines 1-4) does not change the value of

∫∞
0
ch(t)dt. We

now prove Claim 3. Recall that the charging procedure sorts jobs in
J P according to their starting times. Every job j ∈ J P transfers
all of its charges towards jobs in Adj , which are either completed
jobs or other jobs in J P . Claim 3.3-3 states that a job in J P pro-
cessed in Adj must have started after job j. This guarantees that at
the end of the charging procedure, ch′(t) = 0 for every t 6∈ T F .

The rest of the proof is dedicated to proving Claim 2. Our goal is
to bound the ratio between ch′(t) and ρA(t) for every time t ∈ T F .
Up until now we treated entries of the function ρA as value that
has or has not been gained by the algorithm. However, the notion
of value may be confusing in the current context of analyzing a
charging argument. To avoid confusion, in this proof we refer to
entries of ρA as costs that need to be paid for. Specifically, we are
interested in costs that eventually affect ch′(t).

Consider some time ti ∈ T P . The role of i will be explained
later on, and at this point can be ignored. Let ji be the job that
has been processed at time ti. Consider the cost ρA(ti). Initially,
ch(ti) is charged for the cost of ρA(ti). When the iterative loop of
the charging procedure reaches job ji, the cost ρA(ti) is transferred
to a different time ti−1 = ψji(ti) and scaled down by a factor of
1/(µ−1), at least4. Let i represent how many times the cost ρA(ti)

4We note that the transferred value, ch(ti), may be larger than
ρA(ti), because of other costs transferred to ti at an earlier stage.
However, at this point in the analysis we are only interested in the
portion of the transferred value corresponding to ρA(ti).

has been transferred, and let tFi represent the final time to which the
cost is transferred. By Claim 3, the job bring processed at tFi must
have been completed by the algorithm.

Now consider an incomplete job j′ ∈ J P , and some time t. We
say that job j′ charges time t after i transfers if there some time
ti for which tFi = t. We would like to understand how much
of the final charge at t, ch′(t), was transferred from job j′. A
complication is that j′ can charge time t in multiple ways. For
example, it may be that t ∈ Oj′ , so that the charge at t increases
when j′ is handled by the charging procedure. However, there may
be another job incomplete j′′ that was also being processed in the
interval Oj′ , which receives part of the charge of j′; when j′′ is
handled by the charging procedure, it might also transfer some of
its charge – which includes charge received from j′ – to time t. In
general, charge may transfer from j′ to time t via multiple paths of
varying lengths; we will bound this transfer over all possible paths.

Let k be the number of incomplete jobs that have started between
st(yj′) and t (not including j′). We are interested in bounding the
number of times that job j′ charges t after i transfers. We claim
this number is at most

(
k
i−1

)
. To see this, consider a cost ρA(ti).

Let ti → ti−1 → · · · → t0 = tFi denote the path through which
the cost ρA(ti) is transferred, and by ji, ji−1, . . . , j0 the corre-
sponding jobs processed during those times. Notice that the set
ji, ji−1, . . . , j0 is unique for each such ti, since every ψ is a bijec-
tion. Moreover, notice that the jobs ji, ji−1, j1 must be sorted in
ascending order of starting time, since by Claim 3.3-3 an incom-
plete job only charges jobs that have started after it. Hence, the
number of options for such a ti is the number of unique paths from
ji to j0, which is the number of options to choose ji−1, . . . , j1 out
of k jobs. Notice that i can range between 1 and k + 1.

The last step of the proof is to bound ρj′ . Without loss of gen-
erality, we assume that j′ actually charges t after some amount of
transfers, otherwise j′ is irrelevant for the discussion. Consider the
k incomplete jobs that started between st(yj′) and t in ascending
order of their starting times. Each job in this order must be con-
tained in the admission window of its predecessor. By Claim 3.3-
2, we get that ρj′ ≤ ρA(t)/γk+1 (µ− 1)i. Since each job j′ is
uniquely identified by the number k of jobs that start between time
t and the start of j′, and each path to such a j′ from t has length at
most k + 1, this gives us the following:

ch′(t) ≤ ρA(t) +

∞∑
k=0

k+1∑
i=1

(
k

i− 1

)
ρA(t)

γk+1 (µ− 1)i

= ρA(t) +

∞∑
k=0

ρA(t)

γk+1(µ− 1)

k+1∑
i=1

(
k

i− 1

)
1

(µ− 1)i−1

= ρA(t) +

∞∑
k=0

ρA(t)

γk+1(µ− 1)

(
1 +

1

µ− 1

)k
= ρA(t)

[
1 +

1

γ(µ− 1)

∞∑
k=0

(
µ

γ(µ− 1)

)k]

= ρA(t)

[
1 +

1

γ(µ− 1)− µ

]
= ρA(t)

[
(γ − 1)(µ− 1)

(γ − 1)(µ− 1)− 1

]
,

which is exactly what was required in claim 2, thus completing the
lemma.

Theorem 3.6 follows by simply integrating over t and applying
Lemma 3.7. Combining Theorems 3.4 and 3.6 leads to our main
result.

COROLLARY 3.8. The competitive ratio of the single server al-
gorithm A for online scheduling is at most:

cr (A) ≤ 1 + γ · s

s− µ ·
[

(γ − 1)(µ− 1)

(γ − 1)(µ− 1)− 1

]
. (11)

Optimizing the bound. The bound on cr(A) can be further op-
timized. A straightforward calculation shows that for any value
of µ, the bound (11) is minimized for a unique optimal value of
γ∗(µ) =

√
µ√
µ−1

; at this value, the bound becomes:

cr(A) ≤ 1 +
s

s− µ ·
√
µ+ 1
√
µ− 1

.

There are two ways to interpret the above result. One may think
of µ as a constraint set by the service provider. For example, by
setting µ = s/2, the service provider can limit the starting time
of jobs to the first half of their availability window; as a result, the
bound becomes 3 + O (1/

√
s) for s > 2. On the other hand, the

bound can be further optimized. By choosing µ ≈ s2/3 for s > 2,
or µ = (s + 1)/2 for 1 < s < 2, we obtain the bounds stated in
the introduction:

cr(A) ≤

3 +O
(

1
(s−1)2

)
1 < s < 2

2 +O
(

1
3√s

)
s ≥ 2

We note that one can optimize over µ and obtain more explicit
bounds on the competitive ratio. We omit the details for brevity.

3.2.2 Bounding the Loss over Incomplete Jobs
In general, non-committed scheduling algorithms may begin pro-

cessing jobs without having to complete them. This may lead to an
undesired result, where the loss over incomplete jobs is relatively
large compared to the gained value. To limit this loss, the service
provider can incorporate the loss directly into the objective func-
tion. Let f be a penalty factor set by the service provider. Consider
the following alternative objective:

maximize v
(
J F
)
− f · v

(
J P
)
. (12)

We show that our algorithm maintains low loss compared to the
value it gains. Proof details can be found in the full paper.

THEOREM 3.9. For the objective (12), the competitive ratio of
the non-committed algorithm A is at most:(

1 + γ · s

s− µ ·
[

(γ − 1)(µ− 1)

(γ − 1)(µ− 1)− 1

])
·

·
[
1− f

(γ − 1)(µ− 1)− 1

]−1

. (13)

3.3 Multiple Servers
The focus of this section is the 0-k Resource Allocation model

for multiple identical servers, presented in Section 2. Here, each
job may be allocated, at any point, any number of servers between
0 and a bound k set by the service provider. In this section, we
construct a new algorithm called the NONCOMMITTED algorithm,
which obtains the same competitive ratio as its single server coun-
terpart, regardless of the values of k and C.

Our construction is incremental. We first consider the case of
k = 1, in which each job may be allocated at most a single server
at any time. Then, we generalize our solution to any value of k
without incurring any loss in performance or runtime.

0-1 Resource Allocation. The algorithm for multiple servers with
k = 1, which we denote byM, is based on its single server coun-
terpartA. From an overall perspective, the algorithmM runs a lo-
cal copy of the single server algorithm A on each of the C servers,
under a restriction called the job locality restriction. According
to the job locality restriction, a job preempted from server i may
only resume its execution on server i; in other words, the algorithm
prevents migration of preempted jobs between servers. The algo-
rithm, given fully in Algorithm 2, executes this general approach
in an efficient manner. When job j arrival at time t, we only in-
voke the threshold preemption rule on server imin(t), which is the
server running the job with lowest value-density (unused servers
run idle jobs of value-density 0). Notice that it suffices to invoke
the threshold preemption rule of server imin(t): if job j is rejected,
it would be rejected by the threshold preemption rule of any other
server. When job j completes on server i, we first load the job with
maximal value-density out of the jobs preempted from server i, and
then invoke the threshold preemption rule.

Algorithm 2: Multiple Servers with k = 1

Event: On arrival of job j at time t = aj :
1. Call Threshold Preemption Rule (imin(t), t), with:

imin(t) = arg min
{
ρiM(t) | 1 ≤ i ≤ C

}
.

Event: On job completion on server i at time t:
1. Resume execution of the preempted job with highest

value-density among jobs preempted from server i.
2. Call Threshold Preemption Rule(i, t).

Threshold Preemption Rule (i, t):
1. j ← job currently processed on server i.
2. j∗ ← arg max

{
ρj∗ | j∗ ∈ A−µ(t)

}
.

3. if (ρj∗ > γ · ρj)
3.1. Preempt j and run j∗ on server i.

Theorem 3.10 summarizes our analysis of the multiple server
algorithm M. The arguments used in the single server analysis
can be extended to the multiple server case, without incurring any
loss of guaranteed performance. Since the analysis is conceptually
similar to its single server counterpart, we omit the full details from
the proceedings version and only provide a high-level proof sketch.

THEOREM 3.10. The algorithmM for multiple servers with no
parallelized scheduling obtains a competitive ratio of at most:

cr (M) ≤ 1 + γ · s

s− µ ·
[

(γ − 1)(µ− 1)

(γ − 1)(µ− 1)− 1

]
.

PROOF SKETCH. The analysis is relatively similar to its single
server equivalent, apart from several adjustments. As before, the
dual fitting analysis will provide a bound on the competitive ratio of
M. In the multiple server case, this bound depends on the expres-
sion

∑C
i=1

∫∞
0
ρiM(t)dt, which represents the total value gained

by the algorithm if it were to gain a partial value of ρj∆j for each
partially processed job j. We can apply the proof of Lemma 3.7 on
each server individually and sum across all servers, and as a result
bound this expression by v(J F) ·

[
(γ−1)(µ−1)

(γ−1)(µ−1)−1

]
.

What complicates the proof is the dual fitting argument. Notice
that now there is a dual constraint for each tuple (j, i, t), and all
of them should be covered. To understand how to overcome the
difficulties, we first explain why the single server analysis does not
work in its current form. Consider a partially processed job j and

consider some time t in which the job was processed. Let i be the
server that processed job j at time t. Recall that we set αj = 0 for
j. Since we did not use the π variables so far, the dual constraints
corresponding to job j at time t can only be covered by the βi(t)
variables. In the original analysis, the βi(t) variable has been set
to the highest value-density of an unprocessed job at time t. How-
ever, setting βi(t) so does not necessarily cover the dual constraint
of (j, i′, t) for any server i′. Even by setting βi(t) = γ ·ρiM(t), we
cannot guarantee that a constraint (j, i′, t) for i′ 6= i will be cov-
ered. To overcome this problem, we use the πj(t) variables. The
usage of these variables, and the necessary adjustments needed in
order to correct the analysis, are both highly non-trivial and tech-
nical. We refer the reader to the full version of the paper for the
complete analysis.

0-k Resource Allocation. Up to now we have restricted the exe-
cution of every job to at most one server at any time. In the fol-
lowing, we consider a more general model, in which each job may
be processed simultaneously on any number of servers, up to a par-
allelism bound k set by the service provider. The service provider
may flexibly change the resource usage of each job at any point.

Our solution reduces the problem to the 0-1 resource allocation
case. We divide the C servers into C/k equal-sized “virtual clus-
ters" (VCs). We assume k divides C for ease of exposition. In our
solution, jobs are allocated to VCs rather than to individual servers.
When a job is allocated to a VC, it runs on all of its k servers in
parallel. Each VC runs a copy of the single server algorithm A,
under the job locality restriction, just as in Algorithm 2.

Algorithm 3: Multiple Servers

1. Divide the C servers into C/k equal-sized clusters.
2. Run Algorithm 2 under the following modifications:

- Capacity: C/k.
- Demand: Dj/k for each job j.

We prove that Algorithm 3 guarantees the same competitive ratio
cr(A) as for the single server case. The proof directly follows from
our dual fitting analysis, therefore we leave it to the full version.
We note that the algorithm we provide overcomes some concerns
that may arise in practical settings. For example, the dynamic al-
location of resources might in principle incur high network costs
due to large data transfers. However, the job locality feature of our
algorithm prevents jobs from migrating across VCs, thereby min-
imizing communication overheads. We emphasize that imposing
this feature does not affect performance, as we guarantee the same
competitive ratio of the single server algorithm. In other words,
while our algorithm does not migrate jobs across VCs, and only
ever allocates 0 or k resources to a job at any given time, our per-
formance bounds are with respect to an optimal schedule without
any such restrictions.

3.4 Demand Uncertainty
Up until now we have made a simplifying assumption that job

resource requirements can be precisely specified by the job owner.
Often times, however, the resource requirements may only be es-
timated, due to various reasons (unexpected data-processing over-
head, outliers, etc.). We modify our algorithms to handle demand
distributions with relatively low tail probability. Let α be the al-
lowed deviation of the job resource requirement from the initial
estimation (i.e., the expected demand). Formally, the resource de-
mand may exceeds its expectation by a multiplicative factor of
(1 + α), with probability at most β. We adjust our solution to

accommodate this uncertainty model, and show that the resulting
algorithm exhibits low degradation of performance compared to the
deterministic case.

THEOREM 3.11. The algorithm for online preempted schedul-
ing on multiple servers under uncertainty, where each job’s true
demand exceeds the reported demand by a factor of (1 + α) with
probability at most β, assuming µ+ α+ 1 < s, obtains a compet-
itive ratio of at most:

1

1− β

(
1 + γ · s

s− α ·
s

s− µ ·
[

(γ − 1)(µ− 1)

(γ − 1)(µ− 1)− 1

])
.

4. COMMITTED SCHEDULING
In the previous section we focused on non-committed preemp-

tive scheduling, in which the scheduler is not required to complete
jobs that had been admitted to the system. While this setting may
be plausible in some applications, for example when all of the jobs
belong to the same user, some applications do require a guarantee
for completion. We therefore consider the design of committed on-
line scheduling algorithms, whereby the algorithm guarantees that
admitted jobs are completed by their deadlines. We distinguish be-
tween two models of commitment, differing by the timing of the
commitment.

1. Commitment on arrival: jobs are notified upon arrival whether
they will be completed or rejected.

2. Commitment on admission: a less restrictive model, in which
the scheduling algorithm may delay the decision whether to
commit to a job. However, once the job is admitted (begins
execution), the scheduler is guaranteed to complete it by its
deadline.

Due to space limitations, we omit our full analysis and empirical
evaluation from this section. We refer the reader for the extended
version of the paper for more details.

4.1 Commitment on Arrival
The strict requirement of making the scheduling decision upon

arrival leads to the following negative result

THEOREM 4.1. Any online algorithm that commits to jobs on
arrival has an unbounded competitive ratio for any slackness pa-
rameter s.

4.2 Commitment on Admission
We design a heuristic solution, called COMMITTED, for this less

restrictive commitment model. Our heuristic is based on the algo-
rithm developed in Section 3 for non-committed scheduling. Specif-
ically, to ensure that all committed jobs are completed, we modify
the original threshold preemption rule as follows. An unallocated
job j∗ that passes the threshold choice rule of a server iwill be allo-
cated (i.e. will preempt the currently running job) only if no com-
mitments are violated as a result. That is, we simulate the future
schedule on server i that would occur if all partially executed jobs
on that server had their completion times pushed back by Dj∗/k.
If one of the completion times is pushed beyond the deadline of
the corresponding job, we reject job j∗ from server i. It is an open
question whether this heuristic (or any other online algorithm) ad-
mits a satisfactory competitive ratio. Consequently, we evaluate
the performance of our solution through extensive simulations, see
Section 4.4.

We note that the gap parameter µ provides a method for the ser-
vice provider to interpolate between the extremes of commitment

on arrival and commitment on admission. For example, if µ = s/2
then the service provider will necessarily commit to accepting or
rejecting each job by the halfway point of its admission window
at the latest. Larger values of µ result in even earlier notification
times (at the expense of throughput), up to the extreme of µ = s
which corresponds to commitment on arrival.

4.3 Economic-Driven Mechanisms with Com-
mitment on Allocation

The design of scheduling mechanisms for external applications,
such as paid cloud services, involves additional complications de-
rived from the selfish nature of participants. Such mechanisms
must be sensitive to potential manipulation by customers, as users
striving to maximize their personal gain may attempt to do so by
reporting false values or job parameters. Our previous work con-
siders economic aspects of deadline-sensitive scheduling in the of-
fline setting [10]; however, we must extend the insights from those
works to handle online job arrivals. Moreover, the algorithmic so-
lutions on which these mechanisms rely must satisfy economic-
driven properties, such as monotonicity.

We suggest a scheduling mechanism for online scheduling called
TRUTHFULCOMMITTED, which satisfies desirable economic-driven
properties. The algorithmic core of the mechanism is a simplifica-
tion of the COMMITTED algorithm, obtained by setting µ = 1. We
prove that the general framework described in [10] can be applied
in this context, which leads to the design of a mechanism that is
truthful in dominant strategies, meaning that it is always in the best
interest of a customer to report its real job value and parameters
(demand, deadline). The proof of truthfulness can be found in the
full paper; the evaluation is briefly discussed in Section 4.4.

4.4 Empirical Evaluation
We evaluate the performance of our heuristic solutions, by com-

paring them to the non-committed algorithm, as well as to straw
man mechanisms that are used in practice. To that end, we test all
the scheduling mechanisms on both synthetic and empirical traces
(extracted from Microsoft’s production cluster). The main goal of
the experiments is to compare the obtained throughput across dif-
ferent solutions, and also examine the value of incomplete jobs
under the non-committed scheduler. The main highlights of our
empirical study are the following. We show that for reasonable
values of the input slackness (s > 2), COMMITTED and TRUTH-
FULCOMMITTED achieve nearly identical performance to the non-
committed algorithm, for which we proved worst-case performance
guarantees. Moreover, our algorithms outperforms straw man mech-
anisms by an order of magnitude (typically 10-50x).

5. CONCLUDING REMARKS
This paper introduces novel solutions for deadline-aware schedul-

ing in large computing clusters. Our solution methodology is built
upon two plausible assumptions: that the input exhibits deadline
slackness, and that the provider has some leeway on its required
responsiveness. Using our methodology, we design a simple on-
line algorithm and prove constant-factor approximation guarantees
for its performance. Based on this algorithm, we design addi-
tional heuristics that address important practical concerns such as
provider commitments, demand uncertainties, and economic con-
straints. Our experiments on both synthetic and real job traces
demonstrate the dominance of our scheduling framework over other
potential heuristics. We also discuss how our framework can be

used to design a truthful mechanism for online scheduling.
Our results motivate future study of more sophisticated models

and scenarios. Specifically, we plan to consider data-processing job
models (e.g, Hadoop, COSMOS), in which the system could ben-
efit from uneven and time-varying allocation of resources across
jobs (e.g., allocate resources differently for different “phases" of
the job). Another challenging direction is to extend our framework
to multi-dimensional resource allocation problems, e.g. allocating
both CPU and bandwidth; see e.g., [5, 11]. We believe that this
paper provides guidelines for designing mechanisms for the above
cases and beyond.

6. REFERENCES
[1] A. Bar-Noy, R. Canetti, S. Kutten, Y. Mansour, and

B. Schieber. Bandwidth allocation with preemption. SIAM J.
Comput., 28(5):1806–1828, 1999.

[2] R. Canetti and S. Irani. Bounding the power of preemption in
randomized scheduling. SIAM J. Comput., 27(4):993–1015,
1998.

[3] A. Ferguson, P. Bodik, S. Kandula, E. Boutin, and
R. Fonseca. Jockey: guaranteed job latency in data parallel
clusters. In Proceedings of the 7th ACM european conference
on Computer Systems, pages 99–112. ACM, 2012.

[4] J. A. Garay, J. Naor, B. Yener, and P. Zhao. On-line
admission control and packet scheduling with interleaving.
In INFOCOM, 2002.

[5] A. Ghodsi, V. Sekar, M. Zaharia, and I. Stoica.
Multi-resource fair queueing for packet processing. In
Proceedings of the ACM SIGCOMM 2012 conference on
Applications, technologies, architectures, and protocols for
computer communication, pages 1–12. ACM, 2012.

[6] M. T. Hajiaghayi, R. Kleinberg, M. Mahdian, and D. C.
Parkes. Online auctions with re-usable goods. pages
165–174, 2005.

[7] H. Herodotou, F. Dong, and S. Babu. No one (cluster) size
fits all: automatic cluster sizing for data-intensive analytics.
In Proceedings of the 2nd ACM Symposium on Cloud
Computing, page 18. ACM, 2011.

[8] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar,
and A. Goldberg. Quincy: fair scheduling for distributed
computing clusters. In Proceedings of the ACM SIGOPS
22nd symposium on Operating systems principles, pages
261–276. ACM, 2009.

[9] N. Jain, I. Menache, J. Naor, and J. Yaniv. A truthful
mechanism for value-based scheduling in cloud computing.
Algorithmic Game Theory, pages 178–189, 2011.

[10] N. Jain, I. Menache, J. Naor, and J. Yaniv. Near-optimal
scheduling mechanisms for deadline-sensitive jobs in large
computing clusters. In SPAA, pages 255–266, 2012.

[11] V. Jalaparti, H. Ballani, P. Costa, T. Karagiannis, and
A. Rowstron. Bridging the tenant-provider gap in cloud
services. In ACM Symposium on Cloud Computing. ACM,
2012.

[12] G. Koren and D. Shasha. Dover; an optimal on-line
scheduling algorithm for overloaded real-time systems. In
RTSS, pages 290–299. IEEE Computer Society, 1992.

[13] G. Koren and D. Shasha. Moca: A multiprocessor on-line
competitive algorithm for real-time system scheduling.
Theor. Comput. Sci., 128(1&2):75–97, 1994.

