
Towards imperative modules:
Reasoning about invariants and sharing of mutable state (extended abstract)

David A. Naumann∗

Stevens Institute of Technology
naumann@cs.stevens-tech.edu

Mike Barnett
Microsoft Research

mbarnett@microsoft.com

February 2, 2004
Abstract

Imperative and object-oriented programs make ubiqui-
tous use of shared mutable objects. Updating a shared ob-
ject can and often does transgress a boundary that was sup-
posed to be established using static constructs such as a
class with private fields. This paper shows how auxiliary
fields can be used to express two state-dependent encap-
sulation disciplines: ownership, a kind of separation, and
local co-dependence, a kind of sharing. A methodology is
given for specification and modular verification of encapsu-
lated object invariants and shown sound for a class-based
language.

1. Introduction

The use of pointer-based data structures makes formal
reasoning about programs quite difficult. In common prac-
tice, pointer structures are widely used both for internal rep-
resentations and for interfaces between components. Func-
tional languages offer strong encapsulation to protect inter-
nal invariants from outside interference, but in higher order
imperative programs various kinds of aliasing subvert en-
capsulation. The thorniest problems, due to interaction be-
tween local variables and nested procedures [14, 20], are
precluded [18, 3] in widely used imperative and object-
oriented languages owing to restrictions on non-local ref-
erences and/or nesting. But these restrictions on proce-
dure abstraction force the use of heap structure to encode
higher level patterns. Performance considerations also ne-
cessitate the use of heap sharing and programmers are often
taught to exploit “object identity” in specification and de-
sign. Compositional reasoning depends on control of alias-
ing but straightforward ways to control aliasing in the heap
have been found too restrictive for general use (see surveys
in [10, 16]). The contribution of this paper is to formalize
and prove sound a discipline that supports modular reason-
ing about object invariants, caters for common patterns of

∗Partially supported by NSF award CCR-0208984; SRI VisitingFel-
lowship; Microsoft Research

sharing, and is compatible with standard first and higher or-
der logics.

There has been a resurgence of work on encapsulated
invariants in stateful programs. State-dependent types are
needed to enforce simple data-type invariants in low-level
code where local variables (registers) are re-used and can-
not be given a single fixed type [15, 1]. Ownership type
systems [11, 16] and Separation Logic [19] focus on par-
titioning the heap so an internal data structure can be de-
scribed as a pool of objects separated from outside clients.

In addition to aliasing, one of the challenges when deal-
ing with object invariants is object reentrancy. Common
object-oriented design patterns —some explicitly intended
to express higher order functional style— involve invoking
an operation on an encapsulated abstraction while one is
already in progress. This is a problem even in sequential
programs, to which we confine our attention in this paper.

The discipline formalized in this paper protects invari-
ants using ownership, but expressing ownership not in terms
of types [11, 9] or logical connectives [23, 19] but rather
auxiliary state. As explained in the sequel, this addresses
the problem of reentrancy in a flexible way. Moreover, it
offers a conceptually attractive way to limit the part of heap
on which an object invariant depends, achieving encapsu-
lation in a way that offers a glimpse of what animperative
notion of modulemight be.

Finally, the discipline goes beyond separation to deal
with cooperation between objects without total dissolution
of their individual encapsulation. The object is not the only
useful unit of granularity for reasoning, but it is the unit of
addressability in object-oriented languages. Moreover, the
class construct is the primary unit of scope.

In Section 2 we explicate the problems in terms of pro-
gram logic, leading to an approach using both ownership
and pre/post commitments that describe cooperative inter-
ference between objects. In Section 3 we show how the ap-
proach has been realized in a verification discipline called
Boogie [5, 7]. The reader is encouraged to consult the cited
papers for an expository introduction. Informal soundness
arguments are sketched in [5, 7]. The technical contribution
of this paper is to formalize and prove soundness in terms
of a standard semantic model.

Predicates are treated semantically so the results are
useful both for verification systems based on weakest-
precondition semantics, like ESC/Java [13] and the Boo-
gie project, and for those like the LOOP project [12] which
treat program logic as derived rules for reasoning directly
in terms of semantics. Moreover there is no need for non-
standard logical connectives, type systems, or any particular
language for expressing properties of pointer structure. One
of the benefits of the discipline is that properties such as
double-linking in a list can be expressed in a decentralized
way that lessens the need for reachability or other inductive
predicates on the heap.

2. How encapsulation and atomicity justify
modular reasoning about object invariants

Suppose thatI is a predicate intended to be an invariant
for an encapsulated data structure on which methodm acts
and P ,Q are predicates on data visible to callers ofm .
The aim of this paper is to justify reasoning of this form:

{P ∧ I} body {Q ∧ I}

{P} m {Q}
(1)

In the rule,m is an invocation of the method andbody is
its implementation. The rule is very attractive. It allows
the implementer ofm to exploit the invariant while not ex-
posing it to the client:I can involve identifiers that are in
scope forbody but not for call sites.

On the face of it, the rule is unsound: forQ to be es-
tablished may well depend on preconditionI which is not
given in the conclusion. The idea is thatI shoulddepend
only on encapsulated stateso that it cannot be falsified by
client code. To explain, we consider this rule.

{P} S {Q} S does not interfere withI

{P ∧ I} S {Q ∧ I}
(2)

The condition “S does not interfere withI ” is intended
to apply whenS is outside the scope of encapsulation. In
simple settings the condition can be expressed in terms of
disjointness of identifiers. With aliasing it can be extremely
difficult to express.

The benefit of rule (2), which has specifications symmet-
ric to those in (1), is to undo the apparent unsoundness of
(1). The argument is instructive. Consider a proof treeτ
for some triple{Pmain} Smain {Qmain} , that uses rule
(1) and various other rules. That is, each node is an in-
stance of a rule as usual. Now consider the treeτ ′ obtained
from τ by changing some of the pre- and post-conditions,
as follows. For every noden for rule (1) we conjoinI to
the pre- and post-conditions in the conclusion, leaving the
antecedent unchanged. Every node in the subtree atn (i.e.,

verifying body) is left unchanged. For the remaining nodes,
I is conjoined everywhere. The result,τ ′ , concludes with
{Pmain∧I} Smain {Qmain∧I} . Each use of the dubious
rule (1) has become

{P ∧ I} body {Q ∧ I}

{P ∧ I} m {Q ∧ I}

which is allowed by an ordinary procedure call rule. But
τ ′ is not a proof tree, because some other nodes no longer
match rules. Suppose that the program exhibits proper en-
capsulation, in the sense that the state on whichI depends
is only manipulated insidebody . Then rule (2) may be used
to justify the introduction ofI so τ ′ can be transformed to
a proof tree. The end result is a proof of

{Pmain} init {Pmain∧I} Smain {Qmain∧I} ⇒ {Qmain}

and the original task has been accomplished.1

Object-oriented programming subverts this story in two
ways. First, free use of pointers makes it difficult to ensure
or even define and reason about the separation needed for
the condition in rule (2). Second, our argument treats calls
of m asatomic in a sense: Within the subtree for a call
node, we did not and cannot conjoinI throughout; invari-
ants are violated during updates to data structures. But if
body invokes an operation on some object outside the en-
capsulation boundary, there is the possibility of a reentrant
call. When that call occurs,I might not hold, but the point
of rule (1) is to insist that, unbeknownst to the client,I is
established before every invocation ofm . The discipline
presented in Section 3 deals with both of these problems.

The last problem we address is thesharing of mutable
state. Rule (2) deals with separation of state. This is made
beautifully explicit in Separation Logic, where∧ is re-
placed by the separating conjunction∗ which obviates the
need for any side condition: From{P} S {Q} we can infer
{P ∗ I} S {Q ∗ I} . This expresses the absence of relevant
sharing: S and I depend on disjoint parts of the heap.
When applicable this is very powerful. But what about the
situation where sharing is needed? Common design patterns
abound with situations where a configuration of several in-
terlinked objects cooperate in a controlled way.

We write I(o) to make explicit the object for which an
invariant is considered. SupposeI(o) depends on fieldf
of another objectp , say because there is a fieldg with
o.g = p andI(o) requireso.g.f ≥ 1 . Moreover, for some
reasono does not ownp . Though I(o) is at risk from
updates ofp.f , supposep cooperates by only increasing

1O’Hearnet al. [19] express similar reasoning in a rule of this shape:

{P} m {Q} ⊢ {P ′} S {Q′}

{P ∧ I} body {Q ∧ I} ⊢ {P ′ ∧ I} S {Q′ ∧ I}

2

the value off . Consider the following rule.

{P} E.f : = E′ {Q} {U ∧ I} E.f : = E′ {I}

{P ∧ U ∧ I} E.f : = E′ {Q ∧ I}

The idea is that{P} E.f : = E′ {Q} specifies the assign-
ment in the class performing the update ofp.f . The triple
{U ∧ I} E.f : = E′ {I} is a commitment, advertised by
the class ofo , expressing that under conditionU its invari-
ant is not falsified. The conclusion is used in a way similar
to rule (2) but imposes proof obligationU .

The above rule is sound, being an instance of the stan-
dard rule of conjunction. But its intended use is forI de-
clared in one class andE.f : = E′ occuring in code of a
different class. The rule must be rejected for being incom-
patible with scope-based encapsulation.

The rule above is intended to be used in the context of the
class of objectp , which “grants” too permission to depend
on p.f , and the left-hand antecedent would be discharged
in that context. But the antecedent{U∧I} E.f : = E′ {I}
should be discharged in the “friend” class to which access is
granted. In that contextI is visible butE, E′ are not. The
solution studied in this paper is for the friend class, in which
I is declared, to include in its interface a commitment

{U(x, y) ∧ I} x.f : = y {I} (3)

wherex, y are fresh variables used only to specify the com-
mitment [7]. The actual formulation hidesI , so the com-
mitment is that “under preconditionU(x, y) , an assignment
x.f : = y does not falsify my encapsulated invariant” and
U is chosen to expose appropriate state ofx . The commit-
ment can be extended to yield a postcondition as well [7]
but soundness for that is straightforward and omitted here.

3. Recovering encapsulation and atomicity in
the presence of sharing and reentrancy

Atomicity. Atomicity poses a difficult problem for invari-
ants in object-oriented programs. A sound approach which
has seen considerable use is for acaller to establish its own
invariant before it makes any outgoing method call, just in
case it leads to a reentrant call back. In terms of the above
proof tree transformation, this meansI must hold as a pre-
condition at nodes for each outgoing call inbody and then
it is conjoined to predicates in the subtree for that call, to
ensure that it holds for any nested calls back to the object
for which we are maintainingI . This approach has been
called visible state semantics of invariants [17], but inter-
mediate states are not observable in the sense of pre/post
specifications. Although sound, this proposal is too restric-
tive for many practical purposes.

The discipline that we study [5] avoids exposing details
about internal state by introducing a public boolean field

inv to indicate whether an object’s invariant holds. Being
a boolean, it poses no difficulty with aliasing. Instead of
struggling to decide in which states the rules should require
I to hold, we require that the following holds inall states:

(∀ o • o.inv ⇒ Itype(o)(o)) (4)

Our quantifications range over locations allocated in the
current heap. We writetype o for the type of the object (its
so-called dynamic class, though in this extended abstract we
omit subclassing). If a method specification hasself.inv as
precondition thenI(self) can be assumed for verification
of its implementation.

The field inv is an auxiliary, meaning that it may be
used in specifications but not in ordinary code. To update
this and other auxiliaries, we do not use ordinary field as-
signments but rather special statements that can be distin-
guished from ordinary assignments and are subject to spe-
cial rules. The reasoner is free to decide whereinv does
and does not hold. The rule forE.f : = E′ has as precon-
dition ¬E.inv which ensures that an update does not vi-
olate (4); we add further preconditions in the sequel. The
special statement “pack E ” sets E.inv true; setting it
false is the purpose ofunpack . These are defined later
because they involve the next topic.

Ownership. Like atomicity, ownership and cooperative
friendship are treated using auxiliary fields which express
state-dependent encapsulation. Encapsulation is realized in
system invariantslike (4) which can be exploited wherever
they are needed in verification.

Ownership is a state-dependent form of encapsulation:
an invariantI(o) is allowed to depend on fields ofo and
fields of objects owned byo . The auxiliary field own
holds a reference to an object’s owner and isnull if there
is no owner. The auxiliary fieldcomm is a boolean that
represents whether an object iscommittedto its owner, in
which case only its owner is allowed to unpack it. The
special statementset-owner E to E′ has the effect
E.own : = E′ . Making it a special statement indicates
that it has no observable effect on the program seman-
tics, although it is subject to stipulated preconditions, e.g.,
¬E.inv just as with any field update. The stipulated pre-
conditions are summarized in Table 1.

The statementpack E has the effect of settingE.inv
true and also settingo.comm true for all o owned byE .
(Table 5 gives the formal definition.) In order to maintain
system invariant (4), the stipulated precondition includes
that I(E) holds. The other preconditions involve features
explained in the sequel; see [5] or [7] for a more leisurely
introduction to the ownership discipline.

Statementunpack E has precondition¬E.comm ,
that is, only an object’s owner is allowed to unpack it. Be-
sides settingE.inv false, this statement setso.comm false

3

E 6= null ∧ ¬E.inv ∧ IB(E) ∧ (∀ p • p.own = E ⇒ ¬p.comm ∧ p.inv); pack E

E 6= null ∧ E.inv ∧ ¬E.comm; unpack E

¬self.inv ∧ E′ 6= null; attach E′

¬self.inv ∧ E′ 6= null ∧ (¬E′.inv ∨ (∀ g : B ∈ pivotsC • E′.g 6= self)); self : B ⊢ detach E′

E 6= null ∧ ¬E.inv E.f : = E′

∧ (∀ p • p ∈ E.deps ∧ f ∈ reads(type(p), B) ⇒ ¬p.inv ∨ Utype(p),B,f (p, E, E′));

E 6= null ∧ ¬E.inv ∧ (E′ = null ∨ ¬E′.inv) set-owner E to E′

∧ (∀ p • p ∈ E.deps ∧ own ∈ reads(type(p), B) ⇒ ¬p.inv ∨ Utype(p),B,own(p, E, E′));

Table 1. Stipulated preconditions. Static types are assumed to beE : B and E′ : C .

for all o with o.own = E , thus making owned objects
available for unpacking.

The pack and unpack statements effectively achieve a hi-
erarchical notion of ownership, soI(o) is allowed to de-
pend on objects that it transitively owns. The discipline
yields system invariants (10) and (11), included in the sum-
mary at the end of this section. As a consequence of the
invariants, the precondition¬E.inv for field update means
that an object cannot be updated unless its owner is un-
packed. Surprisingly, this is sound even with all fields con-
sidered public —not to say that is advisable in practice.

Friendship. In the discipline of [7], which extends [5] to
handle cooperative sharing, three special declarations may
appear in a classB . First, there may be a sequence of friend
declarations2

friend C reads f̄ (5)

where each field namef in f̄ is either declared inB
or is the auxiliaryown . The set of namesC for which
B has a friend declaration is writtenfriends B . More-
over, reads gives the fields that a friend reads from a
granter: reads(C, B) = f̄ for the declaration above, and
reads(C, B) = ? if C /∈ friends B .

Second, in each classC there should be exactly one dec-
laration

invariant IC pivots pivs (6)

whereIC is a predicate onself : C (and the heap of course)
and pivs is a sequence of (fieldname,classname) pairs,
written g : B . Define pivotsC = pivs . For each(g : B)
in pivotsC , field g must be declared inC and C must
be in friends B . Definition 6 in the sequel requires that
IC(o) depends onp.f only if either p = o , p is transi-
tively owned byo , or p = o.g for some pivot field. Thus
we limit friend dependencies to a single step of indirection
in this extended abstract.3

2The term “reads” is slightly misleading in that (in this paper) all fields
are public and thus subject to update from code in any class.

3Dependence ono.g.h for immutable fieldh of o.g is clearly allow-
able (e.g. length if g is an array). And friendship localizes invariants,
lessening the need for farther reaching expressions.

The third special declaration is the update guard. In any
classC there should be at least one declaration

guard piv.f : = val by UC,B,f (self, piv, val) (7)

for each B, f with f ∈ reads(C, B) . It can be
the predicate false by default. Here the predicate
UC,B,f (self, piv, val) is over self : C, piv : B, val : T , where
T is the type off in B and piv, val are special variables
used only for this purpose.4 Note that the pivot nameg
need not be visible toB . Generalizing from (3) in Sec-
tion 2, there may be several classesC in friends B that
read f , and each one’s guard is needed as precondition to
updatef .

To accomodate dynamic allocation of unboundedly
many instances ofC , each of which could potentially de-
pend on a givenp of type B , we introduce one last aux-
iliary field, deps , so thatp.deps is a set of locations of
friends o that may depend onp in that o.g = p for some
pivot g . The system invariant associated withdeps is that
o.inv ⇒ o ∈ p.deps if o has a pivot pointing atp , see
Definition 1(12). To maintain this invariant, an admissible
object invariantI(o) is required to implyo ∈ p.deps (see
Definition 6 in Section 6).

Besides writingI(o) to denote instantiation with loca-
tion o , we use a squiggly notationP [E.f :≈E′] for the
semantic counterpart of substitution (i.e., the inverse image
of field update). Also, unqualifiedg is short forself.g .

Declaration (7) generates a proof obligation. For each
(g : B) ∈ pivotsC and eachf ∈ reads(C, B) , the follow-
ing must be valid (whereself : C).

IC∧g 6= null∧UC,B,f (self, g, val) ⇒ IC [g.f :≈ val] (8)

That is, if IC depends ong.f then it is maintained by an
assignment ofval to g.f under preconditionUC,B,f .

4The notationUC,B,f is just a way for our formalism to keep track
(in Table 1) that this is the predicate used to guard any update of f in an
object of type B with respect to the invariant ofC . It is important to
allow more than one update guard for givenC, B, f , offering a choice for
use at different update sites.

Note that in program logic it is common to treat a field (or array) up-
date a.f : = E as a simple assignmenta : = [a | f : = E] but our
formulations are in terms of the syntaxa.f : = E .

4

The field deps is manipulated by two special state-
ments: attach E adds the value ofE to self.deps and
detach E removes it. See Table 5.

Field update revisited. Pre- and post-conditions in
method specifications may mention any of the special fields
inv, comm, own, deps , as can intermediate assertions used
in reasoning. There is no restriction on method specifica-
tions or on where special statements are used. But these
statements and field updates are subject to the preconditions
stipulated in Table 1.

The primary benefit of the discipline is that object in-
variants hold at any control point in the program whereinv
holds, as formalized in (9) of the following.

Definition 1 (system invariant) The system invariantSI
is the conjunction of the following.

(∀ o • o.inv ⇒ Itype(o)(o)) (9)

(∀ o • o.inv ⇒ (∀ p • p.own = o ⇒ p.comm))(10)

(∀ o • o.comm ⇒ o.inv) (11)

For everyC and(g : B) ∈ pivots C:
(∀ p : C, o : B • p.g = o ∧ p.inv ⇒ p ∈ o.deps)

(12)

Because quantifiers range over locations allocated in the
current heap, the antecedent in (12) holds whenp.g = nil .

The main result of the paper is thatSI is invariant for
any properly annotated program.

The precondition for field update may appear daunting.
But the program text gives finitely manyC such thatf ∈
reads(C, B) . So the condition can be expressed as a finite
conjunction, indexed by the classesC in friends B such
that f ∈ reads(C, B) . Each conjunct takes the form

(∀ p : C • p ∈ E.deps ⇒ ¬p.inv ∨ UC,B,f (p, E, E′))

That is, the displayed condition must be established for each
of the friendsC declared inB that readf . Typically there
are few or none.

Admissible formulas. Because the semantic Definition 6
of admissibility is slightly intricate, we mention here suffi-
cient but not necessary conditions for a formula to denote an
admissible invariant. A formula overself : C will denote an
admissible invariant provided that for every field reference
E.f , f is neitherinv nor comm and moreover one of the
following hold:

• E is self

• E is some variablex in the scope of(∀x • x.own =
self ⇒ . . .)

• E is self.g for declared pivot g : B with C ∈
friends B and moreover a top level conjunct of the for-
mula is or impliesself.g = null ∨ self ∈ self.g.deps

In some examples the invariantself.g 6= null ⇐⇒ self ∈
self.g.deps is useful, but in others there is no need fordeps
to be so accurate.

A useful idea that we omit in the formal treatment is to
tag field declarations asrep h to say that fieldh satisfies
invarianth = null∨h.own = self ; then we can also allow
E to be a sequence ofrep fields, as that implies transi-
tive ownership. Similarly, declarationpeer h can be intro-
duced to indicate thath = null ∨ self.own = h.own (this
is admissible, given suitable friend and pivot declarations).
Then E.f is allowed if E ≡ h.h0.h1. . . . hn where h is
taggedrep and eachhi is taggedpeer . For example,
a List class could have fieldrep head : Node and Node
could havepeer next : Node . These local invariants im-
ply that every nodep ∈ o.head.next∗ is owned by listo ,
without the need to express it using such a path expression
in the invariant ofList .

In [7] the Subject/View pattern serves as an example
of reasoning aboutdeps . The Subject notifies its views
when its state changes, so it maintains a data structure that
represents the set of its current views,vs . Its invariant
p ∈ self.deps ⇒ p ∈ vs puts it in a position to estab-
lish the precondition for updating its fields on which Views
depend.

The discipline has been formulated in a way that admits
aliasing among pivots. An interesting exercise is to consider
classB with field f : int and friend C reads f , where
IC is g.f = 0 ⇒ g′.f = 1 for pivots g, g′ : B .

4. An illustrative language

The key features of the discipline involve only field up-
date and the five primitive statements that manipulate aux-
iliary fields. To demonstrate that the discipline scales to
practical languages including general recursion and object-
oriented constructs, and to lay the groundwork for the
refinements needed to cope with subclassing and inheri-
tance [5], we use a language similar to the imperative core
of Java (as in, e.g., [4, 8]) including value parameters and
results, mutable local variables and object fields, and dy-
namic instantiation of objects. Expressions have no side
effects but may dereference chains of fields.

Syntax. The grammar is in Table 2. A complete program
is given as aclass table, CT , that associates each declared
class name with its declaration. The typing rules make use
of some helping functions that are defined in terms ofCT ,
so the typing relation⊢ depends onCT but this is elided
in the notation. Because typing of each class is done in the
context of the full table, methods can be recursive (mutu-
ally) and so can field types.

To define the helping functions, supposeCT (C) =
class C { f̄ : T̄0; M̄ } . For fields, definefieldsC =

5

CL ::= class C { f̄ : T̄ ; M̄ } class namedC with public fieldsf̄ , public methodsM̄

T ::= bool | unit | C data type, whereC ranges over class names

M ::= m(x̄ : T̄) : T {S} methodm with result typeT , parameters̄x of typesT̄

S ::= if E then S else S | S; S alternative; sequence

| x : = E | var x : T : = E in S assign to variable; initialized local variable block

| x : = E.m(Ē) | E.f : = E | x : = new C invoke method; assign to field; construct object

| pack E | unpack E | set-owner E to E set and unsetinv; updateown

| attach E | detach E add and remove fromself.deps

E ::= x | null | true | false | E.f | E = E variable; constants; field access; reference equality

Table 2. Programming language. A distinguished variable name,self , is used for the target parameter and
another,result , is used for the return value of a method. Identifiers likeT̄ with bars on top indicate finite lists (the bar
has no meaning). Typeunit , often called “void”, has a single value and is used for methods that return nothing useful.

f̄ : T̄0 . For use in the semantics, we extendfields C to
a function xfieldsC that also assigns types to the auxil-
iary fields: inv :bool , comm :bool , own : (Loc∪{nil}) ,
deps : setof(Loc) . Here(Loc∪{nil}) andsetof(Loc) are
not types in the programming language, but notation in the
metalanguage to streamline later definitions.

For M in the list M̄ of method declarations, withM =
m(x̄ : T̄1) : T {S} , we definemtype(m, C) = x̄ : T̄1→T .
In the semantics it is convenient for the input to a method to
be a store, mappingself and x̄ to their values.

C = Γx x 6= self

Γ ⊢ x : = new C

Γ ⊢ E0 : C (f : T) ∈ fieldsC Γ ⊢ E1 : T

Γ ⊢ E0.f : = E1

Γ ⊢ E : C

Γ ⊢ pack E Γ ⊢ unpack E

Γ ⊢ E : C C ∈ friends(Γ self)

Γ ⊢ attach E Γ ⊢ detach E

Γ ⊢ E : C Γ ⊢ E′ : C′

Γ ⊢ set-owner E to E′

Table 3. Selected typing rules.

A class table is well formed if each class is well formed,
which simply means that each method declaration is well

formed according to the following rule (see also Table 3).

self : C, x̄ : T̄ , result : T ⊢ S

C ⊢ m(x̄ : T̄) : T {S}

Semantics. Methods are associated with classes, in a
method environment, rather than with object states. For this
reason the semantic domains are relatively simple; there are
no recursive domain equations to be solved (cf. [22, 21]).

Table 4 defines the semantic domains. For data typeT ,
the domain[[T]] is a set of values. This induces the domain
[[Γ]] of storesas usual. The domain[[state C]] of states for
an object of typeC is just stores forxfieldsC (that is, in-
cluding the auxiliary fields). Aheapis a finite map from
locations to object states, such that every location in any
field is in the domain of the heap. Function application as-
sociates to the left, soh o f looks upf in the object state
h o . We also use a dot for emphasis with fields, writing
h o.f for h o f .

The domain[[Heap ⊗ Γ]] contains program states(h, s)
consisting of a heap and a stores ∈ [[Γ]] with no dangling
locations. Similarly, [[Heap ⊗ T]] contains pairs(h, v)
where v ∈ [[T]] and is not a dangling location. The pre-
ceding domains are all complete partial orders, ordered by
equality. The next domains are function spaces into lifted
domains. The meaning of expressionΓ ⊢ E : T is a func-
tion [[Heap ⊗ Γ]] → [[T⊥]] . The meaning ofΓ ⊢ S is
a function [[MEnv]] → [[Heap ⊗ Γ]] → [[(Heap ⊗ Γ)⊥]]
that takes a method environmentµ (see below) and a state
(h, s) and returns a state or⊥ for divergence or error. Ta-
ble 5 gives the semantics for commands.

The domain [[C, x̄, T̄→T]] is the set of meanings for
methods of classC with result T and parameters̄x : T̄ .
Ordered pointwise, this is a complete partial order with bot-
tom. Finally, amethod environmentµ ∈ [[MEnv]] sends
eachC and method namem declared inC to a meaning

6

[[C]] = {nil} ∪ {o | o ∈ Loc ∧ type o = C} [[bool]] = {tt, ff} [[unit]] = {it}

[[Γ]] = {s | dom s = dom Γ ∧ s self 6= nil ∧ (∀x ∈ dom s • s x ∈ [[Γ x]])}

[[state C]] = {s | dom s = dom(xfieldsC) ∧ (∀ (f : T) ∈ xfieldsC • s f ∈ [[T]])}

[[Heap]] = {h | dom h ⊆fin Loc ∧ noDanglingRef h ∧ (∀ o ∈ dom h • h o ∈ [[state (type o)]])}
wherenoDanglingRef h iff rng s ∩ Loc ⊆ dom h for all s ∈ rng h

[[Heap ⊗ Γ]] = {(h, s) | h ∈ [[Heap]] ∧ s ∈ [[Γ]] ∧ rng s ∩ Loc ⊆ dom h}

[[Heap ⊗ T]] = {(h, v) | h ∈ [[Heap]] ∧ v ∈ [[T]] ∧ (v ∈ Loc ⇒ v ∈ dom h)}

[[C, x̄, T̄→T]] = [[Heap ⊗ (x̄ : T̄ , self : C)]] → [[(Heap ⊗ T)⊥]]

[[MEnv]] = {µ | (∀C, m • µ C m is defined iffmtype(m, C) is defined,
and thenµ C m ∈ [[C, x̄, T̄→T]] wheremtype(m, C) = x̄ : T̄→T) }

Table 4. Semantic domains. For s ∈ state C we takes own ∈ Loc ∪ {nil} and s deps ∈ Pfin(Loc) .

of the right type. This too is a complete partial order with
bottom.

Definition 2 (semantics of method declaration)For a
declarationM = m(T̄ x̄) : T {S} in class C , and any
method environmentµ , define[[M]]µ by

[[M]]µ(h, s) = let s1 = [s |− result 7→default] in

let Γ = x̄ : T̄ , self : C, result : T in

let (h0, s0) = [[Γ ⊢ S]]µ(h, s) in

(h0, s0 result)

The default values areit for unit , ff for bool , and nil

for object types, here and fornew . Thus a new object has
inv = ff , comm = ff , andown = nil ; also deps = ? .

Definition 3 (semantics of complete program)The
semantics [[CT]] of a well formed class tableCT
is the least upper bound of the ascending chain
µ ∈ N → [[MEnv]] defined byµ0 C m = (λ (h, s) • ⊥)
and µj+1 C m = [[M]]µj for M the declaration ofm in
C .

5. Dependence and assertions

A predicatefor some state typeΓ is just a subsetP ⊆
[[Heap ⊗ Γ]] . Note that⊥ /∈ P . An invariant for C is
a predicateIC ⊆ [[Heap ⊗ (self : C)]] . Care is needed
in properly converting a predicate on one state space to a
predicate on another but the details are straightforward. A
few details are in the Appendix. We write(h, s) |= P to
mean(h, s) ∈ P , sometimes as a hint that coercion may be
needed, e.g., to take an instanceIC(o) to be in P[[Heap]]
so SI depends only on heap.

If Po is in P[[Heap ⊗ Γ]] for every location o then
(∀ o • P) is the subset of[[Heap ⊗ Γ]] defined by

(h, s) |= (∀ o • Po) iff for all o ∈ dom h , (h, s) ∈ Po

Recall thatnil is not a location. It is also convenient to re-
strict the range of quantification to a particular type: define
(∀ o : C • P) to abbreviate(∀ o • type o = C ⇒ P) .
Note that quantification is over all allocated objects, and
in the semantics there is neither explicit deallocation nor
garbage collection; the range of quantification includes un-
reachable objects but this does not obtrude in the sequel.

In terms of formulas, a predicate depends onE.f if up-
datingE.f can falsify the predicate. The following seman-
tic formulation is convenient for our purposes.

Definition 4 (depends) PredicateP depends ono.f iff
there is some(h, s) such thatP depends ono.f in (h, s) .
Moreover, P depends ono.f in (h, s) iff (h, s) ∈ P ,
o ∈ dom h , and ([h | o.f 7→v], s) /∈ P for somev .

There are several ways the system invariantsSI could
be used: as a “fact”, included in what is sometimes called
the “background predicate” that axiomatizes the semantics
of the programming language (e.g., absence of dangling lo-
cations, self 6= null); as lemmas for reasoning directly
in terms of program semantics; or in rules of a logic. We
want to justify thatSI to be asserted at any control point,
and this is sound only if the stipulated preconditions are im-
posed on field updates and special statements. Aiming for
a formulation that is perspicuous and lends itself to vari-
ous uses like those listed, we useassert statements. Our
main results show, essentially, that foranyconstituent com-
mand S of a program properly annotated with assertions
(Table 1), we have{SI} S {SI} in the sense of partial
correctness.

The notion of partial correctness we choose is error-
ignoring, for which reason our semantics identifies null-
dereference errors with divergence. For practical purposes,
it is more useful to use a correctness notion that implies the
absence of runtime errors, especially for verification sys-
tems intended for use on development code which rarely has
full functional specifications. But for the main statements
of interest in this paper it is straightforward to formulate

7

[[Γ ⊢ E0.f : = E1]]µ(h, s) = let q = [[Γ ⊢ E0 : C]](h, s) in

if q = nil then ⊥ else let v = [[Γ ⊢ E1 : T]](h, s) in ([h | q.f 7→v], s)

[[Γ ⊢ x : = new C]]µ(h, s) = let q = fresh(C, h) in let h1 =[h |− q 7→ [fieldsC 7→defaults]] in (h1, [s | x 7→q])

[[Γ ⊢ pack E]]µ(h, s) = let q = [[Γ ⊢ E : C]](h, s) in if q = nil then ⊥ else

let h1 = (λ p ∈ dom h • if h p.own = q then [h p | comm 7→tt] else h p) in

([h1 | q.inv 7→tt], s)

[[Γ ⊢ unpack E]]µ(h, s) = let q = [[Γ ⊢ E : C]](h, s) in if q = nil then ⊥ else

let h1 = (λ p ∈ dom h • if h p.own = q then [h p | comm 7→ff] else h p) in

([h1 | q.inv 7→ff], s)

[[Γ ⊢ attach E]]µ(h, s) = let q = [[Γ ⊢ E : C]](h, s) in if q = nil then ⊥ else

let p = s self in ([h | p.deps 7→h p.deps ∪ {q}], s)

[[Γ ⊢ detach E]]µ(h, s) = let q = [[Γ ⊢ E : C]](h, s) in if q = nil then ⊥ else

let p = s self in ([h | p.deps 7→h p.deps− {q}], s)

[[Γ ⊢ set-owner E0 to E1]]µ(h, s)= let q = [[Γ ⊢ E : C]](h, s) in if q = nil then ⊥ else

let p = [[Γ ⊢ E′ : C′]](h, s) in ([h | q.own 7→p], s)

Table 5. Semantics of selected commands. We let v range over values of various types, and writeq or p where
the value is either a location ornil . (N.B. elsewhere in the paper these identifiers usually range over locations only.)
The function update expression[h | q.f 7→ v] abbreviates the update[h | q 7→ [h q | f 7→ v]] . We write [h |− q 7→ . . .]
for function extension. The metalanguage construct “let v = α in . . . ” is ⊥ if α = ⊥ . Assumefresh is an arbitrary
function to Loc such thattype(fresh(C, h)) = C and fresh(C, h) 6∈ dom h .

preconditions for the absence of such errors and they are
included in Table 1.

Soundness for commands is formulated as follows: If
h |= SI and [[Γ ⊢ S]]µ(h, s) 6= ⊥ then h0 |= SI
where (h0, s0) = [[Γ ⊢ S]]µ(h, s) . In the case thatS is
a method call, this depends on the assumption that each
method meaningµ C m maintainsSI . To show that the
assumption is discharged requires more commitment to a
particular program semantics and we have chosen a denota-
tional one in which method meanings are given as the lub
of a chain of approximations. Thus the main theorem states
that SI is maintained by every method in the environment
µ denoted by a properly annotated class table.

Assert statements were not listed in the grammar because
we allow semantic predicates not necessarily expressible in
a particular language. Define[[Γ ⊢ assert P]]µ(h, s) =
if (h, s) ∈ P then (h, s) else ⊥ . This is independent
from µ , and [[Heap ⊗ Γ]] is flat, so there is no problem
with continuity.

6. Soundness

Definition 5 (transitive ownership) For any heaph , the
transitive ownership relation�h on dom h is defined in-
ductively by the conditionso = h p.own ⇒ o �h p and
o �h q ∧ q = h p.own ⇒ o �h p .

Definition 6 (admissible invariant) A predicate P ⊆
[[Heap ⊗ (self : C)]] is admissible as an invariant forC
provided that for every(h, s) and everyo, f such that
P depends ono.f in (h, s) , field f is neither inv nor
comm , and one of the following named conditions holds:

local: o = s(self)

owner: s(self) �h o and f 6≡ deps

friend: o = h(s(self)).g and s(self) ∈ h o.deps ,
for some (g : B) ∈ pivots C . And either f ∈
reads(C, B) or f ≡ deps ; in the latter case, for
any X with ([h | o.deps 7→ X], s) /∈ P we have
([h | o.deps 7→X ∪ {s(self)}], s) ∈ P .

The only auxiliary field allowed inreads(C, B) is own , so
the condition forf ≡ deps in friend dependencies essen-
tially ensures that the only way for an object to depend on
some other object’sdeps is by s(self) ∈ h o.deps .

Note thato �h o implies ¬h o.inv .
To clarify the definitions, supposeIC is admissible for

C and h |= SI . If IC(q) depends ono.f in (h, s) then
f 6≡ inv , f 6≡ comm , and one of the following holds:
(local) o = q ;
(owner) q �h o and f 6≡ deps ; or
(friend) o = h q.g and q ∈ h o.deps , for some(g : B) ∈
pivotsC such thatf ∈ reads(C, B) or f ≡ deps . In

8

casef ≡ deps , we have that[h | o.deps 7→X] 6|= IC(q)
implies [h | o.deps 7→X ∪ {q}] |= IC(q) for any X .

Lemma 6.1 (co-dependence)If o ∈ dom h and (h, s) |=
IC(o) for admissibleIC then for anyg ∈ pivotsC we
haveh o.g 6= nil ⇒ o ∈ h(h o.g).deps .

Lemma 6.2 (transitive ownership) Supposeh |= SI ,
o �h p , andh o.inv = tt . Thenh p.comm = tt .

Definition 7 (properly annotated class table)A properly
annotated class table is one such that

• there are declarations as defined in Section 3;
• each object invariantIC is admissible;
• each field update and special statement is preceded by
an assert that implies the stipulated precondition (Ta-
ble 1); and
• each update guard satisfies its obligation (8).

We say method environmentµ maintainsSI provided
for any C, m, h, s , if h |= SI and µ C m(h, s) = (h0, v)
(and thusµ C m(h, s) 6= ⊥) then h0 |= SI .

Theorem 6.3 If CT is a properly annotated class table
then [[CT]] maintainsSI .

The proof is by fixpoint induction,5 using the following.

Lemma 6.4 (main lemma) If CT is properly annotated
and µ maintainsSI then any constituent commandS of
a method inCT maintainsSI . That is, for all (h, s) , if
h |= SI and (h0, s0) = [[Γ ⊢ S]]µ(h, s) then h0 |= SI .

The proof is by structural induction onS . The interesting
cases are the primitive commands that can falsifySI , by
extending the range of quantifications (new) or updating
fields. Method call is easy becauseSI only involves heap.
In this extended abstract we consider some key cases.

Lemma 6.5 (new) If h |= SI and (h0, s0) =
[[Γ ⊢ x : = new C]]µ(h, s) then h0 |= SI .

Supposeq is the fresh object, so thath0 = [h |− q 7→
defaults] . For (9): h0 q.inv = ff by definition. By h |=
SI , freshness, and admissibility, noIC(p) can depend on
q in (h, s) so addingq to the heap does not falsify (9) for
existing objects. For (12): The new objectq extends the
range foro in (12), but the antecedent is false asq is fresh.
It extends the range forp as well, but thenp.g = null and
o ranges over allocated, non-null locations.�

5It suffices that (a) the requisite property holds for every method envi-
ronment in the approximation chain and (b) the property is preserved by
lub (admissible for fixpoint induction). Both are straightforward.

Lemma 6.6 (pack) Supposeh |= SI and (h0, s0) =
[[Γ ⊢ pack E]]µ(h, s) . Then h0 |= SI provided that the
stipulated preconditions (Table 1) are satisfied, i.e.,

• q 6= null

• h q.inv = ff

• h |= IB(q)
• h |= (∀ p • p.own = q ⇒ ¬p.comm ∧ p.inv)

whereq = [[Γ ⊢ E : B]](h, s) .

For (9): For anyo , if o 6= q then I(o) by h |= SI ,
becausepack only changesinv and comm on which ad-
missible invariants do not depend. Ifo = q we haveIB(q)
by precondition. For (10): We haveh0 |= (∀ p • p.own =
q ⇒ p.comm) by semantics ofpack . For o 6= q ,
no owner fields are changed inh0 nor is any comm
changed to false inh0 . For (11): If h o.comm = ff

but h0 o.comm = tt then h o.own = q by definition
of h0 ; and h0 o.inv = tt by hypothesis. For (12): This
can be falsified by changing a pivot, but neitherinv nor
comm can be pivots (as they have typebool). It can also
be falsified by updatingdeps but pack does not modify
deps . Finally, it can be falsified by settinginv , which
is done here forq . So supposeo : C is in dom h and
(g : C) ∈ pivotsB with h0 q.g = o ; then we must show
q ∈ h0 o.deps , and this follows by admissibility from
h |= I(q) becauseh0 o.deps = h o.deps . �
Lemma 6.7 (field update) Suppose h |= SI and
(h0, s0) = [[Γ ⊢ E.f : = E′]]µ(h, s) . Thenh0 |= SI pro-
vided that the stipulated preconditions are satisfied, i.e.,

• q 6= null and h q.inv = ff ,
• for all p ∈ h q.deps , if f ∈ reads(type(p), B) then
either h p.inv = ff or h |= Utype(p),B,f (p, q, v)

whereq = [[Γ ⊢ E : B]]µ(h, s) and v = [[Γ ⊢ E′ : B]] .

By semantics,h0 = [h | q.f 7→ v] . For (9): Suppose,
for someo, D that ID(o) depends onq.f in (h, s) . We
must show that eitherh0 o.inv = ff or h0 |= ID(o) . By
admissibility of ID it suffices to consider these cases:

• q = o —Then h o.inv = ff by precondition.
• o �h q —Then preconditionh q.inv = ff implies

h q.comm = ff by h |= SI (11) and thenh o.inv = ff

by transitive ownership Lemma 6.2. Soh0 o.inv = ff .
• q = h o.g and o ∈ h q.deps for someg : B ∈ pivotsD

such thatf ∈ reads(D, B) . (As we are considering
ordinary field update,f 6≡ deps .) Now by precondition
we have eitherh o.inv = ff , whenceh0 o.inv = ff by
definition of h0 , or elseh |= UD,B,f (o, q, v) . In the
latter case, byh o.g = q 6= null and h |= ID(o) we
can use the update guard obligation (8) to obtainh0 |=
ID(o) .

9

For (10) and (11): the relevant fields are not updated. For
(12): This can be falsified in the update fromh to h0 only
by f being a pivot, i.e., at instancep, g : = q, f of (12).
But then preconditionh q.inv = ff falsifies the antecedent.

7. Conclusions

We have formalized and shown soundness for the pro-
gramming discipline of [7], built on [5], in which auxiliary
fields in annotations express intended atomicity and encap-
sulation. The Main Lemma 6.4 and Theorem 6.3 justify ap-
pealing to system invariantSI where needed. ThenSI(9)
licenses asserting an object invariantI(o) where o.inv
holds andI is visible. As in Separation Logic, concepts
like ownership are “in the eye of the asserter” [19].

In [19], which deals with ownership for a single-instance
class and without reentrancy, a major result is that certain
predicates in specifications need to be restricted to be “pre-
cise” in the sense that they uniquely determine a satisfying
region of heap. Otherwise there is a problem akin to the
problem of adaptation rules when auxiliary variables can
have more than one satisfying instantiation. We plan to ex-
plore precision in connection with what is achieved by our
use of auxiliariesown anddeps . We also plan to check our
soundness proof using an existing deep embedding of the
semantics in the PVS prover. Finally, the discipline seems
well suited for extension to concurrency, both in its use of
auxiliary state and in the update guards which can be seen
as a simple rely-guarantee interface.

During a presentation by Peter O’Hearn on a rule for
monitors [August 2002], the first author was struck by the
realization that such a rule was no less than a way to pick up
a thread dropped in the early ’70s —What are the structural
constructs that correspond to commands the way modules
correspond to lambda abstractions? The technical achieve-
ments and inspiring ideas of Reynolds, O’Hearnet al. are
gratefully acknowledged.

References

[1] A. W. Appel. Foundational proof-carrying code. InPro-
ceedings of LICS, 2001.

[2] K. R. Apt and E.-R. Olderog.Verification of Sequential and
Concurrent Programs. Springer, 2 edition, 1997.

[3] A. Banerjee and D. A. Naumann. Ownership confinement
ensures representation independence for object-oriented
programs. Journal version of [4], submitted. Available from
http://www.cs.stevens-tech.edu/˜naumann/oceri.ps, 2002.

[4] A. Banerjee and D. A. Naumann. Representation indepen-
dence, confinement and access control. InPOPL, pages
166–177, 2002.

[5] M. Barnett, R. DeLine, M. Fähndrich, K. R. M. Leino,
and W. Schulte. Verification of object-oriented programs
with invariants. In S. Eisenbach, G. T. Leavens, P. Müller,

A. Poetzsch-Heffter, and E. Poll, editors,Formal Techniques
for Java-like Programs 2003, July 2003. Available as Tech-
nical Report 408, Department of Computer Science, ETH
Zurich. A newer version of this paper is [6].

[6] M. Barnett, R. DeLine, M. Fähndrich, K. R. M. Leino, and
W. Schulte. Verification of object-oriented programs with
invariants. Manuscript KRML 122b, Dec. 2003. Available
from http://research.microsoft.com/˜leino/papers.html.

[7] M. Barnett and D. A. Naumann. Friends need a
bit more: Maintaining invariants over shared state.
Submitted; available from http://www.cs.stevens-
tech.edu/˜naumann/friends.pdf, 2004.

[8] G. Bierman, M. Parkinson, and A. Pitts. An imperative core
calculus for java and java with effects. Technical Report 563,
University of Cambridge Computer Laboratory, Apr. 2003.

[9] C. Boyapati, B. Liskov, and L. Shrira. Ownership types for
object encapsulation. InPOPL, 2003.

[10] D. Clarke. Object ownership and containment. Disserta-
tion, Computer Science and Engineering, University of New
South Wales, Australia, 2001.

[11] D. G. Clarke, J. Noble, and J. M. Potter. Simple owner-
ship types for object containment. In J. L. Knudsen, editor,
ECOOP 2001 - Object Oriented Programming, 2001.

[12] B. Jacobs, J. Kiniry, and M. Warnier. Java program verifi-
cation challenges. In F. de Boer, M. Bonsangue, and S. G.
W.-P. de Roever, editors,Formal Methods for Components
and Objects (FMCO 2002), LNCS 2852, pages 202–219,
2003.

[13] K. R. M. Leino and G. Nelson. Data abstraction and infor-
mation hiding. ACM Trans. Prog. Lang. Syst., 24(5):491–
553, 2002.

[14] A. R. Meyer and K. Sieber. Towards fully abstract seman-
tics for local variables: Preliminary report. InProceedings,
Fifteenth POPL, pages 191–203, 1988.

[15] G. Morrisett, K. Crary, N. Glew, and D. Walker. From sys-
tem F to typed assembly language.ACM Trans. Prog. Lang.
Syst., 21(3):528–569, 1999.

[16] P. Müller. Modular Specification and Verification of Object-
Oriented Programs. Number 2262 in LNCS. Springer, 2002.

[17] P. Müller, A. Poetzsch-Heffter, and G. T. Leavens. Modular
invariants for object structures. Technical Report 424, ETH
Zürich, Chair of Software Engineering, Oct. 2003.

[18] D. A. Naumann. Soundness of data refinement for a
higher order imperative language.Theoretical Comput. Sci.,
278(1–2):271–301, 2002.

[19] P. O’Hearn, H. Yang, and J. Reynolds. Separation and infor-
mation hiding. InPOPL, pages 268–280, 2004.

[20] P. W. O’Hearn and R. D. Tennent.Algol-like Languages
(Two volumes). Birkhäuser, Boston, 1997.

[21] B. Reus. Modular semantics and logics of classes. InCSL,
2003.

[22] B. Reus and T. Streicher. Semantics and logics of objects.
In LICS, 2002.

[23] J. C. Reynolds. Separation logic: a logic for shared mutable
data structures. InLICS, 2002.

10

8. Appendix

The appendix gives one more lemma and a bit more de-
tail about predicates. Tables 6, 7, and 8 give typing and
semantics cases omitted in the body of the paper.

Lemma 8.1 (detach)Supposeh |= SI and (h0, s0) =
[[Γ, self : B ⊢ detach E′]]µ(h, s) . Then h0 |= SI pro-
vided that the stipulated preconditions are satisfied, i.e.,

• h p.inv = ff

• q 6= null

• either h q.inv = ff or h q.g 6= p for all (g : B) ∈
pivotsC

wherep = s(self) and q = [[Γ ⊢ E′ : C]]µ(h, s) .

Proof: By semantics,h0 = [h | p.deps 7→p.deps− {q}] .
For (9): We consider cases on howID(o) could depend

on h p.deps for someD and o ∈ dom h .

• o = p —but thenh o.inv = ff by precondition.
• o �h p —but then, by admissibility,ID does not de-

pend onh p.deps .
• D ∈ friends B , in which caseo ∈ h p.deps by

SI (12). If h0 6|= ID(o) then by admissibility ofID

and definition ofh0 we have[h | p.deps 7→ p.deps −
{q} ∪ {o}] |= ID(o) . Thus o = q . Now by precon-
dition, eitherh q.inv = ff , falsifying the antecedent of
(9), or h q.g 6= p for all pivots g , in which case by ad-
missibility ID(o) does not depend onh p.deps .

For (10) and (11): the relevant fields are not updated.
For (12): This can only be falsified inh0 for the instance

[o, p : = p, q] of (12), that is: h q.g = p ∧ h q.inv ⇒
q ∈ h p.deps . But we have the precondition that either
h q.inv = ff or h q.g 6= p for all pivots g . �
Details about predicates. Just as a formula over some
variablex may be taken to overx, y , we need to adapt (se-
mantic) predicates to different state spaces. In this paperour
primary concern is with object invariants, that is, predicates
P ⊆ [[Heap ⊗ (self : C)]] for self , and their instantiations
P(o) for particular locationso . Now P(o) projects to a
predicate inP[[Heap]] and lifts to other contexts. Negation
is complement with respect to the appropriate state set and
this determines the meaning of implication. To streamline
the notation in this extended abstract we do not belabor the
point, as there are no technical difficulties, but rather inter-
pret the type of variousP in a loose way.

For variables, we only need substitution in specific cases,
e.g., to substitute a specific locationself in an invari-
ant. For this we use a streamlined notation. IfP ⊆
[[Heap ⊗ (self : C)]] and o is a location of typeC then
P(o) is the predicate (over[[Heap]] or [[Heap ⊗ Γ]] for

whateverΓ you like, as remarked above) defined as fol-
lows:

(h, s) ∈ P(o) ⇐⇒ o ∈ dom h ∧ (h, [s | self 7→o]) ∈ P

The conditiono ∈ dom h ensures that[s | self 7→ o] is
a closed store. ForP that depends on a larger store, say
self : C, x : T , the definition ofP(o, v) is similar.

The weakest precondition for a field assignment can be
expressed as a kind of “substitution”, though as an opera-
tion on formulas care must be taken due to sharing (e.g.,
[2]). We use a wiggly assignment symbol to remind that
this is a semantic function —simply the inverse image of
field update. For field updates, ifv is value ando an ob-
ject, we defineP [o.f :≈ v] by

(h, s) ∈ P [o.f :≈v] ⇐⇒ o ∈ dom h∧([h | o 7→f]v, s) ∈ P

11

Γ ⊢ x : Γx Γ ⊢ true :bool Γ ⊢ null : C
Γ ⊢ E0 : T0 Γ ⊢ E1 : T1

Γ ⊢ E0 = E1 :bool

Γ ⊢ E : C (f : T) ∈ fieldsC

Γ ⊢ E.f : T

Γ ⊢ E : T T = Γ x x 6= self

Γ ⊢ x : = E

Γ ⊢ E : C mtype(m, C) = x̄ : T̄→T T = Γ x Γ ⊢ Ē : T̄ x 6= self

Γ ⊢ x : = E.m(Ē)

Γ ⊢ E :bool Γ ⊢ S0 Γ ⊢ S1

Γ ⊢ if E then S0 else S1

Γ ⊢ E : T x 6= self (Γ, x : T) ⊢ S

Γ ⊢ var x : T : = E in S

Γ ⊢ S0 Γ ⊢ S1

Γ ⊢ S0; S1

Table 6. Additional typing rules for program expressions and commands.

[[Γ ⊢ x : T]](h, s) = s x

[[Γ ⊢ null : C]](h, s) = nil

[[Γ ⊢ E0 = E1 :bool]](h, s) = let v0 = [[Γ ⊢ E0 : T0]](h, s) in

let v1 = [[Γ ⊢ E1 : T1]](h, s) in if v0 = v1 then tt else ff

[[Γ ⊢ E.f : T]](h, s) = let o = [[Γ ⊢ E : C]](h, s) in if o = nil then ⊥ else h o.f

Table 7. Semantics of expressions.

[[Γ ⊢ x : = E]]µ(h, s) = let v = [[Γ ⊢ E : T]](h, s) in (h, [s | x 7→v])

[[Γ ⊢ S0; S1]]µ(h, s) = let (h1, s1) = [[Γ ⊢ S0]]µ(h, s) in [[Γ ⊢ S1]]µ(h1, s1)

[[Γ ⊢ if E then S0 else S1]]µ(h, s) = let v = [[Γ ⊢ E :bool]](h, s) in

if v then [[Γ ⊢ S0]]µ(h, s) else [[Γ ⊢ S1]]µ(h, s)

[[Γ ⊢ var x : T : = E in S]]µ(h, s) = let v = [[Γ ⊢ E : T]](h, s) in

let s1 = [s |− x 7→v] in let (h1, s2) = [[(Γ, x : T) ⊢ S]]µ(h, s1) in (h1, (s2�x))

[[Γ ⊢ x : = E.m(Ē)]]µ(h, s) = let q = [[Γ ⊢ E : C]](h, s) in

if q = nil then ⊥ else let x̄ : T̄→T = mtype(m, C) in

let v̄ = [[Γ ⊢ Ē : T̄]](h, s) in let s1 = [x̄ 7→ v̄, self 7→ q] in

let (h0, v0) = µ C m(h, s1) in (h0, [s | x 7→v0])

Table 8. Semantics of additional commands.

12

