
Symbolic Automata: The Toolkit

Margus Veanes and Nikolaj Bjørner

Microsoft Research, Redmond, WA

Abstract. The symbolic automata toolkit lifts classical automata anal-
ysis to work modulo rich alphabet theories. It uses the power of state-
of-the-art constraint solvers for automata analysis that is both expres-
sive and efficient, even for automata over large finite alphabets. The
toolkit supports analysis of finite symbolic automata and transducers
over strings. It also handles transducers with registers. Constraint solving
is used when composing and minimizing automata, and a much deeper
and powerful integration is also obtained by internalizing automata as
theories. The toolkit, freely available from Microsoft Research1, has re-
cently been used in the context of web security for analysis of potentially
malicious data over Unicode characters.

Introduction. The distinguishing feature of the toolkit is the use and oper-
ations with symbolic labels. This is unlike classical automata algorithms that
mostly work assuming a finite alphabet. Adtantages of a symbolic representa-
tion are examined in [4], where it is shown that the symbolic algorithms con-
sistently outperform classical algorithms (often by orders of magnitude) when
alphabets are large. Moreover, symbolic automata can also work with infinite
alphabets. Typical alphabet theories can be arithmetic (over integers, rationals,
bit-vectors), algebraic data-types (for tuples, lists, trees, finite enumerations),
and arrays. Tuples are used for handling alphabets that are cross-products of
multiple sorts. In the following we describe the core components and functional-
ity of the tool. The main components are Automaton〈T 〉, basic automata opera-
tions modulo a Boolean algebra T ; SFA〈T 〉, symbolic finite automata as theories
modulo T ; and SFT〈T 〉, symbolic finite transducers as theories modulo T . We
illustrate the tool’s API using code samples from the distribution.

Automaton〈T 〉. The main building block of the toolkit, that is also defined as
a corresponding generic class, is a (symbolic) automaton over T : Automaton〈T 〉.

The type T is assumed to be equipped with effective Boolean operations over
T : ∧, ∨, ¬, ⊥, is⊥ that satisfy the standard axioms of Boolean algebras, where
is⊥(ϕ) checks if a term ϕ is false (thus, to check if ϕ is true, check is⊥(¬ϕ)).
The main operations over Automaton〈T 〉 are ∩ (intersection), ∪ (union) { (com-
plementation), A ≡ ∅ (emptiness check). As an example of a simple symbolic
operation consider products: when A,B are of type Automaton〈T 〉, then A ∩ B
has the transitions 〈(p, q), ϕ∧ψ, (p′, q′)〉 for each transition 〈p, ϕ, p′〉 ∈ A, and

1 The binary release is available from http://research.microsoft.com/automata.

〈q, ψ, q′〉 ∈ B. Infeasible and unreachable transitions are pruned by using the
is⊥ tester. Note that Automaton〈T 〉 is also a Boolean algebra (using the op-
erations ∩,∪, {,≡ ∅). Consequently, the tool supports building and analyzing
nested automata Automaton〈Automaton〈T 〉〉.

The tool provides a Boolean algebra solver CharSetSolver that uses specialized
BDDs (see [4]) of type CharSet. This solver is used to efficiently analyze .Net
regexes with Unicode character encoding. The following code snippet illustrates
its use, as well as some other features like visualization.

CharSetSolver solver = new CharSetSolver(CharacterEncoding.Unicode); // charset solver
string a = @"^[A-Za-z0-9]+@(([A-Za-z0-9\-])+\.)+([A-Za-z\-])+$"; // .Net regex
string b = @"^\d.*$"; // .Net regex
Automaton<CharSet> A = solver.Convert(a); // create the equivalent automata
Automaton<CharSet> B = solver.Convert(b);
Automaton<CharSet> C = A.Minus(B, solver); // construct the difference
var M = C.Determinize(solver).Minimize(solver); // determinize then minimize the automaton
solver.ShowGraph(M, "M.dgml"); // save and visualize
string s = solver.GenerateMember(M); //generate some member, e.g. "HV7@9.2.8.-d2bVu0YH.z1f.R"

The resulting graph from line 8 is shown below.

 0 7

-|[A-Z]|[a-z]

4

[0-9]

5 .

2[A-Z]|[a-z]

[0-9]|[A-Z]|[a-z]

3@ -|[0-9]|[A-Z]|[a-z]

-|[0-9]|[A-Z]|[a-z]

. -|[A-Z]|[a-z]

[0-9]

SFA〈T 〉. A symbolic finite automaton SFA〈T 〉 is an extension of Automaton〈T 〉
with a logical evaluation context of an SMT (Satisfiability Modulo Theories)
solver that supports operations that go beyond mere Boolean algebraic oper-
ations. The main additional solver operations are: assert (to assert a logical
formula), push/pop (to manage scopes of assertions), get model : T →M to ob-
tain a model for a satisfiable formula. A model M is a dictionary from the free
constants in the asserted formulas to values. The method assert theory takes an
SFA〈T 〉 A and adds the theory of A to the solver. It relies on a built-in theory
of lists and uses it to define a symbolic language acceptor for A that is a unary
relation symbol accA such that accA(s) holds iff s is accepted by A.

The following code snippet illustrates the use of SFAs together with Z3 as
the constraint solver. The class Z3Provider is a conservative extension of Z3 that
extends its functionality for use in the automata toolkit. The sample is similar (in
functionality) to the one above, but uses the Z3 Term type rather than CharSet
for representing predicates over characters.

Z3Provider Z = new Z3Provider();
string a = @"^[A-Za-z0-9]+@(([A-Za-z0-9\-])+\.)+([A-Za-z\-])+$"; // .Net regex
string b = @"^\d.*$"; // .Net regex
var A = new SFAz3(Z, Z.CharacterSort, Z.RegexConverter.Convert(a)); // SFA for a
var B = new SFAz3(Z, Z.CharacterSort, Z.RegexConverter.Convert(b)); // SFA for b
A.AssertTheory(); B.AssertTheory(); // assert both SFA theories to Z3
Term inputConst = Z.MkFreshConst("input", A.InputListSort); // declare List<char> constant
var assertion = Z.MkAnd(A.MkAccept(inputConst), // get solution for inputConst

Z.MkNot(B.MkAccept(inputConst))); // accepted by A but not by B
var model = Z.GetModel(assertion, inputConst); // retrieve satisfying model
string input = model[inputConst].StringValue; // the witness in L(A)-L(B)

SFA acceptors can be combined with arbitrary other constraints. This feature
is used in Pex2 for path analysis of string manipulating .Net programs that use
regex matching in branch conditions.

SFT〈T 〉. A symbolic finite transducer over labels in T (SFT) is a finite state
symbolic input/output* automaton. A transition of an SFT〈T 〉 has the form
(p, ϕ, out∗, q) where ϕ is an input character predicate and out∗ is a sequence of
output terms that may depend on the input character. For example, a transition
(p, x > 10, [x+ 1, x+ 2], q) means that, in state p, if the input symbol is greater
than 10, then output x+ 1 followed by x+ 2 and continue from state q.

An SFT is a generalization of a classical finite state transducer to operate
modulo a given label theory. The core operations overs SFTs are the following:
union T ∪ T , (relational) composition T ◦ T , domain restriction T � A, sub-
sumption T � T and equivalence T ≡ T . These operation form (under some
conditions, such as single-valuedness of SFTs) a decidable algebra over SFTs.
The theory and the algorithms of SFTs are studied in [7].

Bek is a domain specific language for string-manipulating functions. It is to
SFTs as regular expressions are to SFAs. The toolkit includes a parser for Bek
as well as customized visualization support using the graph viewer of Visual
Studio. Key scenarios and applications of Bek for security analysis of sanitation
routines are discussed in [3]. The following snippet illustrates using the library for
checking idempotence of a decoder P (it decodes any consecutive digits d1 and d2
between ‘5’ and ‘9’ to their ascii letter dec(d1, d2), e.g. dec(‘7’, ‘7’) = ‘M’, thus
P ("7777") = "MM". The Bek program decoder is first converted to an equivalent
SFT (where the variable b is eliminated).

string bek = @"program P(input) { // The Bek program P
return iter(c in input) [b := 0;] { // P decodes certain digit pairs

case (b == 0): if ((c>=’5’)&&(c<=’9’)) { b:=c; } else { yield(c); }
case (true): if ((c>=’5’)&&(c<=’9’)) { yield(dec(b,c));b:=0; } else { yield(c); }

} end { case (b != 0): yield (b);};}";
Z3Provider Z = new Z3Provider(); // analysis uses the Z3 provider
var f = BekConverter.BekToSTb(Z, bek).ToST().Explore(); // convert P to an SFT f
var fof = f + f; // self-compostion of f
if (!f.Eq1(fof)) { // check idempotence of f

var w = f.Diff(fof); // find a witness where f and fof differ
string input = w.Input.StringValue; // e.g. "5555"
string output1 = w.Output1.StringValue; // e.g. f("5555") == "77"
string output2 = w.Output2.StringValue; } // e.g. f(f("5555")) == "M"

Users and tool availability. This is the first public release of the toolkit. It has
so far been used at Microsoft, and part of the tool (Rex) is also an integrated part
of the parameterized unit testing tool Pex. Applications that illustrate some key
usage scenarios, are also used from the web services http://www.rise4fun.com/rex
and http://www.rise4fun.com/bek. The tool has been used in numerous exper-
iments, some of which are described in [4, 3], that show scalability and applica-
bility to concrete real-life scenarios.

2 http://research.microsoft.com/pex/

Tool Overview. An overview of the toolkit is illustrated in the diagram below.
The core components are in bold. Arrows indicate dependencies between the
components. They are labeled by the main relevant functionality.

Rex

Symbolic

Automata

Bek

SFTs

SFA

Algebra

SFAs

CharSet

Solver
SFT Algebra

Regex

analysis

Representation

Analysis

Parsing

Analysis/composition

Domain

analysis

Theory

analysis

Symbolic exploration/representation/analysis/optimization

Analysis/composition

Regex

support
Z3

AGL

.Net

Reg.

Expr

Domain

operations

Constraint

solving

Pex

Graph layout

Code

gen.
C#/C/...

Related tools. String analysis has recently received increased attention, with
several automata-based analysis tools. We make a systematic comparison of re-
lated techniques in [4]. Tools include the Java String Analyzer [1], with the
dk.brics.automaton library as a constraint solver for finite alphabets. It com-
presses contiguous character ranges. Hampi [5] solves bounded length string con-
straints over finite alphabets using a reduction to bit-vectors. Kaluza extends
Hampi to systems of constraints with multiple variables and concatenation [6].
MONA [2] uses MTBDDs for encoding transitions. BDDs are used in the PHP
string analysis tool in [8].

References

1. Aske Simon Christensen, Anders Møller, and Michael I. Schwartzbach. Precise
Analysis of String Expressions. In SAS, 2003.

2. J.G. Henriksen, J. Jensen, M. Jørgensen, N. Klarlund, B. Paige, T. Rauhe, and
A. Sandholm. Mona: Monadic second-order logic in practice. In TACAS’95, volume
1019 of LNCS, 1995.

3. P. Hooimeijer, B. Livshits, D. Molnar, P. Saxena, and M. Veanes. Fast and precise
sanitizer analysis with bek. In USENIX Security Symposium, August 2011.

4. Pieter Hooimeijer and Margus Veanes. An evaluation of automata algorithms for
string analysis. In VMCAI’11, volume 6538 of LNCS, pages 248–262. Springer, 2011.

5. Adam Kiezun, Vijay Ganesh, Philip J. Guo, Pieter Hooimeijer, and Michael D.
Ernst. HAMPI: a solver for string constraints. In ISSTA, 2009.

6. Prateek Saxena, Devdatta Akhawe, Steve Hanna, Feng Mao, Stephen McCamant,
and Dawn Song. A Symbolic Execution Framework for JavaScript, Mar 2010.

7. M. Veanes, P. Hooimeijer, B. Livshits, D. Molnar, and N. Bjørner. Symbolic finite
state transducers: Algorithms and applications. In POPL 2012, Jan 2012.

8. Fang Yu, Muath Alkhalaf, and Tevfik Bultan. An automata-based string analysis
tool for PHP. In TACAS’10, LNCS. Springer, 2010.

A Bek

Bek is a domain specific language for writing common string functions. With
Bek, you can answer questions like: Do these two programs output the same
strings? Given a target string, is there an input string such that the program
produces the target string? Does the composition of two programs produce a
desired result? Does the order of composition matter? Bek has been specifically
tailored to capture common idioms in string manipulating functions.

A.1 UTF8Encode example

Bek includes a fairly complete set of arithmetic operations that are, by default,
over 16-bit bit-vectors, since the most common case of analysis is over strings
that use UTF-16 encoding. The example shows a concrete representation of a
UTF8 encoding routine written in Bek. It takes a UTF-16 encoded string and
transforms it into the corresponding UTF8 encoded string. The encoder “raises
an exception” when invalid surrogate pairs are detected. These exception cases
define, in terms of the generated SFTs, partial behavior, i.e., that the input is
not accepted by the SFT.

// UTF8 encoding from UTF16 strings, hs is the lower two bits of the previous high surrogate
// this encoder raises an exception when an invalid surrogate is detected

program UTF8Encode(input){
return iter(c in input)[HS:=false; hs:=0;]
{
case (HS): // the previous character was a high surrogate

if (!IsLowSurrogate(c)) { raise InvalidSurrogatePairException; }
else {

yield ((0x80|(hs << 4))|((c>>6)&0xF), 0x80|(c&0x3F));
HS:=false; hs:=0;

}
case (!HS): // the previous character was not a high surrogate

if (c <= 0x7F) { yield(c); } // one byte: ASCII case
else if (c <= 0x7FF) { // two bytes

yield(0xC0 | ((c>>6) & 0x1F), 0x80 | (c & 0x3F)); }
else if (!IsHighSurrogate(c)) {

if (IsLowSurrogate(c)) { raise InvalidSurrogatePairException; }
else { //three bytes

yield(0xE0| ((c>>12) & 0xF), 0x80 | ((c>>6) & 0x3F), 0x80 | (c&0x3F));} }
else {

yield (0xF0|(((1+((c>>6)&0xF))>>2)&7), (0x80|(((1+((c>>6)&0xF))&3)<<4))|((c>>2) & 0xF));
HS:=true; hs:=c&3; }

} end {
case (HS): raise InvalidSurrogatePairException;
case (true): yield();
};
}

The following code is a unit test from the automata toolkit. Assume that the
above Bek program is in the file "UTF8Encode.bek". The code does the following.
First, it converts the Bek program into a symbolic transducer stb (that allows
branching conditions in rules). It then eliminates the registers hs and HS by fully
exploring stb. Then the domain of the resulting sft is restricted with the regular
expression that excludes the empty input string. The theory of the resulting sft
is asserted as a background theory extension of the solver. New uninterpreted

constants are defined for input and output lists of the sft. Then the Z3 provider
is used to generate (50) solutions. Old solutions are pruned from iterated calls
to the solver.

public void TestUTF8Encode() {
Z3Provider solver = new Z3Provider();
var stb = BekConverter.BekFileToSTb(solver, "UTF8Encode.bek");
var sft = stb.Explore();
//sft.ShowGraph(); //saves the sft in DGML format and opens it in Visual Studio.

var restr = sft.ToST().RestrictDomain(".+");
restr.AssertTheory();

Term inputConst = solver.MkFreshConst("input", restr.InputListSort);
Term outputConst = solver.MkFreshConst("output", restr.OutputListSort);

solver.AssertCnstr(restr.MkAccept(inputConst, outputConst));

//validate correctness for some values against the actual UTF8Encode
int K = 50;
for (int i = 0; i < K; i++) {

var model = solver.GetModel(solver.True, inputConst, outputConst);
string input = model[inputConst].StringValue;
string output = model[outputConst].StringValue;

Assert.IsFalse(string.IsNullOrEmpty(input));
Assert.IsFalse(string.IsNullOrEmpty(output));

byte[] encoding = Encoding.UTF8.GetBytes(input);
char[] chars = Array.ConvertAll(encoding, b => (char)b);
string output_expected = new String(chars);

Assert.AreEqual<string>(output_expected, output);

// exclude this solution, before picking the next one
solver.AssertCnstr(solver.MkNeq(inputConst, model[inputConst].Value));

}
}

The whole unit test takes a few seconds to complete. In this case the unit
test simply tests on 50 random samples that the encoder does not differ from
the built-in implementation.

A.2 Bek on Rise4Fun.com

The web-site http://rise4fun.com/bek illustrates several examples of Bek pro-
grams. It runs the Symbolic Automata Toolkit with the Bek extensions and
converts Bek programs into ECMA script (Java script) and also shows a graph-
ical representation of an graph representation of the transducer.

B Rex on Rise4Fun.com

The web-site http://rise4fun.com/rex illustrates several examples of Rex as a
game. The game is to guess a secret regular expression. The user enters a candi-
date expression, and the Symbolic Automata Toolkit is used to find strings that
are (1) accepted by both languages (if any), (2) accepted by one and rejected by
the other (if any), and (3) rejected by both languages.

