
Automated Differential Program Verification for
Approximate Computing

Shuvendu K. Lahiri
Microsoft Research, Redmond, WA, USA

shuvendu@microsoft.com

Arvind Haran, Shaobo He, Zvonimir Rakamarić
School of Computing, University of Utah, UT, USA
{haran,shaobo,zvonimir}@cs.utah.edu

Abstract—Approximate computing is an emerging area for
trading off the accuracy of an application for improved perfor-
mance, lower energy costs, and tolerance to unreliable hardware.
However, care has to be taken to ensure that the approxima-
tions do not cause significant divergence from the reference
implementation. Previous research has proposed various metrics
to guarantee several relaxed notions of safety for the design
and verification of such approximate applications. However,
current approximation verification approaches often lack in
either precision or automation. On one end of the spectrum,
type-based approaches lack precision, while on the other, proofs
in interactive theorem provers require significant manual effort.

In this work, we apply automated differential program
verification (as implemented in SymDiff) for reasoning about
approximations. We show that mutual summaries naturally
express many relaxed specifications for approximations, and
SMT-based checking and invariant inference can substantially
automate the verification of such specifications. We demonstrate
that the framework significantly improves automation compared
to previous work on using Coq, and improves precision when
compared to path-insensitive analysis. Our results indicate the
feasibility of applying automated verification to the domain of
approximate computing in a cost-effective manner.

I. INTRODUCTION

Continuous improvements in per-transistor speed and energy
efficiency are fading, while we face increasingly important
concerns of power and energy consumption, along with ambi-
tious performance goals. The emerging area of approximate
computing aims at lowering the computational effort (e.g.,
energy) of an application through controlled (small) devia-
tions from the intended results [1]. Low-level approximation
mechanisms include, for example, approximating digital logic
elements or arithmetic; high-level mechanisms include approx-
imating loop computations or generating multiple approximate
candidate implementations. In addition, many of these studies
also show that large classes of applications can in fact tolerate
small approximations (e.g., machine learning, web search,
multimedia, sensor data processing).

There is a growing need to develop formal and automated
techniques that allow approximate computing trade-offs to be
explored by developers. Prior research has ranged from the use
of types [2], static reliability analysis [3] or interactive theorem
provers [4] to study the effects of approximations while also
providing formal guarantees. While these techniques have
significantly increased the potential to employ approximate
computing in practice, a drawback is that they either lack
the required level of precision or degree of automation. More

importantly, these works do not harness the continuous ad-
vances in Satisfiability Modulo Theories (SMT) [5] based
automatic software verification [6]. SMT-based approaches
have the potential of providing a good balance of precision
and scalability, without sacrificing automation, at least for a
large class of programs written in imperative languages such
as C/C++, Java, or C#.

In this paper, we apply automated differential program
verification [7], [8] (implemented in SymDiff [9]) towards
the problem of logical1 reasoning about program approxi-
mations. In previous work, we have shown that structural
similarity of closely-related programs can be exploited to
perform automated verification of relative safety for asser-
tions [7]. In this work, we leverage two independent ideas
in SymDiff to harness the power of SMT solvers towards
differential verification. First, we use the concept of mutual
summaries for specifying relational (two-program) properties
related to approximation [8]. Second, we use a novel product
program construction for differential assertion checking that
permits procedural programs, and allows leveraging off-the-
shelf program verifiers and invariant inference engines [7].
We describe how the same product construction can be used
to check mutual summary specifications as well. Finally, we
have incorporated additional relational specification inference
capabilities in SymDiff, which is crucial for proving the
examples in this paper (§ VI-A).

We have applied SymDiff towards two approximate comput-
ing case studies. First, we apply SymDiff towards formalizing
control flow equivalence, a precise specification for ensuring
that an approximation does not impact control flow of a
program. Approximations that impact control flow often lead
to undesirable behavior, such as non-termination or crashes.
Unlike type-based approaches [2], we illustrate that SymDiff
can provide verification of this property with desired precision
and little overhead. We show examples where the need to
track dynamic segments of arrays are crucial to enable precise
reasoning about impact on control flow. 2

Second, we illustrate the modeling, specification, and proof
of several acceptability conditions for approximate trans-
formations studied by Carbin et al. [4]. They developed a
domain-specific language for specifying approximations and

1We distinguish from approaches that provide provide probabilistic guar-
antees regarding approximations [3].

2 Tool and examples present at http://tinyurl.com/approx-symdiff-2015

http://tinyurl.com/approx-symdiff-2015

var arr:[int]int;
var n:int; var x:int; var y:int;
procedure ReplaceChar() {
call Helper(0);

}
procedure Helper(i:int) {
var tmp:int;
if (i < n && arr[i] != -1) {
tmp := arr[i];
havoc tmp;
arr[i] := tmp == x ? y : tmp;
call Helper(i+1);

}
}

Fig. 1: Replacing a character in a string.

acceptability conditions, and performed the verification of
several examples using interactive theorem prover Coq. These
examples cover approximations due to truncating loops, unre-
liable memory, and relative memory safety [7]. Overall, their
proofs for three examples required around 955 lines of Coq
proof script — this makes it difficult to scale the effort to
larger programs or hundreds of such programs. In contrast,
our verification in SymDiff requires the user specify 8 simple
atomic predicates.

Contributions. In summary, we make the following contri-
butions:

1) We formalize the notion of control flow equivalence as
a differential verification problem.

2) We apply automated differential verification in SymDiff
for checking control flow equivalence and correctness of
approximate transformations.

3) We have enhanced the inference of relational specifica-
tions in SymDiff, which improved the automation on the
examples in this paper.

Organization. The rest of the paper is organized as follows.
We give an overview of motivating problems in § II. Next,
we briefly summarize relevant background on SymDiff; this
includes combining the specification mechanism [8] and prod-
uct program construction [7], originally developed separately
(§ III). We then describe the examples from our two case
studies: checking impact of approximation on control flow
(§ IV), and checking various approximation acceptability con-
ditions (§ V). We describe the modifications made to SymDiff
(§ VI-A) and the experimental results (§ VI-B). Finally, we
discuss the related work (§ VII) and conclusions (§ VIII).

II. MOTIVATING EXAMPLES

A. Control Flow Equivalence

Approximating statements that impact control flow often
leads to serious problems in guaranteeing program termination,
unacceptably high corruptions in output data, and program
crashes. Preservation of control flow has been identified as a
natural and useful relaxed specification for approximations [2].
One can obtain a conservative estimate of the set of statements
that do not affect control flow by performing type-based

function RelaxedEq(x:int, y:int) returns (bool) {
(x <= 10 && x == y) || (x > 10 && y >= 10)

}

procedure swish(max_r:int, N:int)
returns (num_r:int) {

old max r := max r; havoc max r;
assume RelaxedEq(old max r, max r);
num_r := 0;
while (num_r < max_r && num_r < N)
num_r := num_r + 1;

return;
}

Fig. 2: Swish++ example with dynamic knobs approximation.

analysis [2], dataflow analysis [10], or slicing [11]. Although
mostly automatic (type-based analyses typically require user-
provided type information), these approaches are conservative
and cannot exploit detailed program semantics.

Consider the program in Fig. 1 that replaces a given charac-
ter x with y in a character array arr. The procedure Helper

iterates over indices of the array until the bound n or the
termination character (-1 in this case) is reached. Let us con-
sider the approximation of the variable tmp indicated by the
underlined statement. Since tmp flows into arr which controls
the conditional, most mentioned conservative analysis would
mark the approximation as unsafe. However, observe that the
indices that store the value in tmp never participate in the
conditional. Therefore, any analysis that cannot track dynamic
segments of an array will result in a false alarm. Similarly, lack
of path-sensitivity can also result in such imprecisions. Our
approach leverages differential program verification to check
for control flow equivalence, which allows for precise analysis,
as described in detail in § IV.

B. Acceptability of Approximate Programs

Fig. 2 gives the example from an open-source search engine
Swish++, which was taken from a recent approximate comput-
ing work by Carbin et al. [4]. The authors developed a special-
purpose language to specify the transformations and reason
about the relaxed specifications. They used the general purpose
Coq theorem prover to discharge proof obligations; each
proof required roughly 330 lines of proof scripts according
to the authors. By using differential program verification that
leverages existing program verifiers and SMT solvers, we show
that we can obtain the proof almost completely automatically
(see § V).

The program swish takes as input (a) a threshold for the
maximum number of results to display max r, and (b) the
total number of search results N. It returns the number num r

denoting the actual number of results to display, which has to
be bounded by max r and N.

a) Approximation: The underlined statements denote the
approximation that non-deterministically changes the thresh-
old to a possibly smaller number, without suppressing the top
few (10 in this case) results. This approximation (referred to
as dynamic knobs) allows the search engine to trade-off the

number of search results to display under heavy server load.
The approximation is justified as users are typically interested
in the top few results, and care more about the performance
of displaying the search results. The predicate RelaxedEq

denotes the relationship between the original and the approx-
imate value — the important part is that approximate value
has to be at least 10 when the original value exceeds 10.

b) Relaxed Specification: The relaxed specification (akin
to acceptability property [4], [12]) can be expressed as a mu-
tual summary [8] over the original and approximate versions
of swish (prefixed with v1. and v2. respectively) as follows:

old(v1.max r = v2.max r ∧ v1.N = v2.N)⇒
v1.RelaxedEq(v1.num r, v2.num r),

where the construct old(Expr) evaluates the given expression
at procedure entry. In this work, we automated the process
of proving this and similar examples using SymDiff, which is
described in detail in § V.

III. DIFFERENTIAL PROGRAM VERIFICATION

In this section, we cover recent works on differential pro-
gram verification [8], [7] to verify (relational) properties over
two programs, as implemented in the SymDiff tool [9]. We first
describe mutual summaries [8] as a specification mechanism
for relational properties (§ III-B). Then, we introduce a method
for modularly checking mutual summary specifications based
on a product program transformation [7] (§ III-C). Although
the transformation was proposed for differential assertion
checking, we show that the construction can be used to
check more general mutual summary specifications. These
mechanisms are well-suited for reasoning about programs
with multiple (recursive) procedures. More importantly, the
technique allows for leveraging any off-the-shelf invariant
inference engine to infer intermediate specifications required
to prove the desired specification (§ III-D). We start by
formalizing the language in the next section.

A. Simple Programming Language

Fig. 3 defines the syntax of a simple programming language,
which is a subset of the Boogie language [13]. The language
supports integers int, arrays [int]int, and booleans bool. A
program consists of a set of global variables and a set of
one or more procedures. A procedure has zero or more input
parameters and output variables. The requires and ensures
clauses specify preconditions and postconditions/summaries,
respectively; the modifies clause specifies the globals that
may be modified in a procedure. A procedure body contains
local variable declarations and a sequence of statements Stmt .
Loops are assumed to be already automatically extracted into
deterministic tail-recursive procedures [7].

Most statements, including assignments (scalar and array),
conditionals, and sequential composition, are standard. State-
ment havoc x sets variable x to an arbitrary value, while
the call statement denotes a procedure invocation. Informally,
the assert Expr (resp., assume Expr) fails (resp., blocks)
execution when Expr evaluates to false in a state; otherwise,

Type ::= int | [int]int | bool

Program ::= (var Id : Type;)∗ Procedure+

Procedure ::= procedure Id((Id : Type,)∗) Returns?

Spec∗ {Body}
Spec ::= requires Expr ; | ensures Expr ;

| modifies (Id ,)∗;

Returns ::= returns ((Id : Type,)∗)

Body ::= (var Id : Type;)∗ Stmt

Stmt ::= Id := Expr | Id [Expr] := Expr

| if (Expr) Stmt else Stmt

| Stmt ; Stmt | havoc Id

| call (Id ,)∗ := Id((Id ,)∗) | return

| assume Expr | assert Expr

Fig. 3: Simple programming language. Id and Expr have the
usual meaning.

it acts as a skip. The expression language of Expr is left
unspecified, but includes standard integer-valued arithmetic
expressions (e.g., x+y) and Boolean-valued expressions (e.g.,
x ≤ y). In addition, the construct old(Expr) can be used to
evaluate an expression at entry to a procedure.

We informally sketch the semantics for the language here;
more formal details can be found in earlier works [13]. A
state σ of a program at a program location is a type-consistent
valuation of variables in scope at the location, or the error state
Error. Let Σ be the set of all states for a program. For any
procedure p, we assume a transition relation Tp ⊆ Σ×Σ that
characterizes the input-output relation of the procedure p. In
other words, two states (σ, σ′) ∈ Tp if there is an execution of
the procedure p starting at σ and ending in σ′. The transition
relations can be defined inductively on the structure of the
program, which is fairly standard for our simple language.
For any state σ and an expression e, 〈e〉σ evaluates e in the
state σ.

B. Specification: Mutual Summaries

var g:int; // global
procedure F(x:int)
modifies g;
{
if (x < 100) {
g := g + x;
call F(x+1);

}
}
procedure Main()
modifies g;
{ call F(0); }

var g:int; // global
procedure F(x:int)
modifies g;
{
if (x < 100) {
g := g + 2*x;
call F(x+1);

}
}
procedure Main()
modifies g;
{ call F(0); }

Fig. 4: Two versions of a program with a change in F.

Consider a program P and procedure p belonging to P.
A summary specification Sp is a Boolean-valued expression

procedure MS_v1.F_v2.F(v1.x:int, v2.x:int)
modifies v1.g, v2.g;
requires v1.x >= 0; // intermediate spec (manual)
{
...
}

procedure MS_v1.Main_v2.Main()
modifies v1.g, v2.g;
requires v1.g == v2.g; // equal initial state
ensures v1.g <= v2.g; // mutual postcond (manual)
{
...
}

Fig. 5: Signature of the composed program for example in
Fig. 4. Details of the construction are in Appendix A.

over the input (parameters and globals) and output (returns
and globals) variables of p that specifies a constraint on
the transition relation Tp of the procedure. More formally,
a well-formed summary expression Sp induces a relation
bSpc = {(σ, σ′) | 〈Sp〉σ,σ′ = true}. A procedure p satisfies
a summary Sp if Tp ⊆ bSpc — all terminating executions of
p satisfy Sp.

Now consider two procedures p and q. An expression
Mp,q is a well-formed mutual summary specification if
it is an expression over the input and output variables
of p and q. Such a specification represents the relation
bMp,qc = {(σp, σ′p, σq, σ′q) | (σp, σ

′
p) ∈ Tp, (σq, σ

′
q) ∈

Tq, 〈Mp,q〉σp,σ′
p,σq,σ′

q
= true}. A procedure pair (p, q)

satisfies a mutual summary Mp,q if Tp × Tq ⊆ bMp,qc.
Consider the two program versions in Fig. 4, with a change

in procedure F, and the following mutual summary for Main:

old(v1.g = v2.g)⇒ v1.g ≤ v2.g.

The summary relates the pre- and post-states of the two
versions (prefixed with v1. and v2. respectively) of the
program. It is not difficult to see that the procedure pair
(v1.Main, v2.Main) satisfies this mutual summary specifica-
tion, since the argument x to F is always non-negative in
executions starting from Main. In the next section, we describe
how to specify and modularly verify such mutual summary
specifications for a pair of programs.

C. Modular Checking of Mutual Summaries

We describe the modular checking of mutual summaries
(using the construction from previous work [7]) with the aid
of the running example in Fig. 4. We first sketch the prod-
uct program construction for the running example, and later
describe how to add specifications to the product program.

1) Product Programs: For a program P, let us overload
P to also represent the set of procedures in P. Consider two
programs P1, P2, and a mapping relation β ⊆ P1 × P2 that
maps procedures from two versions. A default value of β is
a one-to-one mapping between identically named procedures
from the two programs, but this can be changed by the user.
For our running example P1 = {v1.F, v1.Main} and P2 =

{v2.F, v2.Main}, and we consider the default mapping β =
{(v1.Main, v2.Main), (v1.F, v2.F)}.

Given such P1, P2 and β, we construct a product program
P1×2 with the following properties:
• The set of globals in P1×2 is the disjoint union of globals

in P1 and P2. The globals are prefixed with v1. and v2.
respectively to avoid name clashes.

• The set of procedures in P1×2 consists of the disjoint
union of procedures from P1 and P2 (signature suitably
prefixed) along with a set of product procedures. For each
(p, q) ∈ β, there is a procedure MS p q whose input and
output parameters are concatenations of the parameter
lists from p and q.

For the running example, P1×2 consists of globals
{v1.g, v2.g} and procedures {v1.F, v1.Main, v2.F, v2.Main,
MS v1.F v2.F, MS v1.Main v2.Main}. Fig. 5 shows the sig-
nature (parameters and specifications) of the MS v1.F v2.F
procedure. Details of the construction of the MS v1.F v2.F
procedure are described in Appendix A.

Let σ1 ⊕ σ2 denote a composed state consisting of states
from the two programs with disjoint signatures. The following
theorem relates MS p q with the procedures p and q.

Theorem 1 ([7]): For two procedures p ∈ P1 and p2 ∈ P2,
(σ1, σ

′
1) ∈ Tp and (σ2, σ

′
2) ∈ Tp if and only if (σ1 ⊕ σ2, σ′1 ⊕

σ′2) ∈ TMS p q .
2) Adding Specifications: Theorem 1 allows us to write

summary specifications on the product program to capture
mutual summary specifications over P1 and P2. Since the
signature (inputs and outputs) of a product procedure MS p q
is the disjoint union of the signatures of p and q, a well-formed
summary expression SMS p q is a well-formed mutual summary
expression for the procedure pair (p, q). Hence, verifying
summary specifications on the product program allows us to
verify mutual summary specifications over the two programs.

Theorem 2: Consider a product procedure MS p q ∈ P1×2
and a summary specification SMS p q . Let Mp,q be a mutual
summary specification such that bMp,qc = bSMS p qc. If
TMS p q ⊆ bSMS p qc, then Tp × Tq ⊆ bMp,qc.

Recall the mutual summary specification for the pair of
Main procedures. This can be expressed as a summary for
MS v1.Main v2.Main procedure as a postcondition (ensures
clause):

ensures(old(v1.g = v2.g)⇒ v1.g ≤ v2.g).

Fig. 5 shows the above specification; however, we have
broken up the specification into a requires (a precondition
constraining the state at entry) and ensures clause to simplify
the specification. SymDiff automatically inserts the equalities
in the requires for entry procedures, and the user only has to
specify the ensures clause in this case.

The program P1×2 along with the desired specification can
be handed off to any off-the-shelf (single) program verifier
such as Boogie to attempt the verification. The verifier can
leverage advances in SMT solvers to perform reliable and
predictable verification. If verification succeeds, then we can
establish the mutual summary for the pair of procedures.

D. Invariant Inference

By default, SymDiff performs automatic inference of sim-
ple relative specifications by searching for preconditions and
postconditions of the form v1.x ./ v2.x, where ./ ∈ {=,≤
,≥, <,>,⇒}. It leverages the implementation of the Hou-
dini [14] (monomial predicate abstraction) inference technique
available in Boogie [15]. This allows SymDiff to communicate
relational (mutual) specifications to the invariant inference
engine. For example, this allows us to automatically infer
several intermediate specifications, including inferring that
v1.g ≤ v2.g is both a precondition and postcondition for
MS v1.F v2.F. Any remaining intermediate specification (e.g.
the requires for MS v1.F v2.F) have to be manually specified
by the user.

In Section VI-A, we describe improvements we imple-
mented in the SymDiff invariant inference engine to automate
the examples described in this paper.

IV. CONTROL FLOW EQUIVALENCE

A. Modeling Control Flow

We describe a precise and automated (although not push-
button) approach to ensure that an approximation does not
impact control flow by leveraging differential program verifi-
cation. We achieve this by performing an automatic program
instrumentation (described below) and then leveraging the
differential verifier as described earlier in § III.

Let us define a basic block to be the maximal sequence of
statements that do not contain any conditional statements. We
also assume that each such basic block has a unique identifier
associated with it. To track the sequence of basic blocks visited
along any execution, we augment the state of a program by
introducing an integer-valued global variable cflow. Then,
we instrument every basic block of the program with a
statement of the form cflow := trackCF(cflow, blockID),
where trackCF is an uninterpreted function defined as
trackCF(int, int) returns int, and blockID is the unique
integer identifier of the current basic block.

Let v1.p and v2.p be the two versions of a procedure
p in the original and the approximate program. Consider
the following mutual summary for the product procedure
MS v1.p v2.p (assuming the inputs including cflow start out
equal):

ensures v1.cflow == v2.cflow.

If the product program satisfies this mutual specification, then
the injected approximations do not change the control flow
of the program (control flow equivalence). More formally, if
MS v1.p v2.p satisfies this specification, then the following
holds:

For any pair of executions (σ1, σ2) ∈ Tv1.p and
(σ1, σ3) ∈ Tv2.p starting at the same input state σ1,
the sequences of basic blocks in the two executions
are identical.

Hence, we translate the problem of determining if a set
of approximations impacts control flow to the problem of
verifying a mutual summary on the product program. Note

var array:[int]int;
var n:int;

procedure SelectionSort() {
var c:int, position:int, temp:int;
position := 0;
temp := 0;
c := 0;

while (c < (n - 1)) {
call position := Find(c);
if (position != c) {
temp := array[position];
array[position] := array[c];
havoc temp;
array[c] := temp;

}
c := c + 1;

}
}

procedure Find(c:int) returns (position:int) {
var d:int;
position := c;
d := c + 1;
while (d < n) {
if (array[position] > array[d]) {
position := d;

}
d := d + 1;

}
}

Fig. 6: Selection sort example.

that the formalism currently does not detect non-termination
introduced in the approximation; we plan to leverage the
relative termination specifications in future work [8].

Recall the ReplaceChar example from Fig. 1 where we
wish to verify that the approximation preserves control flow
equivalence. The main challenge for verification is to cap-
ture the fact that control flow depends on only a frag-
ment of the array, which are identical in the two programs.
We capture this by defining a quantified atomic predicate
ArrayEqAfter(v1.arr, v2.arr, v1.i)

.
= ∀j : int :: j ≥

v1.i ⇒ v1.arr[j] == v2.arr[j]. This predicate is manually
specified to SymDiff to construct specifications by combining
this predicate with other automatically generated predicates.

B. Selection Sort Example

The same reasoning principle (tracking array fragments to
verify control flow equivalence) also arises in other array based
programs. Fig. 6 gives the source code of selection sort. The
algorithm sorts an array of length n by pushing the maximum
element of the [0 . . . c − 1] subarray to the position c after
every iteration. Once an element has been pushed to the end,
it does not play a part in determining future control flow
behavior. Therefore, the underlined fault does not influence
the control flow of the algorithm. As before, taint analysis
flags the whole array object as tainted since tracking array
indices precisely is typically infeasible using static analysis.
The predicate ArrayEqAfter(v1.arr, v2.arr, v1.i) is also

function A(i:int, j:int) returns (int);
const e:int; axiom e >= 0;

function RelaxedEq(x:int, y:int) returns (bool) {
x <= y + e && y <= x + e

}

procedure lu(j:int, N:int, max0:int)
returns (max:int, p:int) {

i := j+1; max := max0;
while (i < N) {
a := A(i, j);
old a := a; havoc a; assume RelaxedEq(old a,a);
if (a > max) { max := a; p := i; }
i := i + 1;

}
return;

}

Fig. 7: LU decomposition example.

essential for proving control flow equivalence for this sorting
example (§ VI-B).

In addition to selection sort, we also verified control flow
equivalence for a version of bubble sort containing a sim-
ilar approximation. Unlike selection sort, the approximation
requires introducing an additional instruction to havoc the
rightmost index modified by the inner loop.

V. ACCEPTABILITY OF APPROXIMATE PROGRAMS

We motivated proving relaxed specification for approximate
transformation in § II-B. This was one of the examples studied
by the work of Carbin et al. [4]. In this section, we illustrate the
application of differential verification for the remaining two
examples from this work. Later we describe our experience
automating verification of these examples with SymDiff.

A. Approximate Memory and Data Type

Fig. 7 gives a portion of the LU Decomposition algorithm
implemented in SciMark2 benchmark suite [16]. The algo-
rithm computes the index of the pivot row p for a column
j, where the pivot row contains the maximum value among
all rows in the column. It returns the index p of the pivot in
addition to the value of the maximum element in column j.

a) Approximation: The underlined statements model the
introduction of an error value e if the matrix is stored in ap-
proximate memory [17]. As before, the predicate RelaxedEq

denotes the relationship between the original and approximate
value read from the memory; in this case, they are bounded
by a non-negative constant e.

b) Relaxed Specification: Similar to Swish++, the re-
laxed specification for the pair of lu procedures is specified
by the postcondition on MS v1.lu v2.lu:

ensures RelaxedEq(v1.max, v2.max).

The Coq proof comprised of 315 lines of proof script [4].

1 var FF, RS:[int]int;
2 var K:int;
3 function exp(int) returns (int);
4
5 procedure water(len_FF:int,
6 len_RS:int, N:int, gCUT2:int) {
7 K := 1;
8 havoc RS; // approximation
9

10 while (K < N) {
11 assert (K < len_FF);
12 assert (K < len_RS);
13 if (RS[K] < gCUT2) {
14 // assert (K < len_FF);
15 FF[K] := exp(RS[K]);
16 }
17 K := K + 1;
18 }
19 }

Fig. 8: Water example.

B. Statistical Automatic Parallelization

Fig. 8 gives an example from a parallelization of the Water
computation [18]. In the loop, the result of RS[K] is compared
with a cutoff gCUT2, and then another array FF is updated at
index K. The bounds of the two arrays are provided in the
len RS and len FF variables.

c) Approximation: To maximize performance, the paral-
lelization eliminates locks, which can result in race conditions
for the array RS. This is modeled by havoc-ing the entire
array RS.

d) Relaxed Specification: The assertions model memory
safety, and ensure that the program accesses the two arrays
within bounds. The relaxed specification has to ensure relative
memory safety — that the assertions in the approximate
version do not fail more often than the original version. The
Coq proof comprised of 310 lines of proof script [4].

We exploit the formalization of differential assertion check-
ing [7], which automatically replaces an assertion assert φ
with an update to a global variable OK := OK ∧ φ, and inserts a
mutual postcondition v1.OK⇒ v2.OK when starting from equal
states. Hence, we did not have to make any changes to define
the relative specification.

Although it is desirable to check the assertion in line 14
relatively, the approximate version is not relatively correct with
this assertion (also mentioned by Carbin et al. [4]). We instead
prove the weaker assertion in line 11 that essentially expresses
that len FF is not correlated with the value in array RS.

VI. EVALUATION

A. Implementation

Recall that SymDiff automatically generates relational (two-
program) predicates of the form v1.x ./ v2.x, where ./ ∈
{=,≤,≥, <,>,⇒}, and searches for conjunctive (mutual)
pre- and post-conditions over these predicates. We augmented
SymDiff in two main directions to improve the inference
of intermediate specifications beyond this existing scheme.

TABLE I: Experimental results. The last four rows check
control flow equivalence. #Preds is the number of atomic
predicates automatically generated by SymDiff; #Manual is
the number of manually provided predicates; #Min-disj is the
minimum number of disjunctions required; Time is the runtime
in seconds with the minimum disjunction bound. Experiments
were performed on a 2.3 GHz 64-bit Quad Core Intel i7-
3610QM processor with 8GB DDR3 RAM, running Microsoft
Windows 8.1 Professional Edition.

Benchmark #Preds #Manual #Min-disj Time(s)
Swish++ 14 4 1 5.7
LU Decomposition 32 4 0 6.7
Water 27 0 0 6.7
ReplaceChar 10 1 0 7.2
Selection Sort 66 4 6 306.7
Bubble Sort 38 4 3 48.8
Array Operations 41 1 0 6.7

First, we implemented a mechanism for users to express
additional relational and non-relational predicates over pairs
of procedures in a separate file. We provide an option to
only consider these predicates or augment the auto-generated
predicate set with these additional predicates. Second, for
each product procedure MS v1.f v2.f, SymDiff now explores
arbitrary Boolean combination (full predicate abstraction) over
predicates for constructing mutual pre- and postconditions.
The atomic predicates include all the relational (mutual)
predicates over inputs (for preconditions) and both inputs
and outputs (for two-state postconditions), in addition to any
predicates manually specified by the user. The inference is
performed by leveraging the new predicate abstraction imple-
mentation in Boogie [19].3 We also attempted using Duality
interpolation based inference [20]. However, Duality currently
diverges for even the simplest of examples (e.g., Swish++) due
to its inability to infer relational (cross-program) relationships.

B. Experiments

Table I lists our benchmarks and presents the results of
verifying them using SymDiff. It includes all examples de-
scribed in the previous sections and Array Operations ex-
ample performing mapping over all elements of an array.
(See Appendix B for our exercise of checking control flow
equivalence on C benchmarks using bounded verification and
comparing against taint analysis.) First, note that only Water
can be verified completely automatically (even without our
additions to SymDiff). Second, most of the examples require
the support for disjunctions in the invariants.

The need for manual predicates can be broken down
into roughly three categories: (i) non-relational pred-
icate such as v2.num r ≥ 10 (Swish), (ii) non-
trivial relational predicates that require arithmetic such as
v1.max ≤ v2.max + e (LU), and (iii) specialized predicates
such as ArrayEqAfter(v1.arr, v2.arr, v1.i) (for all the con-
trol equivalence examples). Alternately, for Swish and LU,

3We are grateful to Akash Lal for his implementation and help with this
feature in Boogie.

reusing the property RelaxedEq(v1.x, v2.x) as an atomic
predicate (instantiated on variables in scope) suffices as well
(no additional predicates or disjunction needed). This points to
the potential benefit of performing property-directed predicate
discovery to improve automation on these examples. Finally,
we usually specify the same syntactic predicate for both
precondition and postcondition for tail-recursive procedures
extracted from loops — handling loops directly will halve the
number of manual predicates.

Disjunctions in the sorting examples result from the need
to construct complex two-state mutual summaries for product
procedures that typically have the form old(φ1∧ . . . φk)⇒ ψ.
For Selection Sort, there are around 15 predicates for such
procedures thereby causing large runtime overhead in inferring
the strongest inductive invariant. Manually specifying the
subset of relevant predicates reduces the runtime significantly
to the order of 10s of seconds for this example. Again, this
shows the potential for more goal-directed inference of weaker
invariants (e.g., CEGAR [21], interpolants [6]) for scaling to
larger examples.

VII. RELATED WORK

A number of complementary approaches have been recently
proposed to reason about approximations. These approaches
can be roughly categorized (with overlaps) into (i) language
based, (ii) static analysis, and (iii) dynamic approaches. Lan-
guage based approaches propose language constructs and
annotations to make approximations explicit in a program [2],
[4]. EnerJ [2] introduces approximate types and ensures that
such values do not impact precise computations, including
conditional statements. Our work can be used to improve the
precision of the type-based analysis, as demonstrated in § IV.
Carbin et al. [4] describe language constructs for introducing
approximations and relaxed specifications (based on relational
Hoare logic [22]), and prove correctness of transformations
using Coq [23]. We show that mutual summaries and SMT-
based verification can significantly improve the automation for
most transformations covered by this approach.

Rely [3] performs static quantitative reliability analysis to
provide probabilistic guarantees on the impact of approxi-
mations on overall behavior of a program. We believe that
SymDiff can be augmented with this framework to create an
automated framework for improving precision using relative
invariants. ExPAX [24] is a framework that generates a set of
safe-to-approximate operations based on a dataflow taint anal-
ysis. It develops an algorithm to compute the approximation
level for each operation in the set so that energy consumption
is minimized and reliability constraints are satisfied.

Among dynamic approaches, fault injection at the source or
intermediate representation level has been used to profile the
sensitivity of output quality to approximations. Fault injectors
such as KULFI [25], LLFI [26], and PDSFIS [27] approxi-
mate instructions at runtime. Though these techniques achieve
high levels of accuracy, they provide no formal coverage
guarantees, unlike our approach. Offline dynamic analysis
techniques provide information on dataflow and correlation

difference (e.g., [28], [29]). The former may be imprecise
as it is based on static dataflow analysis, while the latter
again does not provide formal guarantees. Although there are
optimizations for selective instruction perturbation, such as
statistical methods [30], the reasoning is only for a subset
of all the possible executions of the program.

Finally, our work is closely related to previous works on
translation validation [31], [32] that validate equivalence-
preserving intraprocedural compiler transformations, using
lock-step symbolic execution and SMT solvers. However, mu-
tual summaries and the product construction allows for richer
relaxed specifications other than equivalence, interprocedural
reasoning [8], and leveraging off-the-shelf program verifiers
and inference engines.

VIII. CONCLUSIONS

In this paper, we have described the application of auto-
mated differential verification for providing formal guarantees
of approximations. The structural similarity between original
and approximate programs are leveraged to automate most
intermediate relative specifications. We are currently working
on automating predicate generation, more expressive inference
engines such as interpolants [6] and indexed predicate abstrac-
tion [33] to infer remaining specifications. We would also like
to leverage the concept of relative termination [8] to improve
on the partial correctness guarantees of mutual summaries.

REFERENCES

[1] L. Kugler, “Is ”good enough” computing good enough?” Commun. ACM,
vol. 58, no. 5, pp. 12–14, Apr. 2015.

[2] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and
D. Grossman, “EnerJ: Approximate data types for safe and general low-
power computation,” in ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), 2011, pp. 164–174.

[3] M. Carbin, S. Misailovic, and M. C. Rinard, “Verifying quantitative
reliability for programs that execute on unreliable hardware,” in ACM
SIGPLAN International Conference on Object-Oriented Programming,
Systems, Languages and Applications (OOPSLA), 2013, pp. 33–52.

[4] M. Carbin, D. Kim, S. Misailovic, and M. C. Rinard, “Proving accept-
ability properties of relaxed nondeterministic approximate programs,”
in ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), 2012, pp. 169–180.

[5] C. Barrett, A. Stump, and C. Tinelli, “The SMT-LIB standard: Version
2.0,” in International Workshop on Satisfiability Modulo Theories (SMT),
2010.

[6] K. L. McMillan, “An interpolating theorem prover,” in International
Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS), 2004, pp. 16–30.

[7] S. K. Lahiri, K. L. McMillan, R. Sharma, and C. Hawblitzel, “Differ-
ential assertion checking,” in Joint Meeting of the European Software
Engineering Conference and ACM SIGSOFT Symposium on the Foun-
dations of Software Engineering (ESEC/FSE), 2013, pp. 345–355.

[8] C. Hawblitzel, M. Kawaguchi, S. K. Lahiri, and H. Rebelo, “Towards
modularly comparing programs using automated theorem provers,” in
International Conference on Automated Deduction (CADE). Springer,
2013, pp. 282–299.

[9] S. K. Lahiri, C. Hawblitzel, M. Kawaguchi, and H. Rebêlo, “SymDiff:
A language-agnostic semantic diff tool for imperative programs,” in
International Conference on Computer Aided Verification (CAV), 2012,
pp. 712–717.

[10] T. Reps, S. Horwitz, and M. Sagiv, “Precise interprocedural dataflow
analysis via graph reachability,” in ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL), 1995, pp. 49–61.

[11] S. Horwitz, T. W. Reps, and D. Binkley, “Interprocedural slicing using
dependence graphs,” ACM Trans. Program. Lang. Syst., vol. 12, no. 1,
pp. 26–60, 1990.

[12] M. Rinard, “Acceptability-oriented computing,” in ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), 2003, pp. 221–239.

[13] M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and K. R. M. Leino,
“Boogie: A modular reusable verifier for object-oriented programs,”
in International Symposium on Formal Methods for Components and
Objects (FMCO), 2006, pp. 364–387.

[14] C. Flanagan and K. R. M. Leino, “Houdini, an annotation assistant
for ESC/Java,” in International Symposium of Formal Methods Europe
(FME), 2001, pp. 500–517.

[15] S. K. Lahiri, S. Qadeer, J. P. Galeotti, J. W. Voung, and T. Wies, “Intra-
module inference,” in International Conference on Computer Aided
Verification (CAV), 2009, pp. 493–508.

[16] “SciMark 2.0,” http://math.nist.gov/scimark2.
[17] J. Nelson, A. Sampson, and L. Ceze, “Dense approximate storage in

phase-change memory,” in Ideas and Perspectives session at ASPLOS,
2001.

[18] W. Blume and R. Eigenmann, “Performance analysis of parallelizing
compilers on the perfect benchmarks programs,” IEEE Trans. Parallel
Distrib. Syst., vol. 3, no. 6, pp. 643–656, Nov. 1992.

[19] A. V. Thakur, A. Lal, J. Lim, and T. W. Reps, “Posthat and
all that: Automating abstract interpretation,” Electr. Notes Theor.
Comput. Sci., vol. 311, pp. 15–32, 2015. [Online]. Available:
http://dx.doi.org/10.1016/j.entcs.2015.02.003

[20] K. L. McMillan, “Lazy annotation revisited,” in International Confer-
ence on Computer Aided Verification (CAV), 2014, pp. 243–259.

[21] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith, “Counterexample-
guided abstraction refinement for symbolic model checking,” J. ACM,
vol. 50, no. 5, pp. 752–794, Sep. 2003.

[22] N. Benton, “Simple relational correctness proofs for static analyses and
program transformations,” in ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL), 2004, pp. 14–25.

[23] “The Coq proof assistant,” http://coq.inria.fr.
[24] J. Park, K. Ni, X. Zhang, H. Esmaeilzadeh, and M. Naik, “Expectation-

oriented framework for automating approximate programming,” in Work-
shop on Approximate Computing Across the System Stack (WACAS),
2014.

[25] V. C. Sharma, A. Haran, Z. Rakamarić, and G. Gopalakrishnan, “To-
wards formal approaches to system resilience,” in IEEE Pacific Rim
International Symposium on Dependable Computing (PRDC), 2013, pp.
41–50.

[26] A. Thomas and K. Pattabiraman, “LLFI: An intermediate code level
fault injector for soft computing applications,” in Workshop on Silicon
Errors in Logic System Effects (SELSE), 2013.

[27] A. Jin, J. Jiang, J. Hu, and J. Lou, “A pin-based dynamic software fault
injection system,” in Young Computer Scientists, 2008. ICYCS 2008. The
9th International Conference for. IEEE, 2008, pp. 2160–2167.

[28] M. F. Ringenburg, A. Sampson, I. Ackerman, L. Ceze, and D. Grossman,
“Dynamic analysis of approximate program quality,” University of
Washington, Tech. Rep. UW-CSE-14-03-01.

[29] M. F. Ringenburg, A. Sampson, L. Ceze, and D. Grossman, “Profiling
and autotuning for energy-aware approximate programming,” in Work-
shop on Approximate Computing Across the System Stack (WACAS),
2014.

[30] P. Roy, R. Ray, C. Wang, and W.-F. Wong, “ASAC: Automatic sensi-
tivity analysis for approximate computing,” in ACM SIGPLAN/SIGBED
Conference on Languages, Compilers and Tools for Embedded Systems
(LCTES), 2014, pp. 95–104.

[31] A. Pnueli, M. Siegel, and E. Singerman, “Translation validation,” in
International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS), 1998, pp. 151–166.

[32] G. C. Necula, “Translation validation for an optimizing compiler,” in
ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), 2000, pp. 83–94.

[33] S. K. Lahiri and R. E. Bryant, “Predicate abstraction with indexed
predicates,” ACM Trans. Comput. Log., vol. 9, no. 1, 2007.

[34] D. E. Denning, “A lattice model of secure information flow,” Commu-
nications of the ACM, vol. 19, no. 5, pp. 236–243, May 1976.

[35] H. R. Myler and A. R. Weeks, The pocket handbook of image processing
algorithms in C. Prentice Hall Press, 2009.

[36] S. Chatterjee, S. K. Lahiri, S. Qadeer, and Z. Rakamarić, “A reachability
predicate for analyzing low-level software,” in International Conference
on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), 2007, pp. 19–33.

http://math.nist.gov/scimark2
http://dx.doi.org/10.1016/j.entcs.2015.02.003
http://coq.inria.fr

1 procedure MS_v1.F_v2.F(v1.x:int, v2.x:int)
2 modifies v1.g, v2.g;
3 requires v1.x >= 0; // intermediate contract (manual)
4 {
5 // initialize call witness variables
6 v1.b_1, v2.b_1 := false, false;
7 // v1
8 if (v1.x < 100) {
9 v1.g := v1.g + v1.x;

10 v1.i_1, v1.gi_1 := v1.x + 1, v1.g; // store inputs
11 call v1.F(v1.x + 1);
12 v1.b_1 := true; // record call
13 v1.go_1 := v1.g; // store outputs
14 }
15 // v2
16 if (v2.x < 100) {
17 v2.g := v2.g + 2*v2.x;

18 v2.i_1, v2.gi_1 := v2.x + 1, v2.g; // store inputs
19 call v2.F(v2.x + 1);
20 v2.b_1 := true; // record call
21 v2.go_1 := v2.g; // store outputs
22 }
23 // constrain calls
24 if (v1.b_1 && v2.b_1) { // for pair of calls
25 v1.st_g, v2.st_g := v1.g, v2.g; // store globals
26 v1.g, v2.g := v1.gi_1, v2.gi_1;
27 call MS_v1.F_v2.F(v1.i_1, v2.i_1);
28 assume (v1.g == v1.go_1); // constrain outputs
29 assume (v2.g == v2.go_2); // constrain outputs
30 v1.g, v2.g := v1.st_g, v2.st_g; // restore globals
31 }
32 return;
33 }
34
35 procedure MS_v1.Main_v2.Main()
36 modifies v1.g, v2.g;
37 requires v1.g == v2.g; // globals start equal (automatic)
38 ensures v1.g <= v2.g; // mutual postcondition (manual)
39 {
40 ...
41 }

Fig. 9: Composed program for example in Fig. 4. Underlined statements correspond to constituent procedures.

APPENDIX A
PRODUCT PROGRAM DETAILS

We briefly sketch the important components of this con-
struction:
• Line 6 initializes a list of call witness variables, one per

call-site within v1.F and v2.F respectively.
• Lines 8–14 inline the body of v1.F, whose statements

are underlined. Each procedure call (e.g., line 11) is
instrumented so that the inputs and outputs are recorded
in local variables and the witness variable for the call-site
is set.

• Lines 16–22 do the same for v2.F.
• Lines 24–31 are the most interesting part. First, we test

using the witness variables if a pair of callees (v1.F, v2.F)
has been executed. If so, we call the joint procedure for
the callee-pair MS v1.F v2.f with the stored arguments
and globals. The recursive call to MS v1.F v2.f in line 27
results from the recursive calls to F in the two versions.
The assume statements after the call constrain the earlier
output values of the two callees. Finally, the globals are

restored back to the state before the recursive call to
MS v1.F v2.f.

APPENDIX B
CONTROL FLOW EQUIVALENCE: C BENCHMARKS

We have also performed preliminary experiments to deter-
mine the feasibility of using bounded differential analysis to
infer the set of approximations that do not impact control flow.
The main objective is to compare our differential analysis with
a more traditional taint analysis [34] on realistic benchmarks.
The taint analysis for Boogie programs (also implemented in
SymDiff) checks if a statement lies in the slice of any of
the conditionals using interprocedural dataflow analysis. To
develop an automated differential analysis (Diff-Inline), we
inline procedure calls (up to a small bound, say 10) before
checking the mutual summary specifications — this leads to
an unsound analysis in the presence of loops and recursion. In
essence, the taint analysis and Diff-Inline provide respectively
a lower and upper bound on the number of statements that
can be safely approximated without impacting control flow.

TABLE II: Experimental results for control flow equivalence. LOC is the number of lines of code; #P is the number of
procedures; #Locs. is the number of program locations that could potentially be approximated; #Inline is the chosen inlining
bound; #Approx. is the reported number of locations that can be approximated (i.e., those that do not affect control flow when
approximated); Time is cumulative runtime in minutes.

Benchmark LOC #P #Locs. Diff-Inline Taint
#Inline #Approx. Time #Approx. Time

Insertion Sort 24 2 13 10 1 1.3 1 1.1
Bubble Sort 25 2 13 10 1 1.6 1 0.8
Selection Sort 30 2 15 10 2 1.8 1 1.9
Brightness Correction 21 1 8 10 4 1.4 4 0.4
Arithmetic Mean Filter 27 1 13 10 5 1.3 5 2.5
Centroid Computation 55 3 30 10 14 8.3 14 3.3
Matrix Multiplication 38 3 17 16 7 5.4 7 2.9
Linked List Operations 76 5 40 6 7 55.4 2 0.8
Array Operations 78 7 35 10 12 115.4 3 2.5

var array: [int]int;
const n:int;

procedure max_of(x:int, y:int) returns (r:int) {
if(x > y) {
r := 1;
return;

}
if(x == y) {
r := 0;
return;

}
r := -1;
return;

}

procedure modify_each_element(value:int) {
var i, tmp : int;
i, tmp := 0, 0;
while (i < n) {
call tmp := max_of(array[i], value);
havoc tmp; // approximation: return value of

// max_of stored in unreliable memory
array[i] := tmp;
i := i + 1;

}
}

Fig. 10: Array operations example. Taint analysis is imprecise
on this example since it cannot precisely track array segments.

We have chosen a set of 9 realistic C programs including
sorting, image processing [35], data structure implementations,
and operations on matrices. Table II summarizes our bench-
marks. We first translate them into Boogie programs using the
HAVOC verifier [36]. In our experiments, an approximation
is modeled as just a havoc statement (of the appropriate
variable) introduced at every program location of interest
(i.e., variable assignments). We then establish control flow
equivalence for every such approximation in turn, and we
report total cumulative runtimes.

Table II presents the results of our experiments. Overall,
benchmarks from the domain of image processing are most
amenable to approximations that do not affect control flow,
since most computations are local to a pixel neighborhood. As
expected, the inlining-based approach scales poorly compared

to the modular taint analysis. However, it is encouraging to
see that the differential analysis improves the precision on
three benchmarks. Among these, we have studied the Selection
Sort example in detail (§ IV-B), and have applied the sound
differential verification on Selection Sort and Array Operations
(§ VI-B). The Boogie source code of Array Operations is
shown in Fig. 10. This exercise illustrates the robustness of
our differential approach to verify more complex examples,
albeit with a little more user effort.

	Introduction
	Motivating Examples
	Control Flow Equivalence
	Acceptability of Approximate Programs

	Differential Program Verification
	Simple Programming Language
	Specification: Mutual Summaries
	Modular Checking of Mutual Summaries
	Product Programs
	Adding Specifications

	Invariant Inference

	Control Flow Equivalence
	Modeling Control Flow
	Selection Sort Example

	Acceptability of Approximate Programs
	Approximate Memory and Data Type
	Statistical Automatic Parallelization

	Evaluation
	Implementation
	Experiments

	Related Work
	Conclusions
	References
	Appendix A: Product program details
	Appendix B: Control Flow Equivalence: C Benchmarks

