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Abstract. Symbolic transducers are useful in the context of web secu-
rity as they form the foundation for sanitization of potentially malicious
data. We define Symbolic Tree Transducers as a generalization of Regular
Transducers as finite state input-output tree automata with logical con-
straints over a parametric background theory. We examine key closure
properties of Symbolic Tree Transducers and we develop a composition
algorithm and an equivalence decision procedure for linear single-valued
transducers.

1 Introduction

Several applications, ranging from web-sanitizers, XML transformations to gene-
ric functional programs, rely on finite state machines that transform strings or
trees into strings or trees. Such state machines can conveniently be captured
by tree transducers. This work develops symbolic tree transducers (STTs) that
are defined modulo a background theory. STTs are easily seen more expressive
than tree transducers defined over finite alphabets, yet our main results estab-
lish that composition of STTs and equivalence checking for linear single valued
STTs is computable, modulo the background theory. Symbolic transducers are
also practically useful for exploiting efficient symbolic solvers when performing
basic automata-theoretic transformations. Prior work [35, 19] on symbolic string
recognizers and transducers takes advantage of this observation. We here inves-
tigate the case of the more expressive class of tree transducers. The complexity
of decision problems are highly sensitive to the expressive power given to tree
transducers and we here identify a class of top-down transducers that admit
decidable equivalence checking modulo decidability of the symbolic background
component.

2 Preliminaries

We use basic notions from classical automata theory [20], classical logic, and
model theory [18]. Our notions regarding tree transducers are consistent with [15].
For finite state (string) transducers a brief introduction is given in [36].



2.1 Background Structure

We work modulo a background structure U over a language that is multi-sorted.
We also write U for the universe (domain) of U . For each sort σ, Uσ denotes a
nonempty sub-domain of U . There is a Boolean sort bool, Ubool = {true, false},
and the standard logical connectives are assumed to be part of the background.
Terms are defined by induction as usual and are assumed to be well-sorted.
Function symbols with range sort bool are called relation symbols. Boolean
terms are called formulas or predicates. A term without free variables is ground.

We use parameterized algebraic sorts to represent labeled trees. An algebraic
sort is associated with a finite collection of constructors and accessors. In partic-
ular, we use the sort tk〈σ〉 to denote the set of σ-labeled k-ary trees, for k ≥ 1,
that is associated with the constructors

f : σ × t
k〈σ〉 × · · · × t

k〈σ〉 → t
k〈σ〉, ε : tk〈σ〉,

for constructing a nonempty tree and an empty tree respectively. The accessors
of tk〈σ〉 are the subtree accessors 1, . . . , k : tk〈σ〉 → t

k〈σ〉 and the label accessor
0 : tk〈σ〉 → σ. For all t0 : σ, ti : t

k〈σ〉, 1 ≤ i ≤ k, i(f(t0, t1, . . . , tk)) = ti. Note
that constructors have term interpretation, thus, for all t, u : t〈σ〉,

t = u ⇔ t = u = ε ∨ t 6= ε ∧ u 6= ε ∧
k
∧

i=0

i(t) = i(u).

A position is a sequence of accessors. We write t|π for the subterm of t at position
π, e.g., f(a, f(b, t, u), v)|12 = u. We write t[π ← v] for replacing the occurrence
of the subterm at position π in t by v, e.g.,

f(a, ε, f(b, ε, ε))[22← v] = f(a, ε, f(b, ε, v))

We often omit k from t
k〈σ〉. We write l〈σ〉 for the σ-list sort t1〈σ〉. We use

the notation [e1, e2, . . . , en|t] for the list f(e1, f(e2, . . . f(en, t))) and we write
[e1, e2, . . . , en] when t = ε.

The trace ending in tree position π of a tree t or a π-trace of t is the list of
labels from the root of t up to π, e.g., if t = f(a, ε, f(b, f(c, ε, ε), ε)) then the
22-trace of t is [a, b], the 211-trace of t is [a, b, c], the ε-trace of t is ε.

2.2 Top-down tree transducers

A top-down tree transducer describes a transformation function from trees in
a given input domain into trees in a given output domain. Several equivalent
formal definitions are possible. Typically, the rules specify how an input tree is
transformed through a recursive descent over the structure of the input domain.
Here, trees are terms of sort t〈σ〉 of a given label sort σ. The following definition
is tailored to a generalization for symbolic tree transducers introduced below. We
write t[x1, . . . , xk] to indicate that all free variables in t are among x1, . . . , xk
distinct variables, and we write t[t1, . . . , tk] for substituting xi in t by ti for
1 ≤ i ≤ k. The term t is linear if each xi occurs at most once in t.



Definition 1. A (top-down) tree transducer from t〈ι〉 to t〈o〉 is a tuple (Q, q0, R)
where Q is a finite set of unary constructors q : t〈ι〉 → t〈o〉, called states, q0 ∈ Q
is the initial state, R is a set of rules of the form

q(ε)→ e, q(f(a, y1, . . . , yk))→ u[q1(y1), . . . , qk(yk)]

where e : t〈o〉 and a : ι are ground terms, yi : t〈ι〉 are distinct variables,
u[x1, . . . , xk] : t〈o〉 is a term that does not contain states, and q, q1, . . . , qk ∈ Q.
Given a rule l→ r, l is the left-hand side and r the right-hand side of the rule.

Tree transducers do not have explicit final states, since using a rule q(ε) −→ ε is
effectively equivalent to declaring the state q as a final state. We write At〈ι〉/t〈o〉

for a tree transducer from t〈ι〉 to t〈o〉. A tree transducer with epsilon moves
may additionally have rules of the form p(x) → q(x) where p and q are states
and x is a variable. A rule is linear if its right-hand side is linear and A is linear
if all of its rules are linear. A is deterministic if it has no epsilon moves and no
two rules with overlapping left-hand sides.

Although Definition 1 is specialized for labeled trees with fixed arity and
a single nonempty constructor, this does not cause any loss of generality and
simplifies the presentation technically. For example, a term f(n, t1, t2) of sort
t
2〈int〉, where n is a fixed integer value, can be seen as a representation for
fn(t1, t2) for some binary constructor fn. A key distinction from a standard
definition of tree transducers is that the universes of input labels (U ι) and output
labels (Uo) may be infinite.

The definition allows nondeterminism and does not require the rules to be
total. While for certain purposes it is sufficient that tree transducers are de-
terministic and total by definition [15], both nondeterminism and partiality of
the rules in Definition 1 play an important role in the context of symbolic tree
transducers, as discussed below.

We say that a ground term or a tree t is basic (with respect to a tree trans-
ducer A) if it does not contain any states from A. The transformation or trans-
duction induced by a tree transducer At〈ι〉/t〈o〉 is a function TA from basic
trees of sort t〈ι〉 to sets of basic trees of sort t〈o〉. The definition of TA is a
direct generalization of the standard definition: TA(t) is the set of all basic trees
modulo U in the closure of {q0(t)} under the rules of A.

Definition 2. A tree transducer A is single-valued if |TA(t)| ≤ 1 for all t.

3 Symbolic tree transducers

In this section we introduce an extension of tree transducers through a sym-
bolic encoding of labels by predicates. The main advantage of the extension is
succinctness and modularity with respect to the background theory of labels.

Definition 3. A symbolic tree transducer (STT) from t〈ι〉 to t〈o〉 is a tuple
(Q, q0, R) with Q as a finite set of states, q0 ∈ Q as the initial state, and R as a



finite set of (guarded) rules

q(ε) −→ e, q(f(x, y1, . . . , yk))
ϕ[x]
−−→ u[x, q1(y1), . . . , qk(yk)]

where e is a basic ground term, x is a variable, yi, for 1 ≤ i ≤ k, are distinct
variables, u[x, x1, . . . , xk] is a basic term, q, q1, . . . , qk ∈ Q, and ϕ[x] is a predicate
called the guard of the rule.

A guarded rule ρ = q(f(x, y1, . . . , yk))
ϕ[x]
−−→ u[x, q1(y1), . . . , qk(yk)] denotes the

set of rules

[[ρ]]
def

= {q(f(a, y1, . . . , yk)) −→ u[a, q1(y1), . . . , qk(yk)] | a ∈ U
ι, ϕ[a] holds}

Thus [[ρ]] may be infinite when U ι is infinite. Given an STT A = (Q, q0, R)
we write [[A]] for the tree transducer (Q, q0,∪{[[ρ]] | ρ ∈ R}) and TA for T[[A]].
An STT A is linear (resp. single-valued, deterministic) if [[A]] is linear (resp.
single-valued, deterministic). Note that the right-hand sides of rules of a linear
STT are allowed to contain multiple occurrences of the input label variable x.
In particular, all STTs over lists are linear.

In the following examples, all STTs are single-valued and linear. The first
example illustrates some simple STTs over t

2〈int〉. The point is to illustrate
how global STT properties depend on the theory of labels.

Example 1. Let the input and the output domains be t
2〈int〉. Swap is an STT

that swaps the left and the right subtrees if the label is non-zero. Neg is an STT
that multiplies all labels by -1, Double multiplies labels by 2. Cut is an STT that
cuts the left subtree y1 of f(x, y1, y2) when x > 0 and cuts the right subtree y2
when x < 0.

Swap = ({q}, q, {q(ε) −→ ε, q(f(x, y1, y2))
x 6=0
−−→ f(x, q(y2), q(y1)),

q(f(x, y1, y2))
x=0
−−→ f(x, q(y1), q(y2))})

Neg = ({q}, q, {q(ε) −→ ε, q(f(x, y1, y2))
true
−−→ f(−x, q(y1), q(y2))})

Double = ({q}, q, {q(ε) −→ ε, q(f(x, y1, y2))
true
−−→ f(2x, q(y1), q(y2))})

Cut = ({q}, q, {q(ε) −→ ε, q(f(x, y1, y2))
x>0
−−−→ f(x, ε, q(y2)),

q(f(x, y1, y2))
x<0
−−−→ f(x, q(y1), ε)

q(f(x, y1, y2))
x=0
−−→ f(x, q(y1), q(y2))})

Note that global properties such as commutativity and idempotence of the STTs
clearly depend on the theory of labels, e.g., that multiplication by a positive
number preserves polarity, implying in this case for example that Swap and Neg
commute, Cut and Double commute, and Cut is idempotent. Note also that
none of the examples can be expressed as a finite tree transducer. Our results
about composition and equivalence checking for STTs, that are discussed in the
below sections, allow to establish equivalences, such as Cut is equivalent to Swap
followed by Neg,Cut, then finally Swap. The equivalence is modulo the theory
of arithmetic that establishes logical equivalences, such as −x < 0 ≡ x > 0. �



The following example illustrates a nontrivial use of the label theory. The
STT Encode in the example represents the string sanitizer AntiXSS.EncodeHtml
from version 2.0 of the Microsoft AntiXSS library. The sanitizer transforms an
input string into an Html friendly format. For each character x in the input
string, either x is kept verbatim or encoded through numeric Html escaping.
The example can be extended to be part of a tree transducer over abstract
syntax trees of Html where certain parts of the tree (corresponding to strings)
are encoded using Encode.

Example 2. The example illustrates a single-state int-list STT Encodel〈int〉/l〈int〉

that transforms an input list of characters represented by positive integers, into
an encoded, possibly longer, list of characters. We assume that ‘...’ below rep-
resents the integer encoding of the given fixed (ASCII) character, e.g. ‘a’ = 97
and ‘z’ = 122. Let ϕ[x] be the following linear arithmetic formula:

(‘a’ ≤ x ≤ ‘z’) ∨ (‘A’ ≤ x ≤ ‘Z’) ∨
(‘0’ ≤ x ≤ ‘9’) ∨ x = ‘ ’ ∨ x = ‘.’ ∨ x = ‘,’ ∨ x = ‘-’ ∨ x = ‘ ’

Encode contains the following seven rules (QEncode = {q}):

q(ε) −→ ε

q([x|y])
ϕ[x]
−−→ [x|q(y)]

q([x|y])
¬ϕ[x]∧0≤x<10
−−−−−−−−−−→ [‘&’, ‘#’,d0(x), ‘;’|q(y)]

q([x|y])
¬ϕ[x]∧10n≤x<10n+1

−−−−−−−−−−−−−−→ [‘&’, ‘#’,dn(x), . . . ,d0(x), ‘;’|q(y)] (for 1 ≤ n ≤ 4)

where
di(x)

def

= ((x÷ 10i)%10) + 48

is a term in linear arithmetic representing the (ASCII) character value of the
i’th decimal position of x, where ÷ is integer division, + is integer addition, and
% computes the integer remainder after dividing its first operand by its second.
By using that ‘&’ = 38 (i.e., d1(‘&’) = ‘3’ and d0(‘&’) = ‘8’) and that ϕ[‘&’] does
not hold, it follows for example that

TEncode([‘&’, ‘a’]) = {[‘&’, ‘#’, ‘3’, ‘8’, ‘;’, ‘a’]}.

Note that Encode is deterministic because all the guards are mutually exclusive
and therefore [[Encode]] contains no two rules whose left-hand sides are equal but
whose right-hand sides are different. From determinism follows also that Encode
is single-valued. �

The following example illustrates another class of common single-valued list-
transductions over an infinite label domain that are captured by a nondeter-
ministic STT but not by any deterministic STT. While it is well-known that
nondeterministic tree transducers are more expressive than deterministic tree
transducers, the following example illustrates a case where a deterministic tree
transducer would exist if the label domain was finite.



Example 3. The example illustrates an int-list STT Extract that extracts from
a given input list all subsequences of elements of the form [‘<’, x, ‘>’], where
x 6= ‘<’. For example

TExtract([‘<’, ‘<’, ‘a’, ‘>’, ‘<’, ‘<’, ‘>’, ‘<’, ‘b’, ‘>’]) = [‘<’, ‘a’, ‘>’, ‘<’, ‘b’, ‘>’]

Extract has states {q0, q1, q2, q3} where q0 is the initial state. Extract can be
visualized as follows, where a rule q(ε) −→ ε is depicted by marking q as a fi-

nal state, and a rule q([x|y])
ϕ[x]
−−→ [t1, . . . , tn|p(y)], for n ≥ 0, is depicted as a

transition from q to p having label ϕ[x]/[t1, . . . , tn]:

q2

q0 q0 q1

q3

x = ‘<’/ε

x 6= ‘<’/[‘<’, x]

x 6= ‘<’/ε

x = ‘<’/ε

x = ‘>’/[‘>’]

x 6= ‘<’ ∧ x 6= ‘>’/ε

x 6= ‘<’/ε x = ‘<’/ε

A deterministic version would need a state to remember each element x 6= ‘<’
from q1 in order to later decide whether to output or to delete the elements,
which depends on whether x is followed by ‘>’ or not. �

4 Composition and equivalence of STTs

In this section we investigate feasibility of composition and equivalence of STTs.
First, we prove that STTs are closed under composition and we provide a practi-
cal algorithm for composing STTs. The composition algorithm preserves linear-
ity. Second, we show that equivalence of linear single-valued STTs is decidable
modulo a decidable theory over labels and we provide a practical algorithm
for this case. The immediate applications of these two algorithms are decision
procedures for commutativity and idempotence of linear single-valued STTs.

4.1 Composition of STTs

The composition of two transductions T1 and T2 is the transduction

T1 ◦T2(t)
def

=
⋃

u∈T1(t)

T2(u)

Notice that ◦ applies first T1, then T2, contrary to how ◦ is used for standard
function composition. (The definition follows the convention used in [15].)

Note that if T1 and T2 are single-valued then so is T1 ◦T2. Given two STTs
Aι/σ and Bσ/o we provide an algorithm for constructing an STT A ◦Bι/o such
that TA◦B = TA◦TB. The algorithm is a symbolic generalization of the classical
composition algorithm for (top-down) tree transducers (cf. [15, Theorem 3.39]).



In the following let A and B be fixed STTs. The description of the algorithm
assumes absence of epsilon moves.1 We assume, for ease of presentation, that
the input and the output trees have the same sort.

As a convention, rules without an explicit guard have an implicit guard that
is true. Given a set of guarded rewrite rules R and a pair (ϕ, t) where ϕ is a
formula and t a term, an R-derivation step is of the form:

(ϕ, t)⇒R (ϕ ∧ ψ[t0], t[π ← r[t0, s̄]]) if







l[x, ȳ]
ψ[x]
−−→R r[x, ȳ]

t|π = l[t0, s̄]

That is, in the context of condition ϕ, a subterm of t at position π can be
rewritten using a rule from R while accumulating the side-condition for the
rule. We write (ϕ, t)↓R for the set of all (ϕ′, t′) such that (ϕ, t) ⇒∗

R (ϕ′, t′) and
there exists no R-derivation step from t′. We use a pairing function 〈p, q〉 for
p ∈ QA, q ∈ QB to denote states in the composed transducer. The states come
from a composition q(p(y)) and to give us access to the pair we augment RB to

R′
B = RB ∪ {q(p(y)) −→ 〈p, q〉(y) | p ∈ QA, q ∈ QB}

We can now define the composition of two transducers by (Q, 〈q0A, q
0
B〉, R), where

R and Q are given by a least fixed point with respect to the following conditions:

1. 〈q0A, q
0
B〉 ∈ Q

2. If 〈p, q〉 ∈ Q, p(v)
ϕ
−→ u ∈ RA, (ψ, t) ∈ (ϕ, q(u))↓R′

B
then 〈p, q〉(v)

ψ
−→ t ∈ R

3. If 〈p, q〉(v)
ϕ
−→ t[〈p′, q′〉(y)] ∈ R then 〈p′, q′〉 ∈ Q

The least fixed-point can be computed using a DFS traversal over the states
reachable from 〈q0A, q

0
B〉. The algorithm for computing (ϕ, q(u))↓R′

B
can be im-

plemented using backtracking search. A practically important optimization of
the algorithm, is satisfiability checking of the induced guard formulas. If a for-
mula ϕ′ in a derivation (ϕ, t) ⇒∗

R (ϕ′, t′) is unsatisfiable, the continued search
from that point on is aborted.

Example 4. Consider the self-composition of Encode from Example 2. For the
sake of clarity let A = Encode but rename q0A to p. Let B = Encode. Thus
QA ×QB = {〈p, q〉}.

1. Case p(ε) −→A ε. Then (true, q(ε))↓R = {(true, ε)}, so 〈p, q〉(ε) −→ ε.

2. Case p([x|y])
ϕ[x]
−−→A [x|p(y)]. We get that (formulas are simplified):

(ϕ[x], q([x|p(y)])) ⇒R′

B
(ϕ[x], [x|q(p(y))]) ⇒R′

B
(ϕ[x], [x|〈p, q〉(y)]) 6⇒R′

B

while any other derivation causes a conflict, e.g.

(ϕ[x], q([x|p(y)]))⇒R′

B
(ϕ[x] ∧ ¬ϕ[x] ∧ . . . , [‘&’, . . .])?

1 Epsilon moves can be handled similarly, first epsilon-loops, that are circular paths
of epsilon moves p(y) −→ · · · −→ p(y), are eliminated in order to avoid nonterminating
derivations.



It follows that 〈p, q〉([x|y])
ϕ[x]
−−→ [x|〈p, q〉(y)].

3. Case p([x|y])
¬ϕ[x]∧0≤x<10
−−−−−−−−−−→A [‘&’, ‘#’,d0(x), ‘;’|p(y)]. Then

(ϕ[x] ∧ 0 ≤ x < 10, q([‘&’, ‘#’,d0(x), ‘;’|p(y)]))⇒∗
R′

B

(ϕ[x] ∧ 0 ≤ x < 10 ∧ ϕ[d0(x)],
[‘&’, ‘#’,d1(‘&’),d0(‘&’), ‘;’, ‘&’, ‘#’,d1(‘#’),d0(‘#’), ‘;’,
d0(x), ‘&’, ‘#’,d1(‘;’),d0(‘;’), ‘;’|〈p, q〉(y)]) 6⇒R′

B

The remaining cases are similar. Note that, for all x and i, ϕ[di(x)] holds
because ‘0’ ≤ di(x) ≤ ‘9’, while for x ∈ {‘&’, ‘#’, ‘;’}, ¬ϕ[x] ∧ 10 ≤ x ≤ 100
holds, and thus double-encoding occurs for these characters in A ◦B.

The importance of early pruning of the search space using satisfiability checks
is obvious in this example. Brute force exploration would cause a combinatorial
explosion of the different paths, while most of them are infeasible. �

The following result characterizes compositionality of STTs.

Theorem 1 (Composition). STTs are effectively closed under composition.
Moreover, linear STTs are effectively closed under composition.

Proof. The first statement can be shown along the lines of the proof of composi-
tionality of TOP [15, Theorem 3.39]. While the second statement can be shown
similarly to compositionality of l-TOP [15, Corollary 3.41], a simpler argument,
using the definition of R′

B, shows that linearity is preserved by ⇒R′

B
.

Suppose A and B are linear and consider the definition of (ϕ, t)↓R′

B
. Suppose

t is ȳ-linear (linear with respect to ȳ = (y1, . . . , yk) assuming that the tree sort
is tk〈σ〉, recall that nonlinearity is allowed with respect to the label variable x).
Then, t|π = l[t0, s̄], where s̄ = (s1, . . . , sk), is also ȳ-linear and

yi ∈ FV(s̄) =⇒ yi /∈ FV(t[π ← ε])
yi ∈ FV(sj) =⇒ yi /∈ FV(sj′) (for j 6= j′)

Since the rule l[x, ȳ]
ψ[x]
−−→R′

B
r[x, ȳ] is ȳ-linear, it follows that r[t0, s̄] is also ȳ-

linear and consequently t[π ← r[t0, s̄]] is ȳ-linear. Therefore, by linearity of A
and by induction on the length of R′

B-derivations, all terms in (ϕ, t)↓R′

B
, are

ȳ-linear. It follows that each rule added to R is ȳ-linear, ∴ A ◦B is linear. �

4.2 Equivalence of linear single-valued STTs

Equivalence checking of finite transducers is undecidable when the possible num-
ber of outputs for a given input is unbounded [17, 21]. The case that is practi-
cally more directly relevant for us is when transducers are single-valued, since
this case corresponds closely to functional transformations computed by con-
crete programs over structured data (possibly over a restricted input domain).
For (top-down) tree transducers it is known that equivalence is decidable for the



single-valued case [8, 13], or more generally, for the finite-valued case [31] (when
there exists k such that, for all t, |TA(t)| ≤ k). Here we investigate the more
restricted equivalence problem for linear single-valued STTs as the practically
most common case, while the generalization to either nonlinear or finite-valued
STTs is left as a future research topic.

STTs A and B are equivalent if TA = TB . Let Dom(A)
def

= {t | TA(t) 6= ∅}.
For a single-valued STT A and t ∈ Dom(A) we write A(t) = u for TA(t) = {u}.
In the following let At〈ι〉/t〈o〉 and Bt〈ι〉/t〈o〉 be fixed linear single-valued STTs.
Equivalence of A and B reduces to two separate decision problems:

1. Domain equivalence: Dom(A) = Dom(B).
2. Partial equivalence A ∼= B: for all t ∈ Dom(A) ∩Dom(B), A(t) = B(t).

Note that both problems are independent of each other and together imply
equivalence. Domain equivalence requires the notion of a symbolic tree automaton
(STA) that is an STT such that each rule is either q(ε) −→ ε or a linear rule

q(f(x, y1, . . . , yk))
ϕ[x]
−−→ f(x, q1(y1), . . . , qk(yk)), i.e., the notion of the output

tree is obsolete. The STA for Dom(A) can be constructed directly from the STT
A. By a label theory we mean a quantifier free set of formulas that is closed under
substitutions, Boolean operations and equality, and allows free variables of the
label sort.

Deciding equivalence of two STAs A and B is a generalization of the equiv-
alence problem of tree automata [16] and is decidable modulo decidability of
the label theory. The equivalence algorithm of symbolic tree automata uses the
result that symbolic tree automata are closed under intersection and comple-
ment [33], that is a generalization of corresponding closure properties of symbolic
automata [34]. We use the following proposition below.

Proposition 1. Equivalence of symbolic tree automata is decidable modulo a
decidable label theory.

For many practical considerations, domain equivalence is not as important
as partial equivalence because the transductions of A and B are known to corre-
spond to total functions from Ut〈ι〉 to Ut〈o〉, i.e., Dom(A) = Dom(B) = Ut〈ι〉,
reflecting a robustness assumption of the underlying programs.

In the following we develop a practical algorithm for deciding partial equiv-
alence A ∼= B. First, we adjust the formalism of linear STTs a bit so that it
is technically better suited for the purposes here, by separating the acceptance
condition of the input term from the construction of the output term. For ease
of presentation assume k = 2 (i.e., the input domain is t2〈ι〉). For each rule

p(f(x, y1, y2))
ϕ[x]
−−→ r[x, p1(y1), p2(y2)],

where r[x, z1, z2] is basic (zi is the transformation pi(yi)), is represented by the
following transition whose i’th target component is the state that transforms yi:

p
ϕ[x]/r[x,z1,z2]
−−−−−−−−−→ (p1, p2)



If zi does not occur in r we use a special sink state pi = p∗ with transition

p∗
true/ε
−−−−→ (p∗, p∗)

For each rule p(ε) −→ e we say that p is final with a final output e, denoted by

p
/e
−→. In particular, p∗

/ε
−→. For example,

p(f(x, y1, y2))
true
−−→ f(x, ε, q(y1)) corresponds to p

true/f(x,ε,z1)
−−−−−−−−−→ (q, p∗).

Note that all input trees are accepted from p∗, e.g., in the above example y2
can be an arbitrary input tree. Note also that the given transition view is not
possible for arbitrary nonlinear STTs.

We assume that A and B are clean, i.e., contain no rules with unsatisfiable
guards. We also assume that A and B have no unreachable states and no dead-
ends, where an unreachable state is a state such that no derivation from the
initial state can reach it, and a deadend is a state p that is reachable but is
not final and, for all transitions p −→ (p1, p2), either p1 or p2 is a deadend. The
corresponding decision problems are classical forward and backward reachability
algorithms that are linear in the number of states.

The partial equivalence algorithm uses the notion of a product A×B of A and
B that is intuitively a 2-output-STT whose definition is based on the transition
view of A and B. A×B has states QA×QB and its transitions are constructed
as follows, where z̄A (resp. z̄B) is a unique renaming of each zi by z

A
i (resp. zBi ),

p
ϕ[x]/t[x,z̄]
−−−−−−−→A (p1, p2)

q
ψ[x]/u[x,z̄]
−−−−−−−→B (q1, q2)

}

=⇒ 〈p, q〉
ϕ∧ψ[x]/(t[x,z̄A],u[x,z̄B])
−−−−−−−−−−−−−−−−→A×B (〈p1, q1〉, 〈p2, q2〉)

p
/a
−→A

q
/b
−→B

}

=⇒ 〈p, q〉
/(a,b)
−−−−→A×B

Unsatisfiable guards, unreachable states, and deadends are eliminated from A×B
(where the first two are by virtue of constructing A×B by using DFS).

Let A〈p,q〉(v) denote the A-output of A × B that is produced starting from
state 〈p, q〉 for any v that is accepted from that state. Similarly for B. The
following property follows from the definitions.

(∀t ∈ Dom(A) ∩Dom(B)) A〈q0
A
,q0

B
〉(t) = B〈q0

A
,q0

B
〉(t)⇔ A(t) = B(t)

A tree context is a tree term with exactly one occurrence of a special free
variable •. A promise of a state 〈p, q〉 is a pair 〈α[•], β[•]〉 of tree contexts where
α = • or β = •, such that there exists a derivation in A×B for some input tree
t and position π in t that reaches 〈p, q〉 at π and, for some output position π′,
the π′-traces of the outputs from A and B are equal and the remaining outputs
from position π′ in A and B are α[A〈p,q〉(t|π)] and β[B〈p,q〉(t|π)] respectively. Two
promises 〈α1[•], β1[•]〉 and 〈α2[•], β2[•]〉 conflict if α1[u] 6= α2[u] or β1[u] 6= β2[u]
for some tree u. Otherwise, we say that the promises match. Note that matching
really means that the promises are identical trees (modulo equality of labels).



Example 5. Consider two SFTs A and B over t
2〈int〉 where QA = {p} and

QB = {q} that contain the following transitions:

p
/ε
−→A, p

x≤2/f(x,f(x,z1,ε),z2)
−−−−−−−−−−−−−−→A (p, p), q

/ε
−→B, q

x≥2/f(x,z1,z2)
−−−−−−−−−−→B (q, q).

Then A×B contains the following transitions

〈p, q〉
/(ε,ε)
−−−→A×B, 〈p, q〉

x=2/(f(x,f(x,zA1 ,ε),z
A

2 ),f(x,zB1 ,z
B

2 ))
−−−−−−−−−−−−−−−−−−−−−−−→A×B (〈p, q〉, 〈p, q〉)

State 〈p, q〉 has a promise 〈•, •〉 for position ε since 〈p, q〉 is the initial state. It
also has a conflicting promise 〈f(2, •, ε), •〉 due to the following. Consider the
input tree t = f(2, t1, t2) and position π = 1 in t. After a single step derivation in
A×B we get that A(t) = f(2, f(2, A(t1), ε), A(t2)) and B(t) = f(2, B(t1), B(t2)).
Thus, for the output position π′ = 1 we have that, the π′-traces of A(t) and B(t)
are equal, A(t)|π′ = f(2, A〈p,q〉(t|π), ε) and B(t)|π′ = B〈p,q〉(t|π). �

A state 〈p, q〉 is input dependent for A if there exist v1 6= v2 such that
A〈p,q〉(v1) 6= A〈p,q〉(v2). Similarly for B. A state 〈p, q〉 is input dependent if it is
input dependent for both A and B.

We make use of the following key lemma in the main theorem that provides
us with an argument to detect A � B in O(|A×B|) number of steps. The lemma
is not constructive; it does not provide a witness t such that A(t) 6= B(t).

Lemma 1 (Promise). If an input dependent state 〈p, q〉 is reached with two
conflicting promises then A � B.

Proof. Suppose there is a state 〈p, q〉 with conflicting promises 〈α1[•], β1[•]〉 and
〈α2[•], β2[•]〉. Since 〈p, q〉 is reachable and not a deadend, there exist input trees
u1 and u2 where u1|π1

= v and u2|π2
= v for some positions π1 and π2, and v is

an input term accepted from 〈p, q〉, and

– 〈p, q〉 7→ 〈α1[•], β1[•]〉 is reached at some position π′
1 in the outputs from u1,

– 〈p, q〉 7→ 〈α2[•], β2[•]〉 is reached at some position π′
2 in the outputs from u2.

By single-valuedness of A and B there exist vA = A〈p,q〉(v) and vB = B〈p,q〉(v)
such that

A(u1)|π′

1
= α1[v

A], A(u2)|π′

2
= α2[v

A], B(u1)|π′

1
= β1[v

B], B(u2)|π′

2
= β2[v

B ].

Suppose A ∼= B. Then α1[v
A] = β1[v

B ] and α2[v
A] = β2[v

B]. We reach a contra-
diction by case analysis. Note that the cases make use of the assumption that in
each promise at least one of the terms is a •.

– Case α1 = •, β1 = •, α2 = •, β2 6= •: Then vB = vA = β2[v
B ], but β2 6= •.

– Case α1 6= •, β1 = •, α2 = •, β2 6= •: Then α1[v
A] = vB, vA = β2[v

B], but
α1[β2[v

B]] 6= vB.



– Case α1 = •, β1 6= •, α2 = •, β2 6= •: Then β1[v
B ] = vA = β2[v

B]. This
is only possible if β1[t] = β2[t] for a fixed tree t (e.g. β1 = f(t0, •, t) and
β2 = f(t0, t, •)) or else 〈α1, β1〉 and 〈α2, β2〉 match. Thus vB = t. By input
independence of 〈p, q〉 for B we can choose v and v0 6= v so that vB 6= vB0 =
B〈p,q〉(v0). But this contradicts that v

B
0 = t must hold.

The remaining cases are symmetrical. �

We apply the following normalization on A × B before turning to the main
algorithm. First, we effectively decide if a state 〈p, q〉 is input dependent for A

(resp. B) and, otherwise compute a concrete term t
〈p,q〉
A (resp. t

〈p,q〉
B ) such that

for all v, A〈p,q〉(v) = t
〈p,q〉
A (resp. B〈p,q〉(v) = t

〈p,q〉
B ). Next, for each transition

〈p, q〉
ϕ/(t,u)
−−−−→ (〈p1, q1〉, 〈p2, q2〉)

if 〈pi, qi〉 is not input dependent for A, replace zi in t by t
〈pi,qi〉
A , similarly for u

and B. In the following assume:

(*) If an output variable zi occurs in t (resp. u) then 〈pi, qi〉 is input dependent
for A (resp. B).

The main algorithm is a search procedure (that can be implemented using
DFS). There is a set Q of reached states annotated with promises. Initially
Q = {〈q0A, q

0
B〉 7→ 〈•, •〉}. Given an unexplored reached state 〈p, q〉 7→ 〈α[•], β[•]〉

the following steps are performed.

Check final outputs: If 〈p, q〉
/(a,b)
−−−−→ and if α[a] 6= β[b] then A � B.

Check transitions: Perform the following steps for each transition

〈p, q〉
ϕ[x]/(t[x,zA1 ,z

A

2 ],u[x,zB1 ,z
B

2 ])
−−−−−−−−−−−−−−−−−−→ (〈p1, q1〉, 〈p2, q2〉)

Unify α[t] with β[u]. If a unifier does not exist then A � B. Else, the result
is a pair (C[x], θ) where C is a conjunction of equality constraints on labels
and θ is a substitution from those z̄ that occur in t or u to tree terms.

Validate labels: If ϕ ∧ ¬C is satisfiable then there exists a label x such
that α[t[x, z̄A]] 6= β[u[x, z̄B]] for all z̄A and z̄B. Thus A � B.

Validate trees: Suppose zA1 7→ v[x, zB1 , z
B
2 ] ∈ θ. (The other cases are sym-

metrical.) We proceed by case analysis on v.
Independent term: Assume v does not contain zB1 . Suppose v′ is an

arbitrary ground instance of v. By (*), there exist two outputs a1 6=
a2 for zA1 and therefore, either t[ , a1, ] 6= t[ , v′, ] or t[ , a2, ] 6=
t[ , v′, ]. Thus A � B.

Mixed dependency: Assume v contains zB1 and also zB2 . By using (*),
there exist two different outputs for zB2 independent of zA1 and x.
Thus, there exist two conflicting promises for 〈p1, q1〉. By the Promise
lemma, A � B.



Multiple labels: Assume v[x, zB1 ] contains x and zB1 but not zB2 . Check
if any possible value for x makes any difference in v. If

ϕ[x1] ∧ ϕ[x2] ∧ v[x1, ε] 6= v[x2, ε]

is satisfiable then there exist two conflicting promises for 〈p1, q1〉. By
the Promise lemma, A � B.

Dependent term: Let t0 be any value such that ϕ[t0] is true. Note
that v[t0, •] is the same independent of t0 by the previous step. Let
α1 = •, β1 = v[t0, •]:
1. If 〈p1, q1〉 /∈ Q then add 〈p1, q1〉 7→ 〈α1, β1〉 to Q and push
〈p1, q1〉.

2. else let 〈α2, β2〉 = Q(〈p1, q1〉). If 〈α1, β1〉 and 〈α2, β2〉 conflict
(are not identical), then, by the Promise lemma, A � B.

Partial equivalence: The search is exhaustive and establishes that A ∼= B.

Recall that a label theory is a quantifier free set of formulas that is closed
under substitutions, Boolean operations and equality, and allows free variables of
the label sort. A typical label theory is quantifier free integer linear arithmetic.
Note that decidability of a theory refers to decidability of the problem of checking
satisfiability of a given formula in the theory.

Theorem 2 (Equivalence). Equivalence of linear single-valued STTs is decid-
able over a decidable label theory.

Proof. Termination of the partial equivalence checking algorithm follows from
finiteness of QA×B and decidability of the assumed label theory. Partial cor-
rectness of the algorithm and how the Promise lemma is used follows from the
description of the core steps of the algorithm. Decidability of domain equivalence
follows from Proposition 1. �

Note that the satisfiability checks that are actually performed during the
search require the use of at most one free label variable and no other free vari-
ables. In particular, the statisfiability check in the Multiple labels step above,
that is expressed using two variables, can be replaced (given any value a such
that ϕ[a] holds) with the satisfiability check of the formula ϕ[x]∧v[x, ε] 6= v[a, ε]
containing at most one free variable x. This observation is relevant in order to
provide a precise complexity bound for the given algorithm, provided that the
complexity of the used label theory over at most one free variable is known. The
algorithm can be implemented using any SMT solver or constraint solver as an
oracle that supports satisfiability checking and model generation, such as the
SMT solver Z3 [6].

4.3 Checking Non-equivalence Symbolically

The algorithm produces at most |QA×QB| states and requires examining at most
|RA| · |RB| transitions. This bound obviously does not work when comparing tree



transducers whose number of outputs is unbounded. In practice, however, we can
use a common symbolic algorithm that unfolds an STT. In the general case it can
be used as a semi-decision algorithm for non-equivalence. Given a transducer A,
that does not contain ε loops, we can encode a predicate AccA(q

0
A, t, s, n), such

that A takes the term t and produces the term s with at most n transitions
along any given branch. Non-equivalence can then be checked by showing that

∃t, s, n .

(

(AccA(q
0
A, t, s, n) ∧ ¬AccB(q

0
B, t, s, n))

∨ (¬AccA(q0A, t, s, n) ∧ AccB(q
0
B, t, s, n))

)

.

The definition is given by:

AccA(q, f(t0, t1, . . . , tk), s, n) ≡
∨

τ∈RA











n > 0 ∧ ϕ[t0]∧
s = u[t0, `1(s), . . . , `k(s)]∧
k
∧

i=1

AccA(qi, ti, `i(s), n− 1)











AccA(q, ε, ε, n) ≡ true

where, as usual, τ is of the form q(f(x, y1, . . . , yk))
ϕ
−→ u[x, q1(y1), . . . , qk(yk)],

and `1(s) selects the subterm of s corresponding to the path supplied in u. The
formulas produced by unfolding AccA are always ground, and satisfiability of the
formulas can be checked using the background label theory together with the
theory of algebraic data-types. For single valued STTs we can fix n to |QA×QB|
to bound unfolding; for general STTs we can convert the definition into first-
order formulas whose instantiations correspond to step-wise unfoldings of the
transition relation.

5 Related Work

Tree transducers and various extensions thereof provide a syntax-directed view of
studying different formal models of transformations over tree structured data [15].
Top-down tree transducers were originally introduced in [30, 32] for studying
properties of syntax-directed translations. The handbook [16] provides a uni-
form treatment of foundational properties of tree transducers and relations to
context-free languages. Basic compositionality results of tree transducers were
established in [3, 7].

Decidability of equivalence of single-valued top-down tree transducers follows
from the decidability result of single-valuedness of top-down tree transducers [8,
13]. A specialized method for checking equivalence of deterministic top-down tree
transducers is provided in [5]. Decision problems, e.g. equivalence, for specific
classes of tree transducers are often based on establishing unique normal forms
and considering deterministic transducers, including string transducers [4], top-
down tree transducers [11], and top-down tree-to-string transducers [24].

Several extensions of top-down tree transducers have been studied in the
literature (the following list is not exhaustive). Extended top-down tree trans-
ducers allow nonflat left-hand sides in rules [2]. Attributed tree-transducers



describe parse trees in attribute grammars [14]. Macro tree-transducers incor-
porate the notion of implicit tree contexts [12] and have been studied in the
context of analysis of XML transformation languages, with macro attributed
tree-transducers [15], multi-return macro tree transducers [22], and macro forest
transducers [29] as further extensions. Pebble tree transducers were introduced
for type checking XML query languages [26] and are extended to pebble macro
tree transducers in [10]. Formal relationships between monadic second order logic
and macro tree transducers is studied in [9]. Extended top-down tree transduc-
ers were recently studied in the context of natural language processing, where
it is shown that several interesting cases are not closed under composition [25].
Higher-order multi-parameter tree transducers [23] allow possibly infinite trees
in the output and can be applied to higher-order recursion schemes. A related
notion of pattern-matching recursion schemes is introduced in [28] to model
functional programs that manipulate algebraic data-types.

The above generalizations are all proper extensions of the basic top-down
tree transducer model. To the best of our knowledge, none of the extensions has
considered a symbolic representation of the transducers modulo a given label
theory. The work in [27] introduces the first symbolic generalization of a finite
state (string) transducer called a predicate-augmented finite state transducer in
the context of natural language processing. A symbolic representation of finite
(string) transducers modulo a given label theory, called symbolic finite trans-
ducers, is introduced in [19] in order to encode string sanitization operations
over large (possibly infinite) alphabets for web security analysis. The results
here extend the algorithms of the string case to trees, in order to symbolically
represent transductions over tree structured data such as Html or XML docu-
ments. Streaming transducers [1] provide another recent symbolic extension of
finite transducers where the label theories are restricted to be total orders.

6 Conclusions

We intend to investigate several extensions of our main results for STTs. Single-
valued deterministic STTs correspond directly to first-order functional programs.
One direction is to develop ground decision procedures for first-order functional
programs given as STTs. On the other hand, first-order functional programs
are of course much more expressive than STTs (and equivalence of first-order
functional programs is Π1

1 complete). For example list-reversal is not express-
ible as an STT. It is tempting to extend our results to more general functional
programs. Recent work on counter-example guided refinement for verification
of higher-order functional programs [28], for instance, is based on repeated re-
finements starting from tree transducers. Using STTs instead could allow using
SMT tools for analyzing functional programs. A simpler extension of our results
for STTs is to consider equivalence of non-linear STTs. We conjecture that our
Theorem 2 can be extended to nonlinear and single-valued STTs, but our proof
cannot be used directly for this case: non-linearity creates dependencies across
several states from the same transducer that has to be recorded in a product



construction. We also conjecture the theorem can be extended to nonlinear and
finite-valued STTs. However, a generalization to the finite-valued case is not
expected to be straightforward, because the corresponding generalization of de-
cidability of equivalence for finite-valued tree transducers [31] uses results from
combinatorics and is mathematically challenging.
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15. Z. Fülöp and H. Vogler. Syntax-Directed Semantics: Formal Models Based on Tree

Transducers. EATCS. Springer, 1998.
16. F. Gécseg and M. Steinby. Tree Automata. Akadémiai Kiadó, Budapest, 1984.
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