
Iterators revisited: proof rules and implementation

Bart Jacobs1, Erik Meijer2, Frank Piessens1, and Wolfram Schulte2

1 Katholieke Universiteit Leuven, Dept. of Computer Science
Celestijnenlaan 200A, 3001 Leuven, Belgium
{bartj,frank }@cs.kuleuven.be

2 Microsoft Research, Redmond, WA, USA
{emeijer,schulte }@microsoft.com

Abstract. The Iterator design pattern allows client code to access the elements of
an aggregate object sequentially without exposing its underlying representation.
Several modern programming languages, like Java or C#, include constructs that
facilitate the implementation of the Iterator design pattern. They typically provide
for-each loopsfor client code anditerator methodsthat specify the values yielded
by the enumeration. However, when iterator methods are used to perform recur-
sive enumerations, such as when enumerating the nodes of a tree, the worst-case
running time often becomes quadratic.
We propose an extension of iterator methods callednested iterator methods,
which simplify the coding of recursive enumerations, and which reduce the run-
ning time cost of such coding patterns to a linear function by retaining the recur-
sion stack between iteration steps.
We also propose a new specification formalism and proof rules forfor-eachloops
and iterator methods, including nested ones, suitable for implementation in au-
tomatic program verifiers such as ESCJava and Spec#. The core idea is the in-
troduction ofenumeration invariants, which must hold at each point during the
iteration and which specify properties of the sequence of elements yielded so far.
We also solve the problem of interference between client and enumerator, using
an extension of the Spec# object invariants methodology with read-only access.

1 Introduction

Modern programming languages evolve. A heavily used part of the API or common
programming pattern is a candidate for promotion to the host programming language.
This also happens with the Iterator design pattern in C#.

In Version 1 of C# thefor-eachloop was introduced [9], which allows to retrieve
the elements of an aggregate object sequentially without exposing its underlying rep-
resentation. Here is a typical example of aforeach loop that iterates over a range of
numbers to print them.

IEnumerable<int> xs = FromTo(1, 100);
foreach (int x in xs) Console.WriteLine(x);

But providing the implementation for the involvedIEnumerable andIEnumerator
interfaces is cumbersome (see [9]) and that also hampered the verification of code that
uses this pattern.



The complexity of implementing these interfaces was addressed in C# 2.0 [6]. It in-
troducediterators. Iterators are like ordinary methods except that they mayyield mul-
tiple values instead of returning one value a single time. For example, theFromTo
method

IEnumerable<int> FromTo(int b, int e) {
for (int x = b; x ≤ e; x++) yield return x;

}

yields, one by one, a finite, increasing stream of integers. Note that invoking such an
iterator method does not immediately execute the iterator code, but rather immediately
returns an instance of a compiler generated class implementing theIEnumerable and
IEnumerator interface.

But C#’s iterators still have a caveat: they do not support nested iterators. But that’s
crucial when dealing with recursive data structures. The current iterators will for exam-
ple have a quadratic behavior when they are used to return all text nodes from an Xml
document, since they copy the stream produced by the recursive invocation.

IEnumerable<XmlNode> Traverse(XmlNode n) {
yield return n;
foreach (XmlNode c in n.ChildNodes)

foreach (XmlNode m in Traverse(c))
yield return m;

}

Our newly proposed nested iterators, which follow the design of streams in Cω[4],
simplify programming of recursive iterators, improve performance and as we will see
later also facilitate verification. With nested iterators one can rewrite the example from
above as follows.

IEnumerable<XmlNode> Traverse(XmlNode n) {
yield return n;
foreach (XmlNode c in n.ChildNodes)

yield foreach Traverse(c);
}

Iterators are also provided in Spec#, which is a superset of the object-oriented .NET
language C# 2.0, adding non-null types and code contracts [3]. This paper gives sound
proof rules for specifying iterators. These rules are the basis for the Spec# compiler,
which emits run-time checks to enforce the contracts of iterators, and the Spec# sta-
tic program verifier, which attempts to prove iterators andfor-eachloops correct with
respect to its contracts.

The contributions of this paper are thus as follows:

– We give for the first time proof rules for C# Version 2for-eachloops and iterators.
– We introduce nested iterators, their proof rules and fast implementation, which are

expected to appear in one the next versions of C#.



Related work

Iterators have been introduced before (cf. [20, 13, 14, 8, 15, 11]), but they only recently
made it into widely accepted languages like C# [9, 6] and Java [7]. Here we only cite
work on formalizing and verifying iterators or that provided hints for a fast implemen-
tation of nested iterators.

Alphard, developed at CMU in the late 1970s [20], has two iterator consumption
constructs: afor construct which is used for iteration over a data structure; and a vari-
ation of the for loop called afirst loop which is used for search loops. Similar to C#
version 1.0, Alphard iterators are defined by extending an enumeration form with two
functions callednextandinit. Forms are not types, they serve as modules. It is possible
to add verification information to an Alphard form, using an invariant clause, an ini-
tially clause, and pre and post conditions for each function. Proof obligations can then
be given to ensure the correctness of the form: this means ensuring that invariants are
maintained. Using the expansion of thefor construct it is also possible to obtain a proof
rule for the construct. However it is rather unwieldy. Also Alphard’s proof rules haven’t
been proved sound nor implemented in a mechanical program verifier. This paper gives
direct proof rules for iterator blocks and abstracts from their implementation.

Iterators in CLU, developed at MIT in the early 80’s [13] were very restricted; see
[15] for a detailed discussion of their shortcomings. But again CLU’s iterators came
already with proof rules [21]. The proposed technique for specifying CLU iterators in-
volves adding assertions to two implicitly defined methods which follow the init and
next pattern of Alphard. The assertions refer to state variables which can be decorated
with subscripts pre and post, as well as a special iterator local state object (ie an aux-
iliary variable) first, which flags when the iterator is in the very first state, and history
variables which remember values between invocations. The authors make explicit that
their proposal is just a first step for the verification of iterators, they point out that the
interaction of the iterator with the for loop needs further study.

Sather iterators oriters [15, 16] and loops are strictly more expressive than C# 2.0
iterators andfor-eachloops; that is, the latter correspond to a special case of the former.
An iter may have a precondition and a postcondition. The postcondition must hold after
each yield, but not after a quit. The iter contract syntax does not allow one to spec-
ify when the implementation is allowed to quit, which seems to make these contracts
strictly less powerful than ours. Specifically, they would be incapable of verifying any
of the examples of this paper. [16] describes optimizations for non-recursive iters. For
recursive iters, they state the following “Our current implementation work is focussing
on the optimization of recursive iters and some of the more complex loop structures. In
appropriate circumstances, recursive iters can use more efficient stack structures than
the direct coroutine implementation would.” However, we are not aware of any further
results of this work.

Cω, developed at Microsoft Research early 2000 [4], integrates data access into an
object oriented host language. Streams, which are similar to our iterators, are used to
virtualize data access to XML, SQL or even arbitrary object graphs. Cω provides a
formal operational semantics and a formal type system for iterators. In fact Cω even
proposes the use of nested iterators, but the study outlined in [4] is restricted to seman-



tical issues and doesn’t provide any clue for efficient translations of nested iterators,
which we address.

Grant Richins notes in his weblog [18] the fact that recursive iteration of the nodes
of a tree using C# 2.0 iterators performs a number of object allocations that is linear in
the number of nodes. To solve this, in a further posting [19] he eliminates the recursive
invocation of iterators by keeping track of the current path using a stack data structure.
This also removes the time penalty of this recursive iteration. We do not attempt to
reduce object allocation.

Iterators have caused problems in the research on ownership systems (cf. [5, 1, 2]).
Typically, the dilemma comes up of whether the collection should own/contain the itera-
tor or vice versa. Some systems provide solutions that allow iterators to be programmed,
but they do not address the problem of verifying their functional behavior. We envisage
as a promising approach allowing iterators to have shared ownership of the collections
by temporarily making them read-only.

Finally, one should mention that iterators have also been studied in the context of
the refinement calculus [10]. However their formal analysis isn’t helpful for us. They
translate iterators into catamorphisms, while we are interested in generating verification
conditions and fast implementation techniques.

2 Proof rules

2.1 Spec#

We present our specification and verification method for the Iterator pattern in the con-
text of the Spec# programming system [3, 17], an extension of C# with preconditions,
postconditions, non-null types, checked exceptions [12], loop invariants, object invari-
ants [2], and other reliability features, and accompanied by a compiler that emits run-
time checks and a static program verifier backed by an automatic theorem prover.

The program verifier works by translating the Spec# source code into a guarded
commands program, which is then further translated into verification conditions that
are passed to the theorem prover. The following guarded commands are relevant to this
presentation:

– An assert C; statement causes an error to be reported if the conditionC cannot be
shown to always hold.

– An assume C; statement causes the verifier to consider only those program ex-
ecutions which either do not reach this statement or satisfy the conditionC. In
particular,assume false causes the program verifier to consider an execution that
reaches this statement without errors to be a valid execution, regardless of any state-
ments that may follow this statement.

– A havoc x; statement assigns an arbitrary value to the variablex.

2.2 Specification of enumerator methods

In the most general form of our proposed formalism, the specification of methodFromTo
is as in Fig. 1.3

3 We propose a more concise syntax for simple cases like this one below.



IEnumerable<int> FromTo(int b, int e)
requires b ≤ e + 1;
invariant values.Count ≤ e + 1− b;
invariant forall{int i in (0 : values.Count);values[i] == b + i};
ensures values.Count == e + 1− b;

{
for (int x = b; x ≤ e; x++)

invariant values.Count == x− b;
{ yield return x; }

}

Fig. 1.MethodFromTo

In our formalism, methods are categorized as regular methods orenumerator meth-
ods. Enumerator methods must have a return type ofIEnumerable<T> or IEnumera-
tor<T>, for someT , and methods that have such return types are categorized as enu-
merator methods by default.

The syntax of an enumerator method’s contract differs from that of a regular method.
In addition torequires andensures clauses, an enumerator method may provide one
or moreinvariant clauses, which declare the method’senumeration invariants. Both
the enumeration invariants and theensures clauses may mention the keywordvalues,
which denotes the sequence of elements yielded so far at a given point during the enu-
meration. Thevalues keyword is of typeSeq<T>, whose interface is given in Fig. 2.
An enumeration invariant must hold at each point during an enumeration.

public struct Seq<T> {
public int Count { get; }
public invariant 0 ≤ this.Count ;
public T this[int index ]

requires 0 ≤ index ∧ index < this.Count ;
{ get; }
public Seq();

ensures this.Count == 0;
public void Add(T value);

ensures this.Count == old(this).Count + 1;
ensures forall{int i in (0 : old(this).Count); this[i] == old(this)[i]};
ensures this[old(this).Count ] = value;

public void AddRange(Seq<T> values);
ensures this.Count == old(this).Count + values.Count ;
ensures forall{int i in (0:old(this).Count); this[i] == old(this)[i]};
ensures forall{int i in (0:values.Count); this[old(this).Count + i] == values[i]};

}

Fig. 2.TheSeq<T> type



2.3 Verification of iterator methods

We verify an enumerator method that is implemented as an iterator method by translat-
ing it into a guarded commands program. Consider the following method:

IEnumerable<T> M(p) requires P ; invariant I; ensures Q; { B }

It gets translated into the following:

assume P ; Seq<T> values = new Seq<T>(); assert I; JBK assert Q;

where
Jyield return v; K ≡ values.Add(v); assert I;
Jyield break; K ≡ assert Q; assume false;

That is, we verify that the enumeration invariants hold for the empty sequence, as well
as after eachyield return operation. Also, we check the postcondition at eachyield
break operation.

As a convenience, we insertI as a loop invariant into each loop inB.4

Applied to ourFromTo example from Fig. 1, this yields the following:

assume b ≤ e + 1;
Seq<int> values = new Seq<int>();
assert values.Count ≤ e + 1− b;
assert forall{int i in (0 : values.Count); values[i] == b + i};
for (int x = b; x ≤ e; x++)

invariant values.Count ≤ e + 1− b;
invariant forall{int i in (0 : values.Count); values[i] == b + i};
invariant values.Count == x− b;

{
values.Add(x);
assert values.Count ≤ e + 1− b;
assert forall{int i in (0 : values.Count); values[i] == b + i};

}
assert values.Count == e + 1− b;

2.4 Verification of for-each loops

Our formalism supports proving rich properties offor-eachloops by allowing their loop
invariants to mention the keywordvalues, analogously with our approach to method
contracts for enumerator methods. Here, too, the keyword is of typeSeq<T>, where
T is the element type of the enumeration, and represents the sequence of elements
enumerated so far.5

4 These are “free of charge”, i.e. they provide assumptions but do not incur proof obligations,
since they are guaranteed by theassert statements inserted at theyield return statements.

5 Thevalues keyword’s scope includes all specification expressions in the body of thefor-each
loop. However, a nestedfor-eachloop hides the outer loop’svalues keyword. Still, one can
give the inner loop access to this information by assigning thevalues keyword to an auxiliary
logical variable in the body of the outer loop.



Here is an example of a client of ourFromTo enumerator method:

int sum = 0;
foreach (int x in FromTo(1, 2))

invariant sum == SeqTools.Sum(values);
{ sum += x; }
assert sum == 3;

Now, consider a generalfor-each loop that uses a call of the general enumerator
methodM declared above as its enumerable expression:

foreach (T x in M(a)) invariant J ; { S }

To verify thisfor-eachloop, we translate it into the followingfor loop:

assert P [a/p]; Seq<T> values = new Seq<T>();
for (; ; )

invariant I[a/p]; invariant J ;
{

bool b; havoc b; if (¬b) break; T x; havoc x; values.Add(x);
assume I[a/p];
S

}
assume Q[a/p];

This means that for our example client, the following needs to be verified:

int sum = 0;
assert 1 ≤ 2 + 1; Seq<int> values = new Seq<int>();
for (; ; )

invariant values.Count ≤ 2 + 1− 1;
invariant forall{int i in (0 : values.Count); values[i] == 1 + i};
invariant sum == SeqTools.Sum(values);

{
bool b; havoc b; if (¬b) break;
T x; havoc x; values.Add(x);
assume values.Count ≤ 2 + 1− 1;
assume forall{int i in (0 : values.Count); values[i] == 1 + i};
sum += x;

}
assume values.Count == 2 + 1− 1; assert sum == 3;

2.5 Verification of nested iterator methods

Nested iterator methods are iterator methods that containyield foreach statements.
Their translation is the same as for general iterator methods, with the following addi-



tional rule:

Jyield foreach M ′(a′); K ≡
assert P ′[a′/p′];
Seq<T> values ′; havoc values ′;
assume I ′[a′/p′, values ′/values]; assume Q′[a′/p′, values ′/values];
values.AddRange(values ′);
assert I;

That is, the enumeration invariantI of the caller enumeration is checked under the
assumption that a sequence of elements was yielded that satisfies the callee’s enumera-
tion invariant, as well as its postcondition.

2.6 Exceptions

Our formalism supports the specification of enumerator methods that may throw checked
exceptions, and the verification of the iterator methods that implement these. Enumera-
tor methods may provide exceptional ensures clauses, and these may mention keyword
values.

For example:

class OneElementException : CheckedException {}
class ThreeElementsException : CheckedException {}

IEnumerable<int> Baz ()
ensures values.Count == 2;
throws OneElementException ensures values.Count == 1;
throws ThreeElementException ensures values.Count == 3;

int n = 0;
try {

foreach (int x in Baz ()) invariant n == values.Count ; { n++; }
assert n == 2;

}
catch (OneElementException) { assert n == 1; }
catch (ThreeElementException) { assert n == 3; }

2.7 Simplified alternative enumerator method contract syntax

The general syntax presented above offers the flexibility of non-deterministic specifica-
tions; that is, it allows underspecification. Also, it allows a non-constructive description,
as well as exceptional termination. However, often this flexibility is not needed, and for
these cases we provide a simpler syntax, as follows:

IEnumerable<T> M(p) requires P ; returns {int i in (0:C);E};



For verification purposes, we expand this into the general syntax as follows:

IEnumerable<T> M(p)
requires P ;
invariant values.Count ≤ C;
invariant forall{int i in (0:values.Count); values[i] == E};
ensures values.Count == C;

3 Avoiding interference

As is apparent from the explanations above, the implementation and the client of an
enumerator method are verified as if they executed separately. However, they in fact
execute in an interleaved fashion, as will become clear in the next section. To ensure
soundness, our method prevents each party from observing side-effects of the execution
of the other party.

Specifically, an enumerator method may not write fields of any pre-existing objects.
Also, an enumerator method may declare in its contract aread set, using areads clause,
and it may only read fields of those pre-existing objects that are in its read set (or that are
owned by such objects). Conversely, during the enumeration, the client (i.e. the body of
thefor-eachloop) may not write fields of these objects.

Here’s an example of an Iterator pattern involving objects:

IEnumerable<int> EnumArray(int[]! a)
reads a; returns {int i in (0:a.Length); a[i]};

{
for (int i = 0; i < a.Length; i++) invariant values.Count == i;
{ yield return a[i]; }

}

int[] xs = {1, 2}; int sum = 0;
foreach (int x in EnumArray(xs))

invariant sum == SeqTools.Sum(values);
{ sum += x; }
assert sum == 3;

TheEnumArray method may read only the array, and the body of theforeach loop
may not modify it. The exclamation mark indicates that the argument for parametera
must not be null.

To statically and modularly verify the restrictions outlined above, our method for
avoiding interference between the client and the implementation of an enumerator method
requires that the program be written according to a programming methodology that is
an extension of the Spec# object invariants methodology [2] with support for read-only
access. First, we briefly review the relevant aspects of the Spec# methodology. Then we
present our extended version.



3.1 Spec# Methodology

In order to allow the object invariant for an objecto to depend on objects other thano,
Spec# introduces an ownership system; the object invariant foro may depend ono and
on any object transitively owned byo. A program assigns ownership of an objectp to
o by writing p into a field ofo declaredrep while o is in theunpackedstate, and then
packingo, which brings it into thepackedstate. The packed or unpacked state of an
object is conceptually indicated by the value of a boolean fieldo.inv , which istrue if
and only ifo is in the packed state.

Packing objecto succeeds only if objectp and the other objects pointed to byo’s
rep fields are themselves already packed. Onceo is packed, its owned objects may not
be unpacked.Unpackingo again releases ownership ofp and allowsp to become owned
by another object, or to become unpacked itself.

3.2 Programming Methodology

To understand the approach, it is useful to think of both parties in an enumeration as
executing in separate threads. That is, the execution of afor-eachstatement starts the
enumerator method in a new thread, executes the body of thefor-eachloop some num-
ber of times in the original thread, and then waits for the enumerator thread to finish.
(We ignore for now the communication between both threads implied by the yielding
of values, and the exact number of times thefor-eachloop is executed.) Note that we
use the notion of threads as a reasoning tool only; we are not proposing implementing
iterators using threads.

In our proposed system, each such threadt has awrite sett.W and aread bagt.R,
both containing object references. The write set of a threadt contains those object that
were created byt and that are not currently committed to (i.e. owned by) some other
object. The read bag oft contains an objecto if t currently has read-only access too.
The read bag is not a set, for technical reasons which will become clear later.

From t.W and t.R, we derive theeffective write sett.W ′ = t.W − t.R and the
effective read sett.R′ = t.W + t.R. A threadt may read fields of any object int.R′,
and it may write fields of any object int.W ′, provided the object is unpacked.

The for-eachstatement may conceptually be thought of as being implemented in
terms of a commandpar (B1, B2); for parallel execution of two blocksB1 andB2.
Execution of thepar statement is complete only when execution of both blocks is
finished. Suppose thepar statement is being executed by a threadt1. B1 is executed in
t1, whereasB2 is executed in a new thread, sayt2. The initial write sett2.W of t2 is
the empty set, and the initial read bag is equal to that oft1.

The proposed methodology is formally defined in Fig. 3, wheretid denotes the
current thread. The last rule translates a parallel execution statement by inserting an
assignment that initializes the read bag of the newly created threadtidS2 with the read
bag of the creating threadtidpar. The write set of the new thread remains initially
empty.

We use the following auxiliary definitions:

t.W ′[o] def= t.W [o] ∧ t.R[o] = 0 t.R′[o] def= t.W [o] ∨ t.R[o] > 0
rep(o) def= {o.f | f is arep field of o ando.f 6= null}



Jx = new C; K ≡
x = new C;
tid.W [x] = true;
tid.R[x] = 0;
x.inv = false;

Jx = o.f ; K ≡
assert tid.R′[o];
x = o.f ;

Jo.f = v; K ≡
assert tid.W ′[o];
assert ¬o.inv ;
o.f = v;

Jpack o; K ≡
assert tid.W ′[o];
assert ¬o.inv ;
foreach (p ∈ rep(o)) {

assert tid.W ′[o];
assert o.inv ;

}
foreach (p ∈ rep(o))

tid.W [p] = false;
o.inv = true;

Junpack o; K ≡
assert tid.W ′[o];
assert o.inv ;
foreach (p ∈ rep(o))

tid.W [p] = true;
o.inv = false;

Jread (o) SK ≡
assert tid.R′[o];
assert o.inv ;
tid.R[o]++;
foreach (p ∈ rep(o))

tid.R[p]++;
JSK
foreach (p ∈ rep(o))

tid.R[p]−−;
tid.R[o]−−;

Jpar (S1, S2); K ≡
let R = tidpar.R;
par (JS1K, {

tidS2 .R = R;
JS2K

});

Fig. 3.The programming methodology

The newread statement serves two purposes. Firstly, it allows a thread to take an
object to which it has write access and make it read-only for the duration of theread
statement, which enables it to be shared with newly created threads. Secondly, it allows
a thread that has read access to an objecto to gain access too’s owned objects. That is,
it replaces theunpack andpack operations if only read access is required. Note: in
contrast to theunpack andpack pair,read blocks are re-entrant; that is, it is allowed
to nest multiple read block executions on the same object. This is useful e.g. when
writing recursive methods. This is also the reason why we need a readbag instead of a
readset.

Consider the generalfor-eachstatement shown in Section 2.4. For the purpose of
applying the proposed methodology, it is equivalent with the program in Fig. 4, assum-
ing that methodM has areads R; clause.

For the array example above, this yields the program in Fig. 5.

3.3 Yielding of references

If the values yielded by an enumeration are or contain object references, then this begs
the question as to what access both parties have to these objects. In the basic method-
ology proposed in this paper, there is no change in the access that both parties have at
the time of the yield operation. This is often the desired semantics; for example when
yielding the elements of a collection, the elements are typically owned by the client
and should remain so. However, as future work, we envisage supporting the specifica-
tion and verification of enumerator methods that e.g. create new objects and then when
yielding the objects transfer ownership (i.e. write access) to the client, or that share
read access to these objects between both parties. The read-write-access methodology



assert P [a/p];
read (R) {

par ({
Seq<T> values = new Seq<T>();
for (; ; ) invariant I[a/p]; invariant J ;
{

bool b; havoc b; if (¬b) break;
T x; havoc x; values.Add(x); assume I[a/p];
S

}
assume Q[a/p];

}, { Seq<T> values = new Seq<T>(); assert I; JBK assert Q; });
}

Fig. 4. Translation of the generalfor-eachloop for the purpose of applying the non-interference
methodology

already supports this, but it is future work to determine how this should be specified
in the enumerator method contract or what the impact on the verification of Iterator
patterns is.

4 Implementation

This section analyzes the current implementation technique of iterators and shows how
it can naturally be extended to deal with nested iterators, too.

4.1 Translation of for-each loops

To understand the behavior of enumerations in detail, let’s look at their implementations
as exemplified in the C# Language Specification [9]. It says (slightly simplified) that the
following for-eachloop

foreach (T x in C) S

abbreviates the followingwhile loop: 6

IEnumerable<T> c = C; IEnumerator<T> e = c.GetEnumerator();
while (e.MoveNext()) { T x = e.Current ; S }

In this expansion theGetEnumerator method returns an enumerator that enumer-
ates the elements of the collection. Thewhile loop first callsMoveNext to advance the

6 The .NET Framework’s variant of the Iterator design pattern, as embodied in the
IEnumerator<T> and related interfaces, prescribes that a client must signal to the enu-
merator implementation that resources allocated by the enumerator implementation may be
disposed of, by calling aDispose method on the enumerator object. Theforeach statement
performs this call implicitly. We ignore this detail in this paper because it is inconsequential to
our discussion.



int[] xs = {1, 2}; int sum = 0;
read (xs)
{

par ({
Seq<T> values = new Seq<T>();
for (; ; )

invariant values.Count ≤ xs.Length;
invariant forall{int i in (0:values.Count); values[i] == xs[i]};
invariant sum == SeqTools.Sum(values);

{
bool b; havoc b; if (¬b) break; T x; havoc x; values.Add(x);
assume values.Count ≤ xs.Length;
assume forall{int i in (0:values.Count); values[i] == xs[i]};
sum += x;

}
assume values.Count == xs.Length;

}, {
Seq<T> values = new Seq<T>();
assert values.Count ≤ xs.Length;
assert forall{int i in (0:values.Count); values[i] == xs[i]};
for (int i = 0; i < xs.Length; i++)

invariant values.Count ≤ xs.Length;
invariant forall{int i in (0:values.Count); values[i] == xs[i]};
invariant values.Count == i;

{
values.Add(xs[i]);
assert values.Count ≤ xs.Length;
assert forall{int i in (0:values.Count); values[i] == xs[i]};

}
assert values.Count == xs.Length;

});
}
assert sum == 3;

Fig. 5.Translation of the array example for the purpose of applying the non-interference method-
ology



enumerator to the first element of the collection before reading the value ofCurrent .
After the end of the collection is passed, the enumerator is positioned after the last
element in the collection, and callingMoveNext returnsfalse.

4.2 Translation of non-nested iterators

First, let’s consider a translation of iterator methods into plain C#. This is essentially the
example translation described in the C# 2.0 Language Specification.7 As an example,
consider the translation in Fig. 6 of theFromTo method introduced earlier.

4.3 Translation of nested iterators

The translation of nested iterators is very similar to the translation of non-nested it-
erators. We illustrate the translation using the following recursive version of method
FromTo. The translation is in Figs. 7, 8, and 9.8

static IEnumerable<int> FromToNested(int b, int e) {
if (b > e) yield break;
yield return b; yield foreach FromToNested(b + 1, e);

}

The main difference in the translation is that the object returned by the translation
of FromToNested now derives from an abstract classNestedEnumerable<int>, and
that the enumerator objects derive from an abstract classNestedEnumerator<int>.

The idea behind theNestedEnumerator<T> class is that it generalizes theIEnum-
erator<T> pattern from a linear list to ann-ary tree. But before looking in detail at
the code forNestedEnumerator<T>, let’s look at the state machine ofNestedMove-
Next , which resulted from the translation of theFromToNested body.
TheNestedMoveNext method returns one of four values: it returns eitherDone indi-
cating that the enumeration is finished,Value indicating that the iterator produced a
single value,Enumerator indicating that the iterator produced a nested enumeration,
or TailEnumerator indicating that the iterator produced a nested enumeration and that
it is now done.

The abstract base classesNestedEnumerable andNestedEnumerator are similar
to the interfacesIEnumerable andIEnumerator , except that they gather some reusable
members.

The most interesting class isRootEnumerator . It implements theIEnumerator in-
terface based on a givenNestedEnumerator object. ItsMoveNext method operates on
a stack of nested enumerators. First,MoveNext asks theNestedMoveNext method for
the next information. If it is a value, it can be returned as usual. If it is a nested iterator,

7 For increased efficiency, the C# compiler emits a single class that implements both the
IEnumerable<T> and IEnumerator<T> interfaces. To simplify the exposition, we use
separate classes. This is inconsequential for our purposes.

8 Again, we can merge theFromToNestedEnumerable and theFromToNestedEnumerator
classes into one, but for clarity of exposition we use separate classes.



static IEnumerable<int> FromTo(int b, int e) {
return new FromToEnumerable(b, e);

}

class FromToEnumerable : IEnumerable<int> {
int b, e;
public FromToEnumerable(int b, int e) { b = b; e = e; }
public IEnumerator<int> GetEnumerator() {

return new FromToEnumerator(b, e);
}

}

class FromToEnumerator : IEnumerator<int> {
int b, e, pc, current , i;
public FromToEnumerator(int b, int e) { b = b; e = e; }
public int Current {

get {
if (pc == 0 ∨ pc == 3)

throw new InvalidOperationException();
return current ;

}
}
public bool MoveNext() {

switch (pc) {
case 0: i = b; goto case 1;
case 1:

if (i > e) goto case 3;
current = i; pc = 2; return true;

case 2: i++; goto case 1;
case 3: pc = 3; return false;

}
}

}

Fig. 6.Translation ofFromTo



public abstract class NestedEnumerable<T> : IEnumerable<T> {
public abstract NestedEnumerator<T> GetNestedEnumerator();
public IEnumerable<T> GetEnumerator() {

return new RootEnumerator(this.GetNestedEnumerator());
}

}
public enum NestedEnumState { Value, Enumerator , Done, TailEnumerator }
public abstract class NestedEnumerator<T> {

protected int pc;
protected T currentValue;
protected NestedEnumerator<T> currentEnumerator ;
public abstract NestedEnumState NestedMoveNext();
public static NestedEnumerator<T> GetNestedEnumerator(IEnumerable<T> c) {

NestedEnumerable<T> nc = c as NestedEnumerable<T>;
return nc == null ? new EnumeratorAdaptor(c) : nc.GetNestedEnumerator();

}
}

Fig. 7.Support classes for the translation of nested iterator methods (part 1 )

it is placed on the stack. And if the top enumeration is exhausted, the stack is popped
and processing continues. If the stack is empty, the root enumeration is complete.

When performing a nested enumeration using non-nested iterators, execution passes
through each enclosing enumeration whenever the client calls theMoveNext method
on the root enumerator. That is, the recursion stack is built up and torn down on the call
stack at each iteration step. By retaining the recursion stack in a data structure, nested
iterators avoid this overhead, which is linear in the depth of recursion, multiplied by
the number of iteration steps. For example, for a recursively enumerated linked list, the
number of calls is quadratic in the number of elements, and for a recursively enumerated
balanced tree ofn nodes, the number of calls isO(nlog(n)). When using nested itera-
tors, in each of these cases, the number of calls, as well as the overall time complexity,
is O(n).

Figure 10 shows the performance difference. We compute ranges once using a C#
version 2 non-nested but recursive version of theFromTo iterator and compare it with
a nested recursive iterator (specifically, theFromToNested method). In each case we
generate 500 numbers. We repeat the experiment 100 times. In each case we observe
that the current implementation has quadratic time behavior whereas the proposed im-
plementation is linear. But since we often experienced performance degradation sparks,
Fig 10 doesn’t show the average behavior, but two particular runs.

5 Conclusion

Iterators are omnipresent and thus it is time to consider them as first class citizens in
our languages: both for verification and for efficient execution. We gave for the first
time straightforward proof rules for iterators that respect their laziness and that work



public class RootEnumerator<T> : IEnumerator<T> {
Stack<NestedEnumerator<T>> stack = new Stack<NestedEnumerator<T>>();
public RootEnumerator(NestedEnumerator<T> e) {

stack .Push(e);
}
public T Current {

get {
if (stack .Count == 0 ∨ stack .Peek().pc == 0)

throw new InvalidOperationException();
return stack .Peek().currentValue;

}
}
public bool MoveNext() {

while (true) {
if (stack .Count == 0) return false;
switch (stack .Peek().NestedMoveNext()) {

case NestedEnumState.Value:
return true;

case NestedEnumState.Enumerator :
stack .Push(stack .Peek().currentEnumerator);
break;

case NestedEnumState.Done:
stack .Pop();
break;

case NestedEnumState.TailEnumerator :
NestedEnumerator<T> e = stack .Peek().currentEnumerator ;
stack .Pop(); stack .Push(e);
break;

}
}

}
}
public class EnumeratorAdaptor<T> : NestedEnumerator<T> {

IEnumerator<T> e;
public EnumeratorAdaptor(IEnumerable<T> c) {

e = c.GetEnumerator();
}
public NestedEnumState NestedMoveNext() {

if (e.MoveNext())
{ currentValue = e.Current ; return NestedEnumState.Value; }

else
return NestedEnumState.Done;

}
}

Fig. 8.Support classes for the translation of nested iterator methods (part 2 )



static IEnumerable<T> FromToNested(int a, int b)
{ return new FromToNestedEnumerable(a, b); }
class FromToNestedEnumerable : NestedEnumerable<int> {

int b, e;
public FromToNestedEnumerable(int b, int e) { b = b; e = e; }
public override NestedEnumerator<int> GetNestedEnumerator() {

return new FromToNestedEnumerator(b, e);
} }

public class FromToNestedEnumerator : NestedEnumerator<int> {
int b, e;
public FromToNestedEnumerator(int b, int e) { b = b; e = e; }
public override NestedEnumState NestedMoveNext() {

switch (pc) {
case 0 : if (b > e) goto case 2;

currentValue = b; currentEnumerator = null;
pc = 1; return NestedEnumState.Value;

case 1 : currentValue = default(T );
currentEnumerator = GetNestedEnumerator(FromToNested(b + 1, e));
pc = 2; return NestedEnumState.TailEnumerator ;

case 2 : pc = 2; return NestedEnumState.Done;
} } }

Fig. 9.Translation ofFromToNested

Fig. 10.Running time with non-nested iterators (upper line) and nested iterators (lower line)



particularly well with their use infor-eachloops. We also proposed the introduction of
nested iterators. In contrast with existing implementations, which lack nested iterators,
our implementation has linear time complexity, which makes nested iterators particular
amenable for iterating over recursive data structures.

Acknowledgements

The authors would like to thank the members of the Spec# team at Microsoft Research
and Jan Smans at K.U.Leuven for their helpful comments.

Bart Jacobs co-authored this paper during an internship at Microsoft Research. Bart
Jacobs is a Research Assistant of the Research Fund - Flanders (F.W.O.-Vlaanderen).

References

1. Jonathan Aldrich and Craig Chambers. Ownership domains: Separating aliasing policy from
mechanism. InECOOP, 2004.

2. Mike Barnett, Robert DeLine, Manuel Fähndrich, K. Rustan M. Leino, and Wolfram Schulte.
Verification of object-oriented programs with invariants.Journal of Object Technology,
3(6):27–56, 2004.

3. Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The Spec# programming system:
An overview. InCASSIS, Lecture Notes in Computer Science. Springer, 2004.

4. Gavin Bierman, Erik Meijer, and Wolfram Schulte. The essence of data access in cω. In
ECOOP 2005 — Object-Oriented Programming, 19th European Conference, Lecture Notes
in Computer Science. Springer, July 2005.

5. Chandrasekhar Boyapati, Barbara Liskov, and Liuba Shrira. Ownership types for object
encapsulation. InPOPL, 2003.

6. Microsoft Corporation. C# Language Working Draft 2.7, June 2004 (PDF). URL:
http://msdn.microsoft.com/vcsharp/programming/language/, 2004.

7. Sun Corporation. JSR 201: Extending the JavaTM Programming Language with Enumera-
tions, Autoboxing, Enhanced for loops and Static Import. URL:
http://jcp.org/en/jsr/detail?id=201, 2004.

8. R. Griswold and M. Griswold.The Icon programming language. Prentice Hall, 1990.
9. Anders Hejlsberg, Scott Wiltamuth, and Peter Golde.The C# Programming Language.

Addison-Wesley, 2003.
10. Steve King and Carroll Morgan. An iterator construct for the refinement calculus. InFourth

Irish Workshop on Formal Methods, 2000.
11. A. Krall and J. Vitek. On extending Java. InProceedings of JMLC, 1997.
12. K. Rustan M. Leino and Wolfram Schulte. Exception safety for C#. InSEFM 2004. IEEE,

2004.
13. B. Liskov, R. Atkinson, T. Bloom, E. Moss, J.C.Schaffert, R. Scheiffer, and A. Snyder.CLU

reference manual. Springer Verlag, 1981.
14. B. Liskov, M.Day, M. Herlihy, P. Johnson, and G. Leavens. ARGUS reference manual.

Technical report, MIT, 1987.
15. S. Murer, S. Omohundro, D. Stoutamire, and C. Szyperski. Iteration abstraction in Sather.

ACM Transactions on Programming Languages, 18(1):1–15, 1996.
16. S. Murer, S. Omohundro, and C. Szyperski. Sather iters: object-oriented iteration abstraction.

Technical Report TR-93-045, August 1993.



17. Spec# project web page. URL:
http://research.microsoft.com/SpecSharp/.

18. Grant Richins. Recursive iterators (aka perf killers). URL:
http://blogs.msdn.com/grantri/archive/2004/03/24/95787.aspx, March 2004.

19. Grant Richins. Recursive iterators made iterative. URL:
http://blogs.msdn.com/grantri/archive/2004/04/08/110165.aspx, April 2004.

20. Mary Shaw, William A. Wulf, and Ralph L. London. Abstraction and verification in alphard:
Defining and specifying iteration and generators.Communications of the ACM, 20(8), 1977.

21. Jeanette Marie Wing.A two-tiered approach to specifying programs.PhD thesis, MIT, Lab.
for Comp.Sci., 1983.

Appendix. Programming methodology soundness proof sketch

In this section, we provide a sketch of a proof of the soundness of our proposed pro-
gramming methodology for avoiding interference between parties in an enumeration.
The sketch focuses on the distinctive features of the proposed methodology compared
with the Boogie methodology and its soundness proof given in [2].

We use the following auxiliary definitions:

(o owns p) def= (o.inv ∧ p ∈ rep(o)) X∗ def= {p | o ∈ X ∧ o owns∗ p}

Definition 1 (Operation). Anoperationis an object creation, a field read, a field write,
a pack, an unpack, a read block entry, a read block exit, a parallel execution start, or a
parallel execution termination.

Definition 2 (Program Execution). A program executionis a finite sequence of op-
erationsa1, . . . , an. We distinguishprogram execution points0, 1, . . . , n. If a threadt
is alive at a program execution pointi, then we distinguish thethread execution point
(t, i).

Definition 3 (Happens before).Thehappens beforerelation is the smallest transitive
relation that satisfies the following:

– A thread execution point(t, i) happens before each operationaj performed by
threadt wherei < j.

– An operationai performed by threadt happens before each thread execution point
(t, j) wherei ≤ j.

– A parallel execution start operationai that creates a threadt happens before(t, i).

Two operations or execution points that are not ordered by the happens before rela-
tion are said to beconcurrent.

Lemma 1 (Structural Properties).Consider an execution by a threadt of a command,
that extends between program pointsi andj. We have the following:

– t.Ri = t.Rj . That is, threadt’s read bag is the same in the pre-state and in the
post-state. In other words, no command has a net effect on the read bag.

– If (t, i) happens before(t′, j) for somet′, thent = t′. In other words, no threads
that were started by the command execution survive after the post-state.



Proof. By induction on the number of operations in the command execution and case
analysis on the command.

Lemma 2 (Program Invariants). At each program execution pointi, we have the fol-
lowing:

1. If t1 6= t2, thent1.R
′∗ andt2.W

′∗ are disjoint.
2. If o is in t.R′∗, then each preceding write of any field ofo happens before(t, i). In

other words, a thread’s observable state is never influenced by concurrent threads.
3. If t.W ′[o], then for each preceding program execution pointj wheret′.W ′[o], it

holds that(t′, j) happens before(t, i). In other words, two thread execution points
that have write access to an object are never concurrent.

4. If t.R[o] > 0, then for each preceding read block entry operationaj ono that brings
t′.R[o] from 0 to 1, for somet′, aj happens before(t, i). In other words, if at some
point a thread has shared read access to an object, then this thread execution point
is not concurrent with any preceding operation that causes the object to become
shared.

Proof. By induction on the length of the execution, and case analysis on the last opera-
tion performed. The interesting case is the read block exit operation. Suppose it brings
t.R[o] to zero. It follows that at the program pointj after the operation, we havet.W ′[o].
We prove by contradiction that it does not conflict with any other thread’s effective read
set. Suppose thatt′.R′[o] andt 6= t′. It follows thatt′.R[o] > 0. By the fourth Program
Invariant applied to the execution pointj − 1 preceding the read block exit operation,
we know that the corresponding read block entry happens before(t′, j − 1). Therefore,
the start of the execution of the body of the read block also happens before(t′, j − 1).
We now have a contradiction with the second Structural Property, which says thatt′

cannot be alive.

Theorem 1 (Soundness).Whenever a threadt performs a read operation on a field
o.f , the most recent write too.f , if any, happens before the read. In other words, no
thread ever sees writes performed concurrently by other threads.

Proof. Follows from the second Program Invariant.

Corollary 1. It is sound to verify afor-eachloop and the enumerator method it calls
as if they executed separately.

Proof. Since neither party sees writes performed by the other, we may assume that none
occur.


