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Abstract

Secure digital cards and embedded multimedia cards
are pervasively used as secondary storage devices
in portable electronics, such as smartphones and
tablets. These devices cost under 70 cents per gi-
gabyte. They deliver more than 4000 random IOPS
and 70 MBps of sequential access bandwidth. Addi-
tionally, they operate at a peak power lower than 250
milliwatts. However, software storage stack above
the device level on most existing mobile platforms
is not optimized to exploit the low-energy charac-
teristics of such devices. This paper examines the
energy consumption of the storage stack on mobile
platforms.

We conduct several experiments on mobile plat-
forms to analyze the energy requirements of their re-
spective storage stacks. Software storage stack con-
sumes up to 200 times more energy when compared
to storage hardware, and the security and privacy re-
quirements of mobile apps are a major cause. A stor-
age energy model for mobile platforms is proposed
to help developers optimize the energy requirements
of storage intensive applications. Finally, a few op-
timizations are proposed to reduce the energy con-
sumption of storage systems on these platforms.

1 Introduction

NAND-Flash in the form of secure digital cards
(SD cards) [36] and embedded multimedia cards
(eMMC) [13] is the choice of storage hardware for
almost all mobile phones and tablets. These stor-
age devices consume less energy and provide signif-
icantly lower performance when compared to solid
state disks (SSD). Such a trade-off is acceptable for
battery-powered hand-held devices like phones and
tablets, which run mostly one user-facing app at a
time and therefore do not require SSD-level perfor-
mance.

SD cards and eMMC devices deliver adequate per-
formance while consuming low energy. For exam-

ple, an eMMC 4.5 [35] device that we tested deliv-
ers 4000 random read, and 2000 random write 4K
IOPS. Additionally, it delivers close to 70 MBps se-
quential read, and 40 MBps sequential write band-
width. While the sequential bandwidth is compara-
ble to that of a single-platter 5400 RPM magnetic
disk, the random IOPS performance is an order of
magnitude higher than a 15000 RPM magnetic disk.
To deliver this performance, the eMMC device con-
sumes less than 250 milliwatts (see Section 2) of peak
power.

Storage software on mobile platforms, unfortu-
nately, is not well equipped to exploit these low-
energy characteristics of mobile-storage hardware.
In this paper, we examine the energy cost of storage
software on popular mobile platforms. The storage
software consumes as much as 200 times more en-
ergy when compared to storage hardware for popular
mobile platforms using Android and Windows RT.
Instead of comparing performance across different
platforms, this paper focuses on illustrating several
fundamental hardware-independent, and platform-
independent challenges with regards to the energy
consumption of mobile storage systems.

We believe that most developers design their ap-
plications under the assumption that storage sys-
tems on mobile platforms are not energy-hungry.
However, experimental results demonstrate the con-
trary. To help developers, we build a model for en-
ergy consumption of storage systems on mobile plat-
forms. Developers can leverage such a model to op-
timize the energy consumption of storage-intensive
mobile apps.

A detailed breakdown of the energy consumption
of various storage software and hardware compo-
nents was generated by analyzing data from fine-
grained performance and energy profilers. This pa-
per makes the following contributions:

1. The hardware and software energy consumption
of storage systems on Android and Windows RT
platforms is analyzed.
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2. A model is presented that app developers can
use to estimate the amount of energy consumed
by storage systems and optimize their energy-
efficiency accordingly.

3. Optimizations are proposed for reducing the en-
ergy consumption of mobile storage software.

The rest of this paper is organized as follows. Sec-
tions 2, 3, and 4 present an analysis of the energy
consumption of storage software and hardware on
Android and Windows RT systems. A model to es-
timate energy consumption of a given storage work-
load is presented in Section 5. Section 6 describes a
proposal for optimizing the energy needed by mobile
storage systems. Section 7 presents related work,
and the conclusions from this paper are given in Sec-
tion 8.

2 The Case for Storage Energy

Past studies have shown that storage is a perfor-
mance bottleneck for many mobile apps [21]. This
section examines the energy-overhead of storage for
similar apps. In particular, background applica-
tions such as email, instant messaging, file synchro-
nization, updates for the OS and applications, and
certain operating system services like logging and
bookkeeping, can be storage-intensive. This sec-
tion devises estimates for the proportion of energy
that these applications spend on each storage sys-
tem component. Understanding the energy con-
sumption of storage-intensive background applica-
tions can help improve the standby times of mobile
devices.

Hardware power monitors are used to profile the
energy consumption of real and synthetic workloads.
Traces, logs and stackdumps were analyzed to un-
derstand where the energy is being spent.

2.1 Setup to Measure Energy

An Android phone and two Windows RT tablets
were selected for the storage component energy con-
sumption experiments. While these platforms pro-
vide some OS and hardware diversity for the pur-
poses of analyses and initial conclusions, additional
platforms would need to be tested in order to create
truly robust power models.

2.1.1 Android Setup

The battery of a Samsung Galaxy Nexus S phone
running Android version 4.2 was instrumented and
connected to a Monsoon Power Monitor [26] (see

Figure 1: Android 4.2 power profiling setup: The
battery leads on a Samsung Galaxy Nexus S phone
were instrumented and connected to a Monsoon
power monitor. The power draw of the phone was
monitored using Monsoon software.

Figure 2: Windows RT 8.1 power profiling setup
#1: Individual power rails were appropriately wired
for monitoring by a National Instruments DAQ that
captured power draws for the CPU, GPU, display,
DRAM, eMMC, and other components.

Figure 3: Windows RT 8.1 power profiling setup #2:
Pre-instrumented to gather fine-grained power num-
bers for a smaller set of power rails including the
CPU, GPU, Screen, WiFi, eMMC, and DRAM.
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Figure 1). In combination with Monsoon software,
this meter can sample the current drawn from the
battery 10’s of times per second. Traces of applica-
tion activity on the Android phone were captured us-
ing developer tools available for that platform [1, 2].

2.1.2 Windows RT Setup

Two Microsoft Surface RT systems were instru-
mented for power analysis. The first platform uses
a National Instruments Digital Acquisition System
(NI9206) [27] to monitor the current drawn by the
CPU, GPU, display, DRAM, eMMC storage, and
other components (see Figure 2). This DAQ cap-
tures 1000’s of samples per second.

Figure 3 shows a second Surface RT setup, which
uses a simpler DAQ chip that captures the current
drawn from the CPU, memory, and other subsys-
tems 10’s of times per second. This hardware instru-
mentation is used in combination with the Windows
Performance Toolkit [42] to concurrently profile soft-
ware activity.

2.1.3 Software

Storage benchmarking tools for Android and Win-
dows RT were built using the recommended APIs
available for app-store application developers on
these platforms [3, 43]. These microbenchmarks
were varied using the parameters specified in Ta-
ble 1. A “warm” cache is created by reading the en-
tire contents of a file small enough to fit in DRAM
at least once before the actual benchmark. A “cold”
cache is created by rebooting the device before run-
ning the benchmark, and by accessing a large enough
range of sectors such that few read “hits” in the
DRAM are expected. The write-back experiments
use a small file that is caches in DRAM in such a
way that writes are lazily written to secondary stor-
age. Such a setting enables us to estimate the energy
required for writes to data that is cached. Each mi-
crobenchmark was run for one minute. The caches
are always warmed from a separate process to en-
sure that the microbenchmarking process traverses
the entire storage stack before experiencing a “hit”
in the system cache.

To reduce noise, most of the applications from the
systems were uninstalled, and unnecessary hardware
components were disabled whenever possible (e.g.,
by putting the network devices into airplane mode
and turning off the screen). For all the components,
their idle-state power is subtracted from the power
consumed during the experiment to accurately re-
flect only the energy used by the workload.

Parameter Value Range

IO Size (KB) 0.5, 1, 2, 4, ..., or 1024

Read Cache
Config

Warm or Cold

Write Policy Write-through or Write-back

Access Pattern Sequential or Random

IO Performed Read or Write

Benchmark
Language

Managed Language or Native C

Full-disk
Encryption

Enabled or disabled

Table 1: Storage workload parameters varied be-
tween each 1-minute energy measurement.
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Figure 4: Storage energy per KB on Surface RT:
Smaller IOs consume more energy per KB because
of the per-IO cost at eMMC controller.

2.2 Experimental Results

The energy overhead of the storage system was de-
termined via microbenchmark and real application
experiments. The microbenchmarks enable tightly
controlled experiments, while the real application
experiments provide realistic IO traces that can be
replayed.

2.2.1 Microbenchmarks

Figure 4 shows the amount of energy per KB con-
sumed by the eMMC storage for various block sizes
and access patterns on the Microsoft Surface RT.

• The eMMC device requires 0.1–1.3 µJ/KB for
its operations. Sequential operations are the
most energy efficient from the point of view of
the device.

• Random accesses of 32 KB have similar energy
efficiency as sequential accesses. Smaller ran-
dom accesses are more expensive – requiring
more than 1 µJ/KB. This is due to the setup
cost of servicing an IO at the eMMC controller
level.
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From a performance perspective, for a given block
size, read performance is higher than write perfor-
mance, and sequential IO has higher performance
than random IO. We expect this to be due to the
simplistic nature of eMMC controllers. Studies
have shown other trends with more complex con-
trollers [9]. For eMMC, however, the delta between
read and write performance (and energy) will likely
widen in the future, since eMMC devices have been
increasing in read performance faster than they have
been increasing in write performance.
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Figure 5: System energy per KB on Android: The
slower eMMC device on this platform results in more
CPU and DRAM energy consumption, especially for
writes. “Warm” file operations (from DRAM) are
10x more energy efficient.

Figure 5 shows that the energy per KB required by
storage software on Android is two to four orders of
magnitude higher than the energy consumption by
the eMMC device (even though the eMMC controller
in the Android platform is an older and slower gen-
eration device, the device power is in a range similar
to that of the RT’s eMMC device).

• Sequential reads are the most energy-efficient at
the system level, requiring only one-third of the
energy of random reads.

• Cold sequential reads require up to 45% more
system energy than warm reads, as shown in
Figure 5(b).

• Writes are one to two orders of magnitude less
efficient than reads due to the additional CPU
and DRAM time waiting for the writes to com-
plete. Random writes are particularly expen-
sive, requiring as much as 4200 µJ/KB.

The impact of low-end storage devices on perfor-
mance has been well studied by Kim et al. [21]. Low
performance, unfortunately, translates directly into
high energy consumption for IO-intensive applica-
tions. We hypothesize that the idle energy consump-
tion of CPU and DRAM (because of not entering
deep idle power states soon enough) contribute to
this high energy. However, we expect the energy
wastage from idle power states to go down with the
usage of newer and faster eMMC devices like the
ones found in the tested Windows RT systems and
other newer Android devices.
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Figure 6: System energy per KB on Windows RT:
The faster eMMC 4.5 card on this platform reduces
the amount of idle CPU and DRAM time. “Warm”
file operations (from DRAM) are 5x more energy
efficient.

Figure 6 presents the energy per KB needed for
the entire Windows RT platform. All “warm” IO
requires less than 20 µJ/KB, whereas writes to the
storage device require up to 120 µJ/KB. These en-
ergy costs are reflective of how higher performant
eMMC devices can reduce energy wastage from non-
sleep idle power states (tail power states). While
some of this is the energy cost at the device, most
of it is due to execution of the storage software, as
discussed later in this section.

2.2.2 Application Benchmarks

Disk IO logs from several storage-intensive applica-
tions on Android and Windows RT were replayed
to profile their energy requirements. During the re-
play, OS traces were captured for attributing power
consumption to specific pieces of software, as well as
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Email Synchronize a mailbox with 500
emails totaling 50 MB.

File upload Upload 100 photos totaling 80
MB to cloud storage.

File download Download 100 photos totaling 8
0MB from cloud storage.

Music Play local MP3 music files.

Instant
messaging

Receive 100 instant messages.

Table 2: Storage-intensive background applications
profiled to estimate storage software energy con-
sumption.
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Figure 7: Breakdown of Windows RT energy con-
sumption by hardware component. Storage soft-
ware consumes more than 200x more energy than
the eMMC device for background applications.

noting intervals where the CPU or DRAM were idle.

This paper focuses primarily on storage-intensive
background applications that run while the screen is
turned off, such as email, cloud storage uploads and
downloads, local music streaming, application and
OS updates, and instant messaging clients. How-
ever, many of the general observations hold true
for screen-on apps as well, although display-related
hardware and software tend to take up a large por-
tion of the system energy consumption. Better un-
derstanding and optimization of the energy con-
sumed by such applications would help increase plat-
form standby time.

Table 2 presents the list of application scenarios
profiled. Traces were taken when the device was
using battery with the screen turned off.

During IO trace replay on Windows RT, power
readings are captured for individual hardware com-
ponents. Figure 7 plots the energy breakdown for
eMMC, DRAM, CPU and Core. The “Core” power
rail supplies the majority of the non-CPU compute
components (GPU, encode/decode, crypto, etc.).

Library Name % CPU Busy Time

Filesystem APIs 19.6

CLR APIs 25.8

Encryption APIs 42.1

Other APIs 12.5

Table 3: Breakdown of functionality with respect to
CPU usage for a storage benchmark run on Windows
RT. Overhead from managed language environment
(CLR) and encryption is significant.

The storage software consumes between 5x and
200x more energy than the storage IO itself, de-
pending on how the DRAM power is attributed.
The fact that storage software is the primary en-
ergy consumer for storage-intensive applications is
consistent with our hypothesis from the microbench-
mark data. The IO traces of these applications also
showed that a majority (92%) of the IO sizes were
less than 64KB. We will, therefore, focus on smaller
IO sizes in the rest of the paper.

Table 3 provides an overview of the stack traces
collected on the Windows RT device using the Win-
dows Performance Toolkit [42] for the mail IO work-
load. The majority of the CPU activity (when it
was not in sleep) resulted from encryption APIs
(∼42%) and Common Language Runtime (CLR)
APIs (∼26%). The CLR is the virtual machine on
which all the apps on Windows RT run. While there
was a tail of other APIs, including filesystem APIs,
contributing to CPU utilization, the largest group
was associated with encryption.

The energy overhead of native filesystem APIs has
been studied recently [8]. However, the overhead
from disk encryption (security requirements) and the
managed language environment (privacy and isola-
tion requirements) are not well understood. Secu-
rity, privacy, and isolation mechanisms are of a great
importance for mobile applications. Such mecha-
nisms not only protect sensitive user information
(e.g., geographic location) from malicious applica-
tions, but they also ensure that private data cannot
be retrieved from a stolen device. The following sec-
tions further examines the impact of disk encryption
and managed language environments on storage sys-
tems for Windows RT and Android.

3 The Cost of Encryption

Full-disk encryption is used to protect user data from
attackers with physical access to a device. Many cur-
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Figure 8: The impact of enabling encryption on the Android phone is 2.6–5.9x more energy per KB.
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Figure 9: The impact of enabling encryption on the Windows RT tablet is 1.1–5.8x more energy per KB.

rent portable devices have an option for turning on
full-disk encryption to help users protect their pri-
vacy and secure their data. BitLocker [6] on Win-
dows and similar features on Android allow users to
encrypt their data. While enterprise-ready devices
like Windows RT and Windows 8 tablets ship with
BitLocker enabled, most Android devices ship with
encryption turned off. However, most corporate Ex-
change and email services require full-disk encryp-
tion when they are accessed on mobile devices.

Encryption increases the energy required for all
storage operations, but the cost has not been well
quantified. This section presents analyses of various
unencrypted and encrypted storage-intensive opera-
tions on Windows RT and Android.
Experimental Setup: Energy measurements

were taken for microbenchmark workloads with vari-
ations of the first set of parameters shown in Ta-
ble 1 as well as with encryption enabled and dis-
abled while using the managed language APIs for
Android, and Windows RT systems. The results are
shown in Figures 8 and 9 for Android and Windows
RT respectively. Each bar represents the multipli-
cation factor by which energy consumption per KB
increases when storage encryption is enabled.

“Warm” and “cold” variations are shown. As be-
fore, “warm” represents a best-case scenario where
all requests are satisfied out of DRAM. “Cold” rep-
resents a worst-case scenario where all requests re-
quire storage hardware access. In all cases, except
Android writes as shown in Figures 8(b) and 8(d),

“warm” runs have lower energy requirements per
KB.

The cost of encryption, however, still needs to be
paid when cached blocks are flushed to the storage
device. Section 5 presents a model to analyze the
energy consumption for a given storage workload for
cached and uncached IO.

Figure 8 presents the encryption energy multiplier
for the Android platform:

• The energy overhead of enabling encryption
ranges from 2.6x for random reads to 5.9x for
random writes.

• Encryption costs per KB are almost always re-
duced as IO size increases, likely due to the
amortization of fixed encryption start-up costs.

• Android appears to flush dirty data to the
eMMC device aggressively. Even for small files
that can fit entirely in memory and for ex-
periments as short as 5 seconds, dirty data is
flushed, thereby incurring at least part of the
energy overhead from encryption. Therefore,
Android’s caching algorithms do not delay the
encryption overhead as much as expected. They
may also not provide as much opportunity for
“over-writes” to reduce the total amount of data
written, or for small sequential writes to be con-
catenated into more efficient large IOs.

Figure 9 presents the energy multiplier for en-
abling BitLocker on the Windows RT platform:
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• The energy overhead of encryption ranges from
1.1x for reads to 5.8x for writes.

• The energy consumption correlation with re-
quest size is less obvious for the Windows plat-
form. While increasing read size generally re-
duces energy costs because of the usage of
crypto engines for larger sizes, as was the case
for the Android platform, write sizes appear to
have the opposite trend. All of the shown re-
quest sizes are fairly small when the CPU was
used for encryption; we found that that this
trend reverses as request sizes increased beyond
32 KB.

• DRAM caching does delay the energy cost of
encryption for reads and writes, even for ex-
periments as long as 60 seconds. This could
provide opportunity to reduce energy because
of over-writes, and also due to read prefetching
at larger IO sizes and concatenation of smaller
writes to form larger writes.

On Windows RT, encryption and decryption costs
are highly influenced by hardware features and soft-
ware algorithms used. Hardware features include the
number of concurrent crypto engines, the types of
encryption supported, the number of engine speeds
(clock frequencies) available, the amount of local
(dedicated) memory, the bandwidth to main mem-
ory, and so on. Software can choose to send all or
part (or none) of the crypto work to the hardware
crypto engines. For example, small crypto tasks are
faster on the general purpose CPU. Using the hard-
ware crypto engine can produce a sharp drop in en-
ergy consumption when the size of a disk IO reaches
an algorithmic inflection point with regard to perfor-
mance. See Section 6 for a hardware optimization we
propose to bring down the energy cost of encryption
for all IO sizes.

4 The Runtime Cost

Applications on mobile platforms are typically built
using managed languages and run in secure contain-
ers. Mobile applications have access to sensitive user
data such as geographic location, passwords, intel-
lectual property, and financial information. There-
fore, running them in isolation from the rest of the
system using managed languages like Java or the
Common Language Runtime (CLR) is advisable.
While this eases development and makes the plat-
form more secure, it affects both performance and
energy consumption.

Any extra IO activity generated as a result of the
use of managed code can significantly increase the
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Figure 10: Impact of managed programming lan-
guages on Windows RT tablet: 13–18% more energy
per KB for using the CLR.
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Figure 11: Impact of managed programming lan-
guage on Android phone: 24–102% more energy per
KB for using the Dalvik runtime.

average storage-related power, especially since mo-
bile storage has such a low idle power envelope. This
section explores the performance and energy impact
of using managed code.

Experimental Setup: The first set of parame-
ters from Table 1 are again varied during a set of
microbenchmarking runs using native and managed
code APIs for Windows RT, and Android with en-
cryption disabled. The pre-instrumented Windows
RT tablet is specially configured (via Microsoft-
internal functionality) to allow the development and
running of applications natively. The native version
of the benchmarking application uses the OpenFile,
ReadFile, and WriteFile APIs on Windows. The
Android version uses the Java Native Interface [20]
to call the native C fopen, fread, fseek, and fwrite

APIs.
The measured energy consumption for the Win-

dows and Android platforms are shown in Fig-
ures 10, and 11, respectively. Each bar represents
the multiplication factor by which energy consump-
tion per KB increases when using managed rather
than native code.

• On Windows RT, the energy overhead on stor-
age systems from running applications in a man-
aged environment is 12.6–18.3%.
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Figure 12: Power draw by DRAM, eMMC, and CPU for different IO sizes on Windows RT with encryption
disabled. CPU power draw generally decreases as the IO rate drops. However, large (e.g., 1 MB) IOs incur
more CPU path (and power) because they trigger more working set trimming activity during each run.

• The overhead on Android is between 24.3–
102.1%. We believe that the higher energy
overhead for smaller IO sizes (some not shown)
is likely due to a larger prefetching granular-
ity used by the storage system. For larger IO
sizes (some not shown), the overhead was al-
ways lower than 25%.

Security and privacy requirements of applications
on mobile platforms clearly add an energy overhead
as demonstrated in this section and the previous one.
If developers of storage-intensive applications take
these overheads into account, more energy-efficient
applications could be built. See Section 6 for a hard-
ware optimization that we propose for reducing the
energy overhead due to the isolation requirements of
mobile applications.

5 Energy Modeling for Storage

As shown in the previous sections, encryption and
the use of managed code add a significant amount
of overhead to the storage APIs – in terms of en-
ergy. Therefore, we believe that it is necessary to
empower developers with tools to understand and

optimize the energy consumed by their applications
with regard to storage APIs.

This section first attempts to formalize the energy
consumption characteristics of the storage subsys-
tem. It then presents EMOS (Energy MOdeling for
Storage), a simulation tool that an application or OS
developer can use to estimate the amount of energy
needed for their storage activity. Such a tool can
be used standalone or as part of a complete energy
modeling system such as WattsOn [25]. For each
IO size, request type (read or write), cache behav-
ior (hit or miss), and encryption setting (disabled or
enabled), the model allows the developer to obtain
an energy value.

5.1 Modeling Storage Energy

The energy cost of a given IO size and type can be
broken down into its power and throughput compo-
nents. If the total power of read and write operations
are Pr and Pw, respectively, and the corresponding
read and write throughputs are Tr and Tw KB/s,
then the energy consumed by the storage device per
KB for reads (Er) and writes (Ew) is:

Er = Pr/Tr, Ew = Pw/Tw

8
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Figure 13: CPU power & IOps for different sizes of random and sequential reads on the Surface RT. Both
metrics follow an exponential curve and show good linear correlation. The two outliers in the scatter plot
towards the bottom right are caused by high read throughput triggering the CPU-intensive working set
trimming process in Windows RT.

The hardware “energy” cost of accessing a stor-
age page depends on whether it is a read or a write
operation, file cache hit or miss, sequential or ran-
dom, encrypted or not, and other considerations not
covered by this analysis, such as request inter-arrival
time, interleaving of different IO sizes and types, and
the effects of storage hardware caches or device-level
queuing.

In this model, P is comprised of CPU(PCPU ),
memory (PDRAM ), and storage hardware(PEMMC)
power. Figure 12 shows the variation of each of
these power components for uncached, unencrypted,
random, and sequential, reads and writes via man-
aged language microbenchmarking apps that we de-
scribed in Section 2.
PDRAM can be modeled as follows:

• For writes, the DRAM consumes 450 mW when
the IO size is less than 8 KB. When the IO size
is greater than or equal to 8 KB, this power is
closer to 360 mW. This may be due to a change
in memory bus speed for smaller IOs (with more
IOps and higher CPU requirements driving up
the memory-bus frequency).

• For reads, DRAM power increases linearly with
request size from 350 mW for 4 KB reads to 475
mW for 1 MB reads. Write throughput rates
are low enough that DRAM power variation for
different write sizes is low. This is likely caused
by more “active” power draw at the DRAM and
the controller as utilization increases.

Storage unit power (PEMMC) can be modeled as
follows:

• For writes, the eMMC power variation due to

sequentiality and request size is fairly low – from
105 mW for 4 KB IOs to 140 mW for 1 MB IOs.

• For random and sequential reads, the eMMC
power varies from 40 mW for 4 KB IOs to 180
mW for 1 MB IOs, with most of the variation
coming from IO sizes less than 4 KB. 4KB or
less IOs are traditionally more difficult for these
types of eMMC drives, because some of their
internal architecture is optimized for transfers
that are 8KB or larger (and aligned to corre-
sponding logical address boundaries).

The graphs show that PCPU follows an exponen-
tial curve with respect to the IO size. However, the
CPU power actually tracks the storage API IOps
curve, which is T/IO size. Since IOps actually fol-
lows an exponential curve when plotted against IO
size, a linear correlation exists between PCPU and
IOps (see Figure 13). The two scatter plot outliers
that consume high CPU power at low IOps are the
1 MB sequential and random read operations. The
bandwidth of these workloads ( 160 MB/s) was large
enough and the experiments were long enough for
the OS to start trimming working sets. If the other
request size experiments were run for long enough,
they would also incur some additional power cost
when trimming finally kicks in.

With Encryption: If similar graphs were plot-
ted for the experiments with encryption enabled, the
following would be seen for the Surface RT:

• All component power values generally increase
with IO size.

• PDRAM is higher for reads than writes, stay-
ing fairly constant at 515 mW. For writes, the

9



Platform Caching IO Size RND RD RND WR SEQ RD SEQ WR

8KB 14.2 22.4 11.2 19.0
Hit 32KB 11.4 18.2 8.6 18.2

Windows RT
8KB 96.7 110.4 85.0 117.5

Miss 32KB 36.4 116.8 18.0 118.2

4KB 10.3 252.9 9.1 52.6
8KB 6.0 167.2 5.8 51.0

Hit 16KB 4.0 240.7 4.0 64.4
32KB 3.3 169.7 3.3 88.5

Android
4KB 441.9 2402.7 62.5 451.8
8KB 214.4 2176.7 58.5 403.5

Miss 16KB 187.6 1720.9 51.3 254.9
32KB 141.0 1776.0 51.1 138.8

Table 4: Energy (uJ) per KB for different IO requests. Such tables can be built for a specific platform and
subsequently incorporated into power modeling software usable by developers for optimizing their storage
API calls.

power increases linearly with IO size, varying
from 370 mW for 4 KB IOs to 540 mW for 1 MB
IOs. This variation is mostly because of the ex-
tra memory needed for encryption to complete.

• PEMMC values for reads and writes are similar
to their unencrypted counterparts. Given that
encryption (and decryption) in current mobile
devices is handled using on-SoC hardware, this
is to be expected.

• PCPU is fairly linear with IOPS for reads, but
the power characteristics for writes are more
complex. This may be due to the dynamic en-
cryption algorithms discussed previously, where
request size factors into the decision on whether
to use crypto offload engines or general-purpose
CPU cores to perform the encryption.

Specific measurements can change for newer hard-
ware, however the general trends that we expect to
hold are the following: PDRAM would be signifi-
cantly higher when encryption is enabled vs when
it is disabled. This will be true as long as the
hardware crypto engines do not have enough ded-
icated RAM. PEMMC is expected to be the same
whether encryption is enabled or disabled as long
as the crypto engines are inside the SoC and not
packaged along with the eMMC device. PCPU is ex-
pected to be higher when encryption is enabled as
long as the hardware crypto engines are unable to
meet the throughput requirements of storage for all
possible storage workloads. PCPU is also expected to
be correlated with the application level IOps because

of software setup costs required on a per IO basis.
The power trends for reads vs. writes will continue
as long as eMMC controllers increase read perfor-
mance at a faster pace than write performance.

5.2 The EMOS (Energy MOdeling
for Storage) Simulator

The EMOS simulator takes as input a sequence of
timestamped disk requests and the total size of the
filesystem cache. It emulates the file caching mech-
anism of the operation system to identify hits and
misses. Each IO is broken into small primitive oper-
ations, each of which has been empirically measured
for its energy consumption.

Ideally, component power numbers
(PCPU , PDRAM , and PEMMC) would be gener-
ated for every platform. It is infeasible for a single
company to take on this task, but the possibility
exists for scaling out the data capture to a broader
set of manufacturers. For the purposes of this
paper, the EMOS simulator is tuned and tested on
the Microsoft Surface RT, and Samsung Nexus S
platforms.

For each platform, the average energy needed for
completing a given IO type (read/write, size, cache
hit/miss) is measured. The energy values are ag-
gregated from DRAM, CPU, eMMC, and Core (idle
energy values are subtracted). A table such as Ta-
ble 4 can be populated to summarize the measured
energy consumption required for each type of stor-
age request. We show only a few request sizes in the
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Figure 14: Experimental validation of EMOS on An-
droid shows greater than 80% accuracy for predict-
ing 4KB IO microbenchmark energy consumption.

table for the sake of brevity.

Simulation of cache behavior: Cache hits and
misses have different storage request energy con-
sumption. Since many factors affect the actual cache
hit or miss behavior (e.g., replacement policy, cache
size, prefetching algorithm, etc.), a subset of the pos-
sible cache characteristics was selected for EMOS.
For example, only the LRU (Least Recently Used)
cache replacement policy is simulated, but the cache
size and prefetch policy are configurable.

EMOS was validated using the 4 KB random IO
micro-benchmarks on the Android platform without
any changes to the default cache size, or prefetch
policy. The measured versus calculated energy con-
sumption of the system were compared for workloads
of 100% reads, 100% writes, and a 50%/50% mix.
Figure 14 shows that while the model is accurate for
pure read and write workloads, it is only 80% accu-
rate for a mixed workload. We attribute this to the
IO scheduler and the file cache software behaving
differently when there is a mix of reads and writes,
as well as changes in eMMC controller behavior for
mixed workloads. Future investigations are planned
to fully account for these behaviors.

6 Discussion: Reducing Mo-
bile Storage Energy

We suggest ways to reduce the energy consumption
of the storage stack through hardware and software
modifications.

6.1 Partially-Encrypted File systems

While full-disk encryption thwarts a wide range of
physical security attacks, it may be an overkill for
some scenarios. It puts an unnecessary burden on

accessing data that does not require encryption. For
example, most OS files, application binaries, some
caches, and possibly even media purchased online
may not need to be encrypted. A naive solution
would be to partition the disk into encrypted and
unencrypted file systems / partitions. However, if
free space cannot be dynamically shifted between
the partitions, this solution may result in wasted
disk space. More importantly, some entity has to
make decisions about which files to store in which file
systems, and the user would need to explicitly make
some of these decisions in order to achieve optimal
and appropriate partitioning. For example, a user
may or may not wish his or her personal media files
to be visible if a mobile device is stolen.

Partially-encrypted filesystems that allow some
data to be encrypted while other data is unencrypted
represent a better solution for mobile storage sys-
tems. This removes the concern over lost disk space,
but some or all of the difficulties associated with the
encrypt-or-not decision remain. Nevertheless, opens
the option for individual applications to make some
decisions about the privacy and security of files they
own, perhaps splitting some files in two in order to
encrypt only a portion of the data contained within.
This increases development overhead, but it does
provide applications with a knob to tune their en-
ergy requirements.

GNU Privacy Guard [19] for Linux and Encrypt-
ing File Systems [15] on Windows provide such ser-
vices. However, care must be taken to ensure that
unencrypted copies of private data not be left in the
filesystem at any point unless the user is cognizant
(and accepting) of this vulnerability. Additional se-
curity and privacy systems are needed to fully secure
partially-encrypted file systems. Once the data from
an encrypted file has been decrypted for usage, it
must be actively tracked using taint analysis. Infor-
mation flow control tools [14, 18, 46] are required to
ensure that unencrypted copies of data are not left
behind on persistent storage for attackers to exploit.

6.2 Storage Hardware Virtualization

Low-cost storage targeted to mobile platforms re-
lies on storage software features. Isolation between
applications is provided using managed languages,
per-application users and groups, and virtual ma-
chines on Android and Windows RT for applications
developed in Java and .NET, respectively. Storage
software overhead can be reduced by moving much
of this complexity into the storage hardware [8].

Mobile storage can be built in a manner such that
each application is provided with the illusion of a
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private filesystem. In fact, Windows RT already pro-
vides such isolation using only software [28]. Moving
such isolation mechanisms into hardware can enable
managed languages to directly use native APIs for
applications to obtain native software like energy-
usage with isolation guarantees.

6.3 SoC Offload Engines for Storage

Various components inside mobile platforms have
moved their latency- and energy-intensive tasks to
hardware. Audio, video, radio, and location sensors
have dedicated SoC engines for frequent, narrowly-
focused tasks, such as decompression, echo cancel-
lation, and digital signal processing. This type of
optimization may also be appropriate for storage.
For example, the SoC can fully support encryption
and improve hardware virtualization. Some SoC’s
already support encryption in hardware, but they
do not meet the throughput expectations of applica-
tions. Crypto engines inside SoCs must be designed
to match the throughput of the eMMC device at
various block sizes to reduce the dependence of the
OS on energy-hungry general-purpose CPU for en-
cryption. Dedicated hardware engines for file system
activity could provide metadata or data access func-
tionality while ensuring privacy, and security.

7 Related Work

To our knowledge, a comprehensive study of storage
systems on mobile platforms from the perspective of
energy has not been presented to date. Kim et al [21]
present a comprehensive analysis of the performance
of secondary storage devices, such as SD cards of-
ten used on mobile platforms. Past research stud-
ies have presented energy analysis of other mobile
subsystems, such as networking [4, 17], location
sensing [41], the CPU complex [24], graphics [40],
and other system components [5]. Carroll et al. [7]
present the storage energy consumption of SD cards
using native IO. Shye et al. [38] implement a logger
to help analyze and optimize energy consumption by
collecting traces of software activities.

Energy estimation and optimization tools [12, 47,
16, 25, 31, 30, 34, 33, 45] have been devised to esti-
mate how much energy an application consumes dur-
ing its execution. This paper uses similar techniques
to analyze energy requirements from the perspective
of the storage stack as opposed to a broader OS per-
spective or a narrower application perspective.

Energy consumption of storage software has been
analyzed in the past for distributed systems [23],

servers [32, 37, 39], PCs [29] and embedded sys-
tems [10], as opposed to the mobile platforms an-
alyzed in this paper. Mobile storage systems are
sufficiently different from these systems because of
their security, privacy, and isolation requirements.
This paper examines the energy overhead of these
requirements.

Storage systems using new memory technologies
like phase-change memory (PCM) focus on analyz-
ing and eliminating the overhead from software [8,
11, 22, 44]. However, existing storage work for new
memory technologies focuses only on native IO per-
formance. This paper also includes analysis of man-
aged language environments.

8 Conclusions

Battery life is a key concern for mobile devices such
as phones and tablets. Although significant research
has gone into improving the energy efficiency of these
devices, the impact of storage (and associated APIs)
on battery life has not received much attention. In
part this is due to the low idle power draw of storage
devices such as eMMC storage.

This paper takes a principled look at the energy
consumed by storage hardware and software on mo-
bile devices. Measurements across a set of storage-
intensive microbenchmarks show that storage soft-
ware may consume as much as 200x more energy
than storage hardware on an Android phone and a
Windows RT tablet. The two biggest energy con-
sumers are encryption and managed language en-
vironments. Energy consumed by storage APIs in-
creases by up to 6.0x when encryption is enabled
for security. Managed language storage APIs that
provide privacy, and isolation consume 25% more
energy compared to their native counterparts.

We build an energy model to help developers un-
derstand the energy costs of security and privacy
requirements of mobile apps. The EMOS model can
predict the energy required for a mixed read/write
micro-benchmark with 80% accuracy. The paper
also supplies some observations on how mobile stor-
age energy efficiency can be improved.
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