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Abstract

Limiting the energy consumption of computers, especially portables,
is becoming increasingly important. Thus, new energy-saving computer
components and architectures have been and continue to be developed.
Many architectural features have both high performance and low power
modes, with the mode selection under software control. The problem is to
minimize energy consumption while not significantly impacting the effec-
tive performance. We group the software control issues as follows: tran-
sition, load-change, and adaptation. The transition problem is deciding
when to switch to low-power, reduced-functionality modes. The load-
change problem is determining how to modify the load on a component
so that it can make further use of its low-power modes. The adaptation
problem is how to create software that allows components to be used in
novel, power-saving ways. We survey implemented and proposed solu-
tions to software energy management issues created by existing and sug-
gested hardware innovations.

1 Introduction

Limiting energy consumption has become an important aspect of mod-
ern computing. The most important reason for this is the growing use of
portable computers, which have limited battery capacities. Another rea-
son is that high energy consumption by desktop computers translates into
heat, fan noise, and expense. One way to reduce energy consumption is to
simply use components that consume less power. Another way is to use
components that can enter low-power modes by temporarily reducing their
speed or functionality. This paper will discuss the software-implemented
optimizations that arise from such hardware features, and what solutions
have been proposed to deal with these issues. The aim of this paper is not
to discuss hardware techniques for reducing power, but to discuss software
techniques for taking advantage of low-power hardware that has already
been designed.

We classify the software issues created by power-saving hardware fea-
tures into three categories: transition, load-change, and adaptation. The
transition problem involves answering the question, “When should a com-
ponent switch from one mode to another?” The load-change problem in-
volves answering the question, “How can the functionality needed from
a component be modified so that it can more often be put into low-power
modes?” The adaptation problem involves answering the question, “How
can software be modified to permit novel, power-saving uses of compo-
nents?” Each of the software strategies we will consider addresses one or
more of these problems.

Different components have different energy consumption and perfor-
mance characteristics, so it is generally appropriate to have a separate en-
ergy management strategy for each such component. Thus in this paper we
will generally consider each component separately. For each component,
first we will discuss its particular hardware characteristics, then we will
discuss what transition, load-change, and adaptation solutions have been
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Category Description
Transition When should a component switch between modes?
Load-change How can a component’s functionality needs be

modified so it can be put in low-power modes more
often?

Adaptation How can software permit novel, power-saving uses
of components?

Table 1: Categories of energy-related software problems

proposed for that component. The components whose software power
management issues are most significant are the secondary storage unit, the
processing unit, the wireless communication unit, and the display unit, but
we will also briefly discuss other components.

This paper is organized as follows. Section 2 discusses general issues
in developing and evaluating solutions to the problems we have discussed.
Sections 3, 4, 5, and 6 talk about specific problems and solutions involving
the secondary storage unit, the processing unit, the wireless communica-
tion unit, and the display unit, respectively. Section 7 considers other, mis-
cellaneous, components. Section 8 talks about strategies that deal with the
system itself as a component to be power-managed. Finally, in section 9,
we conclude.

2 General Issues

2.1 Strategy types

We call a strategy for determining when to switch from one component
mode to another a transition strategy. Transition strategies require two
sorts of information about a component: knowledge about its mode char-
acteristics and information about its future functionality requirements. By
mode characteristics we mean the advantages and disadvantages of each
mode the component can be in, including how much power is saved by
being in it, how much functionality is sacrificed by entering it, and how
long it will take to return from it.

Mode characteristics are generally more easily obtained than future
functionality requirements, so the most difficult part of a transition strat-
egy is predicting future functionality requirements. Thus, transition strate-
gies are sometimes called prediction strategies. The most common, but
not the only, prediction tactic is to assume that the longer a component
has been inactive, the longer it will continue to be inactive. Combining
this prediction method with knowledge about mode characteristics then
leads to a period such that whenever the component is inactive in a cer-
tain mode for longer than , it should be placed in a lower-power mode.
Such a period is called an inactivity threshold, and a strategy using one is
called an inactivity threshold strategy.

We call a strategy for modifying the load on a component in order to in-
crease its use of low-power modes a load-change strategy. Disk caching is
an example, since it can reduce the load on a hard disk and thereby reduce
its power consumption. Note that modifying component load does not al-
ways mean reducing it; sometimes merely reordering service requests can
reduce power consumption. For instance, the hard disk will consume less
power if one makes a disk request immediately before spinning the disk
down than if one makes the request immediately after spinning it down.
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We call a strategy for allowing components to be used in novel, power-
saving ways an adaptation strategy. An example is modifying file layout
on secondary storage so that magnetic disk can be replaced with lower-
power flash memory.

2.2 Levels of energy management

Energy management can be done at several levels in the computer sys-
tem hierarchy: the component level, the operating system level, the appli-
cation level, and the user level. The end-to-end argument [68] suggests
that this management should be performed at the highest level possible,
because lower levels have less information about the overall workload.
However, certain types of strategy are inappropriate for the highest levels.
Most strategies are inappropriate for the user, since the user lacks knowl-
edge about power consumption of each component, is unable to make de-
cisions within milliseconds or faster, and is generally unwilling to make
frequent energy management decisions. Problems with the application
level are that applications operate independently and that applications lack
certain useful information about the state of the machine because of oper-
ating system abstraction. For these reasons, most energy management is
performed at the operating system level. The user typically just makes a
few high-level decisions and applications typically just reduce their use of
components.

One way to get the advantages of application-level management with-
out most associated disadvantages is to use application-aware adapta-
tion [37, 60]. In such a system, each application explicitly tells the op-
erating system what its future needs are, and the operating system notifies
each application whenever is a change in the state of the system relevant
to energy management decisions. Thus, if an energy management strat-
egy has to be implemented at the operating system level, it can still get
information about the needs of an application from the definitive source:
the application itself. Furthermore, if an energy management strategy is
best implemented at the application level, it can be performed using ma-
chine state information normally confined to the operating system. Unfor-
tunately, it is seldom the case that applications have the necessary knowl-
edge or sophistication to take advantage of the ability to obtain or supply
power-relevant information.

2.3 Strategy evaluation

When evaluating power management strategies, there are several points
to remember. First, the effect of a strategy on the overall system power
consumption is more important than its effect on the particular component
it concerns. For example, a 50% reduction in modem power sounds im-
pressive, but if the modem only accounts for 4% of total power consump-
tion, this savings will only result in a 2% decrease in total power.

Second, it is important to use as the baseline the current strategy, rather
than the worst possible strategy. For example, it would not be sufficient to
simply know that a new strategy causes the disk motor to consume 85%
of its maximum possible power. If the current strategy already caused it
to be off 80% of the time, this would represent a small power reduction,
but if the current strategy only turned it off 20% of the time, this would
represent a significant power reduction.

Third, maximum battery lifetime is not necessarily what users want—
they want to maximize the amount of work they can accomplish before the
battery runs out, not simply the amount of time the computer can remain
running before the battery runs out. For example, consider a strategy that
halves the CPU speed and increases battery lifetime by 50%. If the slug-
gish response time makes papers take 10% longer to write, it is not reason-
able to call the new strategy a 50% improvement just because the machine
stays on 50% longer. The user can only write 36% more papers with one
battery, so the strategy is really only a 36% improvement. Thus, to com-
pletely evaluate a new strategy, one must take into account not only how
much power it saves, but also how much it extends or diminishes the time
tasks take.

Component Hyp.
386

Duo
230

Duo
270c

Duo
280c

Avg.

Processor 4% 17% 9% 25% 14%
Hard disk 12% 9% 4% 8% 8%
Backlight 17% 25% 26% 25% 23%
Display 4% 4% 17% 10% 9%
Modem n/a 1% 0% 5% 2%
FPU 1% n/a 3% n/a 2%
Video 26% 8% 10% 6% 13%
Memory 3% 1% 1% 1% 2%
Other 33% 35% 28% 22% 30%
Total 6 W 5 W 4 W 8 W 6 W

Table 2: For various portable computers, percentage of total power used
by each component when power-saving techniques are used [48, 53]

Fourth, when evaluating a strategy, it is important to consider and quan-
tify its effect on components it does not directly manipulate. For example,
a strategy that slows down the CPU may cause a task to take longer, thus
causing the disk and backlight to be on longer and consume more energy.

Fifth, to be completely accurate, one also has to consider that battery ca-
pacity is not constant. Battery capacity can vary depending on the rate of
power consumption [63] and on the way that rate changes with time [83].
Thus, it may be important to understand not only how much a strategy re-
duces power consumption, but also how it changes the function of power
consumption versus time. Also, it means that computing battery lifetime
is more difficult than just dividing a rated energy capacity by total power
consumption.

In conclusion, there are four things one must determine about a compo-
nent power management strategy in order to evaluate it: how much it re-
duces the power consumption of that component; what percentage of total
system power, on average, is due to that component; how much it changes
the power consumption of other components; and how it affects battery
capacity through its changes in power consumption. The first, third, and
fourth require simulation of the strategy; the second requires a power bud-
get describing the average power consumption of each system component.
In the next subsection, we will give some such budgets.

2.4 Power budget

Table 2 shows examples of average power consumption for the compo-
nents of some portable computers when power-saving techniques are used.
This table shows measurements taken only when the computers were run-
ning off battery power, since we are most concerned with power manage-
ment at such times; power management when a machine is plugged in is
less critical, may have different tradeoffs, and may experience different
user behavior. Note that power supply inefficiency is not treated as a sep-
arate category, but rather as a “tax” on all power consumed by each com-
ponent. So, for instance, if the power supply system is 80% efficient, then
instead of attributing 20% of power consumption to the power supply we
increase the effective power consumption of each component by 25%. The
first machine is a hypothetical 386DXL-based computer [53]. The next
three examples describe measurements of Macintosh PowerBook Duo ma-
chines [48]. The Duo 230 has a supertwist monochrome display while the
other Duos have active-matrix color displays.

The power budget of Table 2 indicates the magnitude of possible power
savings. For instance, since the hard disk consumes only 8% of total
power on the Duo 280c given its current power-saving methods, better
techniques for managing hard disk power could save at most 8% of to-
tal system power, increasing battery lifetime by at most 9%. With power
management active, the main consumers of power include the backlight,
processor, video system, and hard disk. Thus, these are the components
for which further power-saving methods will be most important.
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Note that these breakdowns are likely to change as time progresses [32].
For instance, wireless communication hardware will probably eventually
appear in most portable computers, at first adding about 1 W to total power
consumption. Hardware improvements will decrease the power consump-
tion of various other components, but this rate of decrease will be different
for different components. Evidence of changing breakdown percentages
can be seen from trends in modern portable computers [21]. Later models
of portable computers seem to spend a greater percentage of their power
consumption on the hard disk than earlier models. Presumably, this is be-
cause later models have substantial relative savings in other components’
power but not as much savings in hard disk power. These forecasts sug-
gest that as time progresses, power-saving techniques might become more
important for the display and hard disk, and less important for the proces-
sor. Intuitively, this seems reasonable—mechanical motion and light gen-
eration seem inherently more power intensive than digital circuits. Note
also that most existing components have been designed almost exclusively
for performance and capacity, with little thought for power consumption.
Components designed with minimal power use as a primary goal might
behave very differently.

2.5 Battery technology

The importance of energy management arises as much from limited bat-
tery capacity as from high power use by portable computers. And, un-
fortunately, battery technology has been improving at only a modest pace
in terms of increased capacity per unit weight and volume. The high-
est capacity battery technology currently used in portables is lithium ion,
providing as much as 380 W-h/L and 135 W-h/kg [28]. This is an im-
provement over the roughly 260–330 W-h/L and 120 W-h/kg achievable
from them in 1995 and the roughly 180 W-h/L achievable from them in
1991. Most impressive, though, is their improvement over earlier battery
technologies, such as nickel-metal hydride with its 150 W-h/L and 50 W-
h/kg in 1995 and nickel-cadmium with its 125 W-h/L and 50 W-h/kg in
1995 [63]. Technologies in development, such as lithium polymer, lithium
anode, zinc-manganese dioxide, and zinc-air, may lead to even higher bat-
tery capacities in the future [63]. As an example of the battery capacity one
can get today, a modern Apple laptop comes with a 29–32 W-h lithium ion
battery [3].

3 Secondary Storage

3.1 Hardware features

Secondary storage in modern computers generally consists of a mag-
netic disk supplemented by a small amount of DRAM used as a disk cache;
this cache may be in the CPU main memory, the disk controller, or both.
Such a cache improves the overall performance of secondary storage. It
also reduces its power consumption by reducing the load on the hard disk,
which consumes more power than the DRAM.

Most hard disks have five power modes; in order of decreasing power
consumption, these are active, idle, standby, sleep, and off [32]. In active
mode, the disk is seeking, reading, or writing. In idle mode, the disk is
not seeking, reading, or writing, but the motor is still spinning the platter.
In standby mode, the motor is not spinning and the heads are parked, but
the controller electronics are active. In sleep mode, the host interface is
off except for some logic to sense a reset signal; thus, if there is a cache
in the disk controller, its contents are lost. Transitions to active mode oc-
cur automatically when uncached data is accessed. Transitions to standby
and sleep modes occur when explicit external directives are received; this
is how software power-saving strategies influence hard disk power con-
sumption.

Having the motor off, as in the standby mode, saves power. However,
when it needs to be turned on again, it will take considerable time and en-
ergy to return to full speed. If this energy is greater than the savings from
having the motor off, turning the motor off may actually increase energy

Hard disk Maxtor
Mobile-
Max
251350

Road
Warrior
815 MB
Slimline

Toshiba
MK2720

WD
Portfolio

Capacity 1.35 GB 815 MB 1.35 GB 1.0 GB
Idle power 0.9 W 0.9 W 1.4 W 0.95 W
Standby power 0.23 W 0.5 W 0.35 W 0.20 W
Sleep power 0.025 W 0.15 W 0.15 W 0.095 W
Spin-up time 1 sec 5 sec 5 sec 6 sec
Spin-up energy 4.4 J 17.5 J 19.5 J 30 J

Table 3: Characteristics of various hard disks [57, 65, 76, 79]

consumption. Turning off the motor also has a performance impact, since
the next disk request will be delayed until the motor returns to full speed.
In addition, while the disk is returning to full speed, other components will
typically continue consuming power, also increasing energy use. Going to
sleep mode is an analogous operation, although one in which the savings
in power, as well as the overhead required to return to the original state,
are greater. Table 3 quantifies some time and energy considerations for
various hard disks.

A possible technology for secondary storage is an integrated circuit
called flash memory [9, 19, 40, 56, 81]. Like a hard disk, such memory
is nonvolatile and can hold data without consuming energy. Furthermore,
when reading or writing, it consumes only 0.15 to 0.47 W, far less than a
hard disk. It has a read speed of about 85 ns per byte, similar to DRAM, but
a write speed of about 4–10 per byte, about 10–100 times slower than
hard disk. However, since flash memory has no seek time, its overall write
performance is not that much worse than that of magnetic disk; in fact, for
sufficiently small random writes, it can actually be faster. Flash memory is
technically read-only, so before a region can be overwritten it must be elec-
trically erased. Such erasure is done one full segment at a time, with each
segment 0.5–128 KB in size and taking about 15 per byte to erase [81].
A segment can only be erased 100,000 to 1,000,000 times in its lifetime be-
fore its performance degrades significantly, so the operating system must
ensure that the pattern of erasures is reasonably uniform, with no single
segment getting repeatedly erased. The current cost per megabyte of flash
is $2–4, making it about 17–40 times more expensive than hard disk but
about 2–5 times less expensive than DRAM. Cáceres et al. [9] point out
that the costs of flash and hard disk may become comparable in the fu-
ture since the per-year increases in megabytes per dollar are about 25% for
magnetic disk and 40% for flash; given these assumptions, the two prices
could converge in 6–8 years. Flash memory offers great opportunities for
secondary storage power savings if it can be substituted for the hard disk
or used for caching. Before that, however, software must be designed to
overcome the many limitations of flash memory, especially its poor write
performance.

3.2 Transition strategies

Transition strategies for magnetic disks can be of three kinds: decid-
ing when to go to sleep mode, deciding when to go to standby mode, and
deciding when to turn off the disk completely. Most are of the first kind.
We know of no studies of the second kind, for reasons we will discuss in
the next paragraph. Strategies of the third kind also exist, but are gener-
ally simple inactivity threshold strategies that have not been experimen-
tally scrutinized.

One reason for the lack of study of transition strategies for deciding
when to enter standby mode is that this mode is a relatively new feature
on disks. Another reason is that it may often be better to enter sleep mode
than standby mode. Sleep mode consumes less power, and since the time it
takes to go from sleep to idle mode is dominated by the spin-up time of the
motor, this transition takes no longer than that from standby to idle mode.
The main advantage to standby mode is that on-disk cache contents are
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preserved; this may or may not be significant, depending on the caching
algorithm in the disk controller, and whether or not the main memory disk
cache is a superset of the contents of the controller disk cache.

3.2.1 Fixed inactivity threshold

The most common transition strategy for going into sleep mode is to en-
ter that mode after a fixed inactivity threshold. When hard disks allowing
external control over the motor were first developed, their manufacturers
suggested an inactivity threshold of 3–5 minutes. However, researchers
soon discovered that power consumption could be minimized by using
inactivity thresholds as low as 1–10 seconds; such low thresholds save
roughly twice as much power as a 3–5 minute threshold [21, 45].

The greater power savings from using a smaller inactivity threshold
comes at a cost, however: perceived increased user delay. Spinning down
the disk more often makes the user wait more often for the disk to spin
up. The inactivity threshold yielding minimum disk power results in user
delay of about 8–30 seconds per hour; some researchers believe this to
be an unacceptable amount of delay [21], although in absolute terms, this
amount is trivial. Another problem with short inactivity thresholds is that
disks tend to last for only a limited number of start-stop cycles, and ex-
cessively frequent spin up-spin down cycles could cause premature disk
failure. Thus, the best disk spin-down policy is not necessarily the one
that minimizes power consumption, but the one that minimizes power con-
sumption while keeping user delay and start-stop frequency at an accept-
able level.

It is worth pointing out, although it should be obvious, that the time be-
tween disk accesses is not exponentially distributed; the expected time to
the next disk access is generally an increasing function of the time since
the last access. If interaccess times for disk reference were exponentially
distributed, the correct strategy would use an inactivity threshold of either
zero or infinity [30].

3.2.2 Changing inactivity threshold

There are several arguments for dynamically changing the inactivity
threshold, not necessarily consistent with each other. The first argument
is that disk request interarrival times are drawn independently from some
unknown stationary distribution. Thus, as time passes one can build up
a better idea of this distribution, and from that deduce a good threshold.
The second argument is that the interarrival time distribution is nonsta-
tionary, i.e. changing with time, so a strategy should always be adapting
its threshold to the currently prevailing distribution. This distribution can
be inferred from samples of the recent distribution and/or from factors on
which this distribution depends. The third argument is that worst-case per-
formance can be bounded by choosing thresholds randomly—any deter-
ministic threshold can fall prey to a particularly nasty series of disk access
patterns, but changing the threshold randomly eliminates this danger.

If disk interarrival times are independently drawn from some unknown
stationary distribution, as the first argument states, then no matter what this
distribution, there exists an inactivity threshold that incurs a cost no more
than times that of the optimal off-line transition strategy [39].
One could find this threshold by keeping track of all interarrival times so
that the distribution, and thus the ideal threshold, could be deduced.

One algorithm of that type, using constant space, builds up a picture of
the past interarrival time distribution in the following indirect way [42].
It maintains a set of possible thresholds, each with a value indicating how
effective it would have been. At any point, the algorithm chooses as its
threshold the one that would have performed the best. Incidentally, “best”
does not simply mean having the least power consumption; the valuation
might take into account the relative importance of power consumption and
frequency of disk spin-downs specified by the user. This algorithm has
been shown to perform well on real traces, beating many other practical
algorithms.

Another strategy using a list of candidate thresholds is based on the sec-
ond argument, that disk access patterns change with time [33]. In this strat-

egy, each candidate is initially assigned equal weight. After each disk ac-
cess, candidates’ weights are increased or decreased according to how well
they would have performed relative to the optimal off-line strategy over
the last interaccess period. At any point, the threshold chosen for actual
use is the weighted average of all the candidates. Simulations show that
this strategy works well on actual disk traces. The developers of this strat-
egy only considered using it to minimize power consumption; however, it
could easily be adapted to take frequency of spin-ups into account.

Another dynamic strategy based on the second argument tries to keep
the frequency of annoying spin-ups relatively constant even though the in-
teraccess time distribution is always changing [20]. This strategy raises
the threshold when it is causing too many spin-ups and lowers it when
more spin-ups can be tolerated. Several variants of this strategy, which
raise and lower the threshold in different ways, are possible. Simulation of
these variants suggests that using an adaptive threshold instead of a fixed
threshold can significantly decrease the number of annoying spin-ups ex-
perienced by a user while increasing energy consumption by only a small
amount.

Note that all the dynamic strategies we have described that are based
on the second argument make inferences about the current distribution of
disk access interarrival times based on recent samples of this distribution.
However, there are likely other factors on which this distribution depends
and on which such inferences could be based, such as the current degree of
multiprogrammingor which applications are running. Additional research
is needed to determine which of these factors can be used effectively in this
way.

By the third argument, a strategy should make no assumptions about
what the disk access pattern looks like, so that it can do well no mat-
ter when disk accesses occur. One such strategy chooses a new random
threshold after every disk access according to the cumulative distribution
function

where is the number of seconds it takes the running motor to consume
the same amount of energy it takes to spin up the disk [39]. This strategy
has been proven ideal among strategies having no knowledge of the arrival
process. Note, however, that almost all transition strategies described in
this paper do purport to know something about the arrival process, and thus
are capable of beating this strategy. In other words, although this strategy
does have the best worst-case expected performance, it does not necessar-
ily have the best typical-case performance.

3.2.3 Alternatives to an inactivity threshold

Some transition strategies have been developed that do not use an in-
activity threshold explicitly [21]. One such strategy is to predict the ac-
tual time of the next disk access to determine when to spin down the disk.
However, simulations of variants of this strategy show that they provide
less savings than the best inactivity threshold strategy, except when disk
caching is turned off. This may be because filtering a pattern of disk ac-
cesses through a disk cache makes it too patternless to predict. Another
strategy is to predict the time of the next disk request so the disk can be
spun up in time to satisfy that request. However, no techniques proposed
for this have worked well in simulation, apparently because the penalty
for wrong prediction by such strategies is high. Despite the shortcom-
ings of the non-threshold-based transition strategies studied so far, some
researchers remain hopeful about the feasibility of such strategies. Simu-
lation of the optimal off-line strategy indicates that such strategies could
save as much as 7–30% more energy than the best inactivity threshold
method.

3.3 Load-change strategies

Another way to reduce the energy consumption of a hard disk is to mod-
ify its workload. Such modification is usually effected by changing the
configuration or usage of the cache above it.
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One study found that increasing cache size yields a large reduction in
energy consumption when the cache is small, but much lower energy sav-
ings when the cache is large [45]. In that study, a 1 MB cache reduced
energy consumption by 50% compared to no cache, but further increases
in cache size had a small impact on energy consumption, presumably be-
cause cache hit ratio increases slowly with increased cache size [82]. The
study found a similar effect from changing the dirty block timeout period,
the maximum time that cache contents are permitted to be inconsistent
with disk contents. Increasing this timeout from zero to 30 seconds re-
duced disk energy consumption by about 50%, but further increases in the
timeout delay had only small effects on energy consumption [45]. Another
possible cache modification is to add file name and attribute caching. Sim-
ulation showed a moderate disk energy reduction of 17% resulting from an
additional 50 KB of cache devoted to this purpose [45].

Prefetching, a strategy commonly used for performance improvement,
should also be effective as an energy-saving load-change strategy. If the
disk cache is filled with data that will likely be needed in the future before
it is spun down, then more time should pass before it must again be spun
up. This idea is similar to that of the Coda file system [69], in which a
mobile computer caches files from a file system while it is connected so
that when disconnected it can operate independently of the file system.

Another approach to reducing disk activity is to design software that
reduces paging activity. This can be accomplished by reducing working
set sizes and by improving memory access locality. There are many things
operating system and application designers can do to achieve these goals.

3.4 Adaptation strategies for flash memory as disk cache

Flash memory has two advantages and one disadvantage over DRAM as
a disk cache. The advantages are nonvolatility and lower power consump-
tion; the disadvantage is poorer write performance. Thus, flash memory
might be effective as a second-level cache below the standard DRAM disk
cache [56]. At that level, most writes would be flushes from the first-level
cache, and thus asynchronous. However, using memory with such differ-
ent characteristics necessitates novel cache management strategies.

The main problem with using flash memory as a second-level cache is
that data cannot be overwritten without erasing the entire segment con-
taining it. One solution is to ensure there is always a segment with free
space for writing; this is accomplished by periodically choosing a seg-
ment, flushing all its dirty blocks to disk, and erasing it [56]. One segment
choosing strategy is to choose the one least recently written; another is to
choose the one least recently accessed. The former is simpler to imple-
ment and ensures no segment is cleaned more often than another, but the
latter is likely to yield a lower read miss ratio. Unfortunately, neither may
be very good in packing together blocks that are referenced together. One
approach is to supplement the strategy with a copying garbage collector,
such as that found in LFS [66], to choose recently used blocks of a seg-
ment about to be erased and write them into a segment that also contains
recently used blocks and is not going to be erased.

Simulations have shown that using a second-level flash memory cache
of size 1–40 MB can decrease secondary storage energy consumption by
20–40% and improve I/O response time by 30–70% [56]. Thus, using
appropriate cache management policies seem to allow a flash memory
second-level cache to reduce energy consumption and still provide equal
or better performance than a system using a traditional cache. The simu-
lations would have been more persuasive, however, if they had compared
the system with flash to one with a DRAM second-level cache rather than
to one with no second-level cache.

3.5 Adaptation strategies for flash memory as disk

Flash memory is a low-power alternative to magnetic disk. However,
the large differences between flash memory and magnetic disk suggest
several changes to file system management. Since flash has no seek la-
tency, there is no need to cluster related data on flash memory for the
purpose of minimizing seek time [9]. Since flash is practically as fast as

DRAM at reads, a disk cache is no longer important except to be used as
a write buffer [9]. Such a write buffer would make writes to flash asyn-
chronous, thus solving another problem of flash memory: poor write per-
formance. In fact, if SRAM were used for this write buffer, its perma-
nence would allow some writes to flash to be indefinitely delayed [19, 81].
Finally, unlike magnetic disk, flash memory requires explicit erasure be-
fore a segment can be overwritten, a slow operation that can wear out the
medium and must operate on a segment at a time. One solution to these
problems is to use a log-structured file system like LFS [40, 66], in which
new data does not overwrite old data but is instead appended to a log. This
allows erasures to be decoupled from writes and done asynchronously,
thus minimizing their impact on performance. A flash file system also
needs some way to ensure that no physical segment is cleaned especially
often. One way to do this is to make sure that physical segments contain-
ing infrequently modified data and ones containing frequently modified
data switch roles occasionally [81].

Simulations of flash file systems using some of these ideas have found
that they can reduce secondary storage power consumption by 60–90%
while maintaining aggregate performance comparable to that of magnetic
disk file systems [19]. However, at high levels of utilization, the per-
formance of file systems using asynchronous erasure can degrade signifi-
cantly due to the overhead of that erasure.

3.6 Adaptation strategies for wireless network as disk

Another hardware approach to saving secondary storage energy is to use
wireless connection to a plugged-in file server instead. Offloading stor-
age has the advantage that the storage device can be big and power-hungry
without increasing the weight or power consumption of the portable ma-
chine. Disadvantages include increased power consumption by the wire-
less communication system, increased use of limited wireless bandwidth,
and higher latency for file system accesses. Adaptation strategies can help
minimize the impact of the disadvantages but retain the advantages.

The general model for using wireless communication as secondary stor-
age is to have a portable computer transmit data access requests to, and
receive data from, a server. An improvement on this is to have the server
make periodic broadcasts of especially popular data, so the portable com-
puter will have to waste less power transmitting requests [36]. A further
improvement is to interleave index information in these broadcasts, so a
portable computer can anticipate periods of no needed data and shut its
receiver off during them.

Another model for using wireless communication for storage is pro-
posed in extensions to the Coda scheme [69]. In this model, the portable
computer storage system functions merely as a large cache for the server
file system. When the portable computer is not wired to the file system
server, it services cache misses using wireless communication. Because
such communication is slow and bandwidth-consuming, the cache man-
ager seeks to minimize its frequency by hoarding files that are anticipated
to be needed during disconnection.

A third model for using wireless communication for storage, used by
InfoPad [5, 7], is to perform all processing on an unmoving server. In this
model, the portable “computer” is merely a terminal that transmits and re-
ceives low-level I/O information, so the energy consumption for general
processing and storage is consumed by plugged-in servers instead of the
mobile device. In this way, portable storage and CPU energy consumption
are traded for high processing request latency, significant network band-
width consumption, and additional energy consumption by the portable
wireless device.

The limiting factor in all of these cases is network bandwidth; what is
practical depends on the bandwidth between the local system and the data
source. A packet radio connection at 28.8 Kb/s is very different than the
type of multi-megabit per second system that could be implemented within
a building.
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3.7 Future hardware innovations

Researchers working on technological advances in hardware can also
do much to aid software techniques in reducing power. In order to mini-
mize the impact of decisions to spin down the hard disk, the energy and
time consumed by a disk when spinning up should be reduced. Since
disk power use drops roughly quadratically with rotation speed, it would
also be useful to enable the disk to be put into low rotation speed modes,
so that software could sacrifice some I/O performance to obtain reduced
disk power consumption. An additional benefit of reduced rotation speed
would be a reduction in spin-up times. To make it easier for software to
achieve good performance with flash memory, its design should empha-
size fast writing and erasing, as well as the ability to erase at the same time
that data is being read or written. Increasing the number of erasures pos-
sible in the lifetime of a segment would simplify the management of flash
memory.

4 Processor

4.1 Hardware features

Processors designed for low-power computers have many power-
saving features. One power-saving feature is the ability to slow down the
clock. Another is the ability to selectively shut off functional units, such
as the floating-point unit; this ability is generally not externally control-
lable. Such a unit is usually turned off by stopping the clock propagated to
it. Finally, there is the ability to shut down processor operation altogether
so that it consumes little or no energy. When this last ability is used, the
processor typically returns to full power when the next interrupt occurs.

In general, slowing down the processor clock without changing the volt-
age is not useful. Power consumption is essentially proportional to the
clock frequency , the switching capacitance , and the square of the volt-
age ( ), but the time it takes the processor to complete a
task is inversely proportional to the clock frequency ( ). Since
the energy it takes the processor to complete a task is the product of its
power consumption and the time it spends ( ), this energy con-
sumption is invariant with clock speed. Thus, reducing the clock speed
lengthens processor response time without reducing the amount of energy
the processor consumes during that time. In fact, slowing the clock speed
will usually increase total energy consumption by extending the time other
components need to remain powered. However, if the voltage can be de-
creased whenever the clock speed is reduced, then energy consumption,
which is proportional to the square of the voltage ( ), would
usually be reduced by slowing the clock.

Turning off a processor has little downside; no excess energy is ex-
pended turning the processor back on, the time until it comes back on is
barely noticeable, and the state of the processor is unchanged from it turn-
ing off and on, unless it has a volatile cache [29]. On the other hand, there
is a clear disadvantage to reducing the clock rate: tasks take longer. There
may also be a slight delay while the processor changes clock speed.

Reducing the power consumption of the processor saves more than just
the energy of the processor itself. When the processor is doing less work,
or doing work less quickly, there is less activity for other components of
the computer, such as memory and the bus. For example, when the pro-
cessor on the Macintosh Duo 270c is off, not only is the 1.15 W of the pro-
cessor saved, but also an additional 1.23 W from other components [48].
Thus, reducing the power consumption of the processor can have a greater
effect on overall power savings than it might seem from merely examining
the percentage of total power attributable to the processor.

4.2 Transition strategies for turning the processor off

When the side effects of turning the processor off and on are insignifi-
cant, the optimal off-line transition strategy is to turn it off whenever the
processor will not be needed until the next interrupt occurs. With a well-
designed operating system, this can be deduced from the current status of

all processes. Thus, whenever any process is running or ready to run, the
processor should not be turned off; when all processes are blocked, the
processor should be turned off [49, 72, 74]. Examples of operating sys-
tems using this strategy are Windows [15, 62] and UNIX.

MacOS, however, uses a different strategy, perhaps because its strat-
egy was designed when processors did suffer side effects from turning off.
It uses an inactivity threshold, as is commonly used for hard disk power
management. The processor is shut off when there have been no disk ac-
cesses in the last fifteen seconds and no sound chip accesses, changes to
the cursor, displaying of the watch cursor, events posted, key presses, or
mouse movements in the last two seconds. The savings achievable from
this strategy vary greatly with workload [47, 48].

4.3 Load-change strategies when the CPU can turn off

Given a transition strategy that turns off the processor when it is not
performing any tasks, the goal of a load-change strategy is simply to limit
the energy needed to perform tasks. This suggests three approaches: re-
ducing the time tasks take, using lower-power instructions, and reducing
the number of unnecessary tasks. Below we present several load-change
strategies that use different subsets of these approaches.

One technique, which uses the first two approaches, is to use more effi-
cient operating system code [70]. However, if overall system performance
has not been a sufficient reason for system designers and implementors
to write good code, energy efficiency considerations are unlikely to make
much difference.

Another technique, which uses the same approaches, is to use energy-
aware compilers, i.e. compilers that consider the energy efficiency of gen-
erated code [75]. Traditional compiler techniques have application as
load-change strategies in that they reduce the amount of time a processor
takes to complete a task. Another way for the compiler to decrease en-
ergy consumption is to carefully choose which instructions to use, since
some instructions consume more power than others. However, prelimi-
nary studies indicate that the primary gain from code generation is in de-
creasing the number of instructions executed, not in choosing between dif-
ferent equally long code sequences [75]. There may be some special cases,
such as generating entirely integer versus mixed integer and floating point
code, where the effects are significant, but we believe that these are the
exception.

Another load-change technique uses the third approach, performing
fewer unnecessary tasks [49]. In some cases, when an application is idle, it
will “busy-wait” for an event instead of blocking. Then, the standard tran-
sition strategy will not turn off the processor even though it is not doing
any useful work. One way to solve this problem is to force an application
to block for a certain period whenever it satisfies certain conditions that
indicate it is likely to be busy-waiting and not performing any useful ac-
tivity. Simulations of such a strategy using traces of machines running on
battery power showed that it would allow the processor to be off, on aver-
age, 66% of the time, compared to 47% when no measures were taken to
forcibly block applications.

4.4 Transition strategies for dynamically changing CPU
speed

As explained before, slowing the clock is useless if voltage is kept con-
stant. Therefore, when we discuss strategies to take advantage of slowing
the processor clock, we are assuming that slowing the clock is accompa-
nied by reducing the voltage. The voltage can be reduced when the clock
speed is reduced because under those conditions the longer gate settling
times resulting from lower voltage become acceptable.

Previous calculations have shown that the lowest energy consumption
comes at the lowest possible speed. However, performance is also reduced
by reducing the clock speed, so any strategy to slow the clock must achieve
its energy savings at the expense of performance. Furthermore, reducing
processor performance may cause an increase in the energy consumption
of other components, since they may need to remain on longer. Thus, it is
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important to make an appropriate trade-off between energy reduction and
performance.

The strategies that have been considered so far for making this trade-
off [12, 77] were designed to achieve two general goals. The first goal is
to not delay the completion time of any task by more than several millisec-
onds. This ensures that interactive response times do not lengthen notice-
ably, and ensures that other components do not get turned off noticeably
later. The second goal is to adjust CPU speed gradually. This is desir-
able because voltage scaling causes the minimum voltage permissible
at a clock speed to be roughly linear in . Thus, the number of clock
cycles executed in an interval is proportional to , while the en-

ergy consumed during that interval is proportional to .
Given these equations, it can be mathematically demonstrated that the
most energy-efficient way to execute a certain number of cycles within a
certain interval is to keep clock speed constant throughout the interval.

One strategy for adjusting CPU speed seeks to achieve these goals in the
following way [77]. Time is divided into 10–50 ms intervals. At the begin-
ning of each interval, processor utilization during the previous interval is
determined. If utilization was high, CPU speed is slightly raised; if it was
low, CPU speed is slightly lowered. If, however, the processor is falling
significantly behind in its work, CPU speed is raised to the maximum al-
lowable. Simulations of this strategy show 50% energy savings when the
voltage, normally constrained to be 5 V, can be reduced to 3.3 V, and 70%
savings when it can be reduced to 2.2 V. Interestingly, the strategy shows
worse results when the voltage can be reduced to 1 V, seemingly because
the availability of the low voltage causes the strategy to generate extreme
variation in the voltage level over time. Obviously, a strategy should be
designed so that it never yields worse results when the range over which
parameters can be varied increases.

Another strategy also divides time into 10–50 ms intervals [12]. At the
beginning of each interval, it predicts the number of CPU busy cycles that
will occur during that interval, and sets the CPU speed just high enough
to accomplish all this work. There are actually many variants of this strat-
egy, each using a different prediction technique. In simulations, the most
successful variants were one that always predicted the same amount of
work would be introduced each interval, one that assumed the graph of
CPU work introduced versus interval number would be volatile with nar-
row peaks, and one that made its prediction based on a weighted average of
long-term and short-term CPU utilization but ignored any left-over work
from the previous interval. The success of these variants suggests that it
is important for such a strategy to balance performance and energy con-
siderations by taking into account both short-term and long-term proces-
sor utilization in its predictions. Too much consideration for short-term
utilization increases speed variance and thus energy consumption. Too
much consideration for long-term utilization makes the processor fall be-
hind during especially busy periods and thus decreases performance.

Using intervals to ensure that no work gets delayed more than a fixed
period of time is only one way to limit the performance impact. A bet-
ter way is to determine appropriate deadlines for all tasks and attempt to
delay no task past its deadline [12, 77]. However, no strategies using this
approach have been developed yet.

4.5 Load-change strategies when functional units can turn
off

Typically, if functional units can be turned off, the chip internals turn
them off automatically when unused. This makes software transition
strategies unnecessary and impossible to implement, but makes load-
change strategies tenable. One such load-change strategy is to use a com-
piler that clusters together several uses of a pipelined functional unit so
that the unit is on for less time. Another is, when compiling, to preferen-
tially generate instructions using functional units that do not get power-
managed. However, no research has been done yet on such load-change
strategies. It is unclear whether the power savings to be obtained from
these strategies would be significant.

4.6 Future hardware innovations

There are several things that researchers working on technological ad-
vances in hardware can do to increase the usefulness of software strategies
for processor energy reduction. Perhaps the most important is designing
the motherboard so that reduction in the energy consumption of the pro-
cessor yields a consequent large reduction in the energy consumption of
other components. In other words, motherboard components should have
states with low power consumption and negligible transition side effects
that are automatically entered when the processor is not presenting them
with work. Voltage scaling is not widely available, and needs to be made
so. Once this happens, the software strategies that anticipate this technol-
ogy can be put to good use. Finally, if hardware designers can keep the
time and energy required to make transitions between clock speeds low,
the savings from clock speed transition strategies will be even greater.

5 Wireless communication devices

5.1 Hardware features

Wireless communication devices are appearing with increasing fre-
quency on portable computers. These devices can be used for participat-
ing in a local or wide area wireless network, or for interacting with discon-
nected peripherals like a printer or mouse. They typically have five operat-
ing modes; in order of decreasing power consumption, these are transmit,
receive, idle, sleep, and off [32]. In transmit mode, the device is transmit-
ting data; in receive mode, the device is receiving data; in idle mode, it is
doing neither, but the transceiver is still powered and ready to receive or
transmit; in sleep mode, the transceiver circuitry is powered down, except
sometimes for a small amount of circuitry listening for incoming transmis-
sions. Typically, the power consumption of idle mode is not significantly
less than that of receive mode [73], so going to idle mode is not very use-
ful. Transitions between idle and sleep mode typically take some time. For
example, HP’s HSDL-1001 infrared transceiver takes about 10 to en-
ter sleep mode and about 40 to wake from it [34], AT&T’s WaveLAN
PCMCIA card and IBM’s infrared wireless LAN card each take 100 ms to
wake from sleep mode, and Metricom’s Ricochet wireless modem takes
5 seconds to wake from sleep mode [73].

Some devices provide the ability to dynamically modify their transmis-
sion power. Reducing transmission power decreases the power consump-
tion of the transmit mode; it also has the advantage of reducing the inter-
ference noise level for neighboring devices, leading to a reduction in their
bit error rates and enabling higher cell capacity. The disadvantage, how-
ever, is that when a device reduces its transmission power, it decreases the
signal to noise ratio of its transmissions, thus increasing its bit error rate.

Wireless device power consumption depends strongly on the distance
to the receiver. For instance, the wide-area ARDIS system, in which each
base station covers a large area, requires transmit power of about 40 W,
but the wide-area Metricom system, which uses many base stations each
serving a small area, requires mobile unit transmit power of only about
1 W [17]. Local-area networks also tend to provide short transmission
distances, allowing low power dissipation. For instance, the WaveLAN
PCMCIA card, meant for use in such networks, consumes only about
1.875 W in transmit mode [51]. Even smaller distances, such as within
an office or home, yield even smaller power requirements. For instance,
the HSDL-1001 infrared transceiver consumes only 55 mW in transmit
mode [34], and the CT-2 specification used for cordless telephones re-
quires less than 10 mW for transmission [17].

5.2 Transition strategies for entering sleep mode

Transition strategy issues for wireless communication devices entering
sleep mode are quite similar to those for hard disks, so the solutions pre-
sented for hard disks are generally applicable to them. However, some fea-
tures of wireless communication suggest two changes to the standard in-
activity threshold methods used with hard disks. First, because a wireless
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communication device does not have the large mechanical component a
hard disk has, the time and energy required to put it in and out of sleep
mode are generally much smaller. Further, the user is unlikely to know
when the unit is off or on unless some sort of monitor is installed, so users
should be unaware of start-up times unless they are unduly long. These
factors suggest a more aggressive energy management strategy such as us-
ing a much shorter inactivity threshold. Second, it may be necessary to
have wireless devices periodically exit sleep mode for a short period of
time to make contact with a server, so that the server does not decide the
unit is off or out of range and delete state information related to the con-
nection [52].

Experimental simulation has been used to evaluate the effect of some
transition strategies [73]. One simulation, which assumed a Ricochet mo-
dem was used only for the retrieval of electronic mail, considered a strat-
egy that put the modem to sleep whenever no mail was being retrieved,
and woke it up after a certain period of time to check for new mail. It
showed that using a period of about four minutes would reduce the en-
ergy consumption of the wireless device by about 20%, and only cause
mail to be, on average, two minutes old when it was seen by the user. An-
other simulation assumed a WaveLAN PCMCIA card was used only for
Web browsing, and considered the strategy of putting the wireless device
to sleep whenever a certain inactivity threshold passed with no outstanding
HTTP transactions. It showed that using a very small inactivity threshold
reduced power consumption of the device by 67% without noticeably in-
creasing the perceived latency of document retrieval.

5.3 Load-change strategies when sleep mode is used

One way to increase the amount of time a wireless device can spend
sleeping is simply to reduce network usage altogether. There are many
strategies for doing this, some examples of which are as follows. One
strategy is to compress TCP/IP headers; this can reduce their size by an
order of magnitude, thus reducing the wireless communication activity of
a mobile client [18]. Another strategy is to reduce the data transmission
rate or stop data transmission altogether when the channel is bad, i.e. when
the probability of a dropped packet is high, so that less transmission time is
wasted sending packets that will be dropped [83]. Of course, if data trans-
mission is ceased altogether, probing packets must be sent occasionally so
that the unit can determine when the channel becomes good again. Yet an-
other strategy is to have servers [60] or proxies [27] use information about
client machine characteristics and data semantics to provide mobile clients
with versions of that data with reduced fidelity and smaller size; this re-
duces the amount of energy mobile clients must expend to receive the data.
For example, a data server might convert a color picture to a black-and-
white version before sending it to a mobile client. A fourth strategy is to
design applications that avoid unnecessary communication, especially in
the expensive transmit direction.

Another way is to use a medium access protocol that dictates in ad-
vance when each wireless device may receive data. This allows each de-
vice to sleep when it is certain that no data will arrive for it. For example,
the 802.11 LAN standard has access points that buffer data sent to wire-
less devices and that periodically broadcast a beacon message indicating
which mobile units have buffered data. Thus, each wireless device only
has to be listening when it expects a beacon message, and if it discovers
from that message that no data is available for it, it may sleep until the
next beacon message [6]. Of course, strategies such as this either require
a global (broadcast) clock or closely synchronized local clocks. Similar
protocols, designed to increase battery life in one-way paging systems, in-
clude the Post Office Code Standardization Advisory Group (POCSAG)
protocol and Motorola’s FLEX protocol [54]. A different type of power-
conserving protocol, which does not require buffering access points and is
thus peer-to-peer, is LPMAC [55]. LPMAC divides time into fixed-length
intervals, and elects one terminal in the network the network coordinator
(NC). The NC broadcasts a traffic schedule at the beginning of each inter-
val that dictates when each unit may transmit or receive data during that

interval. Each interval ends with a short contention period during which
any unit may send requests for network time to the NC. Thus, each mobile
unit only needs be awake during the broadcast of the traffic schedule, and
may sleep until the next such broadcast if the schedule indicates that no
one will be sending data to it. This protocol does not require intermediate
buffering because data is buffered at the sending unit until the NC gives it
permission to send.

5.4 Transition strategies for changing transmission power

Many approaches to dynamically changing the transmission power in
wireless networks have been proposed. However, few of them were de-
signed with consideration for the battery lifetime of mobile units, being
meant solely to achieve goals like guaranteeing limits on signal to noise
ratio, balancing received power levels, or maximizing cell capacities [67].
Here we will focus on those strategies that at least address the battery life-
time issue. Of course, a strategy cannot consider battery lifetime alone,
but must balance the need for high battery lifetime with the need to pro-
vide reasonable cell capacity and quality of service.

A transition strategy to decide when to change power should should take
into account the consequences of reducing transmission power: increased
battery lifetime, lower bit error rate for neighbors (enabling higher cell ca-
pacities), and higher bit error rate for one’s own transmissions. Such a
strategy can be local, meaning that it accounts only for the needs of the
wireless device on which it is running, or global, meaning that it accounts
for the needs of other devices on the network. Global strategies seem most
appropriate considering that the decisions one wireless unit makes about
its transmission power and link bandwidth affect the other wireless units.
Local strategies have the advantage of being simpler to implement, es-
pecially in a heterogeneous environment where communication between
units in an attempt to cooperate is difficult. Global strategies, however,
need not require global communication; estimates of the effect of power
changes on interference with other units may be sufficient.

One suggested local transition strategy is to choose transmission power
at each moment based on the current quality of service required and the
current interference level observed, using a function analytically selected
to optimize battery lifetime. Simulations show that such an approach can
yield significant energy savings and no reduction in quality of service com-
pared to other schemes that do not consider battery lifetime, such as one
that attempts to always maintain a certain signal to noise ratio. The amount
of energy savings obtained decreases with increasing quality of service
required, since more required activity means less opportunity to reduce
transmission power and save energy [67].

The developers of that strategy also considered a global variant of
it, in which each mobile unit also considers the interference levels it
has observed in the past when making its decisions about transmission
power [67]. In this scheme, the only communication between mobile units
is indirect, via the noise they generate for each other with their transmis-
sions. Using such indirect communication makes implementation sim-
pler, since it requires no protocol for explicit communication of control
information. However, it does not allow the units to make intelligent dis-
tributed decisions, such as to use time-division multiple access, i.e. to take
turns transmitting, so as to minimize interference and maximize use of
cell capacity. Nevertheless, simulations indicate that even without explicit
communication the strategy seems to achieve reasonable global behavior.
One reason for this may be that when devices act independently to reduce
their power levels when interference makes transmission unworthwhile,
the machines will tend somewhat to take turns in transmitting. This is sim-
ilar to back-off strategies in Ethernet.

Other global strategies can be imagined that use explicit communication
of such things as quality of service needs and transmission power sched-
ules. Such explicit communication would allow mobile units to coordinate
their transmission power in an attempt to optimize overall battery lifetime
given reasonable overall goals for quality of service and cell capacity.
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5.5 Load-change strategies when transmission power can
change

When a wireless device transmits with reduced power, its bit error rate
increases. Load-change strategies can be used to mitigate the effect of this
increased bit error rate and thus enable the use of less transmission power.
One way to do this is to use more error correction code bits, although this
has the side effect of reducing effective data bandwidth by consuming ex-
tra bandwidth for the additional code bits. Another way is to request more
link bandwidth, to counter the effects of increased error correction and
more frequent retransmission of dropped packets.

So, a strategy for modifying transmission power can be made more ef-
fective by simultaneously effecting changes in the amount of error correc-
tion and link bandwidth used. For instance, suppose the needed quality of
service can be attained by transmitting with power , using error correc-
tion method , and consuming bandwidth , or by transmitting with
power , using error correction method , and consuming bandwidth

. Then, the strategy can choose among these two combined options
based on how they will influence battery lifetime and cell capacity.

Some researchers have suggested a global strategy that allows mobile
units in a network to optimize overall system utility by coordinating which
units will be transmitting when, what transmission power each unit will
use, and how much error correction each unit will use [50]. They consid-
ered only bit error rate and bandwidth seen by each user application in de-
termining system utility, but their model could be adapted to take battery
lifetime into account as well. Their system uses explicit communication,
but uses a hierarchically distributed algorithm to reduce the complexity,
control message bandwidth, and time required to perform the optimiza-
tion.

6 Display and Backlight

6.1 Hardware features

The display and backlight have few energy-saving features. This is un-
fortunate, since they consume a great deal of power in their maximum-
power states; for instance, on the Duo 280c, the display consumes a max-
imum of 0.75 W and the backlight consumes a maximum of 3.40 W [48].
The backlight can have its power reduced by reducing the brightness level
or by turning it off, since its power consumption is roughly proportional to
the luminance delivered [32]. The display power consumption can be re-
duced by turning the display off. It can also be reduced slightly by switch-
ing from color to monochrome or by reducing the update frequency. Re-
ducing the update frequency reduces the range of colors or shades of gray
for each pixel, since such shading is done by electrically selecting each
pixel for a particular fraction of its duty cycle. Generally, the only dis-
advantage of these low-power modes is reduced readability. However, in
the case of switches among update frequencies and switches between color
and monochrome, the transitions can also cause annoying flashes.

6.2 Transition strategies

Essentially the only transition strategy currently used to take advantage
of these low-power features is to turn off or down the backlight and display
after a certain period of time has passed with no user input. The reasoning
behind this strategy is that if the user has not performed any input recently,
then it is likely he or she is no longer looking at the screen, and thus the
reduced readability of a low-power mode is acceptable for the immediate
future. To lessen the effect of a wrong guess about such inactivity on the
part of the user, some machines do not shut the backlight off immediately
but rather make it progressively dimmer. In this way, if the user is actually
still looking at the screen, he or she gets a chance to indicate his or her pres-
ence before the entire screen becomes unreadable. One study found that
thanks to the use of low-power states, the backlights on some machines
consumed only 32–67% of maximum possible energy while running on
battery power [48].

A possible modification of this standard strategy is to automatically
readjust the inactivity threshold to make it a better predictor of user in-
activity. For example, if the user hits a key just as the backlight begins to
dim, such a strategy might increase the inactivity threshold on the assump-
tion that its current value is too short.

Another possible transition strategy is to switch the display to
monochrome when color is not being displayed, or to switch it to a lower
update frequency when the items displayed do not require a high update
frequency. The operating system might even switch to a lower-power
display mode when those parts of the screen making use of the current
display mode are not visually important to the user. For example, if the
only color used on the screen were in a window belonging to an applica-
tion not recently used, the operating system might switch the display to
monochrome. The use of such features would be most acceptable if such
transitions could be made unobtrusive, e.g. without a flash, and perhaps
even with progressive fading.

Other transition strategies become feasible when additional hardware is
present on the machine. For example, if a device can detect when the user
is looking at the screen, the system can turn off the display and backlight at
all other times. Such a device might consist of a light emitter and receiver
on the machine and a reflector on the forehead of the (unusually docile)
user. Or, it might be similar to those used by some video cameras to watch
where the user is looking in order to change focus. If a sensing device can
determine the ambient light level, the system can dim the backlight when
ambient light is sufficiently bright to see by [71].

6.3 Load-change strategies

Currently, there are no formal load-change strategies for reducing the
energy consumption of the display or backlight. However, it has been
suggested that using a light virtual desktop pattern rather than a dark one
can reduce the load on the backlight. This happens because lighter col-
ors make the screen seem brighter and thus encourage users to use lower
default backlight levels [44]. Furthermore, since most LCD’s are “nor-
mally white,” i.e. their pixels are white when unselected and dark when
selected [78], the display of light colors consumes marginally less power
than the display of dark colors. A similar strategy would be for the oper-
ating system or an application to decrease the resolution of a screen image
by only illuminating a certain fraction of its pixels.

6.4 Future hardware innovations

Researchers working on technological advances in display and back-
light hardware have many opportunities to make software power manage-
ment of these components more effective. Switching to low-power modes
could be made unobtrusive. If an ambient light sensor were available, the
operating system could automatically reduce the backlight level when am-
bient light brightened. Finally, as for all other components mentioned in
this paper, designers of display and backlight hardware should seek to in-
clude as many low-power modes as possible that provide reduced but rea-
sonable levels of functionality.

7 Other Components

7.1 Main memory

Main memory is generally implemented using DRAM with three
modes: active, standby, and off. In active mode, the chip is reading or
writing; in standby, it is neither reading nor writing but is maintaining
data by periodically refreshing it. As an example of the power consump-
tion in these states, 8 MB of EDO memory from Micron consumes about
1.65 mW in standby mode and 580 mW in active mode [58]. The only
transition strategy currently used to reduce memory energy makes use of
the off state: when it is determined that the entire system will be idle for
a significant period of time, all of main memory is saved to disk and the
memory system is turned off. The memory contents are restored when the
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system is no longer idle. When memory is saved in this manner, the ma-
chine state is said to be suspended; restoring memory is called resuming.
Load-change strategies for saving memory power have been discussed be-
fore in the context of load-change strategies for saving processor power:
they included using energy-aware compilers and using compact and effi-
cient operating system code. Such strategies reduce the load on the mem-
ory system by making application and system code more compact and ef-
ficient, thus permitting greater use of the standby state. They may also
convince the user to purchase a machine with less main memory, thus re-
ducing the energy consumption of the memory system.

In future machines, memory may be divided into banks, with each bank
able to turn on and off independently. Such capability broadens the abil-
ity of the operating system to manage memory energy. At times when the
memory working set could fit in a small amount of memory, unused mem-
ory could be turned off. If the contents of a bank of memory were not ex-
pected to be used for a long time, they could even be saved to disk. Note
that the expected period of idle time would have to be large to make up
for the significant energy and time consumed in saving and restoring such
memory. A related approach would be to compress, using standard data
compression methods, the contents of memory, and turn off the unused
banks; memory contents could be uncompressed either as needed or when
activity resumed.

7.2 Modem

A modem can be transmitting, receiving, idle, or off. Some modems
provide another state with power consumption between idle and off, called
wake-on-ring; in this state, the modem consumes just enough power to de-
tect an incoming call. MacOS uses no power saving strategies for the mo-
dem, relying on the user or an application to turn the modem on and off
explicitly [48]. Presumably, this is because the operating system has no
idea when data will arrive at the modem, and needs to make sure the mo-
dem is enabled whenever such data arrives so that it is not lost. A better
strategy would be to have the operating system, or even the modem itself,
switch the modem to the off or wake-on-ring state whenever there is no
active connection to the modem.

7.3 Sound system

The sound system is another miscellaneous consumer of energy that can
be active, idle, or off. MacOS uses an inactivity timer to decide when to
turn the sound card off [48]. Another possibility is to turn the sound card
off whenever a sound request from an application that triggered it turning
on is completed; this has the disadvantage of increasing sound emission
latency when one sound closely follows another.

8 Overall Strategies

It is possible to energy manage the entire computer as if it were a single
component. When the computer is unneeded now and probably for some
time, the operating system may put the entire system in a low-power state.
Just how low-power a state depends on how long the system is expected
to be idle since, in general, the lower the power of the state, the greater the
time to return the system to full functionality.

Transition strategies for entering low-power system states generally use
inactivity thresholds. If the user and all processes have been idle for some
set period of time, the next lower system state is entered. APM 1.1 [37],
a standard for energy management in computers, allows this decision-
making process to be enhanced in at least two ways. First, the user may
be allowed to make an explicit request to switch to a lower-power system
state. Second, certain applications may be consulted before making a tran-
sition to a lower-power system state, so they can reject the request or make
internal preparations for entering such a state.

Several low-power system states can be devised, and some examples
of these are defined in APM 1.1. In the APM standby state, most devices

are in a low-power state but can return to their full-power states quickly.
For example, the disk is spun down and the backlight is off. In the APM
suspend state, all devices are in very low-power states and take a relatively
long time to return to functionality. For instance, the contents of memory
are saved to disk and main memory is turned off. In the APM off state,
the entire machine is off; in particular, all memory contents are lost and a
possibly long boot period is needed to return to functionality.

Note that the sequence with which low power states are entered is sig-
nificant. For example, if the memory is copied to the disk before the disk
is spun down, then the machine, or at least the memory, can be shut down
without spinning up the disk to establish a checkpoint.

There are both a disadvantage and an advantage to energy managing
the system as a whole instead of separately managing each component.
The disadvantage is that it requires all components’ energy management
be synchronized. Thus, if one component is still active, some other in-
active component may not get turned off. Also, if it takes microseconds
to determine the idleness of one component but seconds to determine the
idleness of another, the first component will not be energy-managed as ef-
ficiently as possible. The advantage of treating the system as a single com-
ponent is simplicity. It is simpler for the operating system to make a sin-
gle prediction about the viability of entering a system state than to make
separate predictions for each component state. It is simpler for an applica-
tion to give hints to the operating system about when state transitions are
reasonable, and to accept and reject requests by the operating system to
make such transitions. Also, it is simpler for the user, if he or she is called
upon to make energy management decisions, to understand and handle a
few system state transitions than to understand and handle an array of indi-
vidual component transitions. For these reasons, an operating system will
typically do both component-level and system-level energy management.
For example, APM 1.1 has a system state called enabled, in which individ-
ual component energy management is performed. After extended periods
of idleness, when most components can be managed uniformly, different
low-power system states can be entered.

9 Conclusions

Computer hardware components often have low-power modes. These
hardware modes raise software issues of three types: transition, load-
change, and adaptation. Several solutions to these issues have been im-
plemented in real portable computers, others have been suggested by re-
searchers, and many others have not yet been developed. Generally, each
solution targets the energy consumption of one component.

The disk system has been the focus of many software solutions. Cur-
rently, the main hardware power-saving feature is the ability to turn the
motor off by entering sleep mode. The main existing software solutions
consist of entering sleep mode after a fixed period of inactivity and caching
disk requests to reduce the frequency with which the disk must be spun
up. Other technologies may improve the energy consumption of the stor-
age system further, but present new challenges in file system management.
These technologies include flash memory, which can function either as a
secondary storage cache or a secondary storage unit, and wireless com-
munication, which can make remote disks appear local to a portable com-
puter.

New low-power modes for the CPU also present software challenges.
Currently, the main hardware energy-saving feature is the ability to turn
the CPU off, and the main existing software solution is to turn the CPU
off when all processes are blocked. Other software strategies include us-
ing energy-aware compilers, using compact and efficient operating system
code, and forcing processes to block when they appear to be busy-waiting.
An energy-saving feature that may soon appear in portable computers is
the ability to reduce the processor voltage by simultaneously reducing the
clock speed. Proposed solutions that take advantage of this feature have
generally been interval-based, attempting to complete all processor work
by the end of each interval. However, there may be effective non-interval-
based solutions as well.
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The wireless communication device is appearing with increasing fre-
quency in portable computers, and is thus an important recent focus of
software energy management research. Commonly, the device is put in
sleep mode when no data needs to be transmitted or received. To make
this happen often, various techniques can be used to reduce the amount of
time a device needs to be transmitting or receiving, including the adoption
of protocols that let devices know in advance when they can be assured
of no incoming data. Some new devices have the ability to dynamically
change their transmission power; given this, a device needs a strategy to
continually decide what power level is appropriate given quality of service
requirements, interference level, and needs of neighboring units.

The display unit, including the backlight, typically consumes more
power than any other component, so energy management is especially im-
portant for it. Power-saving modes available include dimming the back-
light, turning the display and/or backlight off, switching from color to
monochrome, and reducing the update frequency. Current system strate-
gies only take advantage of the former two abilities, dimming the backlight
and eventually turning off the display unit after a fixed period of inactivity.
Other software strategies can be envisioned, especially if future hardware
makes transitions to other low-power modes less obtrusive.

Other components for which software power management is possible
include main memory, the modem, and the sound system. It is also pos-
sible to power manage the entire system as if it were a single component,
bringing all components simultaneously to a low-power state when gen-
eral inactivity is detected. Such system-level power management is sim-
ple to implement and allows simple communication with applications and
users about power management; however, it should not completely sup-
plant individual component power management because it requires syn-
chronization of all components’ power management.

To conclude, there are a few things we believe developers of future so-
lutions to computer energy reduction should keep in mind.

1. A hardware feature is rarely a complete solution to an energy con-
sumption problem, since software modification is generally needed
to make best use of it.

2. Energy consumption can be reduced not only by reducing the power
consumption of components, but also by introducing lower-power,
lower-functionality modes for those components and permitting ex-
ternal control over transitions between those modes.

3. Standard operating system elements may need to be redesigned when
dealing with low-power components that have different performance
characteristics than the components they replace.

4. On a portable computer, the main goal of a component energy man-
agement strategy is to increase the amount of work the entire system
can perform on one battery charge; thus, evaluation of such a strategy
requires knowledge of how much energy each component consumes.

5. Evaluation of a power management strategy should take into account
not only how much energy it saves, but also whether the trade-off
it makes between energy savings and performance is desirable for
users.

6. Seemingly independent energy management strategies can interact.
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