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ABSTRACT
Current wireless network power management often substan-
tially degrades performance and may even increase over-
all energy usage when used with latency-sensitive applica-
tions. We propose self-tuning power management (STPM)
that adapts its behavior to the access patterns and intent
of applications, the characteristics of the network interface,
and the energy usage of the platform. We have implemented
STPM as a Linux kernel module—our results show substan-
tial benefits for distributed file systems, streaming audio, and
thin-client applications. Compared to default 802.11b power
management, STPM reduces the total energy usage of an
iPAQ running the Coda distributed file system by 21% while
also reducing interactive file system delay by 80%. Further,
STPM adapts to diverse operating conditions: it yields good
results on both laptops and handhelds, supports 802.11b net-
work interfaces with substantially different characteristics,
and performs well across a range of application network ac-
cess patterns.

General Terms
Management, Performance

Categories and Subject Descriptors
D.4.4 [Operating Systems]: Communications Manage-
ment—network communication; D.4.8 [Operating Systems]:
Performance

Keywords
Power management, self-tuning, 802.11

1. INTRODUCTION
Wireless networks provide mobile computers with con-

tinuous Internet connectivity. Yet, power management is
needed to ensure that the network interface does not overly
tax the limited battery capacity of a mobile device. For ex-
ample, our measurements show that using a 802.11b network
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card without power management can shorten the battery
lifetime of a HP iPAQ 3870 handheld by almost 50%.
The popular IEEE 802.11 standard [9] provides a power-

saving mode (PSM) that periodically disables the network
interface. However, PSM does not adapt to the power char-
acteristics of the network interface and mobile computer, the
intent and access patterns of applications, or the needs and
expectations of users. While PSM provides excellent energy
conservation in some circumstances, it can also substantially
degrade interactive application performance and even in-
crease the energy needed to perform certain activities. For
instance, PSM causes an unacceptable 16-32x slowdown in
the time to list directories stored in NFS.
We show that different power management strategies are

needed in different circumstances. Rather than take a “one
size fits all” approach, we propose self-tuning power man-
agement (STPM) that adapts to the characteristics of the
network interface, mobile computer, and applications. We
have implemented STPM as a Linux kernel module that runs
on both handhelds and laptops.
STPM differs substantially from other adaptive strategies

such as the PSPCAM mode of the Cisco Aironet 350 card [3]
and the bounded slowdown protocol of Krashinsky and Bal-
akrishnan [11]. STPM explicitly considers the time and en-
ergy costs of changing power modes. These transition costs
can be quite large for current 802.11b cards—several hun-
dred milliseconds in most cases. STPM also explicitly con-
siders the base power usage of the mobile computer. Most
importantly, STPM provides a simple interface that allows
applications to disclose hints about their intent in using the
network interface. STPM then adapts its power manage-
ment strategy to observed network access patterns.
Our results show that STPM provides significant energy

conservation with little performance impact for applications
such as distributed file systems, streaming audio, and thin-
client remote X displays. For instance, STPM reduces the
total energy usage of an iPAQ running the Coda distributed
file system by 21% compared to PSM, while also reducing
interactive file system delay by 80%. Further, STPM shows
benefits across a diverse set of network interfaces and mobile
devices.
We begin with a discussion of the limitations of current

wireless power management. Section 3 outlines the prin-
ciples we followed in the design of STPM. In Sections 4
and 5, we describe our implementation and compare its per-
formance and energy conservation to that of other static and
adaptive power management strategies. We conclude with
a discussion of related and future work.
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Figure 1: Effect of power management on NFS

2. MOTIVATION
Current 802.11b power management schemes can severely

degrade the performance of latency-sensitive applications.
For example, Figure 1 shows how power management af-
fects the time to list directories of varying sizes stored in
the Network File System (NFS) [17]. These results were
generated by typing ls on a HP iPAQ 3870 handheld with
a Cisco Aironet 350 802.11b card.
The solid line at the bottom labeled “CAM” shows per-

formance in continuously-aware mode (i.e. without power
management). The dashed line at the top labeled “PSM-
static” shows performance with the default 802.11b power
saving mode (PSM). The difference between these two shows
that PSM causes an unacceptable 16–32x slowdown for NFS
directory listings.
This poor performance is caused by the interaction of NFS

remote procedure calls (RPCs) and 802.11b power manage-
ment. When no packets are waiting for a mobile computer
at the wireless access point, 802.11b power management dis-
ables the network interface to extend battery lifetime. The
access point periodically sends a beacon informing the mo-
bile computer if any packets have arrived—the client inter-
face wakes up to listen to the beacon and goes back to sleep
if no data is waiting.
As Figure 2 shows, power management delays each RPC

response at the access point until the next beacon. Since
NFS does not usually issue concurrent RPCs, only one RPC
is issued per beacon period. With a typical 100ms beacon
interval, the expected delay for the first RPC is approxi-
mately 50ms. The delay for subsequent RPCs is almost
100ms because each RPC request is sent soon after the re-
sponse to the previous RPC is received. Since NFS makes
two RPCs, a lookup and a getattr, for each file in the di-
rectory, the cumulative delay is quite large.
Similar observations have led to the development of adap-

tive power management strategies that switch between CAM
and PSM depending upon traffic load [3, 11]. Ideally, an
adaptive strategy can yield good performance by switching
to CAM when data is being transferred and by switching
back to PSM when it is not. Many cards, including the
Cisco Aironet 350 card, support such an adaptive mode.

NFS Server

Access Point

Mobile Client

50ms 100ms 100msBeacons
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Figure 2: RPC delays due to power management

Our observations of the Cisco card reveal that it switches to
CAM when more than one packet is waiting for the mobile
computer at the access point, and that it switches back to
PSM after approximately 800ms without receiving a packet.
The dotted line labeled “PSM-adaptive” in Figure 1 shows

NFS directory listing performance when the Cisco adaptive
mode is employed. For small and medium-sized directo-
ries, performance is degraded up to 26x. Because RPCs are
issued sequentially and each RPC is typically small, NFS
generates insufficient traffic to trigger a switch to CAM. For
large directories, the initial read of directory data trans-
mits enough data to trigger the switch—however, even for
160-entry directories, performance still lags CAM by 72%
because several RPCs are made in PSM.
Even worse, power management may actually increase

the energy used to perform interactive tasks. Compared
to CAM, the iPAQ uses up to 17 times more energy to list
NFS directories with PSM-static and up to 12 times more
energy with PSM-adaptive. Although these modes decrease
the average power used by the network interface, this de-
crease is only a portion of the total system power usage.
Since energy usage is the integral of power over time, the
substantial increase in execution time dominates the small
decrease in power. Power management extends battery life-
time but the user accomplishes less work before the battery
expires.
Of course, this is a worst-case example. The mobile com-

puter will often be idle for a considerable amount of user
think-time; during such idle periods, power management de-
creases energy usage without performance penalty. Yet, by
replaying traces of interactive file system usage, we have
found that the cost of using untuned power management
during interactive episodes often dominates the benefits re-
alized during idle periods. For many latency-sensitive ap-
plications, untuned power management introduces substan-
tial performance and energy penalties. Examples of such
applications include other distributed file systems such as
AFS [8] and Coda [10], applications that use a remote X
server [18] for display, and client-server systems based upon
Java RMI [23] and SOAP [1].
To solve this problem, we have built a self-tuning module

that adapts to application access patterns, network interface
characteristics, and the system on which it is running. The
line labeled “STPM” in Figure 10 shows that our module
decreases the time needed to list a NFS directory by up to
23x compared to PSM-static and by up to 10x compared
to PSM-adaptive. STPM also reduces energy usage by up



to 12x compared to PSM-static and up to 5x compared to
PSM-adaptive.

3. DESIGN PRINCIPLES
Self-tuning power management is based upon the follow-

ing design principles:

• Know application intent

• Be proactive

• Respect the critical path

• Embrace the performance/energy tradeoff

• Adapt to the operating environment

3.1 Know application intent
A little information about application intent goes a long

way. For example, consider why PSM-adaptive works poorly
in the previous example. Most common applications issue
file operations sequentially; thus, NFS often has only a single
RPC in flight. Further, 802.11b power management effec-
tively limits NFS to one RPC per beacon period. Although
the data rate of NFS is low, its data rate would increase sub-
stantially without power management because several RPCs
could complete during each beacon period. However, PSM-
adaptive does not transition to CAM because it does not
detect enough network traffic.
An alternative strategy would be to switch to CAM when-

ever an incoming packet is received. However, this aggres-
sive strategy works poorly in other cases. For example, con-
sider a stock ticker application that receives approximately
10 packets per second. When power management is enabled,
NFS and the stock ticker receive roughly the same amount of
data per second. However, the stock ticker performance will
not improve when power management is disabled because it
is already receiving at its maximum data rate.
Without knowing application intent, it is hard to distin-

guish these two applications. If an algorithm conservatively
refuses to disable power management until a threshold data
rate is achieved, it does not disable power management for
NFS, leading to poor performance. Alternatively, if it lib-
erally disables power management after the receipt of a few
packets, it wastes energy by disabling power management
for the stock ticker application.
Our approach is to allow each application to disclose hints

about its intent in using the wireless network. This allows
STPM to enable power management only when appropriate.
Further, a similar hint-based approach helps STPM decide
if the network interface can be disabled for periods longer
than the beacon period. If each application discloses when
it is transferring data and specifies the maximum delay on
incoming packet arrivals it is willing to tolerate, then STPM
can disable the network interface when it is not being used
and ensure that application delay constraints are satisfied.

3.2 Be proactive
If applications such as NFS disclosed hints when each net-

work transfer began and ended, a possible strategy would be
to enter CAM whenever at least one transfer is in progress
and go back to PSM when no transfers are occurring. This
purely reactive strategy requires that the transition cost of
changing modes be low.
Unfortunately, we have found the transition costs for cur-

rent 802.11b cards to be quite high. Although the device
driver may complete the system call that initiates a mode

transition in only a few tens of milliseconds, packet trans-
mission and reception is delayed for a much longer period of
time following each transition. We measured transition time
for several cards by first initiating a transition to PSM or
CAM and then immediately performing a single-packet ping
of a nearby server. Transition times ranged from 200ms to
600ms—sample results are shown in Figure 6.
A purely reactive strategy increases the time to perform

a short RPC because transition time is greater than the la-
tency reduction achieved by performing the RPC in CAM.
However, a reactive strategy shows benefits for large re-
quests. For instance, a 4MB TCP transfer from an iPAQ
client with an Orinoco Silver 802.11b card to a nearby server
is 16% slower with power management enabled. These re-
sults, which confirm previously reported TCP throughput
results [11], indicate that there is a break-even transfer size—
for transfers larger than this size, the performance benefit of
CAM outweighs the transition cost. The particular break-
even size is dependent upon the data rate supported by the
802.11b card in each mode and the card’s transition costs.
STPM determines the break-even point for each card and
switches to CAM when an application discloses that a forth-
coming transfer will exceed the break-even size.
However, applications such as NFS are dominated by small

transfers. For such applications, a proactive strategy is
needed to amortize transition costs across multiple transfers.
When a proactive strategy determines that a large number
of transfers will soon occur, it switches to CAM, and then
switches back to PSM after the last transfer. In the NFS ex-
ample, the cumulative reduction in latency across all RPCs
far exceeds the transition cost of changing power modes.
Clearly, the difficulty in implementing a proactive strat-

egy is that it requires foreknowledge of the number of trans-
fers that will occur in the near future. Applications like
NFS and the X server do not have this information because
they receive each application request sequentially. One pos-
sible approach would be for applications like ls and make

to provide hints of future network activity. We rejected this
approach because it requires modification of programs that
are not normally network-aware. Further, since such appli-
cations do not usually care which type of file system they
are using and do not know which blocks a file system may
have cached locally, they do not know which requests will
cause network activity.
Our approach is to have network-aware processes like NFS

and the X server simply disclose the start and end of each
transfer. STPM monitors the interarrival time of transfer
hints, as well as the number of transfers that are closely cor-
related in time—we refer to such clusters of transfers as runs.
Using an empirically-collected distribution of run lengths,
STPM calculates the expected number of transfers in the
current run given the number that it has already been seen.
It then performs a cost-benefit analysis to determine if it
should switch to CAM. For example, STPM might decide
to switch to CAM after three short transfers occur close to-
gether, and also to switch back to PSM when 300ms pass
without a further transfer. The details of how this decision
is made are explained in Section 4.3.
It is important to note that STPM supports both reactive

and proactive strategies. For example, consider a hypothet-
ical network interface that has negligible transition costs.
Since the break-even transfer size is effectively zero, STPM
would switch to CAM at the start of each transfer and return
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Figure 3: STPM software architecture

to PSM when the transfer completes. Although STPM’s
proactive mechanisms would be unused, STPM would ben-
efit fully from the low transition costs.

3.3 Respect the critical path
Latency is often critical when data transfers are driven

by an interactive application. The perception threshold
beyond which delays become noticeable to human users is
quite small—typically it is cited as being between 50ms and
200ms [5, 13]. This means that only a few small transfers
in PSM can cause a noticeable delay, and that the cumula-
tive delay for operations such as NFS directory listings may
certainly prove frustrating to the user. Thus, it is critical to
disable power management when the network is being used
by an interactive application.
However, there is also a substantial amount of network

traffic for which latency is not critical. For example, the
Coda distributed file system prefetches file data from servers
to improve performance and guard against disconnection [10].
Coda also writes file modifications back to the server asyn-
chronously [16]. For both prefetching and asynchronous
writes, latency is not a critical constraint since a human
user is not waiting for the transfer to complete. Similarly,
streaming multimedia applications that buffer data on the
client can tolerate delays commensurate with their buffer
sizes.
To differentiate between these two types of network traf-

fic, STPM enables applications to hint whether a transfer
is a foreground transfer, in which latency is a constraint,
or a background transfer that is not time-critical. In the
former case, STPM tries to both reduce transfer time and
conserve energy—in the latter case, STPM considers only
energy conservation.

3.4 Embrace the performance/energy tradeoff
Disabling the 802.11 wireless interface reduces power con-

sumption but increases the latency of packet delivery, cre-
ating an inherent tradeoff between performance and energy
conservation. While this tradeoff seems unavoidable, it is
important to evaluate it in the context of a mobile user’s
activity. If the mobile computer has a fully-charged battery
and the user intends to operate on battery power for only

a short time, then energy conservation is unnecessary, and
the user should choose a power management strategy that
maximizes performance. However, if the mobile computer’s
battery is nearly exhausted, then energy conservation is of
primary importance.
A power management policy that statically balances these

two competing goals cannot be correct in both contexts.
Instead, a tunable strategy is needed. STPM provides a
“knob” that can be adjusted to reflect different relative pri-
orities for energy conservation and performance. Users can
set the knob to maximum performance when they intend to
operate on battery power for only a few minutes—STPM re-
sponds by keeping the wireless interface continuously active
to minimize latency. We also envision that STPM’s knob
might be set by higher-level energy-aware OS components
such as Ecosystem [25] or Odyssey [6].

3.5 Adapt to the operating environment
To set the correct power management policy, STPM must

understand not only the energy characteristics of the net-
work interface, but also those of the computer using the
interface. The goal of power management is to extend a
mobile computer’s battery lifetime—this means that the en-
ergy usage of the entire computer must be minimized, not
simply that of the network interface.
To illustrate the difference, consider a hypothetical power

management mode that reduces network power usage by
50% from 2Watts to 1Watt, but delays interactive activi-
ties by 10%. If this mode were employed by a handheld with
a base power usage of 2Watts, the total power of the mo-
bile computer and interface would be reduced by 25% from
4Watts to 3Watts. Since interactive activities now take 10%
longer to complete, the total energy used for each activity
would be reduced by a still respectable 17.5%. However,
if this mode were employed by a laptop with a base power
usage of 15Watts, total power would only be reduced by
5.9%. Further, the total energy used to perform interactive
activities would actually increase by 3.5%.
This example illustrates two points. First, when used

incorrectly, network power management can decrease the
amount of useful work that a user can accomplish on battery



TransferHintBegin (IN fg flag, IN xmit size,
IN recv size, OUT hint id);

ListenHintBegin (IN max delay, OUT hint id);
HintEnd (IN hint id);
SetKnob (IN knob value);
SetBasePower (IN base power)

Figure 4: Wireless power management API

power. Second, the correct power management strategy for
one device may be inappropriate for other devices. STPM
avoids these pitfalls by explicitly considering the base power
usage of the mobile computer.

4. IMPLEMENTATION
As shown in Figure 3, we have implemented self-tuning

wireless network power management as a Linux loadable
kernel module. Applications link with a user-level library
and disclose hints to the STPM module about their intent
and activities. The library implements the STPM API de-
scribed in Section 4.1 by first opening a Linux pseudo-device
and then making ioctls on the device whenever an appli-
cation calls a STPM function. This implementation enables
the STPM module to detect when applications terminate
and cancel any outstanding hints that the application made
before exiting. Further, the kernel implementation improves
performance by minimizing user-kernel boundary crossings.
The STPM module has two further inputs. First, the base

power and current tradeoff between energy conservation and
performance may be set by an energy-aware operating sys-
tem [6, 25] or by a user-level configuration tool. Second,
for each wireless network card, the STPM module loads a
device-specific characterization of power usage and transi-
tion costs. Section 4.2 describes how we derive these char-
acterizations by executing a benchmark suite. The charac-
terization is instantiated as a code component that is loaded
by the STPM module in much the same way that the oper-
ating system loads the device driver for the wireless network
card. Currently, the creation of each card-specific compo-
nent is a manual task, but we plan to have our benchmark
suite automatically create such components in the future.
Section 4.3 details the STPM algorithm that decides when

to transition the power mode of the wireless network card.
This algorithm is the simplest we could envision that meets
the design principles of Section 3.

4.1 API
Figure 4 shows the STPM API. Applications use the first

three functions to disclose hints about wireless network us-
age. Before each data transfer, an application calls Transfer-
HintBegin and specifies whether the forthcoming transfer
represents background or foreground activity. The applica-
tion may optionally specify the expected amount of data to
be sent and received. If the application leaves these val-
ues unspecified, the forthcoming transfer is assumed to be
small. TransferHintBegin returns a unique identifier that
the application later passes to HintEnd to specify that the
transfer has completed. When an application terminates,
the STPM module ends any outstanding hints for which the
application has not called HintEnd.
Processes that are listening for incoming packets may call

ListenHintBegin to specify the maximum delay due to power

Card Cisco Orinoco
Mode Aironet 350 Silver
Pdisabled 0.24W N/A
PPSM idle 0.39W 0.19W
PPSM recv 1.42W 2.22W
PPSM send 2.48W 2.70W
PCAM idle 1.41W 1.21W
PCAM recv 2.61W 2.25W
PCAM send 3.69W 2.67W

This figure shows the power usage of two 802.11 cards in
several power modes. From top to bottom, the modes are:
card disabled; card in PSM when idle, receiving, and sending
data; and card in CAM when idle, receiving, and sending data.
The standard deviation of all measurements is within 0.05W.

Figure 5: Power usage of two 802.11 cards

management that they are willing to tolerate for incoming
packets. This function also returns a unique hint identifier
that may be passed to HintEnd to terminate the listen hint.
The SetKnob function adjusts the relative importance of

performance and energy conservation. The value of the
knob ranges from 0 to 100, where 0 represents maximum
energy conservation and 100 represents maximum perfor-
mance. The SetBasePower function specifies the base power
usage of the mobile computer.

4.2 Characterizing network power costs
Wireless network interfaces differ substantially in the types

of power saving modes that are supported and in the power
that is used in each mode. Several 802.11b cards have cus-
tom adaptive algorithms implemented in firmware—examples
include the Cisco Aironet 350 and Intel PRO/Wireless 2011B
cards. In addition, we have found that the power usage of
different cards can vary by a factor of two and that the tran-
sition cost of switching power modes differs by as much as
150ms.
Our approach to handling this variability is to create a

benchmark suite that can characterize the power usage of
each new network interface card that we encounter. While
running the benchmark suite, we use a digital multimeter
to sample the current drawn by a mobile computer. We re-
move the batteries from the computer and sample current
on the input power line. Since voltage is almost constant
when power is drawn from the external power supply, cur-
rent measurements alone are sufficient to determine power
usage. Current samples are collected approximately 50 times
per second. Many of our benchmarks require communication
with a remote computer. For this purpose, we run a server
program on a nearby computer that is LAN-connected with
the wireless access point. The server program sends and
receives bytes when requested.
The benchmark suite first measures the base power of the

mobile computer—this is the power used when the machine
is idle and the network card is not inserted. For each bench-
mark activity, we subtract the base power from the measured
power usage to derive the additional power consumed by the
activity.
Next, the benchmark suite measures the power used by

the card in each mode. Every card that we have encoun-
tered supports at least CAM and PSM. Some support fur-
ther adaptive modes that switch between CAM and PSM



Cisco Aironet 350 Orinoco Silver
Time Energy Time Energy

PSM to CAM 0.40 s 0.51 J 0.23 s 0.24 J
CAM to PSM 0.41 s 0.53 J 0.26 s 0.31 J
Disable 0.00 s 0.00 J N/A N/A
Enable 0.39 s 0.51 J N/A N/A

This figure shows the time and energy to transition between
CAM and PSM for each card. For the Cisco card, the time
and energy to disable and re-enable the card are also shown.
The standard deviation of all measurements is within 5%.

Figure 6: Cost of mode transitions

depending upon recent incoming traffic load. It may also
be possible to disable the interface without turning the card
completely off. For example, when the Cisco Aironet 350 in-
terface is disabled, card power usage is reduced by 150mW.
This saves less power than turning the card off completely
but requires less time and energy for transitions.
The benchmark suite characterizes the cost of transitions

between each supported power mode. It first initiates a
mode transition and then exchanges a one byte ping with
the server. The reported transition time is measured from
the start of the mode change operation to the receipt of
the ping response. The energy cost of the transition is the
energy consumed by the network card during this interval
(the cost of sending and receiving a byte is not significant
within the granularity of our measurements).
The benchmark suite completes the characterization by

measuring the power used to send and receive data in each
power mode. It first sends 4MB of data to the server us-
ing TCP and measures the average power usage. It then
measures the average power used when the server retrans-
mits the buffer to the client. Additionally, it measures the
time to perform each transfer, which gives us an estimate
of the maximum data rate that can be achieved in each
power mode. Figures 5 and 6 show the results of running
our benchmark suite for the Cisco Aironet 350 and Orinoco
Silver PCMCIA cards.
Card characterization allows STPM to tune its behavior

to the specific type of network card being employed. This
modular approach means that we do not need to modify the
STPM algorithm for each new type of wireless card. The
benchmark suite takes approximately two hours to execute—
however, characterization need only be done once for each
model of wireless card. Ideally, a card manufacturer could
run the benchmark suite and provide the characterization
as part of the device driver.

4.3 Setting the power management policy
In this section, we describe the STPM algorithm. For

the purpose of discussion, we first assume that the network
card supports only two power modes: CAM and PSM. For
such cards, STPM must decide when to transition to CAM
and when to transition back to PSM. The next two sections
describe how STPM makes these decisions. Section 4.3.3
then discusses how we generalize STPM to support cards
with more power modes.

4.3.1 Transition to CAM
STPM transitions from PSM to CAM when:

• any application specifies a delay tolerance less than the
maximum latency of PSM.

• any application discloses that the forthcoming trans-
fer will be large enough such that the expected cost of
performing the transfer in PSM is larger than the ex-
pected cost of switching to CAM and then performing
the transfer.

• any application discloses a forthcoming transfer and,
based on recent access patterns, STPM expects that
there will be enough subsequent short transfers that
the cumulative benefit of switching to CAM for the
forthcoming transfers will be greater than the transi-
tion cost.

The first case is straightforward. The maximum delay of
PSM is equal to the beacon interval, typically 100ms. If a
listen hint is specified that is less than the beacon interval,
STPM switches from PSM to CAM.
Whenever a new transfer hint is disclosed, STPM checks

for the second case. STPM performs a cost/benefit analysis
by estimating the time and energy to perform the forthcom-
ing transfer in both PSM and CAM. Through the transfer
hint, the application has disclosed the expected number of
bytes to send, Bs, and receive, Br. The expected time, T ,
to perform the transfer is:

T = L+Bs/DRs +Br/DRr (1)

where the expected data rate for sending, DRs, and receiv-
ing, DRr, data in each mode is given by the card-specific
characterization—this assumes that the wireless link is the
bandwidth bottleneck in the transfer. The expected latency,
L, is measured directly for CAM by observing the shortest
time to complete a transfer over the recent past. For PSM,
the expected latency is the CAM latency plus half the bea-
con interval.
The expected energy, E, to perform the transfer is calcu-

lated using the specified base power of the mobile computer,
Pb, and the measured power usage of the card when idle, Pi,
sending data, Ps, and receiving data, Pr. For each mode:

E = L× (Pi + Pb) +Bs/DRs × (Ps + Pb)

+Br/DRr × (Pr + Pb)
(2)

Since Equation 2 includes base power, it estimates the total
energy used by the entire mobile computer, not just the
network interface.
STPM calculates the total cost of switching to CAM by

adding the estimated time and energy to perform the trans-
fer in CAM to the transition costs given by the card-specific
characterization. It compares the results to the estimated
time and energy to perform the transfer in PSM. STPM
transitions the card when it predicts that doing so will both
save energy and improve performance. However, sometimes
STPM estimates that a transition will improve either perfor-
mance or energy conservation while hurting the other goal.
In such cases, it uses the value of the knob that specifies
the relative tradeoff between performance and energy con-
servation to decide whether to transition the card. Given
n strategies, each of which has estimated time and energy
costs, Tn and En, STPM first calculates the mean time, T ,
and energy, E, used by all strategies being compared. It



then calculates a relative cost for each strategy, Cn as:

Cn = (Tn/T )× knob+ (En/E)× (100− knob) (3)

For foreground hints, knob is the specified relative tradeoff
between performance and energy conservation, ranging in
value between 0 and 100. The intuition is that the time and
energy values are first normalized by dividing them by the
mean of the time or energy values being compared, then the
knob is used to assign a relative weight for determining the
final cost of the mode. For background hints, the knob is set
to 0—since the transfer is latency-insensitive, only energy
usage is considered.
In the third case, the time and energy of a single transfer

is insufficient to justify switching to CAM. However, several
subsequent transfers are expected and the time and energy
saved over all transfers is expected to exceed the transi-
tion cost. To make this determination, STPM estimates the
likelihood that subsequent transfers will occur in the near
future.
STPM generates an empirical probability distribution of

transfer hint frequency by observing the arrival of trans-
fer hints. It maintains a histogram of the number of fore-
ground transfer hints that occur closely correlated together
in time. We refer to each such group of correlated hints as a
run. A run begins when the first transfer hint is issued and
ends when 150ms pass with no foreground transfer being
in progress. We chose 150ms to differentiate the commu-
nication patterns of programs such as Web browsers that
are driven by a human user from those of programs such as
NFS that issue multiple sequential requests without human
intervention. Our goal is to have each run correspond to a
single interactive activity such as a NFS directory listing.
The run length is the number of foreground transfers is-

sued during a run. STPM maintains a 1024 bucket his-
togram of observed run lengths—if a run exceeds 1024 trans-
fers, STPM records it as having length 1024. The histogram
data is periodically read from a /proc file system interface
and saved to disk by a user-level daemon. When the module
is first loaded, the daemon provides the initial histogram val-
ues from the saved data. In this fashion, STPM maintains
data across reboots.
Currently, histogram entries are persistent, but we plan

to investigate how histogram values can be aged to allow
the module to adapt quicker to changes in network access
patterns. We also plan to investigate the benefits of main-
taining per-application histograms. The current approach of
maintaining a single histogram for the client allows STPM
to aggregate the access patterns of concurrently executing
applications; yet, we feel that per-application histograms
might allow STPM to adapt better to changing workloads.
We use the histogram to calculate the expected cost of

switching to CAM prior to the nth transfer in each run.
The expected time, Tn, to execute a run if a switch to CAM
is done before the nth transfer is:

Tn =

n−1∑

i=1

LPSM × P (r ≥ i)

+

1024∑

i=n

LCAM × P (r ≥ i)

+ TTC × P (r ≥ n)

(4)

P (r ≥ x) is the probability that a run will equal or exceed

length x—STPM derives this value from the run length his-
togram. TTC is the time to switch to CAM. The intuition
behind this equation is that STPM adds the total expected
latency for transfers performed in PSM, the expected la-
tency for transfers in CAM, and the expected transition time
to derive the total expected time to execute the run of trans-
fers. Similarly, STPM calculates the expected energy usage,
En, as:

En =

n−1∑

i=1

LPSM × (PPSM idle + Pb)× P (r ≥ i)

+
1024∑

i=n

LCAM × (PCAM idle + Pb)× P (r ≥ i)

+ (ETC + (TTC × Pb))× P (r ≥ n)

(5)

Using Equations 4 and 5, STPM calculates the expected
time and energy if it switches to CAM after an application is-
sues the nth foreground transfer hint in a run. Additionally,
STPM calculates the expected time and energy if it never
switches to CAM. It uses Equation 3 to compare the differ-
ent policies and chooses the one that has the minimum cost.
Since this calculation is relatively time-consuming (2ms)
and the input data is slow to change, STPM performs this
calculation every 10 minutes.

4.3.2 Transfer to PSM
STPM transitions from CAM to PSM when no transfers

are in progress, no application has specified a delay toler-
ance less than the maximum latency of PSM, and it esti-
mates that the network interface will be idle long enough to
overcome the transition costs of switching modes. To aid in
this decision, STPM maintains a 1024 bucket histogram of
the length of the interval between each run. Each bucket
corresponds to a 100ms period; extremely long intervals are
recorded as having the maximum value of 102.4 seconds.
The interval histogram is maintained in an identical fash-
ion to the run length histogram described in the previous
section.
STPM transitions to PSM when it believes that the ex-

pected benefit of reduced power usage during the forthcom-
ing idle period most exceeds the performance and energy
cost of beginning the next run in PSM instead of CAM.
The expected time and energy to perform the next run

starting in PSM, Tinit PSM and Einit PSM , have already
been calculated—these values are the expected time and
energy of the policy chosen in Section 4.3.1. The expected
time and energy to perform the next run starting in CAM,
Tinit CAM and Einit CAM , are:

Tinit CAM =

1024∑

i=1

LCAM × P (r ≥ i) (6)

Einit CAM =
1024∑

i=1

LCAM × (PCAM idle +Pb)×P (r ≥ i) (7)

These equations assume small data transfers. Therefore,
transfer time is dominated by latency, LCAM , and card
power usage is assumed to be close to its measured idle us-
age, PCAM idle. STPM next calculates the expected time
and energy costs of switching to PSM n/10 seconds after
the end of the previous run—these values correspond to the



100ms histogram buckets. The expected time is:

Tn =
1024∑

i=1

0.1× P (l ≥ i)

+ Tinit PSM × P (l ≥ n) + Tinit CAM × P (l < n)

(8)

STPM calculates P (l ≥ n), the probability that the interval
length will be greater than n/10 seconds, using the interval
histogram. The first line of the previous equation is the
expected length of the current interval, and the second line
is the expected time to perform the succeeding run. The
energy cost of switching to PSM n/10 seconds after the end
of the previous run is calculated similarly:

En =

n−1∑

i=1

0.1× (PCAM idle + Pb)× P (l ≥ i)

+
1024∑

i=n

0.1× (PPSM idle + Pb)× P (l ≥ i)

+ Einit PSM × P (l ≥ n) + Einit CAM × P (l < n)

(9)

STPM calculates the expected time and energy costs of
switching to PSM at each 100ms interval, as well as the
expected cost of remaining in CAM. It then chooses the
policy that minimizes Equation 3. This calculation is also
performed once every ten minutes, at the same time that
STPM decides when to switch to CAM.

4.3.3 Generalizing the model
The previous two sections have shown how STPM creates

a transition policy for a card that supports only PSM and
CAM. For cards that support more than two modes, there
are many more possible policies from which STPM could
choose. For instance, after a period of time with no trans-
fers, STPM could transition the Cisco card from CAM to
PSM, it could disable the card, or it could decide to switch
to PSM and later disable the card if no further transfers
occur for another period of time.
Since the number of possible strategies grows exponen-

tially with the number of modes, we employ a heuristic to
limit the search space. STPM first calculates the lowest
cost policy that transitions to each mode. It then calculates
the lowest cost hybrid policies that switch to one mode at
the time calculated for the single-switch policy, then make a
further transition at some later time. For example, STPM
might decide that the lowest cost single-transition policy is
to switch to PSM after 300ms. It would then consider hy-
brid policies that switch to PSM after 300ms and disable
the card after some further period of time. Since most cards
support only a few power modes, this strategy is computa-
tionally feasible.

5. EVALUATION
How much does self-tuning power management improve

application performance and extend mobile computer battery
lifetime?
To answer this question, we modified several network-

intensive applications to disclose hints and measured appli-
cation performance and energy usage when our self-tuning
power management algorithm was used. We compared these
results to those achieved using the static and adaptive power
management algorithms natively supported by the 802.11b
cards in Figure 5.

5.1 Methodology
The primary client platform for our evaluation is a HP

iPAQ 3870 running the Linux 2.4.18-rmk3 kernel. This
handheld computer has a 206MHz StrongArm processor,
64MB of DRAM, and 32MB of flash memory. The mea-
sured base power of the iPAQ (when idle with no network
card inserted) is 1.44Watts. Unless otherwise noted, the
client uses the Cisco 802.11b card described in Figure 5 to
communicate with a Cisco Aironet 350 wireless access point
with 100ms beacon interval. The server in our experiments
is a Dell Precision 350 with 3.06GHz processor and 1GB
DRAM running the Linux 2.4.18-19.8.0 kernel—the server
and access point are connected with a 100Mb/s switch.
The Cisco PCMCIA card supports three power modes:

CAM, where no power management is used; PSM-static,
where the card’s receiver is periodically disabled to save
power; and PSM-adaptive, which switches between PSM-
static and CAM depending upon the incoming traffic load.
Since PSM-adaptive is implemented in the card firmware, it
can change power modes faster than our STPM module—
our measurements indicate that PSM-adaptive almost al-
ways transitions in less than 100ms. In contrast, because
STPM is implemented as a kernel module, its transition
costs are approximately 400ms.
We investigated the benefits of self-tuning power manage-

ment for four network-intensive application scenarios: file
access using the Coda distributed file system, file access us-
ing NFS, playing streaming audio using Xmms, and hosting
thin-client remote X applications. We first ran each scenario
using the power management methods natively supported
by the 802.11b card. We then executed each scenario using
STPM.
Unless otherwise noted, the tuning knob for STPM was

set at 50 to equally weight performance and energy conser-
vation. We also warmed the STPM prediction algorithm
by specifying an initial probability distribution for network
accesses. The alternative approach, starting with no access
history, leads to a short period of initial volatility that makes
experiments less repeatable. Further, the warming approach
better reflects STPM steady-state performance.
To generate the initial access distribution, we replayed

a trace of distributed file system accesses using Mummert’s
DFSTrace tool [16]. This tool re-executes previously recorded
file system operations such as open and mkdir, preserving
the interarrival time of each system call. We replayed a
30 minute segment of Mummert’s purcell trace—this trace
captures interactive software development activity such as
file editing and compilation. We placed the files accessed by
the trace in the Coda distributed file system [10]. During
trace replay, the STPM kernel module observed Coda’s net-
work activity as it communicated with a file server to read
and write data. We saved the access distribution observed
by our module and used it to warm the STPMmodule before
the execution of each scenario.
For each experiment, we measured application performance

using the gettimeofday system call. To obtain energy mea-
surements, we removed the iPAQ’s batteries and powered
the handheld through its external power supply. We sam-
pled the current drawn by the iPAQ approximately 50 times
per second using an Agilent 34401A digital multimeter. We
calculated system power usage by multiplying each current
sample by the mean voltage drawn by the iPAQ—separate
voltage samples are not necessary since the variation in volt-
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These graphs show how the choice of power management
policy affects the time and energy needed to execute a trace
of Coda operations. The dashed line in the rightmost graph
shows the amount of think time in the trace. Each bar shows
the mean of three trials—the error bars show the value of the
minimum and maximum trial.

Figure 7: Benefit of STPM for Coda

age drawn through the external power supply is very small.
The total energy consumed by the system over a specific
period of time is the sum of the power samples during that
period multiplied by the measurement interval.

5.2 Coda distributed £le system
We first examined the effectiveness of STPM for Coda file

system [10] activity. Coda presents a single file system image
across multiple computers by reading file data accessed by
a client from remote file servers and writing modifications
made on the client back to the servers. Coda caches file
data on the client to improve performance and guard against
disconnection—on the iPAQ, we used a 16MB DRAM-based
Coda cache. Since Coda uses RPCs for communication, we
modified the Coda client to call TransferHintBegin before
issuing each RPC and HintEnd after the RPC completes.
The vast majority of Coda RPCs are synchronous—for these
RPCs, we issue foreground hints. Although we issue back-
ground hints when Coda performs asynchronous writes and
prefetches, these activities occur infrequently in our exper-
iments. When Coda starts, it specifies a listen hint that
is a fraction of the RPC timeout value—this ensures that
server-initiated RPCs arrive at the client promptly. These
modifications added 235 lines of source code.
To generate a realistic access pattern, we again used Mum-

mert’s purcell trace. From the trace, we selected a different
trace segment than the one that we used to warm the STPM
access history. The selected trace segment has 10,000 file
operations and includes, in total, 42.8 minutes of delay be-
tween file operations. These delays typically represent user
think time, but can also reflect application processing such
as the time for gcc to compile a program. DFSTrace sleeps
for the recorded interarrival time before issuing the next file
request, so an infinitely fast system would complete trace
replay in 42.8 minutes.

5.2.1 Handheld results
We first replayed the trace using the iPAQ handheld with

the Cisco PCMCIA card—Figure 7 shows the results. Since
CAM uses no power management, it yields the best possible
performance. However, its energy cost is significantly higher
than the other strategies. PSM-static (i.e. default 802.11
power management) reduces energy usage but has very poor
performance, delaying trace execution by an additional 15
minutes. The dashed line in the rightmost graph shows the
total amount of think time in the trace—thus, the cumula-
tive delay added due to file system activity and power man-
agement is shown by the portion of each bar that exceeds
the dashed line. This delay is especially bad for interactive
applications because it represents time that the user must
waste waiting for the application making the file accesses
to respond. The Cisco card’s PSM-adaptive strategy does
substantially better by dynamically switching between PSM
and CAM depending upon traffic load. Compared to CAM,
PSM-adaptive adds only 6 minutes of cumulative delay and
reduces energy usage 14%.
We next replayed the trace on the same hardware using

STPM. To provide a fair comparison with card-based power
management, we first limited STPM to use only CAM and
PSM, i.e. only those modes available to the PSM-adaptive
strategy. STPM initially chose to switch to CAM before the
3rd transfer hint in each run and to switch to PSM after
300ms with no foreground activity. During trace replay,
STPM usually became slightly more aggressive and switched
to PSM after only 200ms.
Compared to PSM-static, STPM reduces cumulative de-

lay by 80% and energy usage by 21%. In Figure 7, cu-
mulative delay is compared by examining the height above
the dashed line for each bar. Compared to PSM-adaptive,
STPM reduces cumulative delay by 58% and energy by 14%.
Compared to CAM, STPM adds slightly more than a minute
of cumulative delay, but reduces energy consumption by
32%. This means that STPM allows the user to accomplish
48% more work before the battery expires.
How much more energy reduction is feasible? The min-

imum trace execution time, 44:45 minutes, is given by the
time to execute the trace with the card in CAM. The min-
imum power usage, 1.83Watts, occurs when the card is
in PSM and no data is sent or received. The product of
these two values, 4914 Joules, is a lower bound on the mini-
mum energy usage achievable by an adaptive strategy that
switches between CAM and PSM. This loose lower bound
shows that an optimal strategy could at best be 10% more
energy-efficient than STPM. Further, this lower bound is un-
achievable since it omits the cost of sending data, receiving
data, and state transitions—thus, STPM is probably much
closer to optimal.
When we allow STPM to disable the Cisco card, it re-

duces energy usage by an additional 8% as shown by the bars
labelled “STPM+” in Figure 7. The mean cumulative de-
lay increases slightly but the difference between STPM and
STPM+ is within experimental error. This demonstrates
an important advantage of STPM: we did not design an en-
tirely new algorithm to take advantage of the new power
management mode. We simply made the benchmark data
for disabling the card available to the STPM module and
provided a function that performed the relevant state tran-
sitions. STPM automatically determined the instances in
which the new power mode could be profitably employed.
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These graphs show the time and energy costs of executing the
Coda trace on an IBM T20 ThinkPad laptop. These results
can be compared to those in figure 7 that were collected using
an iPAQ client. Each bar shows the mean of three trials—the
error bars show the value of the minimum and maximum trial.

Figure 8: Coda results on IBM T20 laptop

One downside of STPM+ is that disabling the network
interface prevents the client from accepting remote connec-
tions for ssh, telnet, or similar applications. In contrast,
STPM only slightly delays such connections. To support
remote connections, STPM+ could periodically poll for in-
coming connections at an interval specified by a global listen
hint. Alternatively, the client could use an external signal-
ing mechanism such as wake-on-wireless [20] to detect new
connections and use STPM+ to manage the interface state
after connection establishment.

5.2.2 The importance of base power
To demonstrate how well STPM adapts to different hard-

ware platforms, we also replayed the Coda trace on an IBM
T20 ThinkPad laptop computer. The base power of the lap-
top, 15.8Watts, is an order of magnitude greater than that
of the iPAQ.
Figure 8 shows a disturbing result: both PSM-static and

PSM-adaptive increase the total energy used to replay the
trace! This occurs because the wireless network represents
only a small portion of the total power used by the lap-
top. While switching to PSM reduces the power used by the
PCMCIA card by 72%, it only reduces total system power
by 6%. Further, PSM-static and PSM-adaptive both in-
crease the time needed to complete the trace because they
delay file operations. Although this increase is only about
6 minutes for PSM-adaptive, laptop power usage exceeds
15Watts during such delays. Thus, as base power increases,
the benefit of PSM is less during periods without network
activity, and the cost of PSM is higher during periods with
frequent network activity. This implies that power manage-
ment should be more conservative as base power increases.
The energy usage and performance of STPM on the lap-

top is shown by the fourth bar in each graph in Figure 8.
Because STPM accounts for base power, it is considerably
more conservative when running on the laptop. On aver-
age, it only enters PSM after 15 seconds of inactivity. This
strategy works: STPM decreases total system energy usage
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This figure shows how performance and energy usage vary for
the Coda scenario depending upon the value of the STPM
knob parameter. Each circle represents results using STPM
for a different knob value—knob values of 0 through 70 yield
equivalent results. The boxes show the performance and en-
ergy usage achieved when the native modes of the Cisco card
are used.

Figure 9: The performance/energy tradeoff

by 2.6% while increasing the total time to execute the trace
by only 1.5%. When STPM is allowed to disable the card,
results do not change much. The module rarely disables the
wireless card because the benefit is so slight—disabling the
card reduces system power usage by less than 1% compared
to PSM.

5.2.3 Exploiting the performance/energy tradeoff
Using the iPAQ and Cisco card, we explored the impact of

changing the performance/energy knob for STPM. Figure 9
plots the tradeoff between energy usage and the execution
time for the purcell trace. The square marks show the
three native modes supported by the Cisco card, while the
circles show STPM with five different knob settings. When
the knob for STPM is set to 100, the performance is equiva-
lent to CAM (PSM is employed once at the beginning of the
trace, accounting for a slightly lower energy usage). The
remaining four marks show that as the knob value is de-
creased, energy conservation improves but performance is
decreased. Knob values below 70 yield an equivalent strat-
egy to that realized with a knob value of 0, and hence have
the same performance and energy usage.
These results have a powerful property: decreasing the

knob value never yields increased energy usage, and increas-
ing the knob value never yields reduced performance. It is
clear that the effect of changing the knob value is non-linear.
For instance, changing the knob from 100 to 95 substantially
reduces energy usage, but changing the knob value from 70
to 0 has no effect. Partly, this occurs because STPM will
not choose an inferior strategy if another is available that
is expected to yield better performance and energy conser-
vation. For instance, one might expect that STPM would
behave identically to PSM-static with a knob value of 0.
However, the strategy chosen by STPM yields better per-
formance and greater energy conservation than PSM-static.
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These graphs show how the choice of power management
policy affects the time and energy needed to execute NFS
operations. Each bar shows the mean of three trials—the
error bars show the value of the minimum and maximum trial.

Figure 10: Benefit of STPM for NFS

5.3 Network File System
Next, we examined the benefit of STPM for the Net-

work File System (NFS) version 2 [17]. As with Coda, NFS
communication is RPC-based—we modified NFS to issue a
transfer hint before each RPC begins and end the hint when
the RPC completes. Unlike Coda, NFS revalidates cached
files before using them—thus, each file access generates at
least one RPC. NFS v2 does not delay writing modifications
back to the server, nor does it prefetch whole file data. Since
there are few sources of background traffic, all hints issued
are foreground ones. These modifications added 92 lines of
source code.

5.3.1 Cisco results
Figure 10 shows results from replaying the purcell trace

on the iPAQ using NFS as the underlying distributed file
system. For these experiments, we again used the Cisco
PCMCIA card. The results for CAM and PSM-static are
similar to those for Coda. However, PSM-adaptive does
slightly better because NFS issues several concurrent RPCs
for large reads and writes. This concurrency generates suf-
ficient network activity for PSM-adaptive to switch imme-
diately to CAM.
During trace execution, STPM becomes more aggressive

in switching to CAM. With Coda, STPM switches to CAM
before the 3rd RPC; with NFS, STPM switches to CAM
before the 1st or 2nd RPC by the end of the trace. During
replay, STPM learns that NFS is likely to issue many RPCs
closely correlated in time due to its revalidation strategy and
a general tendency to issue more RPCs per file operation.
STPM gradually adjusts its power management strategy as
it observes the NFS request distribution.
Using just CAM and PSM, STPM outperformed PSM-

adaptive for NFS, eliminating over 3 minutes of interactive
delay and reducing system energy usage by 6%. Using a
calculation similar to that in Section 5.2.1, we can derive
a loose lower bound of 4313 Joules for energy usage during
NFS trace execution—this shows that STPM energy usage
is within 11% of optimal.
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These graphs show the time and energy needed to execute
NFS operations using a Orinoco Silver 802.11b card. These
results can be compared to those in figure 10 for the Cisco
Aironet 350 card. It is not possible to disable the Orinoco
card, nor does it support an adaptive PSM. Each bar shows
the mean of three trials—the error bars show the value of the
minimum and maximum trial.

Figure 11: NFS results for Orinoco card

When STPM was allowed to disable the Cisco card, it
reduced energy usage by an additional 8% with no notice-
able change in performance. Compared to CAM, STPM+
reduced iPAQ energy usage by 38%, which would allow 61%
more work on battery power.

5.3.2 Adapting to interface characteristics
We also wished to verify that STPM adapts to 802.11b

cards with significantly different attributes. For this pur-
pose, we selected the Orinoco Silver 802.11b card detailed
in Figure 5. Whereas the maximum data rate for the Cisco
card is 11Mb/s, the Orinoco card is limited to 2Mb/s. Fur-
ther, the transition costs for the Orinoco card are lower than
those for the Cisco card. The Orinoco card cannot be eas-
ily disabled to save power, nor does it support an adaptive
power management strategy.
Figure 11 shows the results from replaying the purcell

trace for NFS running on an iPAQ with the Orinoco card.
STPM is more aggressive for the Orinoco card—it switches
to PSM after only 200ms compared to a waiting period of
300ms for the Cisco card. Since the transition costs for the
Orinoco card are lower, STPM employs power saving modes
more often. STPM significantly outperforms PSM-static,
reducing energy usage by 15% and execution time by 23%.

5.4 Xmms streaming audio
We next modified XMMS-embedded to disclose hints when

it streams live audio from an Internet server and plays it
on an iPAQ. We chose this application because its commu-
nication pattern differs significantly from the file systems
that we had explored previously. Since the data rate is low
(128Kb/s using the streaming MP3 format), the amount
of client buffering is the primary factor that determines
whether power management can be used. XMMS-embedded
buffers several seconds of audio on the client; thus, it can
tolerate the small delays in packet arrival caused by PSM.
We modified XMMS-embedded to specify a maximum delay
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These graphs show how the choice of power management
policy affects the power used to play streaming audio on an
iPAQ using XMMS. Each bar shows the mean of three trials—
the error bars show the value of the minimum and maximum
trial.

Figure 12: Benefit of STPM for Xmms

tolerance of 200ms using BeginListenHint. Our modifica-
tions added 7 lines of source code.
As shown in Figure 12, STPM reduces power usage by

25% compared to CAM. PSM-static is the optimal strategy
for this application. However, STPM uses only 2% more en-
ergy than PSM-static—this difference reflects the overhead
of our module. In contrast, PSM-adaptive always remains
in CAM while audio is played. Since PSM-adaptive has no
knowledge of application intent, it must assume that latency
is critical for audio streaming traffic. In our experiments,
no audio packets were dropped because application buffer-
ing was sufficient to overcome any jitter caused by power
management.

5.5 Thin-client using remote X
Finally, we examined thin-client display of remote X ap-

plications on the iPAQ. Remote display allows users to run
applications that are too computationally expensive for a
handheld, or which have not been ported to the StrongArm.
We modified Xfree86 4.3 to give application hints when read-
ing incoming messages and transmitting responses to remote
clients. To ensure acceptable interactive response time for
long-running remote applications, the X server specifies a
maximum delay on incoming traffic of 100ms whenever a
remote session exists. Our modifications added 51 lines of
code.
In our experiments, we first started the Gnumeric spread-

sheet on the server with its display hosted on a remote iPAQ.
We used the iPAQ GUI to load a spreadsheet that contained
three columns with roughly 4500 data points each, as well as
two complex graphs. We then viewed the spreadsheet and
closed the application. We measured the time to perform
each action by observing network traffic on the server. We
preceded each interactive action with a pause that enabled
us to determine when the action began and ended.
Figure 13 shows the cumulative time and energy to per-

form all interactive activities—it does not reflect any user
think time or pause between activities. STPM is over three
times more energy efficient and six times faster than PSM-
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These graphs show how the choice of power management
policy affects the time and energy needed to run remote X
applications. The rightmost graph shows the time to start
the Gnumeric application running on the server with the dis-
play on the iPAQ client, load a spreadsheet, and close the
application—the leftmost graph shows the total energy ex-
pended. Each bar shows the mean of three trials—the error
bars show the value of the minimum and maximum trial.

Figure 13: Benefit of STPM for remote X

static. STPM uses 12% less energy than PSM-adaptive and
is 13% faster. Although CAM mode is 25% faster and uses
28% less energy than STPM, it uses more power during user
think time. Figure 14 shows how user think-time impacts
energy usage. If think time exceeds 6.5 seconds, STPM uses
less energy than CAM over the entire interactive episode.

6. RELATED WORK
To the best of our knowledge, STPM is the first power

management algorithm to simultaneously tune its behav-
ior to the characteristics of the network interface, the base
power usage of the mobile computer, and the intent and ac-
cess patterns of applications. STPM differs from previous
hint-based approaches to network power management be-
cause it requires applications to disclose only current activ-
ity, not future activity, and because it uses on-line modeling
of application access patterns to set network power manage-
ment parameters.
Lu et al. have also explored the use of application hints

in power management [14]. They use a predictive policy to
estimate when to wake up the network interface. Their hints
are at a coarser granularity than those used by STPM and
require applications to have knowledge of future activity: for
instance, they allow an editor to specify that it requires the
network interface over the next few minutes to auto-save a
buffer. Their work focuses on scheduling network availabil-
ity for applications with relatively flexible deadlines, while
STPM focuses on supporting latency-sensitive applications.
From a broader perspective, application hints have also been
successfully used to improve disk power management [24]
and I/O prefetching [15, 19].
Kravets and Krishnan [12] also advocate an application

level power management strategy. Their work provides a
transport level protocol to improve energy usage. STPM
complements their solution in that it predicts opportunities
for performance improvement and energy conservation.
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Figure 14: Effect of think time on X energy usage

Wake-on-wireless [20] uses a low-power network to sig-
nal a mobile client when packets are waiting at the base
station. Current wireless network transition costs are pro-
hibitive for using this technique to disable and enable the
network card between transfers for applications like NFS.
However, wake-on-wireless seems extremely promising for
supporting incoming connections for server processes like
the X server and sshd. We can envision a hybrid strategy
that uses wake-on-wireless to detect incoming connections
during idle periods and uses STPM to manage existing con-
nections.
Krashinsky’s bounded slowdown (BSD) protocol [11] dis-

ables the network interface to save power while bounding the
relative delay on transfer round-trip time. BSD differs from
STPM in that it does not explicitly consider transition costs
or the base power usage of the device. Unlike STPM, BSD is
implemented without knowledge of application intent. The
advantage of not using application hints is that BSD can
show benefit for unmodified applications. The disadvantage
is that BSD must behave conservatively, limiting the poten-
tial for energy savings. Further, BSD requires some small
modifications to the 802.11b protocol, making deployment
on current hardware more difficult.
Simunic’s TISMDP [21] operates at a coarser granularity

than STPM. TISMDP only decides when to transition from
a higher-power state to a lower-power state. It immediately
resumes upon the arrival of the next request. Thus, for
intermittent activity like NFS RPCs, a transition cost must
be paid for each RPC.
Chandra [2] explores how the regular nature of streaming

multimedia can be exploited to improve power management.
Stemm et al. [22] investigate methods that reduce energy
consumption of network interfaces for electronic mail and
web browsing applications on PDAs. Unlike STPM, both
these techniques benefit only a limited set of specific appli-
cations.
Adaptive methods have also been applied to disk [4, 7] and

CPU [5] power management. Though these domains differ
substantially from wireless network power management, we
believe that many of the design principles that we have used
for STPM can be applied.

7. CONCLUSION
Wireless network power management can severely degrade

the performance of latency-sensitive applications and even
increase the total energy needed to perform interactive ac-
tivities on a mobile computer. In order to provide signif-
icant energy conservation without substantial performance
degradation, a power management strategy should be tuned
to reflect application intent and access patterns, as well as
the power characteristics of the network interface and mo-
bile computer. It is infeasible to expect a user to manually
tune the power management algorithm for each combina-
tion of application, network interface, and mobile computer.
Therefore, we have built a self-tuning power management
module that adapts its behavior in response to a changing
environment. Our results shows that self-tuning improves
both performance and energy conservation compared to cur-
rent power management strategies.
Our Linux implementation of self-tuning power manage-

ment offers an important opportunity for future work. We
plan to deploy our module to a small user community and
gather detailed feedback about the benefits of self-tuning
power management. This deployment will require us to both
broaden the set of applications that disclose power man-
agement hints and provide support for non-hinting appli-
cations. We also plan to adapt STPM to the management
of other types of wireless network interfaces and different
system components such as hard disk drives.
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