
Friends Need a Bit More:
Maintaining Invariants Over Shared State

February 6, 2004

Mike Barnett and David A. Naumann⋆

0 Microsoft Research
mbarnett@microsoft.com
1 Stevens Institute of Technology

naumann@cs.stevens-tech.edu

Abstract. A friendship systemis introduced for modular static verification of
object invariants. It extends a previous methodology, based on ownership hierar-
chy encoded in auxiliary state, to allow for state dependence across ownership
boundaries. Friendship describes a formal protocol for agranting classto grant
a friend classpermission to express its invariant over fields in the granting class.
The protocol permits the safe update of the granter’s fields without violating the
friend’s invariant. The ensuing proof obligations are minimal and permit many
common programming patterns. A soundness proof is sketched. The method is
demonstrated on several realistic examples, showing that it significantly expands
the domain of programs amenable to static verification.

0 Introduction

Whether they are implicit or explicit, object invariants are an important part of object-
oriented programming. An object’s invariant is, in general, ahealthinessguarantee that
the object is in a “good” state, i.e., a valid state for calling methods on it.

For example, in a base class library for collection types, certain method calls may
be made on an enumerator only if the underlying collection has not been modified since
the enumerator was created. Other examples are that an acyclic graph is indeed acyclic
or that a sorted array has its elements in the proper order.

Various proposals have been made on how object invariants can be formally ex-
pressed and on different mechanisms for either guaranteeing that such invariants hold
[LN02,LG86,Mül02] or at least dynamically recognizing moments in execution where
they fail to hold [BS03,CL02,Mey97]. For the most part, these systems require some
kind of partitioning of heap objects so that an object’s invariant depends only on those
objects over which it has direct control. This is intuitive,since it is risky for one data
structure to depend on another over which it has no control. However, systems such
asownership types[CNP01,Cla01,BLS03,Mül02] are inflexible in that they demand
object graphs to be hierarchically partitionable so that the dependencies induced by ob-
ject invariants do not cross ownership boundaries. There are many situations where an
object depends on another object but cannot reasonably own it.
⋆ Partially supported by NSF CCR-0208984; SRI Visiting Fellowship; Microsoft Research.

2

We relax these restrictions with a new methodology; our method allows the defini-
tion of a protocol by which agranting classcan give priviliges to anotherfriend class
that allows the invariant in the friend class to depend on fields in the granting class. As
in real life, friendship demands the active cooperation of both parties. A friend class can
publish restrictions on field updates of the granting class.The granting class must be
willing to operate within these restrictions. In return, each instance of the friend class
must register itself with the instance of the granting classthat it is dependent on. And
as in real life, the quality of the friendship depends on how onerous its burdens are. We
believe our system imposes a minimal set of constraints on the participating parties.

Our method builds on ownership-based invariants [BDF+ 03a], formalized using
an auxiliary field owner [LM03]. We refer to the combination of [BDF+ 03a] and
[LM03] as theBoogie methodology. An on-going project at Microsoft Research named
“Boogie” is building a tool based on that methodology. In Section 1, we review the
relevant features of the object invariant system from that work.

Section 2 presents a representative example of an instance of a granting class per-
forming a field update that could violate the invariant of an instance of a friend class.
We describe the required proof obligations for the grantingobject to perform the field
update without violating the invariants of its friends or the object invariant system. In
Section 2.0, we describe how a granting class declares whichclasses are its friends
and how granting objects track friends that are dependent upon it. It is important that
a granting object has an abstraction of the invariants of itsfriends, rather than the full
details. Our method for this is explained in Section 2.1. Then in Section 2.2, we define
the obligations incumbent upon the friend class for notifying granting objects of the
dependence. Section 2.3 summarizes all of the features of our method.

Section 3 sketches a soundness argument for our method. Section 4 describes two
extensions. The first, in Section 4.0, presents a convenientmethodology that shows
how reasoning about dependents can be linked to the code of the granting class. In
Section 4.1, we describe a syntactic means for transmittinginformation after a field
update back to the granting object from a friend object. We give several examples in
Section 5 that present our methodology in action on challenging examples. Section 6
reviews related work and Section 7 summarizes our contribution and points out future
work.

We assume some familiarity with the principles of object-oriented programming
and the basics of assertions (pre- and post-conditions, modifies clause, and invariants)
as well as their use in the static modular verification of sequential object-oriented pro-
grams. However, we do not presuppose any particular verification technology.

For simplicity, we describe our method without taking into account subtyping. The
full treatment is described in a forthcoming technical report; it follows the same pattern
as the Boogie work [BDF+ 03a]. A companion paper [NB04] gives a rigorous proof of
soundness in a semantic model. The concrete syntax that we use is not definitive and
illustrates one particular way to encode the information needed by our method.

3

class Set {

fst : Node := null;

insert(x : int)
{

t : Node := new Node(x);
“code to insertt”

}

remove(x : int)
{“delete first node with valx ” }

map(g : Fun)
{“apply g to all elements; remove duplicates”}

}

class Node {

val : int

next : Node

Node(x : int)
{val := x ;next := null}

}

class Fun {

apply(x : int) : int

{ return x mod 7; }

}

Fig. 0. A set of integers is represented by a linked list, without duplicate values, rooted atfst .
Method insert adds an element if not already present. Methodmap(g) updates the set to be its
image throughg .apply . ClassNode has only a constructor; nodes are manipulated inSet .

1 Using auxiliary fields for ownership-based invariants: A Review

Using the contrived example code in Figure 0 we review the Boogie approach to invari-
ants and ownership. In our illustrative object-oriented language, class types are implic-
itly references; we use the term “object” to mean object reference.

An instance of classSet maintains an integer set represented by a sequence without
duplicates, so thatremove(x) can be implemented by a linear search that terminates as
soon asx is found. The specification of classSet could include invariant

InvSet : fst is the root of an acyclic sequence without duplicate values.

We denote the invariant for a classT by InvT . Note that since the invariant mentions
instance fields, it is parameterized by an instance of typeT . We write InvT (o) where
o is an object of typeT when we want to make explicit the value of an invariant for a
particular instance.

An object invariant is typically conceived as a pre- and post-condition for every
method of the class. For example, ifremove(x) is invoked in a state where there are
duplicates, it may fail to establish the intended postcondition that x is not in the set.
Constructors establish invariants.

The methodmap takes the function supplied as an argument and, abstractly,maps
the function over the set to yield an updated set. Suppose it is implemented by first up-
dating all of the values in place and only after that removingduplicates to re-establish
the invariant. One difficulty in maintaining object invariants is the possibility of reen-
trant calls: If an objectg has access to the instances on which s .map(g) is invoked,
then within the resulting call tog.apply there could be an invocation ofs .remove . But
s at that point is in an inconsistent state —i.e., a state in which InvSet (s) does not hold.
It is true that by considering the body ofapply as given in Figure 0 we can rule out this

4

possibility. But for modular reasoning aboutSet we would only have a specification
for apply —quite likely an incomplete one. (Also,Fun could have been written as an
interface; orapply can be overridden in a subclass ofFun .)

A sound way to prevent the problem of re-entrance is for the invariant to be anex-
plicit precondition and postcondition for every method:apply must establishInvSet (s)
before invokings .remove , and it cannot do so in our scenario. But this solution violates
the principle of information hiding: UsingNode and maintainingInvSet are both de-
cisions that might be changed in a revision ofSet (or in a subclass). Indeed, we might
want the fieldfst to be private toSet whereas the precondition of a public method
should mention only visible fields.

It is possible to maintain proper encapsulation by making itthe responsibility ofSet

to ensure that its invariant hold atevery“observable state”, not only at the beginning
and end of every method but also before any “out” call is made from within a method.
In the example,Set would have to establishInvSet (s) within map before each call to
apply . Though frequently proposed, this solution is overly restrictive. For instance, it
would disallow the sketched implementation ofmap in which removal of duplicates is
performed only after all the calls toapply . In a well structured program with hierarchi-
cal abstractions there are many calls “out” from an encapsulation unit, most of which
do not lead to reentrant callbacks.

Programmers often guard against reentrant calls using a “call in progress” field;
this field can be explicitly mentioned in method specifications. In some respects this is
similar to a lock bit for mutual exclusion in a concurrent setting. Disallowing a call to
remove while a call tomap is in progress can be seen as a protocol and it can be useful
to specify allowed sequences of method invocations [DF01,DF03].

We wish to allow reentrant calls. They are useful, for example, in the ubiquitous
Subject-View pattern where a reentrant callback is used by aView to inspect the state
of its Subject. On the other hand, general machinery for callprotocols seems onerous
for dealing with object invariants in sequential programs.Moreover this is complicated
by subclassing: a method added in a subclass has no superclass specification to be held
to.

Boogie associates a boolean fieldinv with the object invariant. This association is
realized in the followingsystem invariant, a condition that holds ineverystate. (That is,
at every control point in the program text.)

(∀ o • o.inv ⇒ InvT (o) whereT = type(o)) (0)

Here and throughout the paper, quantification ranges over objects allocated in the cur-
rent state. The dynamic (allocated) class ofo is written type(o) .

As part of the methodology to ensure that (0) is in fact a system invariant, we stipu-
late that the auxiliary fieldinv may only be used in specifications and in special state-
mentspack andunpack . If the methods ofSet all requireinv as precondition, then
apply is prevented from invokings .remove as in the first solution above —but with-
out exposingInvSet in a public precondition. Nevertheless, the body ofremove can
be verified under preconditionInvSet owing to preconditioninv and system invariant
(0).

The special statementspack and unpack enforce a discipline to ensure that
(0) holds in every state. Packing an object setsinv to true ; it requires that the ob-

5

ject’s invariant holds. Unpacking an object setsinv to false . Since an update to the
field o.f could falsify the invariant ofo , we require that each update be preceded by
assert ¬o.inv .

The details are deferred so we can turn attention to another issue raised by the
example, namely representation exposure. The nodes reached from Set .fst are intended
to comprise an encapsulated data structure, but even iffst is declared private there
is a risk that node references areleaked: e.g., some client of a sets could change
the value in a node and thereby falsify the invariant. Representation exposure due to
shared objects has received considerable attention [LN02], including ownership type
systems [Mül02,CD02,BN02a,BLS03] and Separation Logic [OYR04]. In large part
these works are motivated by a notion ofownership: the Nodes reached froms .fst ,
on which InvSet (s) depends, are owned by that instances and should not be accessed
except bys . This ensures that the invariant ofs is maintained so long as methods of
Set maintain it.

The cited works suffer from inflexibility due to the conservatism necessary for static
enforcement of alias confinement. For example, type systemshave difficulty with trans-
fering ownership. However, transfer is necessary in many real-world examples and state
encapsulation does not necessarily entail a fixed ownershiprelation. (This is empha-
sized in [OYR04,BN03].)

A more flexible representation of ownership can be achieved using auxiliary fields
owner and comm in the way proposed by Barnettet al. and refined by Leino and
Müller [LM03]. The field owner , of type Object , designates the owner, ornull if
there is no owner. The boolean fieldcomm designates whether the object is currently
committed toits owner: if it is true, then its invariant holds and its owner is depending
on having sole access for modifying it. The latter is true whenever the owner,o , sets
its own inv bit, o.inv . Sinceo ’s invariant may depend on the objects that it owns,
it cannot guarantee its invariant unless no other object canupdate any objectp where
p.owner = o , or wherep is a transitively owned object. There are two associated
system invariants. The first is thato.inv implies that every objectp owned byo is
committed.

(∀ o • o.inv ⇒ (∀ p • p.owner = o ⇒ p.comm)) (1)

The second ties committment to invariants:

(∀ o • o.comm ⇒ o.inv) (2)

The special fieldsinv , comm, owner are allowed in pre- and post-conditions; only
owner is allowed to occur in object invariants. A consequence is that in a state where
o transitively ownsp , we haveo.inv ⇒ p.comm .

The point of ownership is to constrain the dependence of invariants and to encapsu-
late the objects on which an invariantInvT depends so that it cannot be falsified except
by methods ofT .

Definition 1 (admissible object invariant). An admissible object invariantInvT (o)
is one such that in any state, ifInvT (o) depends on some object fieldp.f in the sense
that update ofp.f can falsifyInvT (o) , then either

6

– p = o (this means thatthis.f is in the formula forInvT); or
– p is transitively owned byo .

Transitive ownershipis inductively defined to mean that eitherp.owner = o or that
p.owner is transitively owned byo .

Remarkably,f is allowed to be public, though for information hiding it is often
best for it to be private or protected. The ownership discipline makes it impossible for
an object to update a public field of another object in a way that violates invariants.

Aside 1 The methodology handles situations where an object owns others that it does
not directly reference, e.g., nodes in a linked list. But a common situation is direct
reference like fieldfst . To cater for this, it is possible to introduce a syntactic marker
rep on a field, to designate that its value is owned. It is not difficult to devise annotation
rules to maintain the associated system invariant

(∀ o : T • o.inv ∧ o.f 6= null ⇒ o.f .owner = o)

for every rep field f declared in each classT . On the other hand, one can simply
include “this.f = null ∨ this.f .owner = o ” as a conjunct of the invariant, so
in this paper we omit this feature. A similar feature is to mark a field f as peer , to
maintain the invariantthis.f = null ∨ this.f .owner = this.owner [LM03]. Again,
it is useful but does not solve the problems addressed in thispaper and is subsumed
under our proposal.

The system invariants hold in every state —loosely put, “at every semicolon”—
provided that field updates to the fieldf , with expressionsE andD , are annotated as

assert ¬E .inv ;
E .f := D ;

(3)

and the special fieldsinv , comm , and owner are updated only by the special state-
ments defined below. Most important are the special statements for inv andcomm .0

unpack E ≡ assert E 6= null ∧ E .inv ∧ ¬E .comm;
E .inv := false;
foreach p such that p.owner = E do p.comm := false;

pack E ≡ assert E 6= null ∧ ¬E .inv ∧ InvT (E)
∧ (∀ p • p.owner = E ⇒ ¬p.comm ∧ p.inv);

foreach p such that p.owner = E do p.comm := true;
E .inv := true;

Proofs thatpack andunpack maintain the system invariants (0), (1), and (2) can be
found in [BDF+ 03a] and [NB04]. Let us consider how (3) maintains (0). An admissible

0 Note that the “foreach ” statement inpack updates the auxiliary fieldcomm of an un-
bounded number of objects. An equivalent expression, more in the flavor of a specifica-
tion statement in which the fieldcomm is viewed as an array indexed by objects, is this:
change comm such that (∀ p • p.comm ≡ p.comm0 ∧ p.owner 6= E) .

7

invariant for an objecto depends only on objects owned byo and thus can only be
falsified by update of the field of such an object. But an updateof p.f is only allowed
if ¬p.inv . If p is owned byo then ¬p.inv can only be achieved by unpackingp ,
which can only be done ifp is not committed. But to un-commitp requires unpacking
o —and then, since¬o.inv , there is no requirement forInvT (o) to hold.

The special statementspack andunpack effectively impose a hierarchical disci-
pline of ownership, consistent with the dependence of invariants on transitively owned
objects. Because the discipline is imposed in terms of auxiliary state and verification
conditions rather than as an invariant enforced by a static typing system [Mül02,Cla01,BLS03,BN02a],
the temporary violations permitted bypack andunpack offer great flexibility.

Every constructor begins implicitly with initialization

inv , comm, owner := false, false,null.

The last of the special statements is used to updateowner .

set-owner E to D ≡
assert E 6= null ∧ ¬E .inv ∧ (D = null ∨ ¬D .inv);
E .owner := D ;

At first glance it might appear that the preconditionE .owner = null ∨ ¬E .owner .inv

is needed as well, but for non-nullE .owner , we get¬E .owner .inv from ¬E .inv by
the system invariants.

A cycle of ownership can be made usingset-owner , but the precondition for
pack cannot be established for an object in such a cycle.

One of the strengths of this approach to ownership is thatset-owner can be used
to transfer ownership as well as to initialize it (see the example in Section 5.2). An-
other strength is the way invariants may be declared at everylevel of an inheritance
chain; we have simplified those few parts of the methodology which are concerned
with subclassing. The reader may refer to the previous papers [BDF+ 03a,LM03] for
more discussion.

2 The problem: objects without borders

The Boogie methodology is adequate for the maintenance of ownership-based invari-
ants. Our contribution in this paper, summarized in Section2.3, is to go beyond owner-
ship to cooperating objects.

We describe the problem and our method using the code in Fig. 1. The invariant
0 ≤ time in classMaster abbreviates0 ≤ this.time . (Recall thatInvMaster (o)
denotes0 ≤ o.time .) According to the rules for admissible invariants in Section 1,
InvMaster is allowed.

The constructor forMaster exemplifies the usual pattern for constructors: it first
initializes the fields in order to establish the invariant and then usespack to set theinv

bit. Methods that update state typically first executeunpack to turn off the inv bit
and then are free to modify field values. Before they return, they usepack once their
invariant has been reestablished.

8

class Master {

time : int;
invariant 0 ≤ time;

Master()
ensures inv ∧ ¬comm;

{ time := 0; pack this; }

Tick(n : int)
requires inv ∧ ¬comm ∧ 0 ≤ n;
modifies time;
ensures time ≥ old(time);

{
unpack this;
time := time + n;
pack this;

}

}

class Clock {

t : int;
m : Master ;
invariant m 6= null ∧ 0 ≤ t ≤ m.time;

Clock(mast : Master)
requires mast 6= null ∧ mast .inv ;
ensures inv ∧ ¬comm;

{ m := mast ; t := 0; pack this; }

Sync()
requires inv ∧ ¬comm;
modifies t ;
ensures t = m.time;

{ unpack this; t := m.time; pack this; }

}

Fig. 1. A simple system for clocks synchronized with a master clock.InvClock (this) depends
on this.m.time but does not ownthis.m .

The predicateInvClock is not an admissible invariant: it depends onm.time , but
a clock does not own its master. Otherwise a master could not be associated with more
than one clock. While it might be reasonable to let the masterown the clocks that point
to it, we wish to address situations where this ownership relation would not be suitable.
More to the point, such a solution would only allowInvMaster to depend on the clocks
whereas we wantInvClock to depend on the master.

Although InvClock is not admissible according to Definition 1, the update oftime

in Tick increases the value oftime , which cannot falsifyInvClock . The problem that
our methodology solves is to allow non-ownership dependence in a situation like this,
i.e., to support modular reasoning about the cooperative relationship whereinTick does
not violateInvClock .

However, whileTick is a safe method in relation toInvClock , we want to preclude
the classMaster from defining a methodReset :

Master .Reset()
requires inv ;
modifies time;

{ unpack this; time = 0; pack this; }

This is easily shown correct in terms ofInvMaster , but o.Reset can falsify the invariant
of any clock c with c.m = o . If we allow InvClock to depend onm.time and yet
prevent this error, a precondition stronger than that in (3)must be used for field update.
(In Section 4.0, we show howReset can be correctly programmed without violating
the invariant ofClock .)

9

Leino and Müller’s discipline [LM03], strengthens (3) to yield the following anno-
tation:

assert ¬this.inv ∧ (∀ p

 type(p) = Clock • ¬p.inv);
this.time := 0;

Unfortunately, this does not seem to be a very practical solution. How can modular
specifications and reasoning about an arbitrary instance ofMaster hope to establish a
predicate concerning all clocks whatsoever, even in the unlikely event that the predicate
is true? Given the ownership system, it is also unlikely thatan instance ofMaster

would be able tounpack any clock that refers to it via itsm field and whoseinv

field was true.
Consider taking what appears to be a step backwards, concerning the Boogie meth-

odology. We could weaken the annotation in the preceding paragraph to allow the mas-
ter to perform the field update totime as long as it does not invalidate the invariants of
any clocks that could possibly be referring to it.

assert ¬this.inv ∧
(∀ p

 type(p) = Clock • ¬p.inv ∨ (InvClock(p))this.time
0);

this.time := 0;

The substitution expressionPx
E represents the expressionP with all unbound occur-

rences ofx replaced byE , with renaming as necessary to prevent name capture. We
use substitution to express the weakest precondition.1 But the revised precondition does
not appear to provide any benefit: while¬this.inv is established by the preceding
unpack in Reset , there is still no clear way to establish either of the disjuncts for
arbitrary instances ofClock . In addition, as stated, this proposal has the flaw that it
exposesInvClock outside of classClock .

We solve both of these problems. Given the following generalscheme:

assert ¬E .inv ∧ (∀ p,T

 . . . • ¬p.inv ∨ (InvT (p))E .f
D);

E .f := D ;
(4)

where the missing condition “. . . ” somehow expresses thattype(p) = T andInvT (p)
depends onE , our methodology provides a way to manage the range ofp and a way
to abstract from(InvT (p))E .f

D .
In the following three subsections we first deal with restricting the range ofp in

(4). Then we show how to abstract from(InvT (p))E .f
D in (4) to achieve class-oriented

information hiding. Finally we complete the story about therange ofp and redefine
admissible invariants.

2.0 Representing Dependence

The first problem is to determine which objectsp have InvClock(p) dependent on a
given instance ofMaster . (In general, there could be other classes with invariants that

1 Substitution for updates of object fields can be formalized in a number of ways and the tech-
nical details are not germane in this paper [AO97,FLL+ 02]. In general, object update has a
global effect, and our aim is to achieve sound localized reasoning about such updates.

10

depend on instances ofMaster , further extending the range ofp needed for sound-
ness.) To allow for intentional cooperation, we introduce an explicit friend declaration

friend Clock reads time;

in classMaster .2 For a friend declaration appearing in classT ′ :

friend T reads f ;

we sayT ′ is thegrantingclass andT thefriend. Field f is visible in code and specifi-
cations in classT . (Read access is sufficient.) There are some technical restrictions on
f listed in Section 2.3. If in factInvT (p) depends ono.f for some granting objecto
then o is reachable fromp . For simplicity in this paper, we confine attention to paths
of length one, soo = p.g for some fieldg which we call apivot field. (We also allow
p.g.f .h in InvT (p) , whereh is an immutable field off , e.g., the length of an array.)

One of the benefits of our methodology is to facilitate the decentralized formulation
of invariants which lessens the need for paths in invariants. An example is the condi-
tion linking adjacent nodes in a doubly-linked list: reachability is needed if this is an
invariant of the list header, but our methodology allows us to maintain the invariant by
imposing a local invariant on each node that refers only to its successor node; see the
example in Section 5.2.

To further restrict the range ofp in (4), to relevant friends, we could explore more
complicated syntactic conditions, but with predictable limitations due to static analysis.
We choose instead to use auxiliary state to track which friend instances are susceptible
to having their invariants falsified by update of fields of a granting object.

We introduce an auxiliary fielddeps of type “set of object”. We will arrange that
for any o in any state,o.deps contains allp such thatp.g = o for some pivot fieldg
by which Inv(p) depends as friend on some field ofo . As with owner , this facilitates
making explicit the relevant program and system invariants. Both owner and deps

function as “back pointers” in the opposite direction of a dependence.
The associated system invariant is roughly this:

(∀ o : T ′ • (∀ p : T

 p.inv ∧ “InvT (p) depends ono.f ” • p ∈ o.deps)) (5)

for every T ,T ′ such thatT is a friend ofT ′ readingf . That dependence happens
via a pivot field will become clear later when we define admissibility for invariants.

We have reached the penultimate version of the rule for update of a field with friend
dependents:

assert ¬E .inv ∧ (∀ p

 p ∈ E .deps • ¬p.inv ∨ (Inv type(p)(p))E .f
D);

E .f := D ;
(6)

A friend declaration could trigger a requirement that field updates in the granting class
be guarded as in (6) and one could argue that in return for visibility of f in T , InvT
should simply be visible inT ′ . This is essentially to say that the two classes are in a
single module. Our methodology facilitates more hiding of information than that, while
allowing cooperation and dealing with the problem of the range of p in (6). In the next
subsection we eliminate the exposure ofInv in this rule, and then in the following
subsection we deal with reasoning aboutdeps .

2 Similar features are found in languages including C++ and C#, and in the Leino-Müller work.

11

2.1 Abstracting from the friend’s invariant

Our solution is to abstract from(InvT)E .f
D not as an auxiliary field but as a predicateU

(for update guard). The predicateU is declared in classT , and there it gives rise to a
proof obligation, roughly this: if both the friend object’sinvariant holds and the update
guard holds, then the assignment statement will not violatethe friend object’s invariant.
This predicate plays a role in the interface specification ofclassT , describing not an
operation provided byT but rather the effect onT of operations elsewhere. There is
a resemblance to behavioral assumptions in Rely-Guaranteereasoning for concurrent
programs [Jon83,dRdBH+ 01].

In the friend classT it is the pivot fieldg and the friend fieldf that are visible, not
the expressionsE andD in an update that occurs in the code of the granting classT ′ .
So, in order to define the update guard we introduce a special variableval to represent
the value the field is being assigned:

guard g.f := val by U (this, g, val);

This construct appears in the friend class and must be expressed in terms that are visi-
ble to the granting class (thus allowing the friend class to hide its private information).
We write U (friend , granter , val) to make the parameters explicit. That is,U is de-
fined in the context ofT using vocabulary(this, g,val) but instantiated by the triple
(p,E ,D) at the update site in a granter method (see (6) and below). Forexample, the
update guard declared in the friend classClock is:

guard m.time := val by m.time ≤ val;

Thus UClock(this,m,val) ≡ m.time ≤ val . Notice thatthis does not appear in
this particular update guard. That is because, as stated earlier, it does not depend on the
state of the instance ofClock .

Like a method declaration, an update guard declaration imposes a proof obligation.
The obligations on the friend classT are:

InvT (this) ∧ U (this, g,val) ⇒ (InvT (this))g.f
val (7)

for each pivotg of type T ′ and friend field f . A suitable default is to takeU to
be false so that the proof obligation is vacuous. Then the update ruleis equivalent to
that in [LM03]. At the other extreme, if, despite the declarations, Inv does not in fact
depend on the pivot thenU can be taken to betrue .

We have now reached the final version of the rule for update of afriend field:

assert ¬E .inv ∧ (∀ p

 p ∈ E .deps • ¬p.inv ∨ U (p,E ,D));
E .f := D ;

(8)

We are now in a position that a field update may be performed without violating the
invariants of an object’s friends by establishing the precondition

(∀ p

 p ∈ E .deps • ¬p.inv ∨ U (p,E ,D))

12

where U was written by the author of the classT in such a way that the classT ′

is able to (at least potentially) satisfy it. That is, it is anexpression containing values
and variables that are accessible in the context ofT ′ and need not involve the private
implementation details ofT .

In the design of classT , some state variables may be introduced and made visi-
ble to T precisely in order to expressU , without revealing too much of the internal
representation ofT . We pursue this further in Section 4.1.

For the clock example,UClock(p, this, time + n) = time ≤ time + n which
follows easily from precondition0 ≤ n of methodTick ; thus the update precondition
can be established independent from any reasoning aboutdeps . On the other hand,
within the methodReset , UClock(p, this, 0) = (time ≤ 0) which does not follow
from p ∈ this.deps and the precondition given forReset without information about
deps .

Reset should only be allowed if no clocks depend on this master, which would
follow from deps = ∅ according to system invariant (5). We show our discipline for
reasoning aboutdeps in the next subsection.

2.2 Notification of dependence

To maintain system invariant (5) we force each friend objectto register itself with the
granting object in order to include itself in the granting object’s deps field. Definition 2
of admissibility in Section 2.3 requires thatInvT satisfy the following, for each pivot
field g :

InvT (this) ⇒ g = null ∨ this ∈ g.deps (9)

One way to satisfy (9) is to addg = null ∨ this ∈ g.deps as a conjunct ofInvT .
We allow the fielddeps to be updated only by the special statementsattach and

detach which add and remove an object fromthis.deps .

attach E ≡ assert E 6= null ∧ ¬inv ;
deps := deps ∪ {E};

detach E ≡ assert E 6= null ∧ ¬E .inv ∧ ¬inv ;
deps := deps − {E};

The attach and detach statements are allowed only in the codeof the classT ′ where
T ′ declaresT to be a friend; their effect is to updatethis.deps . It is in code ofT ′ that
we need to reason aboutdeps and thus to useattach . This means that it is incumbent
upon a friend to call some method in the granter when setting apivot field to refer to
the granter. This gives the granter a chance to either recordthe identity of the dependent
(see the Subject/View example in Section 5.0) or to change some other data structure
to reflect the fact that the dependent has registered itself (as in the Clock example,
completed in Section 2.3).

Aside 2 One could imagine that attach is triggered automatically bythe assignment in
a dependent to its pivot field. It is possible to work out such asystem but it has the flaw
that the granter is not given a chance to establish and maintain invariants aboutdeps .

13

Also, the conjunct¬E .inv in the precondition todetach is stronger than necessary.
The alternative is to require either thatE is unpacked or that it no longer has its pivot
field referring tothis , but that would require the granter to know more about the pivot
fields in its friends than we would like. In [NB04], we formulate the detach statement
with the weaker pre-condition.

2.3 Summary

To summarize the required annotations and program invariants, we begin with our orig-
inal example from Figure 1 and rewrite it as shown in Figure 2.The two invariants in

class Master {

time : int;
invariant 0 ≤ time;

friend Clock reads time;

Master()
ensures inv ∧ ¬comm;

{ time := 0; pack this; }

Tick(n : int)
requires inv ∧ ¬comm ∧ 0 ≤ n;
modifies time;
ensures time ≥ old(time);

{
unpack this;
time := time + n;
pack this;

}

Connect(c : Clock)
requires inv ;
ensures c ∈ this.deps;

{
unpack this;
attach c;
pack this;

}

}

class Clock {

t : int;
m : Master ;
invariant m 6= null ∧ this ∈ m.deps;
invariant 0 ≤ t ≤ m.time

guard m.time := val by m.time ≤ val;

Clock(mast : Master)
requires mast 6= null ∧ mast .inv ;
ensures inv ∧ ¬comm;

{
m := mast ;
t := 0;
m.Connect(this);
pack this;
this.Sync();

}

Sync()
requires inv ∧ ¬comm;
modifies t ;
ensures t = m.time;

{
unpack this;
t := m.time;
pack this;

}

}

Fig. 2. Clocks synchronized with a master clock.InvClock (this) depends onthis.m.time but
does not ownthis.m .

theClock are conjoined to be the invariant for the class. In the constructor forClock , t

must be initialized to zero and the call tom.Connect must occur in order to satisfy the
class invariant before callingpack , but the call toSync is done after the call topack

14

in order to fulfill the precondition ofSync . Note thatInvClock now satisfies (9) owing
to the conjunctthis ∈ m.deps . This conjunct is established in the constructor by the
invocationm.Connect(this) . In this case,Connect is needed only for reasoning. In
most friendship situations the granter needs some method for registering friends in or-
der to maintain more information about them. An example is the Master class revised
to cater forReset , in Section 4.0 and also all of the examples shown in Section 5.

To summarize our methodology, we first recall the rule for annotation of field up-
date, (8). A separate guardUf is declared for each fieldf on which a friend depends,
so the rule is as follows.

assert ¬E .inv ∧ (∀ p

 p ∈ E .deps • ¬p.inv ∨ Uf (p,E ,D));
E .f := D ;

It is straightforward to adapt this rule to cater for there being more than one friend
class, or more than one pivot field of the same granter type butwe omit the details (see
[NB04]). For this paper, we disallow multiple pivots of the same type.

A friend may declare more than one update guard for a givenf , in which case any
one may be chosen for use at an update site. Each update guard

guard g.f := val by U (this, g, val);

gives rise to the proof obligation

inv ∧ U (this, g,val) ⇒ (InvT (this))g.f
val

All of the update guards for a particular field are guaranteedto maintain the friend’s
invariant. That means a granter can pick the most convenientupdate guard in order to
discharge its proof obligation before it does a field update.The four auxiliary fields
inv , comm, owner , deps may all appear in method specifications and assertions, but
they are updated only by special statements.

We refrain from repeating the definitions ofpack and unpack , which remain
unchanged from Section 1. Theset-owner statement needs to be revised: a friend
may be granted access toowner , in which case there needs to be an update guard for
owner just like for ordinary fields:

set-owner E to D ≡
assert E 6= null ∧ ¬E .inv ∧ (D = null ∨ ¬D .inv);
assert (∀ p

 p ∈ E .deps • ¬p.inv ∨ Uowner (p,E ,D));
E .owner := D ;

Note that if D is an object, it must be unpacked as its invariant is at risk when E

becomes owned.

Definition 2 (admissible invariant). An invariant InvT (o) is admissiblejust if for
everyX .f on which it depends,f 6≡ inv , f 6≡ comm , and either

– X is o (in the formula that meansX is this);
– X is transitively owned byo and f 6≡ deps ; or

15

– X is o.g where fieldg (called a pivot) has some typeT ′ that declares “friendT
readsf ”.

Moreover, the implication

InvT (this) ⇒ g = null ∨ this ∈ g.deps (10)

must be valid.

There are easy syntactic checks for the ownership condition, e.g., it holds if X
has the formg.h.j where each is arep field, or if X is variable bound by
(∀X

 X .owner = o • . . .) . Requirement (10) is met by including either the
conditionthis ∈ g.deps or the conditiong = null ∨ this ∈ g.deps as a conjunct of
the declared invariant. (A fine point is that an admissible invariant shouldonly depend
on deps in this way; see [NB04].) Although we do not use it in this paper, it is possible
to have apivot tag that marks the fields in the friend class that appear in thefriend’s
invariant. Then there would be an easy syntactic process forimposing the requirement
and allowing no other dependence ondeps .

We extend the threesystem invariants(0–2) with a fourth invariant. Taken together,
they ensure the following, for allo,T , f with type(o) = T .

o.inv ⇒ InvT (o) (11)

o.inv ⇒ (∀ p

 p.owner = o • p.comm) (12)

o.comm ⇒ o.inv (13)

For everyT ′, g, p such thattype(p) = T ′ andInvT ′ depends on pivotg
p.g = o ∧ p.inv ⇒ p ∈ o.deps

(14)

It is really the first invariant that is the key to the entire methodology. It abstracts an
object’s invariant, preserving data encapsulation and allowing flexibility for reentrancy.
The other invariants are all mechanisms needed in order to maintain (11) in the presence
of inter-object dependence. The second and third work within ownership domains while
our contribution adds cooperating objects.

3 Soundness

Consider any program annotated with invariants, friend declarations, and update guards
satisfying the stated restrictions. We confine attention tothe core methodology summa-
rized in Section 2.3. Suppose that the obligations are met: the invariants are admissible
and the update guard obligations are satisfied. Suppose alsothat every field update is
preceded by the stipulated assertion, or one that implies it. We claim that (11–14) are
system invariants, that is, true in every state. We refrain from formalizing precisely what
that means, to avoid committment to a particular verification system or logic.

A detailed formal proof of soundness for the full methodology is given in a compan-
ion paper [NB04]. An informal argument has been given for thefeatures already present
in the previous Boogie papers [BDF+ 03a,LM03] and our methodology augments the
preconditions used in those papers. We consider highlightsfor the new features.

Consider first the new invariant (14), and the statements which could falsify it.

16

– pack setsp.inv , but under the preconditionInv(p) , and by admissibility this
implies p ∈ o.deps for any o on whichp has a friend dependence.

– new initializes deps = ∅ but alsoinv = false . By freshness, no existing object
has an owner or friend dependency on the new object.

– A field updateE .f := D can falsify it only if f is a pivot of E , but this is done
under precondition¬E .inv .

– detach removes an element fromthis.deps but under precondition¬this.inv .

Invariants (12) and (13) do not merit much attention as they do not involve the new
fields and the new commandsattach anddetach do not involveinv or comm .

For (11), we must reconsider field update,E .f := E ′ , becauseInvT (o) can have
friend dependencies. By invariant (14), ifo is a friend dependent onE , either¬o.inv

or o ∈ E .deps . In the latter case, the precondition for update requiresUf (o,E ,E ′) .
The proof obligation for this update guard yields thatInvT (o) is not falsified by the
update.

Both attach and detach have the potential to falsify (11) insofar as object in-
variants are allowed to depend ondeps fields. A local dependence onthis.deps is
no problem, owing to precondition¬this.inv . An admissible invariant is not allowed
to depend on thedeps field of an owned object. What about friends? An admissible
invariant isrequired to depend ong.deps for each pivotg , but in a specific way that
cannot be falsified byattach and that cannot be falsified bydetach under its pre-
condition. Finally, thedetach E statement has the potential to falsify the consequent
in (14), and this too is prevented by its precondition that either ¬E .inv or E has no
pivots referring tothis . The intricacy of this interdependence is one motivation for
carrying out a rigorous semantic proof of soundness.

4 Extensions

In this section, we present two extensions to our method. Thefirst is a methodology
for creating an invariant that eases the burden of reasoningabout thedeps field in the
granting class. The second is a syntactic extension to the update guard that provides
extra information to the granting class after it performs a field update.

4.0 Tracking dependencies in invariants

We look again at theReset method inClock . In order to settime to zero, an instance
of Master must know either that each of the clocks referring to it have their value of
t also as zero or that there are no clocks referring to it. Because of the proof obligation
(9) on the classClock , the latter case is true whendeps is empty. For this example, it
suffices for the master clock to maintain a reference count,clocks , of the clocks that
are referring to it via their fieldm , incrementing it each timeattach is executed and
decrementing it upon eachdetach statement. That is, variableclocks maintains the
invariantclocks = size(deps) . Given that invariant, the precondition for the update to
time in Reset can be thatclocks is equal to zero.

In general, we refer to the invariant that the granting classmaintains about itsdeps
variable asDep . The invariant must be strong enough to derive enough information

17

aboutall objectsp ∈ deps to establish the precondition in (8). Thus we formulateDep

as a predicate on an element ofdeps and introduce the following invariant as a proof
obligation in the granting class.

(∀ p

 p ∈ deps • Dep(this, p)) (15)

As with U , we makethis an explicit parameter in the declaration.
We extend thefriendsyntax in the granting class to defineDep :

friend x : T reads f keeping Dep(this, x)

It binds x in predicateDep which may also depend on state visible in the granting
class. The default isDep(this, x) = true , easing the obligation but providing no help
in reasoning aboutdeps . Like any invariant,Dep cannot depend oninv or comm . In
terms of the verification of the granting class, the effect isconjoin (15) to any declared
invariant.

Figure 3 shows a version ofMaster with Reset . Note that in the constructor, the
value of clocks must be set to zero in order to establish the “keeping” predicate, since
initially deps is empty. The preconditions forConnect and Disconnect restrict the
value of deps in order to keep an accurate count of the number of clocks referring to
the master clock. ClassClock need not be revised from Figure 2.

In this example,Dep is independent of the individual identities of the friend ob-
jects. The Subject/View example (Section 5.0) shows a more typical use ofDep .

4.1 Getting results from friendship

In contrast to the fixed pack/unpack/inv protocol which abstractsInv(p) to a boolean
field, we have formulated the friend-invariant rule in termsof a shared state predicate.
The associated methodology is to introduce public (or module-scoped) state variables
with which to expressU . (Minimizing the state space on whichU depends could
facilitate fast protocol checking as in Fugue [DF01,DF03].

Whereas invariants are invariant, states get changed. The proposal so far is that the
public interface of the dependent classT should reveal information about changes
relevant toT . Given thatT publishes the condition under which shared state may be
changed, why not also publish the effect of such changes?

We extend the update guard declaration to include predicateY for the result state:

guard g.f := val by U (this, g,val) yielding Y (this, g,val);

The proof obligation on the friend class becomes

inv ∧ U (this, g,val) ⇒ (InvT (this) ∧ Y (this, g,val))g.f
val

Note the resemblance to a pre/post specification in which theinvariant is explicit.
At a field update site in the granting class, the yielding predicate can be depended

on after the update:

assert ¬E .inv ;
assert (∀ p

 p ∈ E .deps • ¬p.inv ∨ U (p,E ,D))
E .f := D

assume (∀ p

 p ∈ E .deps • ¬p.inv ∨ Y (p,E ,D))

18

class Master {

time : int;
clocks : int;
invariant 0 ≤ time;

friend c : Clock reads time keeping clocks = size(deps);

Master()
ensures inv ∧ ¬comm;

{ time := 0; clocks := 0; pack this; }

Tick(n : int)
requires inv ∧ ¬comm ∧ 0 ≤ n;
modifies time;
ensures time ≥ old(time);

{ unpack this; time := time + n; pack this; }

Reset()
requires inv ∧ clocks = 0;
modifies time;

{ unpack this; time = 0; pack this; }

Connect(c : Clock)
requires inv ∧ c /∈ deps;
modifies clocks;
ensures c ∈ this.deps;

{ unpack this; clocks := clocks + 1; attach c; pack this; }

Disconnect(c : Clock)
requires inv ∧ c ∈ deps;
modifies clocks;
ensures c /∈ this.deps;

{ unpack this; clocks := clocks − 1; detach c; pack this; }

}

Fig. 3.Master clock with reset.

19

The predicatesU and Y are likely to be useful in specifications of methods ofT .
Together with method specifications, theguard/yielding statements of a class give
the protocol by which it may be used.

5 Examples

In this section, we present several examples that demonstrate our methodology. We
show some, but not all, details of their verification. The Subject/View example 5.0
demonstrates the use of our methodology for enforcing a behavioral protocol. In Sec-
tion 5.1, the cooperation involves the use of a shared data structure. Finally, Section 5.2
illustrates how thepeerconcept[LM03] mentioned in Aside 1 can be easily encoded as
a friendship relation.

5.0 Subject/View

In Figure 4, the classSubject represents an object that maintains a collection of objects
of type View that depend on it. We refer to the object of typeSubject as the subject
and each object that it holds a reference to in its collectionvs as a view. In particular,

class Subject {
val : int;
version : int;
rep vs : Collection〈View〉;
friend v : View reads version, val keeping v ∈ this.vs

void Update(n : int)
requires inv ∧ ¬comm ∧ (∀ v ∈ vs • v .inv ∧ ¬v .comm ∧ Sync(v , this));)
modifies val , version;
ensures val = n ∧ version = old(version) + 1 ∧ (∀ v ∈ vs • Sync(v , this));

{
unpack this;
version := version + 1;
val := n;
pack this;
foreach v ∈ vs do v .notify();

}

Fig. 4.The classSubject .

each view depends on the fact that whenever the state of the subject, represented by
the val field (which could be a much more elaborate data structure), is changed in
the methodUpdate , then it will receive a call to itsNotify method. As part of its
Notify method, a view will make callbacks to its subject to retrievewhatever parts of

20

the updated state it is interested in. We do not show these state-querying methods (also
known asobservers).

To express the synchronization, the subject maintains a field version which indi-
cates the number of times thatUpdate has been called. A view also keeps track of a
version number,vsn ; a view is up to date if its version matches that of its subject.

In this example, the methodUpdate requires that the views be uncommitted so that
they can be re-synchronized using theirNotify method. This is much easier to establish
than the requirement that they be unpacked. For example, it is sufficient for the views
to be peers of the subject, i.e., that they have the same owner.

Note that the subject packs itself before callingNotify for all of its views. The
views are then free to make state-observing calls on the subject, all of which presumably
have a precondition thatinv holds for the subject. Yet it is very important to realize
that Update is safe from re-entrant calls while it is in the middle of notifying all of the
views, because a view would not be able to establish the pre-condition that all of the
views are in sync with the subject. It is onlyafter the methodUpdate has terminated
that a view can be sure all of the views have been notified, and if it makes a re-entrant
call, then that would come beforeUpdate terminates.

The exception to this is if a view somehow knew that it was the only view for the
subject. But in that case, a re-entrant call to Update does not cause any problems with
the synchronization property. It still can lead to non-termination, but that is outside of
the scope of our specification.

In Figure 5, the classView publishes an update guard and update result for updates
by the subject to itsversion field, and an update guard without an update result for
modifications to the subject’sval field. The guards given are not the weakest possible,
but rather are chosen to avoid exposing internal state. We define Sync andOut as:

Sync(x : View , y : Subject) ≡ x .vsn = y.version

Out(x : View , y : Subject) ≡ x .vsn + 1 = y.version

Even though the classSubject usesView ’s field vsn in the precondition and post-
condition ofUpdate , View does not have to declare it as a friend class. However, the
field must be accessible in the scope of the classSubject , e.g., by being public. To keep
control of it, the classView could define a read-only property [Gun00] and make the
field itself private. We leave such details out of our examples. The invariant for the class
is the conjunction of the two separately declared invariants.

The formal definitions for the update guards are:

Uversion(x , y, z) = Sync(x , y) ∧ z = x .vsn + 1

Uval(x , y, z) = x .vsn 6= y.version

Note that because of the implication inInvView , the update guard fors .val is written
so as to falsify the antecedent; the guard is independent ofz , which represents the
value assigned to the field. This enforces a restriction on the order in which theSubject

can update the fields, even though the reverse order has equivalent effect. TheSubject

must first update itsversion field to make the implication vacuously true, and only
then update itsval field.

21

class View {
private s : Subject ;
vsn : int;
private cache : int;
invariant s.version − 1 ≤ vsn ≤ s.version ∧ (vsn = s.version ⇒ cache = s.val);
invariant s = null ∨ this ∈ s.deps;
guard s.version := val by Sync(this, s) ∧ val = vsn + 1 yielding Out(this, s);
guard s.val := val by vsn 6= s.version;
void Notify()

requires ¬comm ∧ inv ∧ s.inv ∧ Out(this, s);
ensures Sync(this, s);
modifies vsn;

{
unpack this;
vsn := vsn + 1;
“read state froms” ; // This is whys.inv was required.
pack this;

}

}

Fig. 5. The classView .

Allowing the View to impose this requirement onSubject seems unfortunate, es-
pecially since theSubject has unpacked itself at the beginning ofUpdate and so it
would seem it should be able to update its fields in any order aslong as it can re-establish
its invariant before it tries to pack itself again. The example illustrates the price to be
paid for the Boogie approach. Having the system invariants hold at “every semicolon”
is conceptually simple and technically robust, but like anyprogramming discipline this
one disallows some programs that are arguably correct and well designed. If an incon-
sequential ordering of two assignments is the only annoyance then we are doing very
well indeeed.

There are four proof obligations imposed by our methodology. In the granting class
Subject , the assert before each of the two field updates inUpdate must be satisfied
(8) and we have to show that theDep predicate holds for every member ofdeps (15).
That is, we have to show the following condition is invariant:

(∀ p

 p ∈ deps • p ∈ vs) (16)

The obligations on the friend classView are that its advertised update guards main-
tain its invariant (7) and that it is in thedeps field of the subject upon which it is de-
pendent (9). We show the details of verifying the obligations only for the first three
obligations.

22

To verify the assignment toversion in Subject .Update , the corresponding update
guard fromView must be satisfied.

(∀ p

 p ∈ this.deps • ¬p.inv ∨ U (p, this, this.version + 1))
≡ {Definition of guard}
(∀ p

 p ∈ this.deps • ¬p.inv ∨ (Sync(p, this) ∧ this.version + 1 = p.vsn + 1))
⇐ {Strengthening}
(∀ p

 p ∈ deps • Sync(p, this) ∧ this.version + 1 = p.vsn + 1)
⇐ {(16)}
(∀ v

 v ∈ vs • Sync(v , this) ∧ this.version + 1 = v .vsn + 1)
⇐ {Update.requires ⇒ Sync(p, this) ∧ Sync(p, this) ⇒ v .vsn = this.version}
(∀ v

 v ∈ vs • this.version + 1 = this.version + 1)
⇐ true

This fulfills the proof obligation (8).
To verify the assignment toval in Subject .Update , we use the update guard in

View for val .

(∀ p

 p ∈ this.deps • ¬p.inv ∨ U (p, this,n))
≡ {Definition of guard}
(∀ p

 p ∈ this.deps • ¬p.inv ∨ p.vsn 6= this.version)
⇐ {(16)}
(∀ v

 v ∈ vs • ¬v .inv ∨ v .vsn 6= this.version)
⇐ {pre-condition ofUpdate re:Sync and update ofversion}
(∀ v

 v ∈ vs • ¬v .inv ∨ v .vsn 6= v .vsn + 1)
⇐ true

This fulfills the proof obligation (8).
In order to satisfy the proof obligation for (16),Subject must provide a method in

which attach is executed:

void Subject .Register(v : View)
requires ¬comm ∧ inv ∧ v /∈ vs ;
ensures v ∈ vs ;
modifies vs ;

{
unpack this;
vs := vs + {v};
attach v ;
pack this;

}

Clearly, this makes (16) an invariant, since there are no other occurrences ofattach
that could modify the value ofdeps . For reasons of space, we do not show the code in
View that calls it.

Each update guard inView must be shown to fulfill the obligation of (7), that its
invariant will not be violated as long as the guard holds. Here we show only the update

23

guard forversion , the one forval is even easier.

(InvView ∧ Sync(this, s) ∧ val = this.vsn + 1) ⇒ (InvView)g.f
val

≡ {Simplifying Sync(this, s) ∧ InvView}
(this.vsn = s .version ∧ val = this.vsn + 1) ⇒ (InvView)s.version

val

≡ {Substitution}
(vsn = s .version ∧ val = vsn + 1) ⇒

val − 1 ≤ vsn ≤ val ∧ (vsn = val ⇒ cache = s .val)
⇐ {Simplification}
true

5.1 Producer/Consumer

In this example, we show two objects that share a common buffer. There are two classes,
Producer and Consumer . Their definitions are shown in Figure 6 and Figure 7, re-
spectively.

class Producer {
buf : int[]; n : int; con : Consumer ;
invariant 0 ≤ n < buf .length;
friend o : Consumer reads con, n, buf keeping o = con;

Producer(b : int[])
requires b 6= null ∧ b.length > 1;
ensures deps = ∅ ∧ inv ∧ ¬comm;

{ buf := b; n := 0; pack this; }

void SetCon(c : Consumer)
requires inv ∧ ¬comm ∧ c 6= null ∧ deps = ∅;
modifies con;
ensures deps = {c} ∧ con = c;

{ unpack this; attach c; con := c; pack this; }

void Produce(x : int)
requires inv ∧ ¬comm ∧ |con.n − n| > 0;
modifies n, buf ;

{ unpack this; buf [n % buf .length] := x ; n := (n + 1) % buf .length; pack this; }

}

Fig. 6. The classProducer .

We call instances of the formerproducersand instances of the latterconsumers. A
producer places elements into a circular buffer while consumers read them. Each object
maintains a cursor into the common buffer; the producer can place more elements into
the buffer as long as it does not overrun the consumer. Likewise, the consumer can
only read elements from the buffer as long as its cursor does not overrun the producer’s

24

class Consumer {
buf : int[]; n : int; pro : Producer ;
invariant pro.con = this ∧ buf 6= null;
invariant pro.buf = buf ⇒ 0 ≤ |pro.n − n| < buf .length;

guard pro.buf := val by false;
guard pro.con := val by val = this;
guard pro.n := val by 0 ≤ |n − val|;

Consumer(p : Producer)
requires p.inv ∧ ¬p.comm ∧ p.con = null;
modifies p.con;
ensures inv

{ buf := p.buf ; pro := p; n := b.length − 1; pro.SetCon(this); pack this; }
int Consume()

requires inv ∧ ¬comm ∧ (n + 1) % buf .length < pro.n;
modifies n;

{ unpack this; n := (n + 1) % buf .length; pack this; return(buf [n]); }

}

Fig. 7.The classConsumer .

cursor. The buffer is empty when the producer’s cursor is oneelement ahead (modulo
the buffer length) of the consumer’s cursor. When the both cursors are equal, then the
buffer is full. Because of this encoding, the buffer’s length must be greater than one and
one slot in the array is never used. (The particular slot is not constant, but the capacity
of the buffer is one less than the number of slots.)

It is important to note that this is not a full specification ofthe functional behavior
of the two classes. The specification is only of the synchronization between the two,
just as was done for the Subject/View example. For schematicpatterns this is especially
useful; the specification can be combined with a particular usage of the pattern to fill
out the details.

The classConsumer is given friend access tobuf , con , and n . Being given
access tobuf does not give the consumer the right to depend on the contentsof buf in
its invariant. Such a dependence would be a dependence path of length two: one step to
the buf and the next to the sub-object at some indexi . We do not allow this; we allow
only direct dependence on a pivot field.

Someone familiar with reasoning about arrays is tempted to view the assignment
to an element of buf inProduce as an assignment to the entire array with a new array
that is the same at all points except for the updated element.If that were the case, then
the update inProduce would have to satisfy the update guard forbuf in Consumer .
However, the update is to a sub-object ofbuf ; the only difference is that the field
“name” is a number rather than an identifier. It is only updates to the actual field itself
that must satisfy the update guard.

25

The friend access forbuf is given to the consumer because it needs to make sure
the producer does not update the field to a new, different buffer. This is expressed by the
update guard forpro.buf being false . It is possible to allow the producer to change
its buffer, either by requiring that the buffer is empty, or even to allow the consumer
to continue reading from the old buffer as long as the producer no longer is using it.
However, we do not consider these more advanced scenarios.

The update guard forcon is slightly different: it allows the producer to modify
the field, but only to assign the consumer to it. The update guard for the producer’s
cursor,n , allows the producer to fill as many slots as are available, even though in this
particular implementation, the producer fills only one slotat a time.

We do not show the proofs for the field updates inProducer ; all of the proofs are
immediate.

5.2 Doubly-linked list with transfer

For our last example, we consider a doubly-linked list. The classList with its Insert

andPush methods is shown in Figure 8. EachList object has a reference to an object

class List {
head : Node;
invariant head = null ∨ (head .prev = null ∧ head .owner = this);
void Insert(x : int)

requires x > 0 ∧ inv ∧ ¬comm;
modifies ;
ensures ;

{
n : Node; n := new Node(x); this.Push(n);

}

void Push(n : Node)
requires inv ∧ ¬comm;
requires n 6= null ∧ n.prev = null ∧ n.next = null;
requires n.inv ∧ ¬n.comm ∧ n.owner = null;
modifies head ,n.comm, n.owner ;
ensures n.comm ∧ n.owner = this;

{
unpack this;
set-owner n to this;
if (head = null) head := n; else head := head .Insert(n);
pack this;

}

}

Fig. 8. The classList . The design caters for a method to be added in Figure 12.

of type Node ; the nodes have forward and backward references to otherNode objects.

26

In [LM03], this example serves to explain the concept ofpeers: objects who share a
common owner. Remember by Definition 2 that an object’s invariant is allowed to de-
pend on its peers. The classNode is shown in Figure 9. Because each of the nodes that

class Node {
val : int;
prev : Node;
next : Node; // pivot field
friend n : Node reads prev , owner keeping n = prev

invariant 0 < val ∧ prev 6= this ∧
(next = null ∨ (next .owner = owner ∧ next .prev = this));

Node(x : int)
requires 0 < x ;
ensures val = x ∧ inv ∧ prev = null ∧ next = null;

{
val := x ;
prev := null;
next := null;
pack this;

}
}

Fig. 9.Part of the classNode . Other methods are in subsequent Figures.

are linked into a particular list share the same owner, if a node is able to pack and unpack
itself, then it is also able to do that for any other node in thelist. In terms of our method-
ology, this means no update guards are needed. Instead, the recursive friend access is
needed so that a node’s invariant can depend on the node to which its next field points.
The keeping clause maintains that a node keeps a reference to its friend in its prev

field. Thus the quantification in the precondition for field update can be simplified by
the one-point rule. Notice that within the outer “else” clause of Insert (Figure 10), we
unpack the argumentn so that we can assign to its pivot fieldnext without worrying
about violatingInvNode(n) . All of the conditions required before packing it back up
are met through a combination of the (rather elaborate) pre-conditions on the method
and the assignments that take place in the body of the method.We do not show the
details; all of the required conditions are immediately present.

To add realistic complications to the code, the list is maintained in ascending order
and if desired this could be expressed using node invariants, again avoiding reachability
expressions.

Figure 12 shows an example of transferring ownership. In this case, the first node
in one list is moved over to another list,s . It is important to see that it transfers the
actual object of typeNode , as well as the contents of the node. The helper function,
Disconnect (Figure 11), removes a node from the entanglements of the pointers in its
list and maintainsdeps .

27

class Node {
Node Insert(n : Node)

requires inv ∧ ¬comm;
requires n 6= null ∧ n.val > 0 ∧ n.next = null ∧ n.prev = null;
requires n.inv ∧ ¬n.comm;
requires prev = null ∨ prev .val ≤ n.val ;
requires owner = n.owner ;
modifies next∗.next , next+.prev ;
ensures result 6= null ∧ result .prev = old(this.prev);

{
result : Node;
unpack this;
if (n.val ≥ val) {// insert after self

if (next = null) {// this is the last node
next := n;

} else {// pass it down the line
next := next .Insert(n);

}
unpack next ;
next .Attach(this);
pack next ;
result := this;

} else {// insert before self
unpack n;
n.next := this;
this.Attach(n);
pack n;
result := n;

}
pack this;
return result ;

}

}

Fig. 10.The methodInsert in classNode .

28

class Node {
void Disconnect()

requires inv ∧ prev = null ∧ ¬comm ∧ next 6= null ∧ next .inv ;
ensures next = null ∧ old(next).prev = null;
modifies next , next .prev , next .deps;

{
unpack this;
unpack next ;
next .Detach(this);
pack next ;
next := null;
pack this;

}
}

Fig. 11.The Disconnect method in classNode .

6 Related Work

The most closely related work is that of Leino and Müller [LM03] which uses an explicit
owner field that holds a pair(o,T) of the owner together with the typeT at whicho

has a relevant invariant. The paper by Müller et al. [MPHL03] lucidly explains both the
challenges of modular reasoning about object invariants and the solution using owner-
ship. They prove soundness for a system using types to formulate ownership, based on
Müller’s dissertation [Mül02] which deals with significant design patterns in a realistic
object-oriented language. They also discuss the problem ofdependence on non-owned
objects and describe how the problem can be addressed soundly by ensuring that an
object’s invariant is visible where it may be violated; thussound proof obligations can
be imposed, as is developed further in [LM03]. Section 1 has reviewed [LM03] and the
other Boogie paper [BDF+ 03a] at length and we encourage the reader to consult them
for further comparisons.

The Extended Static Checker for project, especially ESC/Modula-3 [DLNS98,LN02,FLL+ 02],
treats object invariants by what Müller [Mül02] calls thevisibility approach which
requires invariants to be visible, and thus liable for checking, wherever they may be
violated. This can significantly increase the number of proof obligations for a given
verification unit and the focus of the work is on mitigation byabstraction. An idiom is
used for expressing invariants as implicationsvalid ⇒ . . . wherevalid is an ordinary
boolean field, serving likeinv .

Liskov, Wing, and Guttag [LG86,LW94] treat object invariants but in a way that is
not sound for invariants that depend on more than one object.There has been a lot of
work on alias control to circumscribe dependency. Ownership type systems [CNP01,Cla01]
explicitly address the problem of encapsulating representation objects on which an in-
variant may sensibly depend. Much of this line of work struggles to reconcile efficient
static checking with the challenges of practical design patterns. Boyapati, Liskov and
Shrira [BLS03] argue that their variation on ownership types achieves encapsulation

29

class List {
void TransferHeadTo(s : List)

requires s 6= this ∧ head 6= null ∧ ¬comm ∧ inv ∧ ¬s.comm ∧ s.inv ;
modifies s.?;
ensures ;

{
unpack this;
n : Node; n := head ; head := head .next ;
if (n.next 6= null) n.Disconnect();
set-owner n to null;
pack this;
s.Push(n);

}

}

Fig. 12.The methodTransferHeadTo in classList .

sufficient for sound modular reasoning but they do not formalize reasoning. They ex-
ploit the semantics of inner objects in Java which provides aform of owner field but
suffers from semantic intricacies and precludes ownershiptransfer.

Banerjee and Naumann [BN02a] use a semantic formulation of ownership in terms
of heap separation and show that it ensures preservation of object invariants. They fo-
cus on two-state invariants, i.e., simulation relations, to obtain a representation indepen-
dence result (for this purpose, read access by clients is restricted). The ownership prop-
erty is enforced by a static analysis that does not impose theannotation burden of own-
ership types but like ownership types it requires the ownership invariant to hold in every
state. A version has been developed that includes transfer of ownership, but it depends
on a static analysis for uniqueness and the proof of soundness was difficult [BN03]. The
representation-independence theorem states that the invariant of a classT is preserved
by clientsif it is they are preserved by methods ofT . The theorem allows invocation
of state-mutating methods on pointers outgoing from encapsulated representation ob-
jects, including reentrancy. Unlike work such as [MPHL03],the problem of verifying
methods ofT is not addressed.

Separation logic [Rey02] can express very directly that a predicate depends only on
some subset of the objects in the heap. It has successfully treated modular reasoning
about an object invariant in the case of a single class with a single instance [OYR04].
Some of the attractive features are achieved in part by a restriction to a low-level lan-
guage without object-oriented features. This is an exciting and active line of research
and it will be interesting to see how it scales to specifications and programs like those
in Section 5.

30

class Node {
void Attach(n : Node)

requires ¬inv ∧ n 6= null;
ensures prev = n ∧ n ∈ deps;
modifies deps, prev ;

{ attach n; prev := n; }
void Detach(n : Node)

requires ¬inv ∧ n 6= null ∧ ¬n.inv ;
ensures prev = null ∧ n /∈ deps;
modifies deps, prev ;

{ detach n; prev := null; }
}

Fig. 13.The Attach andDetach methods in classNode .

7 Conclusions

Formal systems for programming must always cope with the conflict between the flex-
ibility real programs display and the restrictions formal analysis demands. Our work
extends Boogie’s system for object invariants to cope with areal-world situation: de-
pendence across ownership boundaries. We have constructeda protocol that imposes
minimal obligations upon the participating classes; it is inevitable that there are some
extra verification conditions. In addition, we have tried tomaintain Boogie’s mantra:
hiding private implementation details while providing explicit knowledge about the
state of an object’s invariant. Our contribution is a workable system for specifying and
verifying cooperating classes.

While one approach would be to allow, or even to insist, for cooperating classes
to be knowledgeable about each other’s private implementation state, we believe that
is important to provide for as much abstraction as possible.The protocols could all be
expressed in terms of more abstract properties instead of concrete fields allowing a class
implementation to change without disturbing its friend classes.

Our presentation has left out all mention of sub-classing, but the actual definitions
have all been made taking it into account.

There are many ways in which we plan to extend our work. For instance, our
methodology could be presented independently from ownership. Currently, we think
it best to use ownership where possible and thus it is important that friendship fits well
with ownership. We also need to explore the use of static analysis for alias control in
common cases.

Our update guards are related toconstraints[LW94]; it would be interesting to
formulate them as constraints, thus shifting more of the burden to the granting class
instead of the friend class.

We will continue to explore different design decisions to weaken the obligations.
The tradeoffs are between being able to easily verify the specifications and code against
allowing the most flexibility for the programmer.

31

We are implementing our scheme as part of the Boogie project.Empirical evaluation
will doubtless point out many problems and opportunities for improvement.

Acknowledgements

We would like to thank Rustan Leino (not to mention K. Rustan and M. Leino) for all
of his comments and help. Wolfram Schulte made many helpful suggestions, especially
pointing out the connection between update guards and constraints. Anindya Banerjee
and Rob DeLine made helpful expository suggestions.

References

[AO97] Krzysztof R. Apt and Ernst-Rüdiger Olderog.Verification of Sequential and Con-
current Programs. Springer, 2 edition, 1997.

[BDF + 03a] Mike Barnett, Robert DeLine, Manuel Fähndrich, K. Rustan M. Leino, and Wol-
fram Schulte. Verification of object-oriented programs with invariants. In Susan
Eisenbach, Gary T. Leavens, Peter Müller, Arnd Poetzsch-Heffter, and Erik Poll,
editors,Formal Techniques for Java-like Programs 2003, July 2003. Available as
Technical Report 408, Department of Computer Science, ETH Zurich. A newer
version of this paper is [BDF+ 03b].

[BDF + 03b] Mike Barnett, Robert DeLine, Manuel Fähndrich, K. Rustan M. Leino,
and Wolfram Schulte. Verification of object-oriented programs with in-
variants. Manuscript KRML 122b, December 2003. Available from
http://research.microsoft.com/˜leino/papers.html.

[BLS03] Chandrasekhar Boyapati, Barbara Liskov, and LiubaShrira. Ownership types for
object encapsulation. InPOPL, pages 213–223, 2003.

[BN02a] Anindya Banerjee and David A. Naumann. Ownership confinement ensures
representation independence for object-oriented programs. Extended version
of [BN02b]. Available from http://www.cs.stevens-tech.edu/˜naumann/oceri.ps,
2002.

[BN02b] Anindya Banerjee and David A. Naumann. Representation independence, confine-
ment and access control. InPOPL, pages 166–177, 2002.

[BN03] Anindya Banerjee and David A. Naumann. Ownership transfer and abstraction.
Technical Report TR 2004-1, Computing and Information Sciences, Kansas State
Univ., 2003. http://www.cs.stevens-tech.edu/˜naumann/otranseTR2004-1.pdf.

[BS03] Mike Barnett and Wolfram Schulte. Runtime verification of .NET contracts.The
Journal of Systems and Software, 65(3):199–208, 2003.

[CD02] David Clarke and Sophia Drossopoulou. Ownership, encapsulation and the dis-
jointness of type and effect. InOOPSLA, November 2002.

[CL02] Yoonsik Cheon and Gary T. Leavens. A runtime assertion checker for the Java
Modeling Language (JML). In Hamid R. Arabnia and Youngsong Mun, editors,
Proceedings of the International Conference on Software Engineering Research
and Practice (SERP ’02), Las Vegas, Nevada, USA, June 24-27,2002, pages 322–
328. CSREA Press, June 2002.

[Cla01] David Clarke. Object ownership and containment. Dissertation, Computer Science
and Engineering, University of New South Wales, Australia,2001.

[CNP01] David G. Clarke, James Noble, and John M. Potter. Simple ownership types for
object containment. In Jørgen Lindskov Knudsen, editor,ECOOP 2001 - Object
Oriented Programming, 2001.

32

[DF01] Robert DeLine and Manuel Fähndrich. Enforcing high-level protocols in low-level
software. InPLDI, pages 59–69, 2001.

[DF03] Robert DeLine and Manuel Fähndrich. The Fugue protocol checker: Is your soft-
ware baroque? Available from http://research.microsoft.com/˜maf/papers.html,
2003.

[DLNS98] David L. Detlefs, K. Rustan M. Leino, Greg Nelson, and James B. Saxe. Extended
static checking. Research Report 159, Compaq Systems Research Center, Decem-
ber 1998.

[dRdBH+ 01] Willem-Paul de Roever, Frank de Boer, Ulrich Hannemann,Jozef Hooman, Yas-
sine Lakhnech, Mannes Poel, and Job Zwiers.Concurrency Verification: Intro-
duction to Compositional and Noncompositional Methods. Cambridge University,
2001.

[FLL + 02] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson, James B.
Saxe, and Raymie Stata. Extended static checking for Java. In Proceedings of the
2002 ACM SIGPLAN Conference on Programming Language Designand Imple-
mentation (PLDI), volume 37 ofSIGPLAN Notices, pages 234–245. ACM, May
2002.

[Gun00] Eric Gunnerson.A Programmer’s Introduction to C#. Apress, Berkeley, CA, 2000.
[Jon83] Cliff B. Jones. Tentative steps towards a development method for interfering pro-

grams. ACM Transactions on Programming Languages and Systems, 5(4):596–
619, 1983.

[LG86] Barbara Liskov and John Guttag.Abstraction and Specification in Program De-
velopment. MIT Press, 1986.

[LM03] K. Rustan M. Leino and Peter Müller. Object invariants in dynamic
contexts. Manuscript KRML 132, December 2003. Available from
http://research.microsoft.com/˜leino/papers.html.

[LN02] K. Rustan M. Leino and Greg Nelson. Data abstraction and information hid-
ing. ACM Transactions on Programming Languages and Systems, 24(5):491–553,
2002.

[LW94] Barbara H. Liskov and Jeannette M. Wing. A behavioralnotion of subtyping.ACM
Transactions on Programming Languages and Systems, 16(6), 1994.

[Mey97] Bertrand Meyer.Object-oriented Software Construction. Prentice Hall, New York,
second edition, 1997.

[MPHL03] P. Müller, A. Poetzsch-Heffter, and G.T. Leavens. Modular invariants for object
structures. Technical Report 424, ETH Zürich, Chair of Software Engineering,
October 2003.

[Mül02] P. Müller. Modular Specification and Verification of Object-Oriented Programs.
Number 2262 in LNCS. Springer, 2002.

[NB04] David A. Naumann and Mike Barnett. Towards imperative modules: Reasoning
about invariants and sharing of mutable state (extended abstract). Submitted; avail-
able from http://www.cs.stevens-tech.edu/˜naumann/tim.pdf, 2004.

[OYR04] P.W. O’Hearn, H. Yang, and J.C. Reynolds. Separation and information hiding. In
POPL, pages 268–280, 2004.

[Rey02] John C. Reynolds. Separation logic: a logic for shared mutable data structures. In
LICS, 2002.

