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ABSTRACT

This paper presents a generic abstract machine for simula-
ting an arbitrary process calculus with an arbitrary reaction-
based simulation algorithm. The abstract machine is ins-
tantiated to a particular calculus by defining two functions:
one for transforming a process of the calculus to a set of spe-
cies, and another for computing the set of possible reactions
between species. Unlike existing simulation algorithms for
chemical reactions, the abstract machine can simulate pro-
cess calculi that generate potentially unbounded numbers
of species and reactions. This is achieved by means of a
just-in-time compiler, which dynamically updates the set of
possible reactions and chooses the next reaction in an itera-
tive cycle. As a proof-of-concept, the generic abstract ma-
chine is instantiated for the stochastic pi-calculus, and the
instantiation is implemented as part of the SPiM stochastic
simulator. The structure of the abstract machine facilitates
a significant optimisation by allowing channel restrictions to
be stored as species complexes. We also present a novel algo-
rithm for simulating chemical reactions with general distri-
butions, based on the Next Reaction Method of Gibson and
Bruck. We use our generic framework to simulate a stochas-
tic pi-calculus model of plasmid co-transfection, where plas-
mids can form aggregates of arbitrary size and where rates
of mRNA degradation are non-exponential. The example
illustrates the flexibility of our framework, which allows an
appropriate high-level language to be paired with the re-
quired simulation algorithm, based on the biological system
under consideration.

Keywords
generic abstract machine, non-Markovian simulation, sto-
chastic pi-calculus, implementation

1. INTRODUCTION

Biological systems typically involve large numbers of compo-
nents with complex, highly parallel interactions and intrinsic
stochasticity. Numerous programming languages have been
developed for modelling such systems, many of which are ba-
sed on process calculi. Examples include variants of the sto-
chastic pi-calculus [18, 20, 9, 13], Bio-PEPA [2], BlenX [4],
the Kappa-calculus [3], LBS [11], variants of the Bioambient
calculus [19, 12] and DSD [14], to name but a few. Most of
these calculi are expressive enough to generate potentially
unbounded numbers of species and reactions. As a result,
they cannot rely on standard reaction-based simulation al-
gorithms or tools [8, 6], and generally require a custom si-
mulation algorithm. To help address this issue, we propose
a generic abstract machine that can be instantiated to a
range of process calculi and a range of reaction-based simu-
lation algorithms. The abstract machine can handle process
calculi with potentially unbounded numbers of species and
reactions.

Although the idea of integrating different modelling and si-
mulation methods within a common framework is not a new
one [5], our approach is the first attempt to formally de-
fine a generic framework for simulating an arbitrary process
calculus with an arbitrary reaction-based simulation algo-
rithm. Having a clear separation between the simulation
algorithm and the language specification allows us not only
to rapidly instantiate the machine to different process cal-
culi, but also to add new features, such as non-Markovian
simulation, which can then be used by all instantiated pro-
cess calculi. Markovian reactions predominate in stochastic
models of biological systems, largely due to the so-called
memoryless property of the Markovian distribution, which
assumes that the duration of the next reaction occurring in
the system does not depend on the history of the system.
Thanks to this property, very efficient simulation algorithms
have been created, such as the Gillespie algorithm [7] along
with its many optimisations [6, 8, 22]. However, Markovian
reactions are quite restrictive in terms of modelling flexibi-
lity. For example, the variance and mean of the exponential
law are tied: the mean of a random variable following an
exponential distribution of rate r is 1/r, while its variance



is 1/7"2. Providing tools for simulating non-Markovian reac-
tions would enable greater accuracy in analysing the effects
of stochasticity within models.

We apply our generic abstract machine to the simulation of a
variant of stochastic pi-calculus [13] with general rate distri-
butions. Based on the Next Reaction Method [6], we present
a novel algorithm for simulating non-Markovian reactions,
and we show how the generic abstract machine can be used
to achieve correct simulation. We also extend the stochastic
pi-calculus with a basic complexation primitive using bound
output, and extend the abstract machine so that it stores
complexes as a single species, allowing efficient simulation
of complexes. As a biological application of our approach,
we propose a stochastic pi-calculus model of plasmid co-
transfection to simulate gene transfer. In this model, plas-
mids can form complexes of arbitrary size and the degra-
dation of mRNA produced by the translocated plasmids is
efficiently simulated using an Erlang distribution.

The paper is structured as follows. The generic abstract
machine is defined in Sec. 2, and the simulation of non-
Markovian species is tackled in Sec. 2.2. The machine is
instantiated to the stochastic pi-calculus with general dis-
tributions in Sec. 3, and the instantiated machine is applied
to the non-Markovian simulation of a stochastic pi-calculus
model of plasmid co-transfection in Sec. 4. Appendix B
shows an instantiation of the machine to the Bioambient
calculus.

2. GENERIC ABSTRACT MACHINE

This section presents a generic abstract machine for simula-
ting an arbitrary process calculus with an arbitrary reaction-
based simulation algorithm (Definition 1). A machine term
T is a triple (¢, S, R), where t is the current time, S contains
the set of possible species and R contains the set of pos-
sible reactions. S maps each species I to its population,
while R maps each reaction O to its activity A, which is
used to compute the next reaction. The syntax of species I
is specific to the choice of process calculus. Each reaction
is represented by a triple (J, F,J'), where J = {I1,...,In}
denotes the reactant species, J' = {I1,...,I};} denotes the
product species and F' denotes the probability distribution
of the reaction. Thus, reactions are assumed to be of the

form I+ -+ In — I, +-- -+ I};. Once the next reaction
has been selected, it is executed by removing the reactants
J from the machine term, adding the products J’ and up-
dating the current time of the machine (7).

To instantiate the abstract machine with a given process cal-
culus, it is sufficient to define a function species(P) for trans-
forming a process P to a multiset of species, together with a
function reactions(I,{I1,...In)} for computing the multi-
set of reactions between a new species I and an existing set
of species {I1,...,In}. The species function is used to ini-
tialise the abstract machine at the beginning of a simulation,
while the reactions function is used by a just-in-time com-
piler to generate the set of possible reactions dynamically.
This allows systems with potentially unbounded numbers of
species and reactions to be simulated. To instantiate the
abstract machine with a given simulation algorithm, it is
sufficient to define a function next(T') for choosing the next
reaction, together with a function init(L,T) for initialising a

T = (t,S,R) Term

R:= {01+~ Ai,...,On — An} Reactions
S = {li = i1,...,In —in} Populations
J = {hL,...,In} Species set
O : (J,F,J") Reaction

Po(t,S,R) £ species(P)® (t,S,R) (1)
{I,...,In}® (t, S, R) Le..dInd (LS R)(2)
t,S,R)o{l,....,In} & (SR OLO...OIx(3)

lI>

(1>

IS R) (t,S',RUR')if S(I) =i (4)
and 8" = S{I —i+1}
and R’ = updates(I, (t, 5, R))
I®tS,R) 2 (t,S,RUR)IfI ¢ dom(S) (5)
and L = reactions(I, dom(S))
and S’ = S{I — 1}
and R’ = init(L, (t, ', R))
(t,S,R)el = (S, RUR)ifS(I) =i (6)
and ' = S{I —i—1}
and R’ = updates(I, (t, S, R))

(J,F,J),t' = next(t, S, R)
t,8,R"UET g, 8,R) S J)

DEFINITION 1. Generic abstract machine. The notation
S(I) returns the corresponding value associated with [ in S,
while the notation S{I — v} associates the value v with I in
S. The function species(P) computes the set of species cor-
responding to a process P, while the function reactions(I, J)
computes the set of reactions between a new species I and
an existing set of species J. These two functions are speci-
fic to the choice of process calculus. The function next(T)
computes the next reaction of a term T, while the function
init(L,T) initialises a term T with a set of reactions, and
the function updates(I,T) updates the reactions in a term
T affected by a given species I. These three functions are
specific to the choice of simulation algorithm.

term T with a set of reactions, and a function updates(I,T)
for updating the reactions in a term 7" affected by a given
species I.

A process P is added to the machine term (¢, S, R) by com-
puting the multiset of species {I1,...,Iy} which corres-
pond to P (1) and adding each of these species to the
term (2). If the new species I is already present in the
machine (I € dom(S)) its population is incremented in S
and the affected reactions are updated (4). If the species
is not already present in the machine, its population is set
to 1 in S and new reactions are computed using the func-
tion reactions(I,dom(S)), which is specific to the choice of
calculus (5). Finally, the operation T'© J removes all of
the species J from the machine term 7. This removing is



next(t,S,R) £ O,t if R(O) = (a,t) (8)
and t' = min{t | R(O) = (a,t)}
init(L, (t,SR)) = {0~ (t',a) |O€L 9)
Aa = propensity (O, S)
NO = (J,F,J")

At =t + delay(F,a)}

{0 (t',d') | R(O)=(t",a) (10)
NO = (J,F,JYNT € J

Aa’ = propensity (O, S)

A =t (a/a )" —t)}

[I>

updates(Z, (¢, S, R))

propensity(({I}, F, J), S) rate(F)i if S(I) =1

propensity(({I,I}, F,J),S) = rate(F)i(i —1)/2
if S(I) =
propensity(({I1, I}, F, J),S) = rate(F)iiis if [ # I
and S(I1) = i1

DEFINITION 2. Generic abstract machine instantiated for
the Next Reaction Method. Each reaction O is associated
with a pair (a,t), where a denotes the reaction propen-
sity and t denotes the time at which the reaction is sche-
duled to occur. The function delay(F,a) computes a time
interval from a random variable with probability distribu-
tion F' and propensity a. We use standard multiset nota-
tion {Elements | Conditions} where Elements represents
the elements of the multiset and Conditions represents the
conditions the elements must satisfy.

done by decrementing the corresponding populations and by
updating the affected reactions (3,6).

2.1 Next Reaction Method

This section instantiates the generic abstract machine with
the Next Reaction Method (NRM) (Definition 2). Each
reaction O in R is mapped to a pair (a,t), where a is the
propensity of the reaction and ¢ is the putative time at which
the reaction is scheduled to occur. The next reaction is cho-
sen to be the one with the smallest putative time, as defined
by the function nezt(T'), which returns the chosen reaction
(J, F, J') together with its putative time ¢’ (8).

When a new reaction is created, NRM computes the pu-
tative time of the reaction according to its propensity (9).
NRM also provides a way to update putative times of Mar-
kovian reactions when their propensity changes, without ge-
nerating a new random variable (10). When a new reaction
is added to the machine, its propensity is computed and
used to generate a random variable following the probabi-
lity distribution of the reaction (9). The definition of the
propensity for unary and binary reactions is given in Defi-
nition 2. Propensities for n-ary reactions can be defined if
necessary. Markovian reactions are updated by computing
the new propensity and rescaling the putative time (10). It

may be that the old propensity is 0, preventing direct use of
the rescaling function. This case can be handled by keeping
additional variables to register the last non-null propensity
and to rescale according to this old value (as discussed in
the note 11 of [6]). Similarly, if the new propensity is 0, the
putative time is set to infinity.

In general, the abstract machine can be readily instantia-
ted to other reaction-based methods such as [7] by defining
the appropriate next, init and updates functions, though we
omit the details here.

2.2 Non-Markovian Next Reaction Method

Using non-Markovian distributions in NRM is equivalent
to introducing a new species for every individual molecule
with non-Markovian behaviour [6]. Since our abstract ma-
chine allows new species to be dynamically created, it can
be used directly as the basis for simulating non-Markovian
behaviour. The advantages of this approach include simpli-
city and fast implementation of the algorithm, as there is
no layer of abstraction between model and simulation. The
disadvantage is that the simulation will be computationally
expensive if there are large numbers of non-Markovian mo-
lecules. Algorithm 1 summarises the necessary steps for the
simulation of mixed Markovian and non-Markovian species
following the Next Reaction Method.

The generic abstract machine is instantiated for the non-
Markovian NRM by associating a unique identifier with each
species that can participate in a non-Markovian reaction
(Definition 3). The rate of a non-Markovian reaction is al-
ways 1 and its propensity is either 1 or 0. The putative times
of non-Markovian reactions are updated by generating a new
random variable, as in (9).

3. STOCHASTIC PI-CALCULUS
SIMULATION

This section illustrates how the generic abstract machine can
be used to simulate a variant of stochastic pi-calculus.

3.1 Syntax of Processes and Complexes

The syntax of the variant of stochastic pi-calculus used in
this paper is given in Definition 4 and is based on [13]. Pro-
cesses can evolve by performing delay actions or by inter-
acting with each other over shared channels. A process
can evolve on its own by executing a delay 7.. Two pro-
cesses can evolve simultaneously by communicating or bin-
ding with each other. A communication between two pro-
cesses is achieved when one process sends free data 7 on
a channel z, denoted by !z(7), and a parallel process re-
ceives this data on the same channel z, denoted by ?z(m).
A binding between two processes can occur if one process
sends private data vnon a channel z, denoted by lz(vn),
which is then shared only between the sender and receiver,
representing the formation of a complex between the two.

The calculus is stochastic because the duration of delays
and interactions is determined by a random variable. In the
case of Markovian reactions, the random variable follows
an exponential distribution paramaterised by the so-called
reaction rate. In the general case, the random variables can
follow an arbitrary probability distribution associated with



Algorithm 1 Generalised Next Reaction Method

1. Initialize:

(a) Set initial number of molecules, set time <« 0,
generate a dependency graph.

(b) If O; € {Markovian reactions}, calculate a pro-
pensity function, a;, generate a putative time, t;,
according to an exponential distribution with pro-
pensity a;. Store t; values.

(¢) If O; ¢ {Markovian reactions}. Set the propen-
sity a; to 1, store a putative time t;, according to
the general distribution.

2. Let Oy be the reaction whose putative time, t,, is least.

3. Change the number of molecules to reflect execution of
reaction O, . Set time < t,.

4. Intialize new reactions (step 1.(b) and 1.(c)).

5. For each affected reaction O,

(a) Update propensity aq .

(b) If a#p and O, € {Markovian reactions} , set
ta + (Aa,old/Aa,new)(ta — time) + time.

(¢) If a#u and On ¢ {Markovian reactions}, if

Ga,new = 0 then remove the reaction On and its
putative time tq.

(d) If a=p and O, € {Markovian reactions}, gene-
rate a random number, p, according to an expo-
nential distribution with propensity a., and set
to < p+ time.

(e) If a=p and On ¢ { Markovian reactions}, remove
the reaction O, and its putative time to.

6. Go to Step 2

[1>

species’(P)
next’(t, S, R)

rename(species(P))

(J, F,rename(J")), t

if (J,F,J),t' =next(t, S, R)
rename(J) 2 {rename(l)|I € J}

if NM(I) then 1078 g1ge 10

rename(])

[I>

[I>

rename(])

(1>

rename(1*?)

DEFINITION 3. Generic abstract machine instantiated for
the Non-Markovian Next Reaction Method. The functions
species and next from Definition 1 are replaced with the
functions species’ and next’, respectively, to allow for the
renaming of species. The function rename renames a spe-
cies by labelling it with a unique identifier. The function
fresh(ctr) increments a global counter referenced by ctr and
returns the incremented value. The function NM (I) is true
if species I can participate in at least one non-Markovian
reaction.

P = 0 Null
| X (n) Instance
| P | P Parallel
| ve P Restriction
| m.Pi+...+7n.Pyn Choice
E:= Xi(mi)— Pi,...,Xn(mn)— Py Environment
T on= Tr Delay
| lz(n) Send
| lz(vm) Bind
| ?x(m) Receive

DEFINITION 4. Syntaz of stochastic pi-calculus. For each
definition X (m) = P in the environment, we assume that
m C fn(P), where fn(P) denotes the free names of P. The
restriction vz P binds the name z in P and both lx(vim).P
and ?z(m).P bind names 7 in P. We also assume that
recursive calls to a definition are guarded inside an action
prefix 7, to prevent infinite expansion of process definitions.

Plo = P (11)

PP = PPk (12)

P (P | Ps) = (P|P2)| Ps (13)
m.Pi+m.P, = m.Po+m.Py (14)
vz0 = 0 (15)

vrvyP = wvyvz P (16)
ve(Pi|P) = Pi|vzPifx ¢ tn(Pr) (17)
X(R) = Ppm=ay if E(X(m))=P (18)

DEFINITION 5. Structural congruence axioms in stochas-
tic pi-calculus, assuming a global environment E. Structural
congruence is reflexive, symmetric and transitive, and holds
in any context inside a process or a choice.

mP+C 5P
lz(R). Py + C1 | ?x(m).P2 + Co Feligz) - py | Pagmi—n}
lz(vn). Py + C1 | 7z(m). Py + Co Folagi2) vin(Pr | Pagmi=n})
PES P = P Iy vz P’

PSP = pPlQ 5% P|Q
Q=P pP=qQ = @ % ¢

DEFINITION 6. Reduction in the stochastic pi-calculus.
We assume that each reduction is associated with a unique
index w, composed of either a single identifier i denoting a
delay, or a pair of identifiers (i1,42) denoting a communica-
tion.




the reaction. Thus we associate a probability distribution
F, with each channel z, where F,(t) is the probability of
firing the reaction after ¢ time units. Similarly, we associate
a probability distribution F;. with each delay 7.

The reduction rules for the stochastic pi-calculus are descri-
bed in Definition 6. The rules assume that each unguarded
action 7 in the system is associated with a unique identifier
i. This allows each reduction to be associated with a unique
index w, composed of either a single identifier ¢ denoting a
delay, or a pair of identifiers (i1,42) denoting a communica-
tion. Since each identifier or pair of identifiers is unique, this
allows the total number of distinct reactions in the system
to be counted.

3.2 From Processes to Reactions

This section instantiates the generic abstract machine to si-
mulate the stochastic pi-calculus with general distributions.
To instantiate our generic abstract machine with a given
process calculus, the first step is to define what constitutes
a species. Here we assume that a species is either an ins-
tance X (7)) or a complex of instances v ((X1(71) | ... |
X (nar)), where each instance corresponds to a choice of
actions. Our approach is motivated by the observation that
a choice of actions is the basic unit of computation, where
two parallel choices interact by communicating over shared
channels. An alternative approach could be to assume that a
species corresponds directly to a choice of actions, instead of
using a named instance X (71). Our decision to use a named
instance has the advantage that a species can be explicitly
identified in a biological model by a meaningful name, and
that the results of a simulation can be directly linked to the
original model via this name. In order to formalise the no-
tion of a species in stochastic pi-calculus, we define a normal
form for processes (Definition 7) and show that all processes
are structurally congruent to a normal form (Proposition 1).

PrOPOSITION 1. All processes of the stochastic pi-calculus
are structurally congruent to a normal form according to De-
finition 7.

ProoF. By induction on Definition 8. Using the struc-
tural congruence rules of Definition 5, we augment the en-
vironment such that all choices are defined separately (18),
and we replace all instances that are not a choice with their
corresponding process definition (18). Using the structural
congruence rule for scoping (17), we modify the scope of a
restriction such that a process is a parallel composition of
species, where each species is either an instance or a com-
plex. [

The normal form can also be used as the basis for a graphical
representation (Definition 9), following the approach of [15],
such that there is a one-to-one correspondence between the
graphics and text. In Sec. 4 the graphical representation is
used to construct a stochastic pi-calculus model of plasmid
co-transfection.

Using our normal form for processes (Definition 7), we now
define the various functions that are needed to instantiate
the generic abstract machine for stochastic pi-calculus (De-
finition 10). The function reactions(I,JJ) computes the set

P = Li|...|In Species
I:= X (n) Instance
| vZ((X1i(na) | ... | Xm(fomr)) Complex
C = m.Pi+...+7n.Py Choice
E:= Xi(mi)—Ci,...,Xnv(mn)— Cny Environment

DEFINITION 7. Normal form for stochastic pi-calculus,
where N > 0 and M > 1. A process P is considered to
be in normal form if it consists of a parallel composition
of species I, where a species can be an instance X (71) or a
complex of instances vZ ((X1(71) | ... | Xm(nar)) and where
every instance X (7) corresponds to a choice of actions. We
assume that ZN7A; N...N7ay # O and 2 C 7y U...Unn, SO
as to minimise the scope of restricted names.

normal(0) £ 0
normal(X (7)) 2 X(n)if BE(X(m))=C
normal(X(74)) 2 normal(P)if E(X(R)) =P #C
normal(P; | ;) %2 normal(P;) | normal(Ps)
normal(C) 2 X(n)if BE(X(R))=C
normal(vz P) £ insert(z, normal(P)
insert(z, [[,1;) = WZ[[,.Kx) | [1;4

if I = vz Ky

and z € fn(Iy), z ¢ fn(l;)
and ﬂék :Q),Z:{JJ}UUZk
andi€Z,je J,kek

and TNK=0,7=JUK

DEFINITION 8. Computing the normal form for stochastic
pi-calculus. We write [], Pi as short for P1 | ... | Py ,
assuming ¢ € {1,...,N}.

Choice Parallel
X(’ﬁ’L)D—}?’l’l.Pl—l-...—l—WN.PN [1|~~~|IN
T TN
P, .. Py TN
Complex Instance
Vit (X () | - - | Xaa(iar)) X (i)
rﬁ1:=ﬁ1 rT]N:=ﬁN m:=n
X1 v XN X

DEFINITION 9. Graphical representation for the stochas-
tic pi-calculus, based on the normal form of Definition 7. For
each instance X;(7;) there is assumed to be a corresponding
definition X;(m;) — C; in the process environment.




reactions(,JJ) £ unary(I) U binary(I, J)
wnary(l) 2 {({I},F,J)
| (F,J) € delays(actions(I))}
delays(C) = {(F,,species(P)) | 7-.P € C}
binary(I;,J) = {({I, .}, F,J")
| C1 = actions(I1) A C2 = actions(I2)
Ny e{I}uJ
A(F, J') € interact(C1,C2)}
interact(C1,C2) = comm(C1, C>) W bind(C1, Cs)
comm(C1,C2) = {(Fy,species(Py | Paym.=n}))
| lz(n).Pr € Ci ATz(m).Py € Co
Viz(n).P1 € Ca A ?z(m). P2 € C1}
bind(C1,C2) = {(Fy,species(vii (P1 | Paginizi})))
| lz(vin).P1 € C1 A ?x(m).Ps € Co
Viz(vn).Py € Ca A ?x(m).Py € Ci}
species(P) 2 {Ii,...,In}
if normal(P) = (I1 | ... | In)
actions(X (1)) £ Cim.—ny if C = E(X(1n))
actions(vi [, X:(R:)) = actions(vfi expand (], X: (7))
actions(vi >, m.P;) £ 3 action(viimi.P;)
action(vn 7,.P) £ L vAP
action(vilz(m).P) = lz(m)vaPif AN (muUz) =0
action(vilz(m).P) 2 lz(vim)v(@\m)Pifz¢n
andm Cn
action(vnlz(vm).P) 2 lz(vm)v(@\m)Pifz ¢ n
action(vn ?z(m).P) 2 ?z(m).v(i\m)Pifzd¢n

DEFINITION 10. Generic abstract machine instantiated
for stochastic pi-calculus. We assume a fixed global envi-
ronment E containing all instance definitions. actions(I)
converts a species to a choice, actions(vnC) reduces the
scope of restrictions inside a choice, action(vnm.P) re-
duces the scope of restrictions inside a single action, and
n \ m removes the names m from n. If + € 7 and
m € {la(m),lz(vm), 7z(m)} then action(vnw.P) gives rise
to the empty process 0. expand(Xi(n1) | ... | Xm ()
converts a parallel composition of instances to a single choice
(Definition 11), and normal(P) converts a process P to nor-
mal form (Definition 7). We write ), m;.P; as short for
m.P1+ ... +7n.Px and [], P; as short for P, | ... | Py,
assuming ¢ € {1,...,N}.

of reactions that the species I can perform with the set of
species J. The set of reactions is given by the set of unary
reactions (delays) combined with the set of binary reactions
(communications and bindings). The function actions(I)
converts a species to a choice. An instance X (1) is conver-
ted to a choice corresponding to the species definition, while

If E(Xl(fl,l)) = K/l.Pl + e + Kn.Pn
and E(X2(f2)) = \1.Q1 + ... + Am.Qm then

expand(X1 () | X2(f2)) £ ki (Pi | Xa(72))
+ 220 (X1 () | Q)
+ Znicomp)\j TTij RZJ
where k;comp); (k; complements ;) if
1. k4 is lz(R) and Xj is ?z(m) when Rij; is P; | Qj {m:=n}
and 7;; is Fy
2. ki is lz(vn) and A; is ?xz(m) when Ry is vi (P |
Qj {fm:ﬁ}) and Tij iS Fm

DEFINITION 11. Ezpansion of a choice, based on standard
principles presented in [21]. We write E(X(n)) = C as an
abbreviation for E(X (m)) = C" where C' = C' {27}

(|E-P|) & EFP®(0,0,0)

DEFINITION 12. Encoding a system from SPi to SPiM.

[EFT) £ E-[T]
It,S,Rl] = [S]]
lop = o
1S,(T=df] £ I|...11 [[S]]
Hf_/
(IS, (I =al £ I|...1L [[Is]]
——

1

DEFINITION 13. Decoding a system from SPiM to SPi.
The environment F is unchanged, and for each mapping
I —iin S, ¢ copies of the species are executed in parallel.

a complex vi ((X1(f1) | ... | Xm(finr)) is converted to a
choice by first expanding the parallel composition (X1 (71) |

.| Xa(Rar)) to a single choice C' (Definition 11), and then
reducing the scope of the restrictions v C' inside the choice
(Definition 10).

3.3 Correctness of the Simulation

We briefly outline a proof of correctness of the instantia-
ted abstract machine (SPiM) with respect to the stochastic
pi-calculus with general distributions (SPi). The function
(IE F PJ) encodes a system E + P in SPi to a correspon-
ding system in SPiM (Definition 12). The encoding assumes
that all processes are in normal form. A corresponding de-
coding from SPiM to SPi is also given (Definition 13), where
the unique integers which tag individual non-Markovian mo-
lecules are discarded. Proposition 2 and Proposition 3 en-
sure that the calculus and the machine are reduction equi-



valent, where w and w’ stand for reduction identifiers in
SPi and SPiM, respectively. In order to preserve the cor-
respondence, we define a notion of structural congruence for
machine terms, where terms are structurally congruent up
to to renaming of definitions, garbage-collection of unused
definitions and structural congruence of processes.

PROPOSITION 2. VE,V € SPIM. E+ T "% B+ T =
1E+T) ™Y [|EF T

ProOF. By induction on the derivation of reduction in
SPiM. O

Fg,w

ProproOSITION 3. VE,P € SPi. E+- P 25> E+ P =
(IEF P) 8 = (E+ P

Proor. By induction on the derivation of reduction in
Ski. [

It is worth noticing that the probability of a transition P foy
P’ does not necessarily follow the distribution Fy in the
general case. Let us assume that the following transitions
are correct in SPi and follow non-Markovian distributions:
p s pop 2% pop 2% p o The probability of

the last transition in the sequence P Fl—’wf P Fiwf P> does
not follow F5 but a modified distribution which takes into
account the probability distribution Fy. The relabelling of

. Fo,wo Fq,wy Fp,w
a sequence of transitions Py —— P —— ... 5" Pu41

. Fg,wo Fi,wy F)wnp,
into Py 2= P, ~— ... 22" P, where F are the cor-

rect distribution functions of each transition is tackled in
[17]. It is clear from Proposition 2 and Proposition 3 that to
each sequence of transitions in SPi corresponds a sequence
of transitions in SPiM having the same F; in labels, and
vice-versa. It derives that the probabilities of transitions
are equivalent in SPi and in SPiM.

3.4 Example

We illustrate the application of the generic abstract machine
to the stochastic pi-calculus with a simple example of com-
plex formation:

A = lz(vu).AB(u)
B = 7z(u).BA(u)
AB(u) = lu.A
BA(u) = 7?u.B

Initially, 100 copies of processes A and B are added to the
empty machine term, written (100 - A | 100 - B) & (0,0, 0),
where the notation 100 - X represents 100 parallel copies of
the process X. This gives rise to the following machine term
(0,5, R):

S ={A > 100, B > 100}

R ={({A, B}, Fp, {vu(AB(u) | BA(u))}) — (10" - rate(Fy),t1)}

The reaction involving species A and B is executed at time
t1, after which one copy of the species A and B are remo-
ved and one copy of the complex is added to the resulting

machine term:
vu (AB(u) | BA(u)) @ ((t1, S, R) © {A, B})

This gives rise to the machine term (t1, S1, R1), where
actions(vu(AB(u) | BA(w))) is given by 7.(A | B):

S1={A—99,B+— 99,vu (AB(u) | BA(u)) — 1}

R, =

{({A, B}, Fy, {vu(AB(u) | BA(u))}) + (9801 - rate(Fy), t3)
s ({ru(AB(u) | BA(u))}, Fu, {A, B}) = (rate(Fu), t2)}

Note that existing simulation algorithms such as [13] handle
N copies of the complex vu(AB(u) | BA(u)) by creating a
globally fresh name for each restricted channel u as follows:

vui ...vun (AB(u1) | BA(ui) | ... | AB(un) | BA(un))

In contrast, our approach treats these as N copies of the
same complex vu(AB(u) | BA(u)), resulting in less species,
less reactions and therefore significantly more efficient simu-
lation.

4. APPLICATION: A MODEL OF
PLASMID CO-TRANSFECTION

In this section we present a model of gene transfer by plas-
mid co-transfection® involving non-Markovian reactions, de-
rived from [23]. We present a model of complex formation
for green and red plasmids, together with the main stages
of co-transfection (Fig. 1). The process C(g,r) represents
a complex of g green plasmids and r red plasmids, where
g,r are numbers. A complex can grow in size by receiving
the numbers ¢’, 7" on channel bind and adding these to g,r
respectively. Alternatively, it can bind to another complex
by sending the numbers g, r on channel bind. At any stage a
complex C(g,r) can enter the cell, represented by an enter
reaction to DC(g,r). The rate of entry is proportional to
the square of the size of the complex, where the size is gi-
ven by the total number of red and green plasmids g + r.
Once translocation has occurred, the resulting complex of
plasmids ENC can dissociate into individual green (ENG)
or red (ENR) plasmids, one at a time. We model this using
an unbind reaction, which removes a red or green plasmid
from the complex. The unbinding rate is proportional to
the number of red or green plasmids, respectively. The gene
expression of plasmids involves the transcription of plasmids
into mRNA and the translation of mRNA into proteins. The
degradation of mRNA is a 170-step process which we model
as a single reaction with an Erlang distribution. The green
plasmids produce green fluorescent proteins (GFP), while
the red plasmids produce red fluorescent proteins (RFP).
The SPiM code for the model is given in Appendix A.

Fig. 2 shows the results of simulating the model of Fig. 1,
using the generic abstract machine instantiated with the
non-Markovian stochastic pi-calculus. The model parame-
ters are given in Appendix A. The individual plasmids sto-
chastically bind together to form complexes of different sizes,
which then enter the cell and move towards the nucleus. En-
tire complexes can be degraded while in transit. Once they
reach the nucleus the complexes unbind, releasing their plas-
mid cargo, which is then transcribed to produce red or green

!model and prototype simulator available from
http://research.microsoft.com/spim/cmsb2010.zip
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Figure 1: A stochastic pi-calculus model of plasmid
co-transfection

fluorescent proteins. In order to visualise the proportion of
complexes of different sizes, we can plot the complexes im-
mediately after entry into the cell (Fig. 3). In general the
complexes can be of arbitrary size, depending on the initial
populations of plasmids. A challenging goal is to be able to
optimise the co-transfection process so that equal numbers
of red and green plasmids are transfected in low numbers.
Here stochasticity plays an important role. Future analysis
of the model can be used as a basis for determining optimal
co-transfection strategies that result in equal production of
red and green fluorescent proteins inside individual cells.

S. DISCUSSION

We have introduced a generic abstract machine for the simu-
lation of process calculi with potentially unbounded numbers

—C(1.0)
160 —C{01)
— MRNAR()
— mRNAG()
RFP()
GFP()

140

120

100

80—

60+

40

20+

Figure 2: Simulation results of the plasmid co-
transfection model of Fig. 1, where the horizontal
axis represents time in hours and the vertical axis
represents numbers of molecules.

Figure 3: Simulation of the initial entry of com-
plexes into the cell. We simulated the initial stages
of the model of Fig. 1, starting with 1000 indivi-
dual red and green plasmids and allowing these plas-
mids to form complexes before entering the cell.
We let DC(g,r) = () to prevent further movement
of the complexes and plot the composition of plas-
mids DC(g,r) immediately after entry. We used a
3D plot where the x axis represents the number of
green plasmids in the complex, the y-axis represents
the number of red plasmids in the complex and the
height represents the number of complexes with the
given composition of red and green plasmids. The
largest complex contained 11 red and 9 green plas-
mids, but the majority of complexes contained less
than 10 plasmids.



of species and reactions. Instantiating the machine for a par-
ticular calculus requires the definition of functions to extract
the species and reactions from the processes of the calculus.
We have detailed the simulation of the non-Markovian sto-
chastic pi-calculus using this abstract machine, and have
presented a model of plasmid co-transfection that illustrates
the flexibility of the proposed framework.

To cope with a large number of reactions when simulating
non-Markovian processes with a large number of species, the
implementation of the generic abstract machine should use
optimised data structures to quickly access reactions affec-
ted by propensity changes. This requires either computing
an explicit dependency graph between reactions, as sugges-
ted in [6], or having efficient hashing structures to access
reactions in the machine term.

Little work has so far been done to provide efficient non-
Markovian simulations. In [1], the Gillespie algorithm is
extended to delayed reactions, allowing non-Markovian si-
mulation of chemical reactions. In the scope of process cal-
culi, Priami has formalised the semantics of the stochastic
pi-calculus models with general distributions [17]. The si-
mulation proposed in [17] is based on automatic rescaling of
the general distribution functions of transitions during the
execution, in order to reflect the history of the execution,
as needed for non-Markovian reactions. This strategy has
been adopted and implemented to allow non-Markovian si-
mulation of BlenX models [10, 16]. While rescaling distribu-
tion functions is manageable for distributions like Gamma or
Hyper-exponential, more general distributions may be har-
der to compute. The non-Markovian simulation algorithm
we propose does not rely on such a rescaling of distribution
functions and therefore provides an efficient and straightfor-
ward simulation of reactions with arbitrary probability dis-
tributions. The algorithm relies on the fact that our generic
abstract machine allows a potentially unbounded number of
new species to be dynamically generated.

Our generic abstract machine aims at simulating a broad
range of process calculi. To highlight the flexibility of our
approach, we have used our machine to simulate a variant
of the DSD calculus [14]>. We have also instantiated the
generic abstract machine to a variant of the stochastic bio-
ambient calculus [12]. Since this calculus relates processes
that may move between different ambients, it was necessary
to extend the encoding of species to correctly translate in-
teractions as “flat” reactions. This instantiation required the
addition of a species renaming operator in the generic abs-
tract machine, and is detailed in Appendix B. This produces
the first simulator of a non-Markovian stochastic Bioambient
calculus.

Our approach can potentially be used to simulate a range
of existing process calculi within the same framework. In
future, this could enable multiple calculi to interact with
each other dynamically, provided they agree on a common
format for species and reactions, allowing exact stochastic
simulation of heterogeneous systems. The approach could
also facilitate the development of future programming lan-
guages and calculi, by reducing the overhead for implemen-

Zsimulator available at http://research.microsoft.com/dna

ting custom stochastic simulation algorithms.

Acknowledgements Thanks to Filippo Polo for develop-
ment of the SPiM user interface and visualisations.
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APPENDIX
A. SPIM CODE FOR PLASMID
CO-TRANSFECTION

directive sample 10.0 1000

val enter = 0.1

val degrade = 0.01
val detach = 1.0
val transport = 1.0
val translocate = 1.
val unbind = 1.0

0

val transcribe = 4.0
val translate = 1.5
val d_RNA = 0.466

val d_protein = 0.019

new bind@0.01:chan(float,float)
new attach@1l.0:chan
new c@1.0:chan

let C(g:float,r:float) =
do delay@enter*(g+r)*(g+r); DC(g,r)
or !bind(g,r)
or ?bind(g’,r’); C(g+g’,r+r’)
or delay@degrade
and DC(g:float,r:float) =
do !attach; MDP(g,r)
or delay@degrade
and ENC(g:float,r:float) =
do delay@degrade
or delay@unbind*g; (ENG() | ENC(g-1.0,r))
or delay@unbind*r; (ENR() | ENC(g,r-1.0))
and MDP(g:float,r:float) =
do delay@detach; DC(g,r)
or delay@transport; PC(g,r)
or delay@degrade; ()
and PC(g:float,r:float) =
do delay@translocate; ENC(g,r)
or delay@degrade; ()
and Microtubule() = ?attach; Microtubule()

and ENG() = delay@transcribe; (ENG() | mRNAG())
and ENR() = delay@transcribe; (ENR() | mRNARQ))
and mRNAG() =

do delay@translate; (mRNAG() | GFP())

or delay@Erlang(170,d_RNA)
and GFP() = delay@d_protein
and mRNAR() =

do delay@translate; (mRNAR() | RFP())

or delay@Erlang(170,d_RNA)
and RFP() = delay@d_protein

run 100 of C(1.0,0.0)
run 100 of C(0.0,1.0)
run 100 of Microtubule()



B. SIMULATION OF THE STOCHASTIC
BIOAMBIENT CALCULUS

The bioambient calculus was presented in [19] as a mean
of modelling mobile compartments in biological processes.
This appendix shows how to use the presented generic abs-
tract machine to simulate this calculus. This demonstrates
the large range of process calculi that can be handled by the
machine. Moreover, it is worth noticing that the simulation
of the non-Markovian Bioambient calculus can be done by
using Definition 3, producing the first non-Markovian simu-
lator for this calculus.

B.1 Syntax and Reduction

The syntax of the stochastic bioambient calculus (SBA) used
in this section, together with its reduction rules, are presen-
ted in Definition 14 and is reproduced from [12]. A process
P can be a choice of actions M, an instance X (1) of a defi-
nition X with parameters 7, a parallel composition of pro-
cesses P | @, a process vz P with a private channel z, or an

ambient |P| consisting of a process P inside a compartment.
A choice M consists of a competition between zero or more
actions 7.P, where 7 is the action that can be performed,
after which process P is executed. An action w can be a
delay 7, a send v!z(7) of values 7 on channel z, or a receive
~?x(m) of values 7 on channel x, where v denotes the type
of communication. This can be inside the same ambient
(local), from one sibling ambient to another (s2s), from a
child ambient to its parent (c2p) or from a parent ambient
to a child (p2c). In addition, an action 7 can be a move ulz
on channel x or an accept u?z on channel x, where u denotes
the type of movement. This can be an ambient entering one
of its siblings (in), a child ambient leaving its parent (out)
or a merge of two sibling ambients (merge).

B.2 Extracting Reactions from Ambients

The main challenge to instantiate the generic abstract ma-
chine with the simulation of the bioambient calculus is to
extract from bioambient processes a “flat” set of reactions.

Basically, processes are labelled with an identifier of the am-
bient in which they evolve. The ambient identifier is ana-
logous to a file path in an arborescent file systems. For
instance, in the process, P; \, assuming that I is the index
of the ambient in which P; resides, P» is labelled as I'/a
where a is a unique name. The assigning of ambient path to
species is formally presented in Definition 15. The symbol ~
identifies the root ambient of the simulated process.

When computing reactions, we then use these ambient iden-
tifiers to check if processes are able to process actions, by
comparing the paths of the ambients. The computations
of reactions from a Bioambient process is given in Defini-
tion 17. They use the is_local, is_sibling and is_child predi-
cates on ambient paths. For instance, executing a s2s action
between two species PlF b and P2F 2 requires that their parent
ambient paths are equal but their ambient paths different,
ie. 't =T'/a and I's = T'/b where a # b.

As an ambient can move (by using in, out, merge actions),
it is required to relabel the species to reflect the change of
path of the ambient. As an example, let us assume we want
to simulate the following reduction:

|Q1 | in!x.P1| | IQQ | in?x.P2| —

1|P1||Q2|P2

Rewriting this equation using ambient paths gives the re-
duction below:

QY | inla™/@ P/ | QL/P | in?2" /0. PY/

Q| P Q5| P

and we obtain the following reaction driven by the inlz ac-
tion:

in!xr/a.Plr/a + in?xr/b.PZF/b — Plr/b/a + P;/b

As the ambient containing P; and @1 is moving, the am-
bients paths of Pi and @1 have to be updated. This is
specified by attaching to each reaction O the required am-
bient paths renaming (in the above example, the renaming
iS {r/a:=r/b/a}). The definition of the renaming operation,
together with the reduction obtained are stated in Defini-
tion 18. During the renaming of current reactions (R#MV'),
it has to be checked that the ambient paths are still compa-
tible for the reaction, given by the releq predicate in Defini-
tion 16.
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Qinlz.P+M|Q |in?eP + M| — | a\Q’ | P
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IQ | mergelz. P + M1 | |Q' | merge?z.P' + M| — Q|P|Q | P
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DEFINITION 14. Syntax of SBA and reduction rules [12]. A system E b+ P consists of a constant environment E of
definitions, together with a process P.

= "Jai/.../an Ambient path
I:= X(n)" Reaction species species(0) 2 0
MV = @ | (r,,5=Tnew} Ambient renaming species(P) 2 species(P,")
Ou= (L EMV,J) Reaction species(, ') 2 species(P,T/a) if fresh(a)
islocal(l'1,T5) 2 Ty =T, species(X (7),T) 2 X(7)" if B(X (7)) = C
is_sibling(T'1,T2) 2 Ty =T/aATs=T/bAb#a species(vz P,I') £ species(P .y}, ) if fresh(y)
is_child(Ty,T2) £ T = I'>/a species(Py | P2, T") £ species(Py, ") W species( Py, I")

DEFINITION 15. Assigning ambient paths to species.

1>

releq({P"*, PI2}, {PI1, P2}) is_local(T'1, T2) A is_local(T%, T'h)
is_sibling(T'1, T'2) A is_sibling(T'}, T'%)
is_child(T'1, T'2) A is_child(T'}, T'%)

is_child(T'2, T1) A is_child(T'5,T})

< < <

DEFINITION 16. releq predicate to test the conservation of relative ambient positions, after an ambient path renaming.
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DEFINITION 17. Instantiation of the generic machine to the Bioambient calculus. We assume a fized global environment E
that contains the species definitions.

> >

>

> >

> 1> e >

1>

> > >

[I> [I> [I> [I> [I>

1>

Clmi=ny if C = E(X(m))
unary(I) W binary(l, J)

{{I}, F,MV,J) | (f,MV,J) € delays(I)} if I =
{(Fr, 2, species(P,T")) | 7.P € actions(I)} if I =

{({11712}7f1 MV, J)

| C2 = actions(Is) A T = X1 (7)™

X ()"
X(n)"

ANy =Xo(m)"2 AL e {[,}UJ

A(F, MV, J) € interact(C} *, Cy?) & interact(Cy2,C] 1)}
comm(CT*,C2) W moves(Cy*, CL?)

locals(C}*, Cy?) if is_local(T'1,T'2)

siblings(C]*, C32) if is_sibling(T'1, T'2)

childs(Cy*, Cy?) if is_child(T'1,T2)
parents(C] !
ins(C]*,C52) W merges(C} ', C52)
outs(C1*, Cy?) if is_child(T'y,T')

{(Fz, @, species(P1 | Pagm:=n},T)
| locallz(n). Py € C1 A local?z(m

)

12) if is_child(I'a, T'y)

if is_sibling(T'1, ')

)PQ ECQ}

{(Fs, D, species(P1,T'1) W species( Pz (=7}, '2))

| s2slz(n).P1 € C1 A s2s?z(m). P

S Cz}

{(Fz, @, species(P1,T'1) & species(Ps (m:=a}, '2))

| c2plz(n).Pr € C1 A c2p?z(m). P

S Cz}

{(Fs, D, species(P1,T'1) W species( Pz (=7}, '2))

| p2¢clz(n). Py € C1 A c2p?z(m). P

S Oz}

{(Fx, {r/a:=ry /a}, species(P1,T'a/a) W species( Pz, T'2))

| inlz(n).Py € Cy A in?z(m).Py €
{(F%, {ry:=r, 3}, species(P1| P2, T'1))
| mergelz(n).P1 € C1 Amerge?z(m

{(F%, {r/a/b:=r b}, species(P1,T'/b)
| outlz (7). Py € C1 A out?z(m).Pe

C2}

).P> € Ca}
W species(P2,T'/a))
€ Cy}

(S, R)#@

(S,R)#MV

R#MV

({S, (I = (i,0))}, R)#MV

(Ty:=To} #MV
X ()" #MV
THr 1a:=T new)
THr g =T new)

>

> >

1>

> >

1>

(S, R)

(S, REMV)#MV

{(JH#MV, F,MV'#MV, ] #MV)
(8", (I#MV,S") & R') if S’

and S(I#MV) = (i',C) ori' =0
and (8", R') = (S, R)#MV

{T1#MV:=To#MV}

Thew/Tq if T = o /T
T if T % Tora/T

(J,F,MV,J"),t = next(T)

| (J,E,MV' J) € R Areleq(J, J#MV)}
=S"{I#MV s (i+1i,0)}

.8, RTIET 1

((t, S, R)© J#MV)

DEFINITION 18. Reduction with species renaming operator instantiated to the Bioambient calculus.




