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Abstract
The choice of where a thread scheduling algorithm preempts one
thread in order to execute another is essential to reveal concur-
rency errors such as atomicity violations, livelocks, and deadlocks.
We present a scheduling strategy calledpreemption sealingthat
controls where and when a scheduler isdisabledfrom preempt-
ing threads during program execution. We demonstrate that this
strategy is effective in addressing two key problems in testing
industrial-scale concurrent programs: (1) tolerating existing errors
in order to find more errors, and (2) compositional testing oflay-
ered, concurrent systems. We evaluate the effectiveness ofpreemp-
tion sealing, implemented in the CHESStool, for these two scenar-
ios on newly released concurrency libraries for Microsoft’s .NET
framework.

1. Introduction
Concurrent programs are difficult to design, implement, test, and
debug. Furthermore, analysis and testing tools for concurrent pro-
grams lag behind similar tools for sequential programs. As are-
sult, many concurrency bugs remain hidden in programs untilthe
software ships and runs in environments that differ from thetest
environment.

Systematic concurrency testing offers a promising solution to
the problem of identifying and resolving concurrency bugs.In this
work, we focus on systematic concurrency testing as implemented
in CHESS[16], a tool being used to test concurrent programs at Mi-
crosoft. A CHESSuser provides a collection of tests, each explor-
ing a different concurrency scenario for a program. A concurrency
scenario might range from a simple harness that calls into a con-
current data structure to a web browser starting up and rendering a
web page. Given such a scenario, CHESSrepeatedly executes the
program so that each run of the program explores a different thread
schedule, using novel stateless exploration algorithms [14, 15].

Of course, selecting which thread schedules are most useful
among the exponentially many possible schedules is a central prob-
lem for the effectiveness of a tool like CHESS. We faced the fol-
lowing two related problems when deploying CHESSat Microsoft,
which helped motivate this work:

[copyright notice will appear here]

Figure 1. Dependencies among .NET 4.0 concurrency classes.
SemaphoreSlim, Barrier, and ManualResetEventSlim
are synchronization primitives (SYN, purple).Blocking
Collection, ConcurrentDictionary, and ConcurrentBag
are concurrent data structures (CDS, orange).Task and
TaskScheduler are part of a task parallel library (TPL, green).
PLINQ and Parallel.For are parallel versions of LINQ and
for-loops (blue).

1. Users want the ability to findmultiple bugsso they can pipeline
the testing process and not be blocked waiting for bug fixes.

2. Users want to performcompositional testingso they can focus
the test on the components they are responsible for.

The first problem arises because many different thread sched-
ules may manifest the same bug. Thus, even if the systematic search
continues after finding a bug, that same bug may cause the system
to crash repeatedly. This problem is important because large soft-
ware systems often have a large number of bugs, some known and
many unknown. Known bugs can be in various life stages: the de-
veloper might be debugging, finding the root cause, designing a fix,
or testing the fix. Depending on its severity, a bug may be fixedim-
mediately or the fix may be deferred to a future release. As a result,
it may be several weeks or even months before a bug is fixed and
the fix is available to the tester. Thus, a tool such as CHESSwill
be most useful if it finds new bugs while avoiding schedules that
trigger known bugs.

The second problem arises because a systematic search testsall
possible schedules, even those that are irrelevant to the part of the
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system being tested. Well-engineered software consists oflayered
modules where upper layers depend on services of lower layers,
but not vice versa. Figure 1 shows an example of such a layered
system from the .NET 4.0 libraries, which we will return to later in
the paper. Usually, different teams are responsible for developing
and testing different layers. A testing tool should allow users to
“focus” the exploration on specific layers. If a particular layer, such
as a low-level concurrency library, has been extensively tested or
verified, then repeatedly testing its functionality when called from
higher layers is a waste of valuable testing resources.

Preemption sealingis a simple but effective strategy to address
these problems. A preemption is an unexpected interruptionof
a thread’s execution caused, for example, by the thread’s time
slice expiring or a hardware interrupt occurring. A preemption-
sealing scheduler disables preemptions in a particular scope of
program execution, resorting to non-preemptive scheduling within
that scope.

By resorting to non-preemptive scheduling, a preemption-
sealing scheduler avoids exposing concurrency bugs that require
at least one preemption within a given scope. To identify multiple
errors, we seal preemptions in a scope related to the root cause
of a bug. If an error-inducing schedule contains a preemption in
methodm, then the scheduler seals preemptions whenever control
is within the scope ofm in subsequent runs. To enable composi-
tional testing, the user provides a set of methods or types that do
not require testing. By sealing preemptions in these scopes, the
scheduler conserves valuable testing time.

Preemption sealing builds upon prior work onpreemption
bounding [14], a technique that prioritizes executions that con-
tain fewer preemptions. The hypothesis of preemption bounding
is that most concurrency errors surface in executions that contain
few preemptions. This hypothesis has been validated by various
researchers [2, 14, 12]. Accordingly, a preemption-bounded sched-
uler explores executions with fewer preemptions first. Preemption
bounding and preemption sealing are orthogonal schedulingstrate-
gies that combine naturally.

We implement preemption sealing in the CHESS concurrency
testing tool and evaluate its effectiveness on a set of platform li-
braries for .NET that provide essential concurrency constructs to
programmers. Testers for these libraries have been using CHESS
over the past year to more thoroughly test these critical platform
layers. We leverage 74 of their concurrency unit tests and use them
to demonstrate preemption sealing’s effectiveness in finding mul-
tiple errors and enabling compositional testing. Our experiments
show that CHESS successfully finds multiple errors by sealing
methods containing bug-inducing preemptions. Also, on average,
compositional testing with preemption sealing cuts the number of
executions explored during testing by more than half.

In the remainder of the paper, we formalize preemption-bounded
scheduling (Section 2), define preemption sealing (Section3), jus-
tify its use for finding multiple errors (Section 3.1) and composi-
tional testing (Section 3.2), describe our implementationof pre-
emption sealing and evaluate it on a set of .NET concurrency plat-
form libraries (Section 4), discuss related work (Section 5), and
conclude (Section 6).

2. Preemption-Bounded Scheduling
We model the execution of a concurrent program as a sequence of
events, each corresponding to an operation performed by a thread.
We represent an event with a five-tuple(tid, ctx, op, loc, blk),
wheretid is the thread id,ctx is the context of the thread including
its program counter (ctx.pc) and its call stack (ctx.stack), op is
the operation performed,loc is the (shared) memory location or
object on which the operation is performed, andblk is a boolean
flag that indicates whether the thread is blocked while performing

the operation or not. We use|E| to denote the length of execution
E andE[i] to denote the event at positioni in executionE. We
access the components of an evente with ’.’ notation:

(e.tid, e.ctx, e.op, e.loc, e.blk)

An event e is blocking if e.blk is true. A completing eventfor
a blocking evente is the event(e.tid, e.ctx, e.op, e.loc, false).
A sequence iswell-formed if for every blocking evente in an
executionE, the next event performed by threade.tid in E, if any,
is the completing event fore. We only consider executions that are
well-formed. Also, we use to denote theop andloc components
of events that do not access shared state.

A context switchin an executionE is identified by an index
c such that0 ≤ c < |E| − 1 andE[c].tid 6= E[c + 1].tid. A
context switchc is said to benon-preemptiveif E[c].blk is true
or E[c].op is the thread “exit” operation, signaling the end of the
execution of threadE[c].tid. Otherwise the context switch is said to
bepreemptive. We call a preemptive context switch apreemption,
for short.

The preemption bound of an executionE is the number of pre-
emptions inE. Preemption-bounded scheduling ensures that each
execution contains at mostP preemptions, whereP is a number
chosen by the tester. Note that a preemption bound of zero simply
means that the scheduler runs non-preemptively, executingthe cur-
rent thread until it blocks and then switching to a different(enabled)
thread. If non-preemptive scheduling is unable make progress (be-
cause all threads are blocked), then the program contains a dead-
lock. Thus, when a preemption-bounded scheduler runs out ofpre-
emptions, it simply resorts to non-preemptive scheduling until the
end of execution or a deadlock is encountered.

In addition to the choice of where to place preemptive context
switches, the scheduler also has the choice of which enabledthread
to execute after a context switch. This latter choice is typically
constrained by a desire for fair scheduling, but fairness isbeyond
the scope of this paper (for more details about fair stateless model
checking, see [15]). In this paper, we assume the scheduler is free
to schedule any enabled thread after a context switch.

Figure 2(a) shows a buggy “bank account” classAcct and a
test methodTestAcct containing a test scenario. The test scenario
creates three threads that test the classAcct. Threadt1 withdraws
from the bank account, threadt2 reads the account balance, and
threadt3 deposits to the account.

Figure 2(b) shows an execution of this program that exposes an
assertion failure. For brevity, we represent the context bythe pro-
gram label and use the string “acc” to refer to the single instance
of theAcct class. For example, the operation at labelL2 is a lock
operation on the objectacc, while the operation at labelL4 is a
read operation on the fieldacc.bal. In this execution, the transi-
tion from (t1,L5, , ,F) to (t3,L6,lock,acc,F) represents a
preemption. Threadt1 is preempted at labelL5 of theRead method
after reading the account balance, but before acquiring thelock on
acc at labelL2 of theWithdraw method. Next, threadt3 executes
the entireDeposit method. Then, because threadt3 has com-
pleted, a non-preemptive context switch returns control tothread
t1, which acquires the lock at labelL2 and executes to completion.
This execution violates the assertion at labelLD because threadt3’s
deposit is lost.

3. Preemption Sealing
Preemption sealing uses information associated with events to de-
termine whether an event meets certain criteria, which we call a
“scope”. If an event is within scope, preemption sealing prevents
the scheduler from performing a preemption prior to that event.

A scopeis a functionF that takes an event as input and returns
true if that event is “in scope” and false otherwise. The function
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(a) public class Acct {
volatile int bal;

public Acct(int n) {
bal = n;

}
public void Withdraw(int n) {

L1: int tmp = Read();
L2: lock (this) {

bal = tmp - n;
L3: }

}
public int Read() {

L4: return bal;
L5: }

public void Deposit(int n) {
L6: lock (this) {

var tmp = bal;
bal = 0;

L7: bal = tmp + n;
LU: }
L8: }

}

void TestAcct() {
var acc = new Acct(10);

var t1 = new Thread(o =>
{ (o as Acct).Withdraw(2);

L9: });

var t2 = new Thread(o =>
{ var b = (o as Acct).Read();

LA: assert(b>=8);
LB: });

var t3 = new Thread(o =>
{ (o as Acct).Deposit(1);

LC: });

t1.Start(acc); t2.Start(acc);
t3.Start(acc);
t1.Join(); t2.Join(); t3.Join();

LD: assert(account.Read() == 9);
LE:
}

(b)

(t2,L4,read,acc.bal,F) (t2,L5, , ,F) (t2,LA, , ,F) (t2,LB, , ,F)

(t1,L1, , ,F) (t1,L4,read,acc.bal,F) (t1,L5, , ,F) (t3,L6,lock,acc,F)

(t3,L7,write,acc.bal,F) (t3,LU,unlock,acc,F) (t3,L8, , ,F) (t3,LC, , ,F)

(t1,L2,lock,acc,F) (t1,L3,unlock,acc,F) (t1,LA, , ,F) (t0,LD, , ,F)

(c)
(t3,L6,lock,acc,F) (t3,L7,write,acc.bal,F) (t3,LU,unlock,acc,F)

(t2,L4,read,acc.bal,F) (t2,L5, , ,F) (t2,LA, , ,F)

Figure 2. (a) Simple bank account example with two bugs and (b)-(c) twoexecutions demonstrating the two bugs.

F may examine any data associated with an evente, such as its
thread id,e.tid, its operation,e.op, etc. In this paper, we assume
a finite set of scopes, given by a finite set of functions. Thus,a
scopeF identifies a subsequence of an executionE containing
those eventsE[i] such thatF (E[i]) is true. Operationally, for each
event executed, we can apply the functionF to determine if it is in
the scope ofF or outside it, though we use more efficient means in
practice. Preemptions are disabled at events that are “in scope” and
are enabled at events that are not in any scope.

By disabling preemptions in certain scopes, the scheduler ef-
fectively focuses its search on other parts of the search space. Dis-
abling preemptions does not introduce new deadlocks. As noted in
the previous section, when a scheduler has no preemptions touse,
it simply resorts to non-preemptive scheduling. Thus, the only way
the scheduler cannot make progress in the presence of preemption
sealing is if the program deadlocks. Also, it is straightforward to see
that disabling preemptions does not introduce additional behaviors
in the program and thus does not introduce safety violations.

Preemption sealing can be seen as an extension of previ-
ous work that addresses the relationship between data racesand
the placement of preemptions [14]. In that work, Musuvathi and
Qadeer partition the world of all objects into synchronization ob-
jects and data objects, as is typical when defining data races. They
show that if a program is data-race free then it is possible todisable
preemptions at operations on data objects without missing errors in
the program.

Preemption sealing builds upon this work by disabling preemp-
tions at operations on synchronization objects when those opera-
tions occur within a particular scope. We discuss circumstances un-
der which preemption sealing can be done safely without missing
errors. In the two scenarios we consider, finding multiple errors and

compositional testing, we find that preemption sealing improves the
efficiency and efficacy of systematic search by eliminating thread
interleavings that fall within a well-defined scope.

3.1 Detecting Multiple Errors

Detecting multiple errors is a difficult problem because many dif-
ferent thread interleavings may expose the same bug. To alleviate
this problem, preemption sealing capitalizes on the observation that
during a preemption-bounded search, the preemptions involved in
a failure-inducing schedule are good indicators of theroot causeof
the failure. This observation is a consequence of the following two
reasons: (1) the scheduler always has a choice regarding whether
or not to introduce a preemption prior to a given event and (2)the
scheduler carefully exercises this choice to explore executions with
fewer preemptions first. Thus, the preemptions in a failure-inducing
schedule are crucial to expose the bug. Otherwise, the scheduler
would have found the same bug with fewer preemptions.

We return to the bank account example in Figure 2(a) to il-
lustrate the problem of finding multiple errors. Figure 2(b)shows
an execution that ends in an assertion failure at labelLD because
the bank account balance is incorrect. This failure occurs because
the Withdraw method does not contain proper synchronization,
which makes its effect appear non-atomic. A preemption at label
L2 in the Withdraw method, followed by complete execution of
theDeposit method, will cause the assertion failure.

Figure 2(c) shows an execution that fails due to another defect
in the classAcct. Because theRead method does not use synchro-
nization, it may observe an intermediate value of the account bal-
ance (after it has been set to zero by theDeposit method). This
execution leads to an assertion failure at labelLA.
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We wish to find both errors rather than first finding one, asking
the programmer to fix it, waiting for the fix, and then running again
to find the second error. We would like the search to avoid known
errors once they have been identified by “tolerating” the error in a
temporary way.

Our idea is inspired by the observation that programmers intend
many, if not most, methods to appear atomic in their effect when
executed concurrently [6]. Thus, once we find an error that requires
a preemption in methodm to surface, we wish to seal method
m from being preempted in the rest of the search. Effectively,
this means that once the scheduler starts executing methodm, it
executes it to completion (modulo the case wherem blocks). Note
that we could seal just at the specific program counter where the
preemption took place, but there are likely many other preemption
points in the same method that will expose the same error. The
above observation implies that methods are a natural scope in
which to disable, or seal, preemptions.

We generalize this idea to multiple preemptions. Assume a pre-
emption bounded search that explores all executions withP pre-
emptions before exploring any executions withP + 1 preemp-
tions. Thus, if no errors were found withP preemptions, then an
error found withP + 1 preemptions could not be found withP
or fewer preemptions. If an error surfaces in executionE with
preemption setS of size |S|, then at most|S| methods must be
sealed. Thepreemption methodsare the active methods (meth-
ods on top of the call stack) in which the preemptions occur:
{m | s ∈ S, E[s].ctx.stack.top = m}. If two different tests fail
with the same set of preemption methods, the failures are likely due
to the same error.

Note that preemption sealing at the method level may not elim-
inate the failure. For example, suppose methodm calls methodn
and a preemption in either method leads to the same failure. If the
preemption in methodn occurs first, then sealing only methodn
will not prevent the failure. If the preemption in methodm occurs
first, however, and we use dynamic scope when sealing the pre-
emption in methodm, then we will ensure that methodn will not
be preempted when called fromm. Thus, we use dynamic scoping
when sealing preemption methods.

3.2 Compositional Testing

Strict layering of software systems is a basic software engineering
practice. Upper layers depend on the services of lower layers, but
not vice versa. Different teams may develop and test the different
layers. The efficiency of testing the entire system depends greatly
on eliminating redundant tests. This observation implies that in a
layered system, tests for the upper layers need not (indeed,should
not) perform redundant tests on the functionality of the lower lay-
ers.

Complicating matters, each layer of a system may be “thread-
aware”, protecting its data from concurrent accesses by an upper
layer’s threads, while explicitly creating threads itselfto perform
its tasks more efficiently.

However, although one may imagine and craft arbitrarily com-
plicated interactions between layers, in practice, function calls into
lower layers are often meant to appear atomic to the upper layers.
In fact, several dynamic analysis tools (such as SideTrack [18], At-
omizer [6], and Velodrome [8]) rely on this programming practice,
as they are designed to check the atomicity of such function calls.
What this means for preemption sealing is that

if we can establish or trust the lower-level functions to be
atomic, it is safe to disable preemptions in the lower layer
while testing the upper layer.

Although this claim may be simple to understand intuitively, it
should be understood in the context of prior work on atomicity [6].

This work derives the definition of atomicity from the classic defi-
nition of conflict-serializability and treats all functioncalls into the
lower layer as transactions.

The concept of layering means that we partition the code intoan
upper layerA and a lower layerB such thatA calls intoB, B never
calls intoA, and execution starts and ends inA. For an execution
E, defined earlier as a sequence of events, we label all events as
A-events orB-events. For simplicity, we assume that each thread
executes at least oneA-event orB-event in between any pair of
calls/returns that transition between layers.

For a fixed executionE we define transactions as follows. Let
Et be the sequence of events by threadt. More formally, Et is
the maximal subsequence ofE consisting of events by onlyt. We
then define atransactionof threadt to be a maximal contiguous
subsequence ofEt consisting of onlyB-events. Atomicity is now
characterized as follows, in reverse order of logical dependency:

• The layerB is atomicif all executionsE are serializable.

• An executionE is serializable if it is equivalent to a serial
execution.

• Two executions areequivalentif one can be obtained from the
other by repeatedly swapping adjacent independent events.

• Two events aredependentif either (1) they are executed by
the same thread, (2) they are memory accesses that target the
same location and at least one writes to the location, (3) they
are operations on the same synchronization object, and are not
both side-effect-free.1

• An executionE is calledserial if there are no context switches
within transactions. For any context switch at positionc, the
eventE[c] is either not part of any transaction, or is the last
event of a transaction.

Thus, ifB is atomic, then for any execution that reveals a bug, there
exists an equivalent serial execution that also reveals thebug. Such
a serial execution does not contain any preemptions insideB, so
the search will still cover this serial execution even when sealing
preemptions inB.

4. Implementation and Evaluation
We implemented preemption sealing in CHESS, a tool for con-
currency testing [14]. CHESS repeatedly executes a concurrency
unit test and guarantees that each execution takes a different thread
schedule. CHESSrecords the current thread schedule so that when
it finds an error, it can reproduce the schedule that led to theer-
ror. CHESSdetects errors such as assertion failures, deadlocks, and
livelocks, as well as data races, which are often the cause ofother
failures. CHESScontains various search strategies, one of which is
preemption bounding.

After finding an error, CHESSruns in “repro” mode to reproduce
the error by replaying the last stored schedule. During thisrepro
execution CHESS collects extensive context information, such as
the current call stack, to produce an attributed execution trace for
source-level browsing. During this execution, CHESSalso outputs
preemption methodsfrom the stored schedule. The preemption
methods consist of methods in which CHESSplaced a preemption.

To implement preemption sealing, we extended CHESS’s API
with methods to enable and disable preemptions. We implemented
a preemption sealing strategy via a CHESSmonitor that tracks con-
text information, such as which method is currently on the top of
the call stack, and makes calls to the new API to enable/disable
preemptions. Command-line parameters to CHESSenable preemp-

1 An example of a side-effect-free operation is a failed (blocking) lock
acquire operation.
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tion sealing based on assembly name, namespace, class name,or
method name. For the purposes of this paper, we use two options:
/dpm:M for “disable/seal preemptions in method M”;/dpt:T for
“disable/seal preemptions in all methods in type T”2. As currently
implemented, we disable preemptions in the dynamic scope ofa
method, which suits our two applications (as discussed previously).
Other scoping strategies are possible within the frameworkwe im-
plemented.

We evaluated preemption sealing’s ability to find multiple er-
rors and enable compositional testing on new parallel framework
libraries available for .NET. These libraries include:

• Concurrency and Coordination Runtime(CCR) provides a
highly concurrent programming model based on message-
passing with powerful orchestration primitives enabling coor-
dination of data and work without the use of manual threading,
locks, semaphores, etc. (http://www.microsoft.com/ccrdss/)

• New synchronization primitives(SYN), such asBarrier,
CountdownEvent, ManuelResetEventSlim, SemaphoreSlim,
SpinLock, andSpinWait;

• Concurrent data structures(CDS), such asBlockingCollection,
ConcurrentBag, ConcurrentDictionary, etc.

• Task Parallel Library (TPL) supports imperative task paral-
lelism.

• Parallel LINQ (PLINQ) supports declarative data parallelism.

In all of the experimental results below, we ran CHESS with its
default settings: preemptions are possible at all synchronization
operations, interlocked operations, and volatile memory accesses;
the scheduler can use at most two preemptions per test execution.

4.1 Discovering Multiple Unique Errors

We first evaluate preemption sealing’s ability to discover multiple
unique errors on the CCR code base, which has an accompany-
ing set of concurrency unit tests. Most of these tests ran without
modification under CHESS. The only modification we made was
to decrease the iteration count for certain loops. Some tests con-
tained high-iteration count loops to increase the likelihood of new
thread interleavings. Because CHESS systematically searches the
space of possible thread interleavings, this repetition isunnecessary
within a single test. We took all of the CCR unit tests from itsCore-
Suite, CausalitySuite, SimpleExamples, andTaskTestsuites, which
resulted in 53 independent concurrency unit tests.

Table 1 shows the results of running CHESSon each of the 53
tests. The first column shows the set of preemption-sealed meth-
ods/types (initially empty). The next five columns show the num-
ber of tests that failed:Assertsoccur when a test assertion fails;
Timeouts occur when a test execution takes longer than ten sec-
onds (CHESSdefault);Livelocks occur when a test executes over
20,000 synchronization operations (CHESS default, most concur-
rency unit tests, including those in CCR, execute hundreds of syn-
chronization operations);Deadlocksare self explanatory;Leaks
means that the test terminates with child threads alive - CHESSre-
quires that all child threads complete before the test terminates. The
final column (OK ) contains the number of tests for which CHESS
successfully explored all schedules within the preemptionbound
without finding an error.

During the first CHESSrun (Row 1) we see five assertion fail-
ures. All of these failures occurred on the first test execution, which
never contains a preemption. These five failures represent errors in
the test harness code. The three timeouts also occur on the first ex-
ecution. These timeouts have a single root cause, which is a loop in

2 The sense for these switches could trivially be switched so that the user
could disable preemptions everywhereexceptthe specified scope.

the CCR scheduler that contains no synchronization operations, and
that does not yield the processor (a violation of the “Good Samar-
itan” principle [15]). Because these assertion failures and timeouts
occurred on the initial execution, which contains no preemptions,
they were not candidates for preemption sealing.

The 40 tests that failed with a livelock all failed well into
CHESStesting. Each failure was found in a schedule containing a
single preemption in the methodDQueue.TryDequeue, as output
by CHESSduring the repro phase. To evaluate preemption sealing,
we ran CHESS on the 53 tests again, sealing only the method
DQueue.TryDequeue (Row 2). The effect of sealing is stark: all
40 of the tests that previously livelocked were able to avoidthe
livelock.3 While sealing only one method, CHESS was able to
avoid a livelock in 40 tests, verify 35 of those tests correctwithin
their preemption bound, and detect five new failures: one assertion
failure, one deadlock, one thread leak, and two timeouts. The five
new failures all have associated preemption methods, output by
CHESS(TEW = TaskExecutionWorker):

• Assertion failure: TEW.WaitForTask, TEW.Signal;

• Timeouts: TEW.WaitForTask;

• Deadlock: Port.RegisterReceiver, Port.PostInternal;

• Thread Leak: TEW.WaitForTask, Port.PostInternal;

Based on these results, we performed two more runs of CHESS
(Rows 3 and 4 of Table 1). In the third run, we sealed the addi-
tional methodTEW.WaitForTask. This converted one test from an
assertion failure into a deadlock. In the fourth run, we additionally
sealed the methods that contained preemptions leading to the first
deadlock:Port.RegisterReceiver and Port.PostInternal.
As seen in Row 4, sealing these methods eliminated both deadlocks
and the thread leak, converting both into passing tests.

The results of this experiment show the efficacy of preemption
sealing at the method level for the CCR code base. Without any
code modification, sealing the method that led to 40 livelocking
tests resulted in five new bugs and 35 passing tests. Further sealing
exposed an additional deadlock, and enabled more tests to run to
completion.

4.2 Compositional Testing

When evaluating preemption sealing for compositional testing, we
consider two metrics: (1) what is the bug yield relative to testing
without preemption sealing?; (2) for tests that produce thesame
results with and without sealing, what is the run-time benefit of
preemption sealing?

We take another look at CCR before moving to the other .NET
libraries. CCR uses a queue (implemented byDQueue) containing
tasks for the CCR scheduler to run. The scheduler removes tasks
from this queue, while other CCR primitives create new tasksthat
are placed in the queue. Using the terminology from Section 3.2,
the classDQueue is layerB, and the other components (the sched-
uler and the CCR primitives) are layerA, which make use of the
services ofB.

The last row in Table 1 shows the results of running CHESS
with preemption sealing on all methods in the classDQueue. As
expected, preemption sealing at this level will not find the live-
lock because the methodDQueue.TryDequeue is sealed. However,
CHESSdiscovers both deadlocks, which indicates that these dead-
locks are due to defects in layerA. The analysis in the previous

3 An interesting twist to the livelock bug is that while the developer agreed
that there was a potential performance problem, he thought it would not
occur very often and decided not to address the issue. In thiscase, the ability
to avoid the livelock without requiring a change to the code was crucial to
make progress finding more bugs.
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Sealed methods/types Asserts Timeouts Livelocks Deadlocks Leaks OK
∅ 5 3 40 0 0 5
+ DQueue.TryDequeue 6 5 0 1 1 40
+ TEW.WaitForTask 5 5 0 2 1 40
+ Port.RegisterReceiver
+ Port.PostInternal

5 5 0 0 0 43

DQueue 5 5 0 2 0 41

Table 1. Evaluation of preemption sealing for detecting multiple errors (Rows 1-4), and for compositional testing (Row 5).

section confirms this result. For the two deadlocks, CHESSwith the
DQueue class sealed found them in 4,662 schedules (59 seconds)
and 142 scheules (2 seconds), respectively. The runs that found the
deadlocks without sealingDQueue took 9,774 schedules (126 sec-
onds) and 10,525 schedules (330 seconds), respectively.

The other concurrency libraries that we consider include the lay-
ers illustrated in Figure 1. This figure shows dependencies among
a subset of the classes in these libraries. At the lowest level are
the new synchronization primitives (SYN) and the concurrent data
structures (CDS, mostly lock-free). On top of these two libraries
sits a new task scheduler (TPL), with a set of primitives for task
parallelism. Finally, on top of TPL sits the implementationof par-
allel LINQ (PLINQ) for querying LINQ data providers, and parallel
for loops for data parallelism. The test team for these libraries ex-
plicitly developed CHESStests for most of these classes. We used
their tests, unmodified, for our experiments.

Table 2 shows the results of these experiments. The first col-
umn is the test name, which indicates the class being tested.Sealed
scopelists the class that we told CHESSto seal based on the depen-
dencies shown in Figure 1 (see caption for abbreviations). The next
three columns,Result, Executions, andSeconds, present results
for two CHESS runs, one without sealing (columns labeled ’N’)
and one with sealing (columns labeled ’S’). The columnExecs/sec
shows the executions per second for both runs. Finally, the last col-
umn is the speedup in total execution time attained via preemption
sealing.

For example, the first row shows that CHESSfound a deadlock
in the testBlockCol1 both with and without preemption sealing.
With classSemaphoreSlim sealed, however, CHESS found the
deadlock after exploring one-third as many test executions, and 2.6
times faster.

The Result columns validate that preemption sealing at lower
layers did not mask errors in higher layers. CHESS reported the
same result for all tests both with and without preemption sealing.
On average, preemption sealing reduced the number of executions
explored by more than half. In all but three tests, preemption seal-
ing reduced the time taken for CHESSto finish or left it the same,
resulting in an average speedup of 1.83. We expect these numbers
to improve if we optimize the instrumentation required to imple-
ment preemption sealing. In particular, our instrumentation results
in a prohibitive overhead in the TPL tests, probably due to frequent
calls to small methods.

5. Related Work
The main contribution of this paper is the concept of preemption
sealing as a solution to two important problems in concurrency
testing—finding multiple distinct bugs in a single test run,and
compositional testing.

The idea of using preemption sealing to discover multiple dis-
tinct errors in concurrent programs can be viewed as a root cause
analysis for concurrency errors. For sequential programs,using ex-
ecutions that pass to help localize the cause of failures hasbeen
popular [1, 9]. For example, the SLAM software model checker[1]

determines which parts of an error trace are unique from passing
traces and placeshalt statements at these locations to guide the
model checker away from the error trace and towards other errors.
This idea is analagous to preemption sealing, but for the sequential
rather than the concurrent case.

The idea of using preemption sealing for compositional testing
is most closely related to the use of atomicity for simplifying cor-
rectness proofs of multithreaded programs (e.g., [7, 4]). However,
that work used atomicity only for the purpose of static verifica-
tion; to the best of our knowledge, ours is the first effort to use this
idea in the context of runtime verification. Our use of atomicity for
compositional testing is orthogonal to the large body of work on
runtime verification techniques for detecting atomicity violations
(e.g., [13, 8, 5]). It is also worth noting that while most work on
static compositional verification of concurrent programs requires
manual specifications, our approach is fully automatic; we use the
preemption-sealed version of a component as its specification.

Delta-debugging can be used to identify, from a failing execu-
tion, the context switch points that cause a multithreaded program
to fail [3]. Our work exploits preemption bounding to make this
problem simpler. Since preemptions are the likely causes ofbugs
and the erroneous execution discovered by CHESS has few pre-
emptions, the problem of discovering the root cause is greatly sim-
plified. Finally, our goal goes beyond root-cause analysis to find
multiple qualitatively different bugs.

Apart from improving concurrency testing, preemption sealing
can be used to make programs more resilient to concurrency errors
in a spirit similar to recent work on tolerating locking-discipline
violations [17] and deadlocks [20, 11].

Recent work has investigated techniques for creating real data-
races [19] and deadlocks [10] by using feedback from other con-
servative static or runtime analysis techniques. Our work is orthog-
onal and complementary to this work; while they focus on where
to place preemptions we focus on where not to place preemptions,
via preemption sealing.

6. Conclusions
Preemption sealingis a scheduling strategy that increases the ef-
ficiency and efficacy of run-time tools for detecting concurrency
errors. Preemption sealing has many potential applications and we
considered two of them in depth here: tolerating existing errors in
order to find more errors; and compositional testing of layered sys-
tems. The power of preemption sealing is that it does not require
code modifications to the program under test and can be easilyim-
plemented in existing schedulers, whether part of model checking,
testing, or verification tools. Our evaluation shows that preemption
sealing is effective at finding multiple bugs and testing layered con-
current systems more efficiently.
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