
Near-Optimal Scheduling Mechanisms for Deadline-Sensitive Jobs
in Large Computing Clusters

(Regular Submission)

Navendu Jain
Microsoft Research, Redmond, WA

navendu@microsoft.com

Ishai Menache
Microsoft Research, Redmond, WA

ishai@microsoft.com

Joseph (Seffi) Naor
CS Department, Technion, Haifa, Israel

naor@cs.technion.ac.il

Jonathan Yaniv
CS Department, Technion, Haifa, Israel

jyaniv@cs.technion.ac.il

Abstract

We consider a market-based resource allocation model for batch jobs in cloud computing clusters.
In our model, we incorporate the importance of the due date of a job by which it needs to be completed
rather than the number of servers allocated to it at any given time. Each batch job is characterized by
the work volume of total computing units (e.g., CPU hours) along with a bound on maximum degree
of parallelism. Users specify, along with these job characteristics, their desired due date and a value for
finishing the job by its deadline. Given this specification, the primary goal is to determine the scheduling
of cloud computing instances under capacity constraints in order to maximize the social welfare (i.e., sum
of values gained by allocated users). Our main result is a new

(
C

C−k ·
s

s−1

)
-approximation algorithm

for this objective, where C denotes cloud capacity, k is the maximal bound on parallelized execution
(in practical settings, k � C) and s is the slackness on the job completion time i.e., the minimal ratio
between a specified deadline and the earliest finish time of a job. Our algorithm is based on utilizing
dual fitting arguments over a strengthened linear program to the problem.

Based on the new approximation algorithm, we construct truthful allocation and pricing mechanisms,
in which reporting the job true value and properties (deadline, work volume and the parallelism bound)
is a dominant strategy for all users. To that end, we provide a general framework for transforming
allocation algorithms into truthful mechanisms in domains of single-value and multi-properties. We then
show that the basic mechanism can be extended under proper Bayesian assumptions to the objective
of maximizing revenues, which is important for public clouds. We empirically evaluate the benefits of
our approach through simulations on datacenter job traces, and show that the revenues obtained under
our mechanism are comparable with an ideal fixed-price mechanism, which sets an on-demand price
using oracle knowledge of users’ valuations. Finally, we discuss how our model can be extended to
accommodate uncertainties in job work volumes, which is a practical challenge in cloud settings.

Keywords: Resource Allocation, Economic Models, Truthful Mechanisms, Cloud Computing

1 Introduction

Background and motivation. Batch processing applications have become a significant fraction of comput-
ing workload across both public and private clouds. Examples include MapReduce/DryadLINQ jobs, web
search index update, monte carlo simulations, eScience applications and data analytics. The primary chal-
lenge for many of these applications is to meet the service level agreements (SLA) on their job completion
deadline. For instance, financial firms run large batch jobs to analyze daily stock trades and need the results
to develop trading strategies before market opens the next day. Similarly, job completion time is critical for
web search because even a small fraction of stale results can lead to a significant loss in revenue through a
reduction in purchases, search queries, or advertisement click-through rates. The second challenge is con-
currently scheduling multiple jobs with each job requiring a large number of CPU units, under the cloud
capacity constraints.

Currently, cloud providers offer three pricing schemes to users: (i) on-demand instances, where a user
pays a fixed price for a virtual machine (VM) per unit time (e.g., an hour) and can acquire or release VMs on
demand, (ii) spot-instances, where users bid for spot instances and get allocation when the spot market price
falls below their bid, and (iii) reservation pricing where users pay a flat fee for long term reservation (e.g.,
1-3 years) of instances and a discounted price during actual use. Despite their simplicity, these approaches
have several shortcomings for batch computing. First, they offer only best-effort execution without any
guarantees on the job completion time. However, the financial firm in the above example requires SLA on
the finish time rather than how VMs are allocated over time. Further, given capacity constraints, the cloud
may not even be able to meet large resource requirements under unpredictable demand. Second, current
resource allocation mechanisms do not differentiate jobs based on their importance/priority e.g., financial
applications have (and are willing to pay for) strict job deadlines while scientific jobs are likely willing to
trade a bounded delay for lower costs. As a result, cloud systems lose the opportunity to increase profits
(e.g., by prioritizing jobs with strict SLA), improve utilization (e.g., by running low priority jobs at night),
or both. Finally, existing schemes do not have in-built incentives to prevent fluctuations between high and
low resource utilization. Perhaps the most desired goal of cloud operators is to keep all their resources
constantly utilized.

In this paper we consider an alternative approach to resource allocation in cloud computing clusters
based on an offline scheduling problem of multiple batch jobs called the bounded flexible scheduling prob-
lem. In this model, we explicitly incorporate the importance of the completion time of a batch job to its
owner, rather than the number of instances allocated to the job at any given time. Each batch job is charac-
terized by the work volume (or distribution thereof) of total computing units (e.g., CPU hours) along with a
bound on the maximum degree of parallelism. Users report, along with these characteristics, the job dead-
line and a value for finishing the job by its deadline. The goal is to decide a scheduling of cloud resources
under capacity constraints to optimize a value-integrated objective function, such as the social welfare (i.e.,
sum of values gained by users with resource allocations, especially relevant for private clouds). We also
focus on the design of economic mechanisms, in which a public cloud charges users based on the above
mentioned job parameters. While current pricing schemes do not charge based on deadlines, this work aims
to advocate the merits of incorporating deadline-based pricing schemes. This scheduling model raises fun-
damental questions in mechanism design as users may try to game the system by misreporting their values
or other job parameters to increase their utility. To address these challenges, our proposed solutions provide
incentives for users to report truthfully.

The bounded flexible scheduling problem was first considered in our prior work [13], which proposed
the first algorithm for the social welfare objective with a 2-approximation factor. That algorithm, designed
for general user valuation functions, served as the base to design a truthful-in-expectation mechanism where
reporting valuations truthfully maximized the expected utility for each user. However, it had three key
practical shortcomings. First, from the mechanism design perspective, job work volume and parallelism

1

bounds are assumed to be truthfully reported and hence it was only necessary to guarantee truthfulness
with respect to values and deadlines. Second, to guarantee truthfulness, the proposed mechanism risks low
utilization with at least half of the resources unutilized. Further, the solution cannot be extended to deal with
uncertainties in work volume (we use the terms work volume and job demand interchangeably). Finally, the
solution requires solving a linear problem which might be computationally expensive to run frequently for
a large number of jobs and resources, as common in the cloud. See Appendix D for a complete survey of
related work.
Our contributions. This paper makes the following contributions.
• Modeling. We propose a flexible resource allocation framework for scheduling batch jobs with deadlines.
In particular, the model comprises an urgency parameter s which given a job work volume and parallelism
bound determines the earliest deadline that the job owner can request. This parameter enables cloud the
flexibility in scheduling jobs thereby yielding higher profits and improved performance over existing ap-
proaches.
• Near-optimal and computationally-efficient scheduling. We design a new

(
C

C−k ·
s
s−1

)
-approximation

algorithm for the optimal social welfare, where k is the maximal parallelism bounds over all jobs, and C is
the cloud capacity. Note that the approximation factor approaches one under the (plausible) assumption that
k � C, and s is sufficiently large. The approximation algorithm is semi-greedy - it considers the jobs one
by one, and to accommodate a new job it is allowed to make certain changes to the allocation of previously
allocated jobs. To analyze the algorithm, we formulate the problem as a linear program with strengthened
constraints which are somewhat reminiscent of knapsack constraints [9]. We then apply the technique of
dual fitting to prove the approximation factor. The algorithm is specifically designed to maintain unique
properties, which are realized under clever dual fitting arguments. Thus, each allocation step (of a job)
goes hand in hand with the construction of a feasible dual solution, such that its cost is later bounded by
sophisticated charging techniques.
• Full incentive compatibility. The proposed scheduling algorithm is incentive compatible with respect to
all job parameters (value, deadline, work volume and parallelism bound). This property allows achieving
the same approximation bound for both the social welfare mechanism design and the profit maximization
problem (the latter, under standard Bayesian assumptions).
• Empirical study. We perform experiments with job traces taken from a large cloud provider. Our simula-
tion study provides a surprising result: The mechanism we propose generates higher revenue than an ideal
fixed-price mechanism, which has full knowledge of the private values and deadlines of users.
• Dealing with demand uncertainties. We propose a new model to handle cases where job volumes are
stochastic, adapt the scheduling algorithm and provide performance bounds.

2 The Model
We consider a single cloud provider (or simply, the cloud), which allocates resources (CPUs) to jobs over
time. Specifically, the time horizon is divided into T time slots T = {1, 2, . . . , T}. For example, in a cloud
computing setting, each slot t represents an actual time interval of one hour. The cloud has a fixed capacity
of C, given in CPU time units. This paper focuses on an offline setting, where all jobs that wish to be served
until time T arrive to the system at time 0 and can be executed immediately.

There are n users (clients), each of them owning a single job that needs to be executed. We use the terms
jobs, users and clients interchangeably. Every job is associated with a type profile τj = (vj , dj , Dj , kj)
representing the job parameters, fully described hereupon. Every user has a value vj ∈ R+ representing the
worth of a successful execution of its job, i.e., its job being fully executed before the deadline dj . The size
of each job j, also referred to as the demand of the job, is given by Dj ∈ R+ (in CPU time units). The cloud
provider can flexibly allocate resources to jobs, that is, the amount of resources allocated to a job can change
over time. For instance, a job may even be preempted and continued later on. However, each job has an

2

upper bound kj on the number of resources it may receive in a time slot. This bound stays fixed throughout
the whole time horizon T . Formally, an allocation of a job j is a function yj : [1, dj]→ [0, kj] representing
the number of CPU units job j receives per time slot, which completes the job without violating the job
parallelism bound kj . We assume that the maximal parallelism bound k , maxj {kj} is much smaller
than the capacity C. A solution to the problem is a set y = (y1, . . . , yn) of allocations satisfying capacity
constraints. The objective of an allocation algorithm is to maximize the social welfare, which is the sum of
values of jobs that are completed before their deadline. We emphasize that partial execution of a job does
not yield partial value.

Let lenj = dDj/kje denote the minimal length (or duration) of a complete allocation of resources to job
j. We assume that the cloud will consider scheduling a job only if its deadline satisfies dj ≥ s · lenj , where
s is a slackness (or urgency) parameter advertised by the cloud. We refer to this condition as the slackness
condition. Intuitively, the slackness condition gives the cloud the time margins to schedule jobs. In the
extreme case where s = 1, each user requests that its job is allocated the maximal amount of resources until
termination, leaving no scheduling flexibility to the cloud.

3 The GreedyRTL Algorithm

In this section we construct a new approximation algorithm for the bounded flexible scheduling problem
called GreedyRTL, which obtains a

(
C

C−k ·
s
s−1

)
-approximation to the optimal social welfare. We start

off by considering in Section 3.2 a simple greedy algorithm, as follows. Sort the jobs in non-increasing
order of their marginal values (i.e., their value-demand ratio). Then, allocate them one-by-one (if possible),
according to the sorted order, where a job is scheduled depending on the remaining resources. Henceforth,
we assume that the jobs are ordered such that v1

D1
≥ v2

D2
≥ · · · ≥ vn

Dn
. To analyze the performance of this

simple algorithm, we formulate the bounded flexible scheduling problem as a linear program (Section 3.1).
The proofs of performance rely on a dual fitting argument. We construct a feasible solution to the dual linear
program at cost proportional to the total value gained by the greedy algorithm. Since the cost of a feasible
solution to the dual program is an upper bound to the optimal solution, we obtain the approximation factor.

To obtain the near-optimal approximation factor, we develop a single-job allocation rule (Section 3.3)
called AllocateRTL(j). When applied, AllocateRTL(j) will allocate resources to job j, possibly reallocating
previously scheduled jobs i < j. Our allocation rule will maintain a property we define called β-consistency.
This property allows us to improve the feasible solution to the dual program, significantly reducing its cost.

3.1 Preliminaries

We begin by introducing the primal and dual linear programs. Let yj(t) denote the amount of CPU hours
dedicated to the execution of job j in a time slot t, t ≤ dj . We consider a relaxed linear program of the
bounded flexible scheduling problem suggested by [13]:

(P) max

n∑
j=1

vj
Dj

∑
t≤dj

yj(t)

s.t.
∑
t≤dj

yj(t) ≤ Dj ∀j (1)

∑
j:t≤dj

yj (t) ≤ C ∀t (2)

yj(t)−
kj
Dj
·
∑
t′≤dj

yj(t
′) ≤ 0 ∀j, t ≤ dj (3)

yj(t) ≥ 0 ∀j, t ≤ dj (4)

3

Note that in the relaxed linear program, a job can be fractionally allocated, under constraints (1)–(3). Con-
straints (1)–(2) are job demand and capacity constraints, whereas the set of constraints in (3) is a strength-
ened version of the natural parallelism bound constraints of the form yj(t) ≤ kj . This set of strengthened
constraints, formulated by [13], is related to knapsack cover constraints [9] and is used to decrease the
integrality gap of the relaxed linear program.

In the corresponding dual program we have a cover constraint for each job j and time slot t ≤ dj :

(D) min

n∑
j=1

Djαj +

T∑
t=1

C β(t)

s.t. αj + β(t) + πj(t)−
kj
Dj
·
∑
t′≤dj

πj(t
′) ≥ vj

Dj
∀j, t ≤ dj (5)

αj , β(t), πj(t) ≥ 0 ∀j, t (6)

Before we describe our approximation algorithms, we give some definitions and notations that we will
use later on. Given an allocation yj , denote by s (yj) = min {t : yj (t) > 0} and e (yj) = max {t : yj (t) > 0}
the start time and completion time of allocation yj , which are the first an last time slots in which resources are
allocated to user j, respectively. Given a solution consisting of allocations yj , we defineW (t) =

∑n
j=1 yj(t)

to be the total workload at time t and W̄ (t) = C −W (t) to be the amount of available resources at time t.
A time slot is saturated if W̄ (t) < k and unsaturated otherwise. Finally, given a time slot t, we define:

R(t) = max
{
t′ ≥ t : ∀t′′ ∈

(
t, t′
]
, W̄ (t) < k

}
(7)

Intuitively, if there are saturated time slots adjacent to t to the right, R(t) is the rightmost timeslot out of the
saturated block to the right of t. Otherwise, R(t) = t.

3.2 A Simple Greedy Algorithm

The first algorithm we construct is called the SimpleGreedy algorithm, which serves as the basis for the
GreedyRTL algorithm. Recall that the jobs are sorted in non-increasing order of their marginal values
vj/Dj . The algorithm, fully described in Appendix B, works as follows. We initialize an empty solution
y ← 0 and go over the jobs in their sorted order. For every job j in this order we check whether we can fully
allocate Dj free resource units, meeting the deadline dj , and without violating the parallelism bound kj .
Formally, a job j can be scheduled successfully if

∑
t≤dj min

{
W̄ (t), kj

}
≥ Dj , where W̄ (t) is the amount

of available resources in time slot t. If so, we schedule job j by allocating resources arbitrarily (without
violating capacity constraints and the parallelism bound). Otherwise, job j is not scheduled. We note that
the job allocation phase of SimpleGreedy may seem somewhat too permitting, however, we will be able to
give a good bound on the total value gained by the algorithm. Later on, we present a more sophisticated
allocation rule, replacing the arbitrary assignment of resources, that will further improve the bound.

Analysis. To bound the total value gained by SimpleGreedy, we construct a feasible solution
(
α, β, π

)
to

the dual program. Recall the dual constraints (5). For every job j, we must cover every time slot t ≤ dj by
at least vj/Dj . Initially, we set all dual variables to be 0. For allocated jobs j, we set αj = vj/Dj . This
covers all the dual constraints associated with j, since the variable αj is common to all of them. Note that
the cost added to the dual objective function is exactly Djαj = vj .

Dual constraints of unallocated jobs will be covered by the β(t) variables. Note that the variable β(t)
appears in all of the dual constraints associated with t. By setting β(t) we are able to cover (or at least
partially cover) other dual constraints. We will maintain three useful properties regarding the β(t) variables:
(1) A variable β(t) is always set to be a marginal value vj/Dj of an unallocated job; (2) Once a variable

4

β(t) has been set, it remains unchanged throughout the rest of the algorithm; and (3) The β(t) variables
are monotonically non-increasing in t. We prove property 3 in Lemma 3.1, yet for now assume that it
is given. Now, consider the case where a job j is unallocated by SimpleGreedy. Notice that for every
time slot t with β(t) > 0, by property 1 we have β(t) ≥ vj/Dj , since SimpleGreedy considers jobs in
non-increasing order of marginal values. Now, if β(dj) > 0, then by property 3 all the β(t) variables for
t ≤ dj have been set to values larger than vj/Dj . By the property 2, they remain so until the end of the
algorithm. Otherwise, if β(dj) = 0, we apply a method which we call β-cover(j) (lines 17–21) to cover the
uncovered dual constraints of job j. Let tcov = min {t | β(t) = 0} be the first time slot currently set to 0.
By similar arguments, all of the dual constraints associated with time slots t < tcov are covered by variables
β(t) ≥ vj/Dj . The β-cover(j) method sets all of the unset β(t) variables up to time dj to be vj/Dj , in
order to cover the remaining unsatisfied constraints of j. In fact, β-cover keeps setting β(t) = vj/Dj for
every dj ≤ t ≤ R(dj), that is, we keep setting β(t) variables of saturated time slots t ≥ dj until we reach
an unsaturated time slot. We note that in the context of the SimpleGreedy algorithm, it is enough to cover
the constraints up to time dj . However, covering the β(t) up to R(dj) instead of dj will be useful in the next
subsection. Thus to simplify arguments later on we introduce this step here. One can simplify the analysis
of the SimpleGreedy algorithm by replacing R(dj) with dj . It remains to prove Lemma 3.1, based on the
β-cover step.

Lemma 3.1 At the end of every call to β-cover(j), β(t) is monotonically non-increasing in t.

Corollary 3.2 At the end of the SimpleGreedy algorithm, (α, β, π) is a feasible solution to the dual program.

It now remains to bound the total cost of the dual solution constructed by SimpleGreedy. Let S denote
the set of jobs fully allocated by SimpleGreedy. The cost of covering the dual constraints associated with
allocated jobs is exactly

∑n
j=1Djαj =

∑
j∈S vj . To bound the remaining cost of

∑
tCβ(t), we use a

charging argument: We charge allocated jobs for the β(t) variables, such that the total amount charged
exceeds

∑
tCβ(t), and then bound the total amount charged. Specifically, let chargei(t) be the amount

charged from job i at time t. We will charge i at time t an amount proportional to yi(t), the number of
resources it received at time t. Every such pair (i, t) will be charged only once, according to the following
rule: whenever β-cover(j) is called, we charge from every uncharged pair (i, t):

chargei(t)←
[

C

C − k
· s

s− 1

]
· vj
Dj
· yi(t) (8)

By the order SimpleGreedy consider jobs, a charged job imust have been allocated beforehand. Thus, i < j

and therefore chargei(t) ≤
(

C
C−k ·

s
s−1

)
· vi/Di · yi(t). The total amount charged from all jobs satisfies:∑

i∈S

∑
t≤di

chargei(t) ≤
[

C

C − k
· s

s− 1

] n∑
i=1

∑
t≤di

vi
Di
· yi(t) =

[
C

C − k
· s

s− 1

]
·
∑
i∈S

vi (9)

We note that it is possible to use similar charging arguments to prove this bound, however the form used
here will be useful in the context of the GreedyRTL algorithm. It remains to show that total amount charged
from jobs is an upper bound to

∑
tCβ(t). Define Ej to be the set of unsaturated time slots (i.e., W̄ (t) < k)

up to time R(dj) during the call to β-cover(j).

Lemma 3.3 After every call to β-cover(j):
n∑
i=1

∑
t≤di:W̄ (t)<k

chargei(t)−
T∑
t=1

Cβ(t) ≥ C · vj
Dj
· s

s− 1
·
[
R(dj)

s
− |Ej |

]
(10)

Theorem 3.4 SimpleGreedy gives a
(

1 + C
C−k ·

s
s−1

)
-approximation to the optimal social welfare.

5

Proof. Denote by S the set of jobs allocated by SimpleGreedy. Let j be the last job for which β-cover has
been called. Since j was not allocated, we must have |Ej | < lenj , otherwise j could have been allocated.
By the slackness assumption and since dj ≤ R(dj), we have s · |Ej | < s · lenj ≤ dj ≤ R(dj). By Lemma

3.3 and by (9), the dual cost is at most
(

1 + C
C−k ·

s
s−1

)
·
∑

j∈S vj . ut

3.3 Improving the Greedy Algorithm - The GreedyRTL Algorithm

The GreedyRTL algorithm presented in this subsection is similar in nature to the SimpleGreedy algorithm.
Here, we will also sort the jobs according to their marginal values and decide whether to allocate a job
using the same decision rule (if it is possible to fully allocate the job using unused resources). The main
difference between the two algorithms is the allocation rule of a single job. SimpleGreedy allowed any
arbitrary allocation of resources to jobs that were taken to the solution, whereas for GreedyRTL we construct
a specific allocation rule called AllocateRTL(j). Unlike the former case, AllocateRTL may also choose to
reallocate previously scheduled jobs, to be described later.

Before beginning, we give some intuition behind the suggested algorithm. Our goal will be to reduce
the dual cost associated with allocated jobs j, which consists of Djαj and chargej(t) for every t. Consider
some monotonically non-increasing vector β and ignore for now the π variables. To satisfy the dual con-
straints of an allocated job j, we must set αj to be vj/Dj − β(dj), since β is monotonically non-increasing.
We would like the charged values chargej(t) to be as low as possible, preferably proportional to Djβ(dj).
Ideally, we would want all of the jobs to be aligned to the right. Formally speaking, in an allocation aligned
to the right, we allocate kj resource units to j in every time slot, starting from the job deadline dj moving
towards earlier time slots. The last time slot in which we allocate resources to j will not necessarily receive
kj resource units, only the remaining amount of resources needed to complete the job1. Yet, even if alloca-
tions took this ideal form, this would still not necessarily mean that we could construct a dual solution of
low cost. To do so, we need to incorporate the dual variables πj(t) into our dual solution.

The AllocateRTL rule will maintain a property called β-consistency over all allocated jobs, in spirit of
the discussion above. To define the β-consistency property, we first need the following definition:

Definition 1 The breakpoint bp(yj) of an allocation yj of job j is defined as:

bp(yj) = max
(
{s(yj)} ∪ { t | yj(t) < kj }

)
(11)

The breakpoint bp(yj) is essentially the first time slot t, starting from the deadline moving towards earlier
time slots, such that yj(t) does not coincide with the ideal aligned-to-right form of allocation. If such a time
slot does not exist, we define bp(yj) = s(yj).

Definition 2 An allocation yj is called β-consistent if for every time slot t, s(yj) < t ≤ bp(yj), either t is
saturated or β(t) > 0.

The AllocateRTL(j) rule allocates job j as follows. First, we initialize an empty allocation yj = 0.
We begin at the deadline t = dj and move towards earlier time slots (hence the name Right-To-Left). In
every time slot t, the algorithm will attempt to allocate ∆ = min{kj , Dj −

∑
t≤dj yj(t)} resource units to

job j. That is, give job j either the maximal amount of resources kj it can get at time t, or the remaining
unallocated portion, so that eventually yj will be β-consistent. If W̄ (t) ≥ ∆, we allocate ∆ resource units
to j and continue to an earlier time slot. Otherwise, if W̄ (t) < ∆ (specifically, t is saturated since ∆ ≤ k),
we attempt to free resources at time t by moving existing jobs to earlier time slots. AllocateRTL searches
for the first unsaturated time slot to the left of t, denoted by t′. Notice that if β(t′) > 0 then yj will definitely
be β-consistent, and therefore we can allocate the remaining portion of j arbitrarily in the interval [1, t] (for

1When Dj and kj are integers, this amount equals Dj mod kj .

6

the sake of consistency, we will keep allocating j from right to left, giving j in each time slot the maximal
amount of resources it can get). Otherwise, the key idea is that there must be a job j′ with yj′(t) > yj′(t

′),
since t is saturated and t′ is unsaturated. As long as this condition holds, we increase yj′(t) in expense of
yj(t), until either (i) W̄ (t) = ∆, in which case we set yj(t) = ∆ and continue, or (ii) yj′(t) = yj′(t

′),
and then we keep repeating this process. It is easy to see that this operation does not violate the parallelism
bound of j′, since we do not continue this process if equality is reached, nor change the completion time of
j′. The fully detailed implementation of AllocateRTL(j) can be found in the appendix.

We begin our analysis by making two important observations. Using these observations, we prove that
all of the allocations are β-consistent (Claim 3.7).

Claim 3.5 For every t, the total workload W (t) does not decrease after a call to AllocateRTL(j). Specifi-
cally, GreedyRTL does not turn a satisfied time slot into an unsatisfied one.

Claim 3.6 Let j be an uncharged job such that yj is β-consistent. If j is charged by the algorithm, then
from that point on the allocation yj does not change.

Claim 3.7 In each step of the GreedyRTL algorithm, all of the allocations are β-consistent.

It remains to show how to set the dual variables αj , πj(t) for a job j allocated according to a β-consistent
allocation yj . First, notice the following: by setting a variable πj(t) to be some value ε, we incur a loss of
(kj/Dj) · ε in all of the dual constraints associated with job j. We will cover this loss by increasing αj
accordingly. For every allocated job, we apply a method called α-correct(j) (see algorithm in the appendix
for complete details) to set the dual variables of job j. Initially, all of these variables are set to 0. We start by
setting πj(t) = β(bp(yj)) − β(t) for time slots bp(yj) < t ≤ dj , and increase αj accordingly to cover the
loss incurred from setting the πj(t) variables. Now, all dual constraints are covered by at least β(bp(yj)). To
finish, we increase αj by vj/Dj − β(bp(yj)). The following theorem proves the solution we constructed is
feasible and bounds its total cost compared to the total value gained by GreedyRTL, completing the analysis.

Theorem 3.8 GreedyRTL gives a
(

C
C−k ·

s
s−1

)
-approximation to the optimal social welfare.

4 Incentive Compatible Mechanisms

In the previous section we constructed algorithms that allocate cloud resources to scheduled jobs, while
ignoring the incentives issue, namely how to make sure that users report their true value vj , as well as job
properties (e.g., deadline, demand and parallelism bound). In this section we present a general framework for
designing incentive compatible (truthful) allocation and pricing mechanisms, in single-value multi-property
domains. The framework requires extending well-known results for single-parameter settings, where the
private information held by each user consists of a single scalar. While extensions to multi-parameters
auctions do exist (see, e.g., [8] and references therein), we provide here a general framework for truthfulness,
which covers our model as special case.

4.1 Preliminaries

A mechanismM = (f, p) consists of an allocation rule f and a pricing rule pj for every user j. Every user
is associated with a private true type τj = 〈vj ,Pj〉, where Pj = 〈ρ1

j , ρ
2
j , . . . , ρ

m
j 〉 is a set of m properties of

the job (specific to our context, Pj = 〈dj , Dj , kj〉), and vj ∈ R+ represents (as before) the value gained by
user j if its job is successfully completed, i.e., fully allocated according to the requested properties. Users
report a bid type bj to the cloud, which may differ from their true type τj . The mechanism, given a reported
bid vector b = (b1, b2, . . . bn), allocates the jobs according to f (b) and charges a non-negative payment

7

pj (b) from user j. We define fj (b | Pj) to be a binary function that returns 1 if and only if the job of user
j has fully completed with respect to the job properties Pj2. We assume allocation functions f are rational,
that is, if user j submitted a bid type of bj = 〈v′j ,P ′j〉 and fj(b) = 1, then the allocation user j receives
complies with P ′j . Every user strives to maximize its utility uj , defined to be the value it gains from the
allocation f minus the payment it is charged:

uj (b) = vjfj (b | Pj)− pj (b) . (12)

One desired property of mechanisms is that reporting the true valuation function of users is a dominant
strategy. Given some vector x, let x−j denote the vector x without its j-th entry. Specifically, τ−j denotes a
vector of valuation functions of all players except for j. Let (τj , τ−j) denote the concatenated vector of τj
and τ−j . A mechanism is said to be incentive compatible (IC) or truthful if for every user j and for every
choice of τ−j , truth-telling is a dominant strategy, i.e., maximizes their utility:

∀j ∀bj , τ−j uj (τj , τ−j) ≥ uj (bj , τ−j) . (13)

Apart from incentive compatibility, we would like to construct rational mechanisms, in which users do not
lose by participating in the mechanism. A mechanism is individually rational (IR) if users do not receive
negative utility when reporting their true valuation functions.

4.2 A General Sufficient Condition for Truthfulness

In order to construct truthful mechanisms based on the algorithms presented in Section 3, we extend known
results for single-value domains [2, 12] to the case in which users also hold private job properties. For
user j, we shorten notation by omitting the term b−j . For example, we write fj

(
v′j ,P ′j | Pj

)
instead of

fj
(
(v′j ,P ′j), b−j | Pj

)
. We first define two conditions on allocation algorithms f called value-monotonicity

and property-monotonicity, and prove that they are sufficient for truthfulness for any binary rational f .

Definition 3 An allocation function f is value-monotonic if for every user j, P ′j and b−j , the function
fj
(
v′j ,P ′j | Pj

)
is monotonically non-decreasing in v. That is, for every v′j , v

′′
j , v′j ≤ v′′j :

fj
(
v′j ,P ′j | Pj

)
≤ fj

(
v′′j ,P ′j | Pj

)
. (14)

Definition 4 An allocation function f is property-monotonic if for every user j, b−j , Pj , P ′j the following
condition holds: If there is some value v for which fj

(
v,P ′j | Pj

)
= 1, then:

∀s ≤ v fj
(
s,P ′j | P ′j

)
≤ fj (s,Pj | Pj) . (15)

Theorem 4.1 If a binary allocation algorithm f for a single-value multi-property problem satisfies value-
monotonicity and property-monotonicity and is rational, then the mechanismM = (f, p) that sets prices
for every user j with true type τj = 〈vj ,Pj〉 according to:

pj(v
′
j ,P ′j) = v′j fj

(
v′j ,P ′j | P ′j

)
−

v′j∫
0

fj
(
s,P ′j | P ′j

)
ds, (16)

is truthful and individually rational.

Notice that for binary monotone allocation functions f , the payment charged from each allocated user in
(16) is actually the minimal value bid that would have guaranteed the job being scheduled.

2A job is fully completed with respect to Pj if according to the solution f(b) job j receives Dj resource units before the deadline
dj , without violating the parallel execution bound kj .

8

4.3 Profit Maximization in Bayesian Settings

The objective of profit maximizing is of course significant for public commercial clouds. When assuming no
a-priori knowledge on clients’ private valuation functions, it is well known that a truthful mechanism might
charge very low payments from clients to ensure truthfulness, yielding low revenues. Thus, following a
standard approach in game-theory, we consider a Bayesian setting, in which each user’s value vj is assumed
to be drawn from a distribution with a probability density function gj , which is common knowledge. We
denote by Gj the respective cumulative distribution function (cdf). The properties of the job are assumed,
as before, to be private information with no additional distribution information.

The goal of the mechanism in the current context is to maximize the optimal expected profit, with the
expectation taken over the random draws of clients’ values. For single-value domains, it is well known that
the problem of maximizing profits can be reduced to the problem of maximizing social welfare over virtual
values; this basic property is due to celebrated work by Myerson [16], and has been extended in different
contexts (see [18]). To formally state the result, we first need the following definitions.

Definition 5 The revenue curve of j is defined as Rj(q) = q · G−1
j (1 − q). The ironed virtual valuation

function φ̄j of client j is defined as: φ̄j(v) = d
dq

[
ConcaveHull (Rj(·))

]
for q = 1−Gj(v)

That is, φ̄j(v) the derivative of the concave hull of R(·). Note that φ̄j(·) is monotonically non-decreasing.
Thus, if a single-value allocation rule fsv is value-monotone, then so is fsv

(
φ̄(·)

)
.

Theorem 4.2 ([16, 18]) For any single-value truthful mechanismMsv that gives an α-approximation to the
optimal social surplus, the mechanismMsv(φ̄(·)) gives an α-approximation to the optimal expected profit.

For our purposes, we prove that this reduction due to Myerson extends to domains of single-value and
multi-properties. Formally,

Theorem 4.3 Let f be a binary rational allocation algorithm for a single-value multi-property problem
satisfying value-monotonicity and property-monotonicity, giving an α-approximation to the optimal social
welfare. Let fφ̄ be an allocation rule that replaces every type 〈vj ,Pj〉 with 〈φ̄j(vj),Pj〉 and calls f . Then,
the mechanism Mφ̄ with allocation rule fφ̄ that charges payments according to (16), with respect to fφ̄, is
truthful, and is an α-approximation to the optimal expected profit under Bayesian assumptions.

4.4 Truthfulness of GreedyRTL

We return to the GreedyRTL algorithm and prove that it satisfies the sufficient conditions for truthfulness
presented in Section 4.2: value-monotonicity, property-monotonicity and rationality. Rationality follows
since if GreedyRTL schedules a job j, the allocation it receives always complies with the reported property
set Pj . We now prove the remaining two monotonicity conditions.

Claim 4.4 GreedyRTL is value-monotone.

Claim 4.5 GreedyRTL is property-monotone.

This is leads to the main result of this section.

Corollary 4.6 GreedyRTL implements a truthful mechanism obtaining a
(

C
C−k ·

s
s−1

)
-approximation to the

optimal social welfare. Moreover, if the value vj of every user is drawn from a known distribution Gj , then

GreedyRTL applied on virtual values φ̄j(vj) implements a truthful mechanism obtaining a
(

C
C−k ·

s
s−1

)
-

approximation to the optimal expected profit.

9

5 Empirical Study

In this section we describe the highlights of the experiments we conducted to further evaluate the benefits of
our scheduling framework. Due to space limitations, details of our empirical study can be found in App. A.
Resource utilization. We demonstrate that GreedyRTL reaches a utilization level which is very close to
an upper bound on the optimal utilization, while the mechanism of [13] achieves around 35% of the upper
bound. The results are consistent regardless the number of jobs that we consider. The utilization results not
only provide an explanation to the social welfare improvements we obtain, but also stand on their own –
given the significance of utilization in large cloud clusters.
Revenues. We show that the revenues obtained by our mechanism are comparable with the revenues of an
idealistic fixed-price mechanism, which optimizes a fixed per-unit price based on oracle knowledge of the
private values of users and other job parameters (such mechanism is not guaranteed to be truthful).

6 Extension: Coping with Demand Uncertainties

Up until now, we have assumed that the job work volume (or demand) Dj is a deterministic quantity. How-
ever, it turns out to be a restrictive assumption in many applications as the exact volume is either unknown,
predicted using prior executions, or often overestimated. Further, the demand might be sensitive to stochas-
tic fluctuations, especially in jobs where some tasks have dependencies on the completion of other tasks
(see, e.g., [1] and references therein). From a theoretical perspective, these demand uncertainties introduce
new challenges for mechanism design and impossibility results can indeed be shown ([10]). In this section
we discuss how to address demand uncertainties while maintaining the benefits of our scheduling frame-
work. We present below one plausible model, however a comprehensive study of alternatives to address this
challenge is beyond the scope of this paper.
The model. To incorporate demand uncertainties, we extend the basic model we used for both jobs and
the cloud. In particular, we consider a more general job model, where the demand of each job j is drawn
from a distribution Dj . The distribution has a finite support over

(
0, DE

j (1 + δ)
]
, where DE

j ≡ E
[
Dj
]

is the expected volume, and δ is a positive parameter. For simplicity, this distribution is assumed to be
common knowledge. The cases where Dj doesn’t meet this assumption may be handled using a repeated
auction framework, however, it is beyond the scope of this paper. From the cloud provider’s side, we assume
that the cloud is able to generate additional resources on-demand. We note that providing these additional
resources might increase the operation cost of the cloud, hence in practice the cloud may charge the users
an additional fee; however, we do not consider this aspect here for simplicity.
The solution. We propose the following modified GreedyRTL mechanism. Jobs are scheduled via the
original offline allocation rule using their expected work volume as input. If the job does not complete after
utilizing DE

j resource units, it is allocated additional resources. To accommodate demand uncertainties,
the offline allocation rule should guarantee that a job exceeding its initial estimate may still be completed
before the deadline, taking into account the parallelism bounds. To that end, jobs are scheduled according
to deadlines which are set earlier than their true deadlines, leaving an empty gap per job in which additional
resources can be generated to fully complete the job. Specifically, the offline allocation rule will schedule
jobs according to deadlines that are set earlier d′j = bdj(1 − δ/s)c. Note that in the remaining ddj(δ/s)e
time slots, the cloud can allocate at least Djδ resource units, since dj ≥ s · lenj = s · dDj/kje, as required.
However, a job that exceeding the multiplicative bound of (1 + δ) cannot be guaranteed completion by its
deadline. We prove that the decrease in total value of the modified GreedyRTL is relatively small. To obtain
this result, we use the dual solution

(
α, β, π

)
constructed in Section 3.3 to bound the gap between the value

gained by the modified mechanism and the optimal social welfare (with respect to the original deadlines).

Theorem 6.1 Let RTL′ denote the social welfare obtained by the modified GreedyRTL algorithm, and let
OPT denote the optimal social welfare (with original deadlines). Then,RTL′ ≥

(
1− δ

s−
1
T

)(
C−k
C

s−1
s

)
OPT .

10

References

[1] G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Stoica, Y. Lu, B. Saha, and E. Harris. Reining
in the outliers in map-reduce clusters using mantri. In Proceedings of the 9th USENIX conference on
Operating systems design and implementation, pages 1–16. USENIX Association, 2010.

[2] Aaron Archer and Éva Tardos. Truthful mechanisms for one-parameter agents. In FOCS, pages 482–
491, 2001.

[3] Aaron Archer and Robert Kleinberg. Characterizing truthful mechanisms with convex type spaces.
SIGecom Exchanges, 7(3), 2008.

[4] Amotz Bar-Noy, Reuven Bar-Yehuda, Ari Freund, Joseph Naor, and Baruch Schieber. A unified ap-
proach to approximating resource allocation and scheduling. Journal of the ACM (JACM), 48:1069–
1090, 2001.

[5] Amotz Bar-Noy, Sudipto Guha, Joseph Naor, and Baruch Schieber. Approximating the throughput of
multiple machines in real-time scheduling. SIAM Journal of Computing, 31(2):331–352, 2001.

[6] Sushil Bikhchandani, Shurojit Chatterji, Ron Lavi, Ahuva Muálem, Noam Nisam, and Arunava Sen.
Weak monotonicity characterizes deterministic dominant strategy implementations. Econometrica,
74:1109–1132, 2006.

[7] Peter Brucker. Scheduling Algorithms. Springer, 4th edition, 2004.

[8] Yang Cai, Constantinos Daskalakis, and S. Matthew Weinberg. On optimal multidimensional mecha-
nism design. ACM SIGecom Exchanges, 10(2):29–33, 2011.

[9] Robert D. Carr, Lisa K. Fleischer, Vitus J. Leung, and Cynthia A. Phillips. Strengthening integrality
gaps for capacitated network design and covering problems. In SODA, pages 106–115, 2000.

[10] Uriel Feige and Moshe Tennenholtz. Mechanism design with uncertain inputs: (to err is human, to
forgive divine). pages 549–558, 2011.

[11] A. Greenberg, J. Hamilton, D.A. Maltz, and P. Patel. The cost of a cloud: research problems in data
center networks. ACM SIGCOMM Computer Communication Review, 39(1):68–73, 2008.

[12] Mohammad Taghi Hajiaghayi, Robert Kleinberg, Mohammad Mahdian, and David C. Parkes. Online
auctions with re-usable goods. pages 165–174, 2005.

[13] Navendu Jain, Ishai Menache, Joseph Naor, and Jonathan Yaniv. A truthful mechanism for value-based
scheduling in cloud computing. In SAGT, pages 178–189, 2011.

[14] Ron Lavi and Chaitanya Swamy. Truthful mechanism design for multi-dimensional scheduling via
cycle monotonicity. In EC, 2007.

[15] Eugene L. Lawler. A dynamic programming algorithm for preemptive scheduling of a single machine
to minimize the number of late jobs. Annals of Operation Research, 26:125–133, 1991.

[16] Roger Myerson. Optimal auction design. In Mathematics of Operations Research, volume 6, pages
58–73, 1981.

[17] Noam Nisan and Amir Ronen. Algorithmic mechanism design. In STOC, 1999.

11

[18] Noam Nisan, Tim Roughgarden, Éva Tardos, and Vijay V. Vazirani. Algorithmic game theory. Cam-
bridge University Press, 2007.

[19] Cynthia A. Phillips, R. N. Uma, and Joel Wein. Off-line admission control for general scheduling
problems. In SODA, pages 879–888, 2000.

[20] Jean Charles Rochet. A necessary and sufficient condition for rationalizability in a quasi-linear context.
Journal of Mathematical Economics, 16(2):191–200, 1987.

[21] Michael Saks and Lan Yu. Weak monotonicity suffices for truthfulness on convex domains. In EC,
pages 286–293, 2005.

12

A Empirical Study

In this section, we describe some of the experiments we carried out to further evaluate the benefits of our
scheduling framework. Our simulation framework utilizes empirical job traces of a large batch computing
cluster.

A.1 Simulation Setup

Our simulations evaluate the performance of the mechanisms over a set of 415 jobs, taken from empirical
job traces of a large batch computing cluster. The original workload consists of MapReduce jobs, com-
prising multiple phases with the constraint that phase i + 1 can only start after phase i has finished. The
available information includes the runtime of the job (totT ime), the overall amount of consumed CPU
hours (totCPUHours), the total number of servers allocated to it (totServers), the number of phases
(numPhases) and the maximum number of servers allocated to a job per phase (maxServersPerPhase).
Since our model is not a MapReduce model, we had to adjust the raw data that was available to us, while
preserving the workload characteristics. We describe below the details of the simulation choices we made.

Demand Dj We took the totCPUHours field to represent the demand of the job.

Parallelism bound kj Since the cloud capacity is given in units of server hours per time slot, the paral-
lelism bound must be given in server CPU hour units as well. The data available to us does not contain
information on the actual running time per job of each of servers allocated to it. Therefore, we gave the fol-
lowing estimated parallelism bound: We calculated the average length of a phase (totT ime/numPhases)
and averaged the maximal servers per phase (maxServersPerPhase) over the average length of the phase.
To translate servers into CPU hours, we took the average amount of CPU hours per server to be the total
amount of CPU hours divided by the total number of servers (totCPUHours/totServers).

kj =
maxServersPerPhase(

totT ime
numPhases

) · totCPUHours
totServers

Values vj and deadlines dj Our job traces do not contain any information regarding job deadlines nor
any indication on the value of the job. Hence, we synthetically generate them as follows. The deadline is set
according the effective length of the job (lenj = dDj

kj
e) multiplied by the slackness parameter s. The value

of the job is uniformly drawn from [0, 1].

Cloud parameters C, T The cloud capacity is set according to the total demand, so that the total demand
would exceed the total amount of available resources. T is set according to the maximal deadline.

A.2 Resource utilization

High utilization is certainly one of the main concerns in the area of cloud computing (see, e.g., [11]). The
main practical drawback of the solution given in [13] is that on average, more than half of the resources
remain unallocated. Without considering incentives, utilization could be practically improved by adding
unscheduled jobs to the solution in a greedy manner, whenever possible. Yet, it is unclear how to improve
utilization under the framework of [13] without affecting the truthfulness of the mechanism. In our first
experiment, we compare the average utilization under GreedyRTL and the allocation mechanism of [13].
Since the maximum possible utilization level generally depends on the job characteristics, we compare the
algorithm to an upper on the utilization, denotedOPT ∗Util. Specifically,OPT ∗Util is obtained by solving the

13

Figure 1: Average resource utilization compared to the Decompose-Ranomly-Draw (DRD) mechanism of
[13]. Results show that GreedyRTL utilizes nearly all of the cloud resources.

relaxed linear program (P) with the marginal value of each job set to one (equivalently, we set vj := Dj).
Figure 1 (see Appendix A) shows that GreedyRTL reaches a utilization level which is very close toOPT ∗Util
(within 2% thereof), while the mechanism of [13] achieves around 35% of the upper bound on utilization.
The results are consistent regardless the number of jobs that we consider. The utilization results not only
provide an explanation to the social welfare improvements we obtain, but also stand on their own – given
the significance of utilization in large cloud clusters.

A.3 Revenues

In the next experiment, we evaluate the potential of our approach in terms of revenue maximization. In
particular, we examine the revenues of our mechanism against an idealized mechanism which we term the
Optimal Fixed Price (OFP) mechanism. A fixed price mechanism is a mechanism that charges a fixed price
q per server CPU hour, regardless of the job identity. Given that the mechanism charges a fixed price q, it
would only schedule a job j with non-negative net utility, namely, vj ≥ q · Dj . To focus the comparison
solely on the revenue dimension, the fixed price mechanisms uses the same allocation algorithm as the
GreedyRTL mechanism, with the value of each job set to q · Dj (equivalently, the marginal value of each
job is q) in order to maximize revenues. The optimal fixed price (OFP) mechanism charges a price q∗,
which is the unit price that maximizes the revenues of the allocation algorithm. Since q∗ must be of the
form vj/Dj for some job j (if not, then q∗ can be increased without changing the allocation of jobs, thus
increasing revenues), we can effectively determine q∗ by repeating the allocation algorithm for n different
prices {vj/Dj}nj=1, and setting q∗ to be the revenue-maximizing price among this set.

We emphasize that OFP is an idealistic mechanism, since we assume it has full knowledge of the private
values of users (and other job parameters). That is, users are assumed to be truthful, although the mecha-
nism does not guarantee that. Recall that our GreedyRTL algorithm is guaranteed to obtain a near-optimal
factor of the optimal revenues when we assume Bayesian knowledge on the user valuations (cf. Section
4). Note that the Bayesian assumption is weaker than having full knowledge on the values. To stretch-test
GreedyRTL, we do not assume even that for our experiments. That is, for the revenue experiment, we take a
worst case scenario in which the algorithm has no knowledge on value distributions, and simply maximizes

14

Figure 2: Revenue ratio between GreedyRTL and OFP. The truthful GreedyRTL mechanism is nearly as
good as an idealistic optimal fixed-price mechanism. For this experiment, we overload the system such that
the total demand exceeds the cloud capacity, so that truthful pricing is strictly positive.

social welfare by setting incentive compatible prices. We examine the revenues generated under the objec-
tive of social welfare, revenues that can be obviously improved when statistical knowledge on evaluations is
available. Figure 2 (see Appendix A) depicts the ratio of revenues between GreedyRTL and OFP as a func-
tion of the slackness parameter s. Surprisingly, despite the fact that OFP has significant value information
that GreedyRTL is not assume to have, that GreedyRTL achieves most of the revenues of OFP for small
values of s, and outperforms it for larger values of s.

15

B SimpleGreedy Algorithm

Input: n jobs with typej = (vj , dj , Dj , kj).
Output: A feasible allocation of resources to jobs.

1 begin
2 initialize: y ← 0, α← 0, β ← 0, π ← 0, charge← 0
3 sort jobs in non-increasing order of value/demand ratio: v1

D1
≥ v2

D2
≥ · · · ≥ vn

Dn

4 for (j = 1 . . . n) do
5 if

(∑
t≤dj min

{
W̄ (t), kj

}
≥ Dj

)
then //If job j can be allocated

6 Allocate(j)
7 else
8 if (β(dj) = 0) then
9 β-cover(j)

10

11 Allocate(j)
12 begin
13 set {yj(t)} arbitrarily to complete job j without violating capacity/parallelism constraints.
14 αj ← vj/Dj

15

16 β-cover(j)
17 begin
18 tcov ← min {t : β(t) = 0}
19 for (t = tcov . . . R(dj)) do
20 β(t)← vj/Dj

21 for (t = 1 . . . R(dj)) do
22 for (i = 1 . . . n) do
23 if (yi(t) > 0 ∧ chargei(t) = 0) then
24 chargei(t)←

[
C

C−k ·
s
s−1

]
· vjDj
· yi(t)

Algorithm 1: SimpleGreedy

16

C GreedyRTL Algorithm

Input: n jobs with typej = (vj , dj , Dj , kj).
Output: A feasible allocation of resources to jobs.

1 begin
2 execute SimpleGreedy, replacing lines 13 (Allocate(j)) with: AllocateRTL(j)
3 foreach charged job j do
4 call α-correct(j)

5

6

7 AllocateRTL(j)
8 begin
9 t← dj

10 while j has not been fully allocated do
11 ∆← min

{
kj , Dj −

∑dj
t′=t+1 yj(t

′)
}

12 while
(
W̄ (t) < ∆

)
do

13 let t′ be the closest unsaturated time slot earlier than t
14 if (β(t′) > 0 or no such t′ exists) then
15 jump to line 20

16 let j′ be a job such that yj′(t) > yj′(t
′)

17 increase yj′(t) and decrease yj′(t′) simultaneously until W̄ (t) = ∆ or yj′(t) = yj′(t
′)

18 yj(t)← ∆
19 t← t− 1

20 while j has not been fully allocated do //Allocate j from right to left in a greedy manner

21 yj(t)← min
{
kj , W̄ (t), Dj −

∑dj
t′=t+1 yj(t

′)
}

22 t← t− 1

23

24

25 α-correct(j)
26 begin
27 α(j)← vj

Dj
− β(bp(yj))

28 for (t = (bp(yj) + 1) . . . dj) do
29 πj(t)← β(bp(yj))− β(t)

30 αj ← αj +
kj
Dj
· (β(bp(yj))− β(t))

31

Algorithm 2: GreedyRTL

17

D Related Work

Scheduling Problems. Scheduling problems have been extensively studied in operations research and
computer science (see [7] for an extensive study). Of specific relevance to our work is [15], which considers
the problem of preemptively allocating jobs on a single server to maximize the social welfare. Lawler gives
an optimal solution in pseudo-polynomial time via dynamic programming to this problem. However, his
algorithm cannot be extended to the case where jobs have parallelization limits. Our model significantly
extends the basic job interval scheduling problem studied by [4, 5]. The best known approximation factor
for this problem is 2. A more general version, in which every interval is given with a width, has also been
studied by [19, 4].

Mechanism Design. Mechanism design is a subfield of economic theory which has received much recent
attention from computer scientists, commencing with the seminal paper of Nisan and Ronen [17] (see also
[18] for a survey book). In its algorithmic aspect, the goal is to design computationally efficient choice
mechanisms, such as resource allocation, while optimizing an objective function (e.g., social welfare, total
profit). The difficulty of algorithmic mechanism design is that unlike classic algorithmic design, participants
act rationally in a game theoretic sense and may deviate in order to maximize their personal utilities. Since
participants’ preferences are usually kept private from the mechanism, we search for efficient mechanisms
that implement certain strategic properties to deal with participants’ incentives, e.g., incentivize users to
truthfully report their preferences, while attempting to optimize an objective function.

Truthful mechanisms in single-value domains have been completely characterized by [2]. An allocation
rule can implement a truthful mechanism if and only if it is monotone. For allocation rules implementing
truthful mechanisms, there is a unique pricing rule implementing it in which unallocated users are charged 0.
Myerson, in his celebrated paper [16], first shown this result for single item auctions under Bayesian settings.
Compared to single-parameter domains, much less is known about the characterization of implementable
allocation rules for multi-parameter problems. Rochet [20] gave an equivalent property to monotonicity
called cyclic monotonicity, which is a necessary and sufficient condition for truthfulness. Yet, it is unclear
how to use this property to easily construct truthful mechanisms from it and only few successful efforts are
known (for example, [14]). Saks and Yu [21] showed that for deterministic settings, cyclic monotonicity is
equivalent to a simpler property called weak monotonicity, which conditions only on cycles of length 2 (see
also [3]). However, this result is not valid for randomized mechanisms [6].

Our work is much related to research on algorithmic mechanism design for scheduling problems. We
note that most papers in the area mainly focus on minimizing the makespan (see, e.g., [14, 2]). Of specific
relevance to our work is a recent paper by Feige and Tennenholtz [10] that provides an impossibility result
for designing constant-factor approximation mechanisms when users’ demands are uncertain. Our paper
confronts demand uncertainties by restricting the deadlines that users may request as a function of certain
job characteristics.

E Proofs Omitted from Section 3

E.1 SimpleGreedy

Proof of Lemma 3.1: By induction. Initially, β = 0 and the claim trivially holds. Consider a call to
β-cover(j) and let j′ be the last unallocated job for which β-cover(j′) was called. By the order through
which the greedy algorithm considers jobs, j′ < j, and thus vj′/Dj′ ≥ vj/Dj . The claim holds since we
set β(t) to be vj/Dj in the range t ∈ [tcov, R(dj)] and since dj ≤ R(dj) by the definition of R(·). ut

18

Proof of Lemma 3.3: By Induction. Initially, both sides are 0, thus the claim trivially holds. Let j′ be
the last unallocated job for which β-cover(j′) was called and assume that the claim holds after the call to
β-cover(j′). Note that saturated time slots cannot become unsaturated. Between the two calls, the left hand
side (LHS) of the inequality is updated as follows:

• R(dj)− R(dj′)− |Ej \ Ej′ | new saturated time slots in the interval
(
R(dj′), R(dj)

]
are included in

the LHS. Since every active job i in such a time slot t is either being charged or has been charged
before, chargei(t) ≥

(
C

C−k ·
s
s−1

)
· yi(t) · vjDj

. Therefore, for each such t the leftmost expression
increases by at least:

C

C − k
· s

s− 1
·
j−1∑
i=1

yi(t) ·
vj
Dj
≥ C · s

s− 1
· vj
Dj

,

where the inequality follows since t is saturated. The cost of setting β(t) =
vj
Dj

for such a time slot t
is C · vjDj

, thus the total gain to the LHS is at least:
(
R(dj)−R(dj′)− |Ej \ Ej′ |

)
· C · vjDj

.

• |Ej′ \Ej | time slots have been saturated in the interval
[
1, R(dj′)

]
. Since β(t) has been already set for

such time slots t, by arguments similar to before, the LHS increases by at least: C · s
s−1 ·

vj
Dj
· |Ej′ \Ej |.

• |Ej \ Ej′ | unsaturated time slots have been covered at cost: C · vjDj
· |Ej \ Ej′ |.

Thus, the left hand side of the inequality increases by at least:

C · vj
Dj
·
[
R(dj)−R(dj′)

s− 1
−
|Ej \ Ej′ |
s− 1

+
s

s− 1
· |Ej′ \ Ej | − |Ej \ Ej′ |

]
. (17)

Therefore, by applying the inductive assumption we have:

LHS ≥ C ·
vj′

Dj′
· s

s− 1
·
[
R(dj′)

s
− |Ej′ |

]
+

+ C · vj
Dj
·
[
R(dj)−R(dj′)

s− 1
−
|Ej \ Ej′ |
s− 1

+
s

s− 1
· |Ej′ \ Ej | − |Ej \ Ej′ |

]
≥ C · vj

Dj
·
[
R(dj)

s− 1
− s

s− 1
|Ej |

]
+ C · vj

Dj
· s

s− 1
·
[
|Ej | − |Ej′ | − |Ej \ Ej′ |+ |Ej′ \ Ej |

]
= C · vj

Dj
· s

s− 1
·
[
R(dj)

s
− |Ej |

]
,

since |Ej | − |Ej′ | = |Ej \ Ej′ | − |Ej′ \ Ej |. ut

19

E.2 GreedyRTL

Proof of Claim 3.5: The only stage of the algorithm in which we decrease the total workload W (t)
for some time slot t is when we cannot allocate ∆ resource units during a call to AllocateRTL. Since we
decrease W (t) up to the point where W (t) = C − ∆ and then allocate ∆ resource units to j, time slot t
becomes full. Specifically, saturated time slots remain saturated throughout the algorithm. ut

Proof of Claim 3.6: Let j′ be the first (unallocated) job for which the call to β-cover(j′) charges j. In
order for the allocation yj to be changed by the algorithm, the following must hold: there must be two time
slots t′ < t, as observed by the AllocateRTL algorithm, such that: (1) yj(t) > yj(t

′) (2) β(t′) = 0. By the
monotonicity of β we also know that β(t) = 0.

It suffices to show that after the call to β-cover(j′) it holds that β(bp(yj)) > 0. If so, by the monotonicity
of β, bp(t′) < t′ < t implying yj(t) = yj(t

′) = kj , therefore AllocateRTL would not have changed yj . At
the end of the call to β-cover(j′) we must have s(yj) ≤ R(dj′), otherwise j wouldn’t have been charged.
Moreover, by the definition of R(·) and since yj is β-consistent, we have bp(yj) ≤ R(dj′). Therefore, after
the call to β-cover(j′), β(bp(yj)) is at least vj′/Dj′ > 0, as desired. ut

Proof of Claim 3.7: By Induction. Initially, the claim trivially holds. Assume that all existing allocations
are β-consistent and consider a call to AllocateRTL(j). Recall that by Claim 3.5 saturated time slots remain
saturated, and that variables β(t) > 0 are never unset. If at the end of the call bp(yj) = s(yj) then
the allocation is trivially β-consistent. Otherwise, consider the point where t = bp(yj). From this point
on, AllocateRTL may allocate job j arbitrarily (specifically, we jump to line 20) since we cannot find an
unsaturated time slot t′ to the left of t with β(t′) = 0. Therefore, yj is β-consistent.

Now, consider an allocation yj′ of an allocated job j′ modified by the AllocateRTL rule, and denote
by ỹj′ the resulting modified allocation. As in claim 3.6, there must be two time slots t′ < t such that:
(1) yj′(t) > yj′(t

′) (2) β(t′) = β(t) = 0. Notice first that t′ ≤ bp(yj′), otherwise yj′(t′) = kj and then
we wouldn’t have modified yj′ . Second, by the choice of t′, all time slots in the interval (t′, t] are either
saturated or have a non-zero β value. By the β-consistency property of yj , the same condition holds for the
interval (s(yj), bp(yj)]. Thus, we have (1) s(ỹj′) = min {s(yj), t′} (2) bp(ỹj′) = max

{
bp(yj′), t

}
, since if

t > bp(yj′) we decrease yj′(t) below kj . Combining (1),(2) with the previous observations prove that ỹj′ is
β-consistent, since

(
s(yj′), bp(yj′)

]
= (s(yj), bp(yj)] ∪ (t′, t]. ut

Proof of Theorem 3.8: First we show that the dual solution (α, β, π) constructed by GreedyRTL is
feasible, and then we bound its cost. Recall the dual constraint:

αj + β(t) + πj(t)−
kj
Dj
·
∑
t′≤dj

πj(t
′) ≥ vj

Dj
∀j, t ≤ dj (18)

For an unallocated job, by the way β-cover sets the β(t) variables and since αj = πj(t) = 0 for every time
slot t, all of the dual constraints associated with j are satisfied. Now consider an uncharged job j. Here, we
set αj = vj/Dj and πj(t) = 0 for every time slot t, thus feasibility in this case follows since β(t) ≥ 0 for
every time slot t.

Finally, consider a charged job j. To satisfy the dual constraints of j, we follow the routine α-correct
(Algorithm 2, lines 25 – 31). Initially, we set αj (vj/Dj − β(bp(yj)) to cover all of the constraints up to
bp(yj) (by the monotonicity of β). To cover the remaining constraints, we use the πj(t) variables. First

20

notice that whenever a variable πj(t) is set to some value ε, every time slot (including t) incurs a ”punish-
ment” of−kj/Dj ·ε. To balance this, the routine α-correct increases αj by kj/Dj ·ε (line 30). To conclude,
for each t ∈ (bp(yj), dj] we set πj(t) such that β(t) + πj(t) = β(bp(yj)) and correct αj accordingly. By
arguments similar to ones used in the previous case, we cover the remaining dual constraints.

We now bound the cost of the dual solution (α, β, π). Since by Claim 3.6, the allocation of a charged
job is not modified by the AllocateRTL rule, we can apply Lemma 3.3 and bound this cost by at most:

∑
j

Djαj +
n∑
j=1

∑
t≤djW̄ (t)<k

chargei(t) ≤
∑
j

Djαj +
n∑
j=1

∑
t≤dj

chargei(t) (19)

Notice that unallocated jobs do not contribute to the dual objective function, since they are not charged and
their α value is 0. For an uncharged job j, we only pay Djαj = vj . Now, consider a charged job j. Let j′

be the first job for which β-cover(j′) charges j and let yj be the allocation of j at that point. According to
Claim 3.6, yj is the final allocation of resources to j at the end of the algorithm. By arguments similar to
ones used in the proof of Claim 3.7, we have bp(yj) ≤ R(dj′). Thus, β(bp(yj)) must be at least vj′/Dj′ .
Moreover, since at this point j is charged for the first time, we have:

chargej(t) ≤
(

C

C − k
· s

s− 1

)
· β(bp(yj)) · yj(t) ∀t ≤ dj

For the charged job j, we have:

Djαj = Dj ·

 vj
Dj
− β(bp(yj)) +

dj∑
t=bp(yj)+1

kj
Dj
· (β(bp(yj))− β(t))

 (20)

= vj −

Dj β(bp(yj)) −
dj∑

t=bp(yj)+1

kj β(bp(yj))

 − dj∑
t=bp(yj)+1

kj β(t) (21)

= vj −
∑

t≤bp(yj)

yj(t)β(bp(yj)) −
dj∑

t=bp(yj)+1

kj β(t). (22)

The last inequality follows since yj is β-consistent by claim 3.7. Now, consider the sum of the charges
incurred on j. Consider some call to β-cover(j′′) that charges chargej(t) from j. Specifically, job j is
charged according to a price-per-unit of vj′′/Dj′′ . Since j′′ is covered after the call to β-cover(j′′) and since
j ¡ j′′ by the order through which GreedyRTL considers jobs, we have vj′′/Dj′′ ≤ β(t) and vj′′/Dj′′ ≤
vj/Dj . Recalling that j is not charged in any time slot according to more than vj′/Dj′ and since this is at
most β(bp(yj)) as shown earlier, we get that:

∑
t≤dj

chargej(t) ≤
(

C

C − k
· s

s− 1
− 1

)
·
∑
t≤dj

vj
Dj

yj(t) (23)

+
∑

t≤bp(yj)

β(bp(yj)) yj(t) +

dj∑
t=bp(yj)+1

β(t) yj(t) (24)

=

(
C

C − k
· s

s− 1
− 1

)
· vj +

∑
t≤bp(yj)

β(bp(yj)) yj(t) +

dj∑
t=bp(yj)+1

β(t) kj . (25)

21

By combining (22) and (25) we get that:

Djαj +
∑
t≤dj

chargej(t) ≤
(

C

C − k
· s

s− 1

)
· vj .

We complete the proof by summing up over all jobs allocated by GreedyRTL. ut

F Proofs Omitted from Section 4

Proof of Theorem 4.1: Let j be a user with τj = 〈vj ,Pj〉 and let τj = 〈v′j ,P ′j〉 be an alternative type
bid. To prove thatM is truthful, we must show that uj(vj ,Pj) ≥ uj(v′j ,P ′j). First, notice that by the value-
monotonicity of f , the payment set in (16) is always non-negative, since fj(s,P ′j | P ′j) ≤ fj(v

′
j ,P ′j | P ′j)

for every s ≤ v′j . By the definition of uj and since payments are set according to (16):

uj (vj ,Pj) =

vj∫
0

fj
(
s,Pj | Pj

)
ds, (26)

uj
(
v′j ,P ′j

)
= vjfj

(
v′j ,P ′j | Pj

)
−

v′j fj(v′j ,P ′j | P ′j)−
v′j∫

0

fj
(
s,P ′j | P ′j

)
ds

 . (27)

Note that (26) implies thatM is individually rational, since the utility of a truthful user is non-negative. To
conclude, we must show that uj(vj ,Pj) ≥ uj(v

′
j ,P ′j). Consider two cases. If fj

(
v′j ,P ′j | Pj

)
= 0, then

since payments are non-negative, uj(v′j ,P ′j) ≤ 0 and the required condition holds sinceM is individually
rational.

The second case happens when fj(v
′
j ,P ′j | Pj) = 1, implying the following. First, by property-

monotonicity we have:
∀s ≤ v′j , fj

(
s,P ′j | P ′j

)
≤ fj

(
s,Pj | Pj

)
. (28)

Second, since f is rational, it implies that fj(v′j ,P ′j | P ′j) = 1. By the previous claim and since f is value-
monotone, for every value s ≥ v′j we have fj(s,Pj | Pj) = 1. From here we conclude that for every s,
fj(s,P ′j | P ′j) ≤ fj(s,Pj | Pj). After applying this inequality to (26) and combining it with (27) we get:

uj (vj ,Pj)− uj
(
v′j ,P ′j

)
=

vj∫
v′j

fj
(
s,P ′j | P ′j

)
ds − (vj − v′j)fj

(
v′j ,P ′j | P ′j

)
. (29)

Consider the case where v′j ≤ vj . By value-monotonicity, for every s ∈ [v′j , vj] we havefj(s,P ′j | P ′j) ≥
fj(v

′
j ,Pj | Pj). Therefore, (29) is non-negative as required. The case where v′j ≥ vj is symmetric,

interchanging the roles of v′j and vj . ut

Proof of Theorem 4.3: Consider the set properties Pj as fixed, making f a single-value allocation rule.
By the characterization theorem of single-value allocation functions [2], since f is value-monotone, the
mechanism M = (f, p) with p set as in (16) is truthful. By Theorem 4.2, the mechanism Mφ̄ gives an
α-approximation to the optimal expected profit.

22

It remains to show that fφ̄ admits a truthful mechanism. Notice that since φ̄j is monotone for every j, fφ̄
is value-monotone. Moreover, the property-monotonicity and rationality of f directly implies the property-
monotonicity and rationality of fφ̄ (since these properties are defined over any value vj , specifically φ̄j(vj)),
and therefore we can apply Theorem 4.1. ut

Proof of Claim 4.4: Let Pj = 〈dj , Dj , kj〉 be the property set a user j. Fix the types τ−j of all users
apart from j and let v′j ≤ v′′j be two values. It is enough to show that if fj(v′′j ,Pj | Pj) = 0 then fj(v′j ,Pj |
Pj) = 0. By the order GreedyRTL goes over the jobs, user j will be considered earlier when reporting
v′′j . Consider the two executions of GreedyRTL matching the two values. Notice that both executions are
identical up to the point where j is handled by GreedyRTL when reporting v′′j . If j cannot be allocated when
reporting v′′j , by Claim 3.5 the amount of available resources in every time slot will only keep decreasing,
thus j will not be allocated when reporting v′j . ut

Proof of Claim 4.5: For a user j, fix the types τ−j reported by other users and let Pj = 〈dj , Dj , kj〉,
P ′j = 〈d′j , D′j , k′j〉 be two property sets for user j. Assume that there is a value v′j for which fj(v′j ,P ′j |
Pj) = 1. Now, let s ≤ v′j . We need to show that if fj(s,P ′j | P ′j) = 1 then fj(s,Pj | Pj) = 1. Since the
job of user j is fully completed under P ′j , we have Dj ≤ D′j . Specifically, user j will have a higher priority
in the sorted list of jobs when reporting Pj . By Claim 3.5, the are more available resources in every time
slot t for allocating user j when he reports Pj instead of P ′j .

Out of all 4 possibilities, the most complicated one to prove is the case where d′j ≥ dj and k′j ≥ kj . If
j reports an earlier deadline or a smaller parallelism bound, it only makes it more difficult for GreedyRTL
to allocate j. Thus, we prove the complicated case (the three other cases will hold by similar arguments).
Notice the following: once a job j is allocated by GreedyRTL, any later call to RTLAllocate(j′) will not
change the completion time of job j. This is true since in case yj(t) is decreased for some t, at the same
time yj(t′) is increased for some t′, stopping once they are equal (if not earlier). Therefore, for us to have
fj(v

′
j ,P ′j | Pj) = 1, job j must not have been allocated after dj when reporting a type of 〈v′j ,P ′j〉. By Claim

3.5, this is also true when reporting s ≤ v′j . Thus, we can assume without loss of generality that d′j = dj .
Now, denote by y′j the allocation set to job j at the end of the call to GreedyRTL when reporting

〈v′j ,P ′j〉. Under the assumption that fj(v′j ,P ′j | Pj) = 1, the maximal entry in y′j is at most kj . By the way
RTLAllocate modifies allocations, every resource unit occupied by y′j was available when j was initially
allocated by GreedyRTL. Thus, when reporting 〈vj ,Pj〉, since j will be considered earlier by GreedyRTL,
it will also be possible to allocate j. This concludes the proof. ut

G Proofs Omitted from Section 6

Proof of Theorem 6.1: Denote by
(
α′, β′, π′

)
the dual solution constructed by GreedyRTL matching

reported deadlines d′j . To bound the gap betweenRTL′ andOPT , we construct a feasible solution
(
α, β, π

)
to the dual program matching the original deadlines dj . Notice that the difference between the two dual
programs are the additional cover inequalities t ∈

(
d′j , dj

]
that need to be covered. First, notice that for

every j:
dj
d′j
≤ 1

1− δ
s −

1
dj

≤ 1

1− δ
s −

1
T

(30)

Denote by κ the last expression to the right of the inequality above. Intuitively, we would like to ”stretch”
the dual vectors β, πj towards later time slots, by a stretch factor of κ, and fix the variables αj to cover all
dual constraints. Since the vectors β′, π′j are defined over a discrete domain, we must convert them to

23

continuous functions, to allow the easy stretch. Let fβ′ , fπ′
j

: [0, T] → R+ for every j be continuous
functions defined as:

fβ′(x) = β′
(
dx
κ
e
)

; fπ′
j
(x) = π′j

(
dx
κ
e
)

(31)

Now, define the new dual solution to be:

αj =
α′j
κ

; β(t) =

t∫
t−1

fβ′(x)dx ; πj(t) =

t∫
t−1

fπ′
j
(x)dx (32)

Notice that
∑

j Djαj = 1
κ

∑
j Djα

′
j and

∑
tCβ(t) = 1

κ

∑
tCβ(t), thus the cost of the dual solution

increases by a multiplicative factor of 1/κ. To prove the claim, it remains to show that the solution we
constructed to the original dual program (with deadlines dj) is feasible. Since

(
α′, β′, π′

)
is a feasible

solution to the dual program matching the deadlines d′j and since for every t ≤ dj , dt/κ ≤ d′j by (30), we
have for every dual constraint (5) matching j, t ≤ dj :

(5) = αj + β(t) + πj(t)−
kj
Dj

∑
t′≤dj

πj(t
′) =

= αj +

t∫
t−1

[
β′
(
dx
κ
e
)

+ π′j

(
dx
κ
e
)]
dx − kj

Dj

∑
t′≤dj

t∫
t−1

fπ′
j
(x)dx ≥

≥
α′j
κ

+

t∫
t−1

 vj
Dj
− α′j +

kj
Dj

∑
t′≤d′j

π′j(t
′)

 dx − kj
Dj

∑
t′≤dj

t∫
t−1

fπ′
j
(x)dx ≥

≥ vj
Dj

+

(
1− 1

κ

)α′j − kj
Dj

∑
t′≤d′j

π′j(t)

 ≥ vj
Dj

Where the last inequality follows since for an unallocated job j we set πj(t) = 0 for every t, and for an
allocated job j, α-correct(j) sets α′ to be at least kj

Dj

∑
t′≤dj π

′
j(t).

ut

24

