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Abstract—Transmitting compactly represented geometry
of a dynamic 3D scene from a sender can enable a multitude
of imaging functionalities at a receiver, such as synthesis of
virtual images at freely chosen viewpoints via depth-image-
based rendering (DIBR). While depth maps—projections
of 3D geometry onto 2D image planes at chosen camera
viewpoints—can nowadays be readily captured by inex-
pensive depth sensors, they are often corrupted by non-
negligible acquisition noise. Given depth maps need to be
denoised and compressed at the encoder for efficient network
transmission to the decoder, in this paper we consider the
denoising and compression problems jointly, arguing that
doing so will result in a better overall performance than
the alternative of solving the two problems separately in
two stages. Specifically, we formulate a rate-constrained
estimation problem, where given a set of observed noise-
corrupted depth maps, the most probable (maximum a
posteriori (MAP)) 3D surface is sought within a search space
of surfaces with representation size no larger than a pre-
specified rate constraint. Our rate-constrained MAP solution
reduces to the conventional unconstrained MAP 3D surface
reconstruction solution if the rate constraint is loose. To
solve our posed rate-constrained estimation problem, we
propose an iterative algorithm, where in each iteration the
structure (object boundaries) and the texture (surfaces within
the object boundaries) of the depth maps are optimized
alternately. Using the MVC codec for compression of multi-
view depth video and MPEG free viewpoint video sequences
as input, experimental results show that rate-constrained
estimated 3D surfaces computed by our algorithm can reduce
coding rate of depth maps by up to 32% compared to
unconstrained estimated surfaces for the same quality of
synthesized virtual views at the decoder.

I. Introduction
With the advent of consumer-level depth capturing

sensors [1] like Microsoft Kinect, depth images (per-
pixel distances between objects in the 3D scene and
the capturing camera) can now be acquired cheaply
from multiple viewpoints. Each depth map constitutes
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a projection of the 3D geometry in the scene to a 2D
image of fixed resolution. Thus, having acquired depth
maps from multiple camera viewpoints, one can back-
project them to the 3D space to (partially) recover the
original 3D geometry. If the multiview depth maps—a
representation of the 3D geometry—are compressed and
transmitted, then the receiver can perform a range of
3D imaging tasks, such as synthesis of virtual images
from freely chosen viewpoints using texture and depth
maps of neighboring camera views via depth-image-
based rendering (DIBR) [2].

To enable high quality communication of 3D geometry
from sender to receiver, however, we are faced with two
practical problems. The first problem is to estimate the
actual 3D geometry of the scene from the depth maps
acquired from consumer-level depth sensors, which are
typically corrupted by non-negligible acquisition noise.
The second problem is to find a compact representation
for the estimated 3D geometry—one that does not re-
quire too many encoding bits—so that the communica-
tion cost will not be prohibitively high.

The conventional approach to these two problems—
estimation of 3D surface from noisy observations and
coding of chosen surface representation—is to treat these
problems as independent and solve them separately one
after another. For example, one can use a 3D surface
reconstruction solution from the computer vision litera-
ture [3]–[5] first to derive the most probable 3D surface
from noisy depth observations, then project this surface
to chosen camera viewpoints as depth maps for com-
pression. We argue that this is a sub-optimal approach;
our concerned problem of identifying a surface represen-
tation that is both compact (require few encoding bits)
and agrees with observations is inherently a probabilistic
one. If one first computes a most probable surface with
no consideration for representation size, and then sends
it as a deterministic input to a lossy compression algo-
rithm for depth map projection and coding, then all the
probabilistic information obtainable from observed data
that could potentially be useful for compression is lost.
For example, a codec will not be able to compress lossily
one part of the signal more aggressively than another,
even if they have very different local noise statistics.
(This argument will be presented more thoroughly in
Section II.) See Fig. 1 for an illustration.

In this paper, we instead address both aforemen-
tioned problems simultaneously by formulating a rate-
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constrained estimation problem: given a sequence of ob-
served noise-corrupted depth maps yt, we seek the
most probable (maximum a posteriori (MAP)) sequence
of 3D surfaces ŝt within a search space of surfaces with
representation size no larger than a pre-specified rate
constraint, e.g., r(ŝt) ≤ R̄. The most probable sequence of
rate-constrained surfaces is then encoded using a MVC
codec [6]. Our rate-constrained MAP solution reduces
to an unconstrained MAP 3D surface reconstruction
solution with no consideration for representation size
if the rate constraint is loose. To formally formulate
the problem, we first define an error term − log p(ŝt|yt)
that reflects the distance between the reconstructed 3D
surface ŝt and the observed depth data yt. We then define
a rate term that estimates the coding bits of the re-
projected depth maps dt (from the computed most prob-
able rate-constrained 3D surface ŝt) given a MVC codec
is used for coding. To solve this optimization problem,
we propose an efficient algorithm that finds a locally
optimal solution by iterating between two steps: i) align
edges in depth maps of consecutive views to match scene
structure across views; and ii) smooth surfaces within
depth edges to match scene texture across views. Using
the MVC codec [6] for compression of multi-view depth
video and MPEG free viewpoint video test sequences
as input, experimental results show that optimized 3D
reconstructions computed by our algorithm can reduce
coding rate of depth maps by up to 32% compared to
unconstrained estimated surfaces for the same quality of
synthesized virtual views at the decoder.

The outline of the paper is as follows. We first discuss
related work in Section II. We then provide an overview
of our system model in Section III. We formulate our
rate-constrained estimation problem in Section IV. In
Section V, we show how an alternative formulation of
the problem can lead to a rate-distortion (RD) interpreta-
tion with additional insights. We discuss our optimiza-
tion algorithm in Section VI. Experimental results and
concluding remarks are presented in Sections VII and
VIII, respectively.

II. RelatedWork

t

x(t)
large variance

most likely signal

noisy observations

small variance

Fig. 1. Example of signal x(t) with different noise variances at
different spatial regions t, rendering a separate denoising / compression
approach sub-optimal.

The problem of denoising depth observations has been
studied extensively in the literature, and can be broadly
divided into two categories: i) denoising of single depth
images, and ii) reconstruction of 3D surfaces in space

given noisy depth observations from multiple view-
points. The recent advance of depth sensing technologies
such as time-of-flight (ToF) cameras (e.g., Mesa Imaging
SR4000) and structured light cameras (e.g., Microsoft
first generation Kinect) has driven strong interest in
the image processing community to study the depth
image denoising problem [7]–[14]. A common thread to
these works is the exploitation of the known piecewise
smooth signal prior in depth images for denoising. A
large portion of this work further assume the availability
of a perfectly aligned color image along with the depth
image as side information for depth denoising [7]–[13].
Some further assume the unique noise characteristics of
depth images captured by structured light cameras [11]–
[13], which are very different from ToF cameras. Though
we also exploit the piecewise smooth characteristic of
depth images in our algorithm, we differ in that we
jointly solve the depth image denoising and compression
problem at the same time via a rate-constrained surface
estimation formulation to be discussed in Section IV.

In parallel, the problem of reconstructing a 3D surface
given noise-corrupted depth observations from multiple
viewpoints has been studied extensively in the computer
vision literature [3]–[5]. It can be argued that algorithms
for solving this problem produce surfaces that are, at
least approximately, most likely given the observations.
However, even reconstructed 3D surfaces that are opti-
mal in this sense may require a large encoding overhead.
One naı̈ve approach to finding a good rate-constrained
3D surface is to separate the problem into two steps: i)
first estimate the underlying (ground truth) 3D surface
from noise-corrupted observations regardless of repre-
sentation size; and then ii) perform conventional RD
optimization as done in a standard video codec like
H.264 [15] given the estimated signal as input. We argue
that this is a sub-optimal approach. The problem of
finding an optimal rate-constrained 3D surface from
noise-corrupted observations is inherently a probabilistic
one: identifying the most likely 3D surface (one that
maximizes the posterior probability) within a set of
surfaces ŝ with representation size no larger than a bit
budget, i.e. r(ŝ) ≤ R̄. By first identifying the most likely
3D surface given observations and then performing RD
optimization on this estimate to arrive at a surface ŝ with
rate r(ŝ) not exceeding budget R̄, there is no guarantee
that the computed ŝ is indeed the most likely one in the
rate-constrained space Ŝ(R̄) = { ŝ | r(ŝ) ≤ R̄ }.

As an illustration, consider the 1D signal example in
Fig. 1. In the first part of the signal, the local noise
variance is smaller than in the second part. If a separate
denoising / compression approach is taken, then a most
probable signal s∗ is first constructed, and then used as
a deterministic input to a signal encoder to compute
an approximate surface s# to most likely s∗, such that
r(s#) ≤ R̄. However, doing so would mean that the
information about the magnitude of local noise variance
will be lost, and the first and second part of the signal
would be lossily compressed equally. In contrast, a joint
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denoising / compression approach will observe that the
noise variance of the second part is larger, and so the
second part can be more aggressively compressed, given
that the uncertainty in the estimated signal in the second
part is larger, resulting in another surface so, r(so) ≤ R̄.
In other words, though both surfaces s# and so are in
the feasible space Ŝ(R̄), so is the more probable one,
resulting in performance gain. We will demonstrate em-
pirically that our rate-constrained estimated 3D surfaces
indeed outperform surfaces generated by this separation
approach in Section VII.

In previous multiview depth map compression work,
it has been observed that inconsistency among input
depth maps of different views due to acquisition noise
incurs expensive coding overhead, but does not lead to
better synthesized view quality. Thus, denoising meth-
ods to improve inter-view consistency have been pro-
posed [16], [17]. Our work is fundamentally different in
that we seek a most probable 3D surface in a search space
of rate-constrained surfaces, where the chosen surface
is then projected to a number of camera viewpoints for
compact representation as compressed multiview depth
video. Thus, by construction our input depth maps
to a multiview codec are always inter-view consistent.
Furthermore, the set of generated consistent depth maps
represents not just any 3D surface, but one that is most
probable within the feasible space as dictated by the rate
constraint.

III. System Overview

Fig. 2. Overview of multiview depth capturing system for a dynamic
3D scene.

We now provide an overview of our system model.
We assume an array of V depth sensors capture depth
images of the same dynamic 3D scene periodically from
V different viewpoints, as shown in Figure 2. We assume
the cameras have the same spatial resolution and are
synchronized in time, as in [18]. The captured depth
observations are corrupted by non-negligible acquisition
noise, modeled as multivariate Gaussian. Given the ob-
served depth data, the encoder first estimates a rate-
constrained 3D surface of the scene, for a given bit
budget of R̄ bits per frame. The chosen 3D surface is
then re-projected back to the camera views, which are
subsequently encoded as multiview depth videos as a
representation of the chosen 3D surface, using a known
multiview video coding scheme like MVC [6], for trans-
mission over a communication channel of bandwidth R̄.

The challenge is to estimate the most likely 3D surface
given the observed depth data, subject to a representa-
tion size constraint R̄. We discuss the formulation of this
problem next.

IV. Problem Formulation

We now present our formulation of the rate-
constrained 3D surface estimation problem. As a conven-
tion, matrices and vectors will be denoted respectively
by boldface uppercase letters (e.g, D) and lowercase
letters (e.g., d), and scalars will be denoted by italic
upper or lowercase letters (e.g., n or N). Sets will be
denoted by calligraphic letters (e.g., S or Y).

Suppose one or more objects move freely in 3D space
and are captured at each time instant t by a set of V
depth cameras from different viewpoints, producing at
each instant a set of observed depth maps yt = {yt

1, ..., y
t
V}.

We take yt ∈ Y to be an element of a real finite dimen-
sional space Y. Let st ∈ S denote the underlying (i.e.,
ground truth not directly observed) surface of the object
at instant t. One can think of S as the set of all surfaces,
or 2D manifolds, in 3D. However, to avoid mathematical
irregularities, we shall assume that the surfaces in S are
“band-limited” in the sense of being describable with
a finite number of parameters, e.g., as the limit of a
subdivision surface [19]. Thus, we take s ∈ S to be an
element of a real finite dimensional parameter space S.

Unlike previous work on 3D reconstruction from mul-
tiview depth data [3]–[5], we take a rate-constrained es-
timation approach. That is, we formulate our objective
as finding the surface ŝt that maximizes the posterior
probability density p(ŝt|yt) of the surface given the obser-
vations, or equivalently minimizes − log p(ŝt|yt), subject
to a constraint on the number of bits r(ŝt) used to encode
a representation of ŝt; i.e.,

min
ŝt∈Ŝ
− log p(ŝt|yt) s.t. r(ŝt) ≤ R̄ (1)

Here, Ŝ ⊆ S is the codebook of all possible reproductions
of surfaces ŝt by a given decoder, and r(ŝt) is the number
of bits used to represent ŝt by a corresponding en-
coder. Thus, this is a rate-constrained maximum aposteriori
(MAP) problem. It can be shown [20], [21], that if one is
interested only in surfaces ŝt on the lower convex hull of
the set {(r(ŝt),− log p(ŝt|yt))}, this is equivalent to finding
a ŝt that achieves

min
ŝt∈Ŝ
− log p(ŝt|yt) + λr(ŝt) (2)

for some Lagrange multiplier λ > 0.
By constraining the feasible search space of surfaces

during estimation, we are essentially solving the surface
estimation problem and the compression problem at the same
time. As seen clearly in (1) and (2), the problem is
inherently a joint one that cannot be separated into
first an estimation sub-problem and then a compression
sub-problem without sacrificing optimality. Thus, the
joint estimation-compression approach can lead to better
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performance than a two-step separate approach. We will
demonstrate this is indeed the case in our experiments
in Section VII.

We refer to − log p(ŝt|yt) as the error term and r(ŝt) as
the rate term in (2). The error term measures, in some
sense, the distance between the estimated surface ŝt and
the observations yt. Note that the error term does not
measure the distance between ŝt and the ground truth
surface st, since we have no direct observation of st. Fur-
ther, it does not measure the distance between yt and ŷt

— depth maps projected to the same V camera locations
using reconstructed surface ŝt — since our ultimate goal
is to reconstruct the underlying surface st rather than
simply denoising observations yt. We can only hope to
find a reconstruction ŝt that is somehow close to (i.e.,
explains) the observations yt, while satisfying one or
more signal priors. It also means that we are free to
use any form of compact representation for surface ŝt

for coding, resulting in rate r(ŝt). For example, one can
choose a different set of camera viewpoint locations than
the observed V locations for projections into depth maps
as representation [22].

Next, we will specify the error term using an assumed
noise model and a set of signal priors. We then specify
the rate term using proxies that approximate the coding
rates of a typical multiview codec like MVC [6].

A. Error Term

We start by re-writing the posterior density p(st|yt)
using Bayes’ rule:

p(st|yt) =
p(yt|st) p(st)

p(yt)
. (3)

The numerator on the right side is a product of the
likelihood p(yt|st) and the prior p(st). The likelihood
p(yt|st) is modeled by the physics of the depth sensors
and acquisition process as follows. At each instant t,
first the underlying surface st is projected (with hidden
surface removal) onto each of the V views, producing
ideal depth maps dt

1 = d1(st), . . . ,dt
V = dV(st), which

are deterministic functions of st. From these ideal depth
maps, the observed depth maps yt

1, . . . ,y
t
V are gener-

ated probabilistically according to a zero-mean Gaussian
noise with conditional probability density

f (yt
v|dt

v) =
|Qt

v|
1
2

(2π)
MN

2

exp
(
−1

2
(yt

v − dt
v)T Qt

v (yt
v − dt

v)
)
, (4)

where Qt
v is the precision matrix (inverse of the covariance

matrix) for the M × N depth map from camera v at
instant t, and may depend on v, t, and even on the
signal dt

v. For simplicity, we assume that the depth
sensors are independent from each other and that the
measurements are independent across time. This model
can reasonably accommodate depth sensors based on
stereo, structured light, or time-of-flight by accurately

modeling the precision matrix [1], [23]. We can thus write
likelihood p(yt|st) simply as:

p(yt|st) =
∏

v

f (yt
v|dv(st)). (5)

We next discuss the prior p(s). In [24], if a 1D signal1

d is assumed to be piecewise linear, then a prior term
can be derived as follows. We first define matrix D as a
one-sample right-shift operator on an input vector d. For
example, if the vector length of d is 5, then D is defined
as:

D =


0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

 (6)

D d then shifts the sample positions of d by one to the
right. We can now write the prior density g(d) of d as a
Gaussian probability distribution follows:

g(d) =
1
ρ

exp

−γ2
N∑

n=1

[
d − Dnd +D−nd

2

]T

W(n)
[
d − Dnd +D−nd

2

] (7)

where Dn now implies a right-shift of n samples, and
D−n implies a left-shift of n samples. Hence the term
d − Dnd+D−nd

2 defines the change in local gradient in d.
For example, when n = 1, (D d + D−1 d)/2 is the vector
containing means of two immediate neighbors for each
pixel, so if d is linear, the difference from d is zero.

W(n) is a diagonal weight matrix that penalizes the
difference in local gradients. In general, the larger n is,
the smaller the weight will be. ρ and γ are constants. We
will discuss how W(n) can be defined in Section VI.

Since it is widely accepted that a depth map is piece-
wise smooth, we will use this function g(dt

v) as our prior
probability for each projected depth map dt

v of view v,
and p(st) will simply be:

p(st) =
∏

v

g(dv(st))/Z, (8)

where Z is a normalizing constant.
Combining (3), (5), and (8), we can now write the

error term − log p(ŝt|yt) as (9), where K(yt) is a constant
depending on yt, and dt

1 = d1(st), . . . ,dt
V = dV(st).

B. Rate Term

The rate term r(ŝ) is the number of bits needed to
signal to the decoder which surface ŝ ∈ Ŝ it should
reproduce. In practice, we will use a decoder based on an
existing multiview codec such as MVC, combined with a
post-processing step to turn its decoded depth maps into
a consistent 3D surface. This combination determines the
set of all possible valid bit strings C = {κ(i)} and the
corresponding set of all possible reproduction surfaces

1For clarity of presentation, we derive the prior probability in 1D.
Generalization to 2D signals is presented in the Appendix.
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− log p(ŝt|yt) =

V∑
v=1

(yt
v − dt

v)T Qt
v (yt

v − dt
v) + γ

N∑
n=1

[
dt

v −
Dndt

v +D−ndt
v

2

]T

Wt
v(n)

[
dt

v −
Dndt

v +D−ndt
v

2

] + K(yt)

∆
= e(dt

1, . . . ,d
t
V |yt), (9)

Ŝ = {β(i)}. Thus we define r(ŝ) = |κ(i)| if ŝ = β(i) for some
index i, where |κ| denotes the length of bit string κ.2

However, towards the goal of efficiently optimizing
the encoder, we approximate r(ŝ) based on a simple
model of the MVC codec. In this model, a set of depth
maps dt

1, . . . ,d
t
V is encoded in blocks using either motion

compensated or disparity compensated prediction for
each block. For each block, the prediction residual x is
uniformly quantized to a bin of volume ∆ and optimally
entropy coded using a code of length − log p bits, where p
is the bin probability. Assuming x is normally distributed
according to x ∼ N(0, σ2I), the bin probability is

p ≈ ∆

(2πσ2n)1/2
e−

1
2σ2
||x||2 , (10)

and hence the number of bits used to code the residual
is − log p ≈ a||x||2 + b for some constants a and b. Thus, a
proxy for the number of bits needed to code the residual
is simply the energy of the residual. Hence we are able
to use the following proxies for the number of bits used
to code a block in each coding mode.

1) Motion Compensation Proxy: If a block at position p
is predicted from a previous frame of the same view via
motion compensation (MC), we write the energy Em as

Em(dt
v(p),vt

v(p)) = ∥dt
v(p) − dt−1

v (p + vt
v(p))∥2

+ αt

∑
q∈Np

∥vt
v(p) − vt

v(q)∥2, (11)

where vt
v(p) is the motion vector (MV) for block dt

v(p),
and Np is a set of spatial neighboring blocks’ positions
causal to p (e.g., left, top, and top-right). In words, (11)
is the sum of energies of two residuals: i) the motion
prediction residual, and ii) the difference between MVs
for the current block p and its causal neighboring blocks.
αt determines the relative scaling of the two energies in
terms of bits.

2) Disparity Compensation Proxy: If a block at position
p is predicted from a frame of a neighboring view of the
same instant via disparity compensation (DC), we write the
energy Ed, like we did for Em in (11), as

Ed(dt
v(p),ut

v(p)) = ∥dt
v(p) − dt

v−1(p + ut
v(p))∥2

+ αv

∑
q∈Np

∥ut
v(p) − ut

v(q)∥2, (12)

where ut
v(p) is the disparity vector (DV) for block dt

v(p).

2In general, a codec is defined by a composition of mappings X α→
N

κ→ {0, 1}∗ κ
−1
→ N β→ X̂ comprising an encoder α : X →N mapping an

input to an integer, a lossless (invertible) code κ :N→ {0, 1}∗ mapping
an integer to a binary string, and a decoder β : N → X̂ mapping an
integer to an output.

3) Combining Proxies for Rate Term: We now combine
the two defined proxies into a single rate term. For a
given block p with motion and disparity vectors vt

v(p)
and ut

v(p), MVC selects the prediction mode (between
MC and DC) with the smaller number of bits (assum-
ing the same distortion). Furthermore, MVC selects the
motion and disparity vectors to minimize the overall
number of bits per frame. Thus, we estimate the number
of bits needed to encode depth maps dt

1, . . . ,d
t
V as

r(dt
1, . . . ,d

t
V |vt

1, . . . ,v
t
V,u

t
1, . . . ,u

t
V)

= µ
V∑

v=1

∑
p∈B

min
{
Em(dt

v(p), vt
v(p)), Ed(dt

v(p),ut
v(p))

}
+ ν,

(13)

r(dt
1, . . . ,d

t
V) = min

vt
1,...,v

t
V ,u

t
1,...,u

t
V

r(dt
1, . . . ,d

t
V |vt

1, . . . ,v
t
V,u

t
1, . . . ,u

t
V)

(14)
where B is the set of coordinates for blocks in each M×N
depth map, and µ and ν are constants. Finally, assuming
that the codec would map the ideal depth maps for a
reproduction ŝt to the reproduction ŝt itself, we define

r(ŝt) = r(d1(ŝt), . . . ,dV(ŝt)). (15)

C. Consistency Term
We need a consistency constraint Ec(dt

1, . . . ,d
t
V) < η to

ensure that depth maps dt
1, . . . ,d

r
V are projections of a

single 3D surface. Such a consistency constraint can be
given in terms of the energy Ec of the differences between
the depth maps when re-projected into other views,

Ec(dt
1, . . . ,d

r
V) =

V∑
v=1

∑
j,v

∆
(
dt

v,Φ j,v(dt
j)
)

(16)

where Φ j,v(d) is a mapping function that maps pixels in
d of view j to pixels in view v, and ∆(d1,d2) returns
the average l2-norm of the per-pixel difference between
depth maps d1 and d2, computed using only correspond-
ing pixels in d1 and d2 that are valid entries3.

In practice, we compute the projected depth map
d̃v = Φ j,v(dt

j) as follows, assuming axis-aligned, rectified
cameras. We first initialize d̃v to be a matrix of invalid
entries ∞. Because the mapping location must be an
integer, a depth pixel dt

j(x, y) at row x and column y
is mapped to location d̃v(x, y′), where y′ is computed as

y′ = y + round

 ς

dt
j(x, y)

 , (17)

3The projected map Φ j,v(dt
j) may contain missing pixels due to

occlusion, rounding, out-of-view problems, etc.
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where ς is a scaling factor taking into account of the
distance between neighboring cameras. Location (x, y′)
of projected map d̃i is then updated as follows:

d̃v(x, y′)) = min
{
d̃v(x, y′),dt

j(x, y)
}
. (18)

In other words, only the smaller of the new and previous
values of d̃v(x, y′) (pixel closer to the camera) is kept as
the visible pixel.

D. Optimization Problem

Given dt
1 = d1(ŝt), . . . ,dt

V = dV(ŝt), we have seen
in (9) that − log p(ŝt|yt) can be written as a function
e(dt

1, . . . ,d
t
V |yt) and likewise we have seen in (15) that

r(ŝt) can be written as a function r(dt
1, . . . ,d

t
V). Thus we

can re-express our objective (2) as (19)-(23). In (20) we
minimize over all surfaces, not just those in the repro-
duction codebook Ŝ. In (21) we convert the minimization
over all surfaces to a minimization over all depth maps
that are consistent with some surface. In (22) we loosen
the consistency constraint by allowing the depth maps
to be nearly consistent, which is important in practice
due to roundoff errors. And in (23) we convert the con-
strained problem into an unconstrained problem using
Lagrangian relaxation. We assume that the inequalities
(20) and (22) are nearly equalities. Therefore, instead
of solving (19) for the rate-constrained MAP surface ŝt

(which is intractable), we solve (23) for the optimized
depth maps d∗1, . . . ,d

∗
V (which is relatively easy). Finally,

we use the MVC codec to encode the optimized depth
maps d∗1, . . . ,d

∗
V into a single bit string, decode the bit

string into quantized depth maps, and post-process the
quantized depth maps into a single surface ŝt.

Solving (23) for d∗1, . . . ,d
∗
V involves a secondary min-

imization over motion and disparity vectors, as we can
see in (24) by substituting (14) into (23), where our
minimization objective is (25) for some λ > 0 and αc > 0.
This minimization can be done iteratively, as described
in Section VI-B.

V. Alternative Problem Formulation
In this section, we point out that it is also possible to

perform rate-constrained maximum likelihood estimation by
removing from (25) the smoothness term,

Es(dt
1, . . . ,d

t
V) =

γ
V∑

v=1

N∑
n=1

[
dt

v −
Dndt

v +D−ndt
v

2

]T

Wt
v(n)

[
dt

v −
Dndt

v +D−ndt
v

2

]
,

(26)

which corresponds to the negative logarithm of the prior
probability, − log p(st). This is the approach taken in
our previous work [25]. Specifically, in [25], we defined
distortion d(yt, st) as:

d(yt, st) = − log p(yt|st) =
V∑

v=1

(yt
v − dv(st))T Qt

v (yt
v − dv(st)),

(27)

and we defined rate rML(ŝt) in an analogous manner to
r(ŝt) in (13)-(15). With these definitions, it is clear that
the rate-distortion optimized encoder

arg min
ŝt∈Ŝ

d(yt, ŝt) + λMLrML(ŝt) (28)

performs rate-constrained maximum likelihood estima-
tion, i.e., finds ŝt ∈ Ŝ ⊆ S that maximizes the likelihood
p(yt|ŝt) subject to rML(ŝt) ≤ R̄ for some R̄. Moreover, the
rate term rML(ŝt) determines a “prior” distribution over
the codewords ŝt ∈ Ŝ,

p(ŝt) = 2−rML(ŝt), (29)

since rML(ŝt) is optimal (i.e., has expected value equal
to the entropy) if and only if rML(ŝt) = − log p(ŝt). In
general, p(ŝt) is not equal to the prior distribution over
surfaces p(st), but is rather a discrete distribution equal to
the marginal distribution resulting from the information
theoretic problem,

min
p(ŝt |yt)

I(Yt; Ŝt) s.t. d(Yt; Ŝt) ≤ D̄, (30)

for some average distortion D̄, assuming the encoder
and decoder are jointly optimal, in the limit of large
block size. However, as D̄ gets small, p(ŝt) approaches
p(st) in distribution, and hence under these conditions
the rate-distortion optimized encoder (28), for λML = 1,
performs not only rate-constrained maximum likelihood
estimation, but also unconstrained maximum a posteriori
estimation. Indeed, when (26) is used as a component of
the rate term rML(ŝt) (as it is in [25]), solving the rate-
constrained ML problem (28) is essentially equivalent
to solving the rate-constrained MAP problem (2) when
λML = λ + 1, and reduces to unconstrained maximum
likelihood estimation when λML = 0. This provides
additional insight into the relationship between the rate-
constrained (and unconstrained) ML and MAP prob-
lems.

VI. Optimization Algorithm

To arrive at a properly defined optimization problem,
we first discuss in this section how we define diagonal
weight matrix Wt

v(n) and precision matrix Qt
v in (9).

Then, we focus on the algorithm to solve our formulated
optimization problem (25).

A. Define signal-adaptive weight and precision matrices

We use a content-adaptive approach to define Wt
v(n) and

Qt
v. Diagonal weight matrix Wt

v(n) weights the respective
samples in the neighborhood. In general, the smaller n
is (closer neighbors), the larger the weight should be.
Further, larger weights should be assigned to pixels on
the same side of depth edges (same physical objects).
This motivates us to find a kernel that can reveal both
the spatial distance and the local image structure.

Bilateral filtering (BF) [26] defines weights between two
pixels based on their spatial and photometric distances,
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min
ŝt∈Ŝ
− log p(ŝt|yt) + λr(ŝt) = min

ŝt∈Ŝ
e(d1(ŝt), . . . ,dV(ŝt)|yt) + λr(d1(ŝt), . . . ,dV(ŝt)) (19)

≥ min
st∈S

e(d1(st), . . . ,dV(st)|yt) + λr(d1(st), . . . ,dV(st)) (20)

= min
dt

1,...,d
t
V

e(dt
1, . . . ,d

t
V |yt) + λr(dt

1, . . . ,d
t
V) s.t. Ec(dt

1, . . . ,d
t
V) = 0 (21)

≥ min
dt

1,...,d
t
V

e(dt
1, . . . ,d

t
V |yt) + λr(dt

1, . . . ,d
t
V) s.t. Ec(dt

1, . . . ,d
t
V) < η (22)

= min
dt

1,...,d
t
V

e(dt
1, . . . ,d

t
V |yt) + λr(dt

1, . . . ,d
t
V) + αc(Ec(dt

1, . . . ,d
t
V) − η) (23)

min
ŝt∈Ŝ
− log p(ŝt|yt) + λr(ŝt)

= min
dt

1,...,d
t
V ,v

t
1,...,v

t
V ,u

t
1,...,u

t
V

e(dt
1, . . . ,d

t
V |yt) + λr(dt

1, . . . ,d
t
V |vt

1, . . . ,v
t
V,u

t
1, . . . ,u

t
V) + αc(Ec(dt

1, . . . ,d
t
V) − η)

= min
dt

1,...,d
t
V ,v

t
1,...,v

t
V ,u

t
1,...,u

t
V

J(dt
1, . . . ,d

t
V,v

t
1, . . . ,v

t
V,u

t
1, . . . ,u

t
V) + const, (24)

J(dt
1, . . . ,d

t
V,v

t
1, . . . ,v

t
V,u

t
1, . . . ,u

t
V)

=

V∑
v=1

(yt
v − dt

v)T Qt
v (yt

v − dt
v) + γ

N∑
n=1

[
dt

v −
Dndt

v +D−ndt
v

2

]T

Wt
v(n)

[
dt

v −
Dndt

v +D−ndt
v

2

]
+ λ

V∑
v=1

∑
p∈B

min
{
Em(dt

v(p),vt
v(p)), Ed(dt

v(p),ut
v(p))

}
+ αc

V∑
v=1

∑
j,v

∆
(
dt

v,Φ j,v(dt
j)
)

(25)

but the definition of neighborhood (kernel) does not
change with local structure. Thus, two near pixels with
very different color intensities (large noise) will have
almost no effect on each other due to a very small
computed weight, even if they lie on the same side of a
depth edge. Unlike BF, steering kernel [27] first identifies
the local structure to define a locally adaptive kernel,
using which a local weighted average is computed for
denoising. As an example, Fig. 3(b) (from [27]) shows an
example of the steering kernel, where the kernel shapes
of pixels close to a detected edge become elongated
ellipses to adapt to the local structure, as opposed to
the fixed kernel in Fig. 3(a) for BF.

Fig. 3. Fixed versus adaptive kernels for image denoising: (a) fixed
kernels employed by classical denoising schemes such as bilateral fil-
ters [26]; (b) adaptive kernels change according to local structures [27].

In particular, the steering kernel takes the form

Ksteer
i (xi − x) =

√
det(Ci)

2πh2µ2
i

exp

− (xi − x)TCi(xi − x)
2h2µ2

i

 (31)

where Ci is the gradient covariance matrix based on
differences in local values, xi and x are the center pixel
coordinate and neighbor pixel coordinate respectively, h
is a scalar controlling the filtering strength, µi is the mean
of the samples centered around xi. In (31), the influence
of a neighboring pixel is tempered around local edges,
with the appropriate choice of Ci. To see the direct rela-
tion between the kernel shape and the covariance matrix,
we decompose it into three components (equivalent to
eigenvalue decomposition) as:

Ci = γiRθiΓiRθi
T (32)

Rθi =

[
cosθi sinθi
− sinθi cosθi

]
(33)

Γi =

[
σi 0
0 σ−1

i

]
(34)

where Rθi is the rotation matrix, and Γi is the elon-
gation matrix. Note that the covariance is given by
three parameters, σi, θi, and γi, which are elongation,
rotation and scaling parameters, respectively. Essentially,
a circle (classical kernel shape) becomes an ellipse after
the elongation matrix, then it rotates to the principle
edge after the rotation matrix, and finally the suitable
scale is determined by the scaling parameter.
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Since the local edge structure is related to the gradient
covariance (or equivalently, the locally dominant orien-
tation), the three parameters σi, θi, and γi can therefore
be determined from the gradient covariance. Following
[27] which in addition has a noise tolerance property,
the dominant orientation of the local gradient field is the
singular vector corresponding to the smallest (nonzero)
value of the local gradient matrix Gi:

Gi =


...

...
gx( j) gy( j)
...

...

 = UiSiVT
i , j ∈ wi (35)

where gx(·) and gy(·) are the first derivatives along x
and y directions, Ui, Si, Vi are matrices after Singular
Value Decomposition (SVD), and wi is the local analysis
window. The three parameters in Ci can thus be defined
as follows:

θi = arctan
(

Vi(1, 2)
Vi(2, 2)

)
(36)

σi =
Si(1, 1) + ϵ′

Si(2, 2) + ϵ′
(37)

γi =

√
Si(1, 1)Si(2, 2) + ϵ′′

N
(38)

where Vi(a, b) and Si(a, b) are the elements in the ath row
and bth column of matrices Vi and Si, respectively. ϵ′ and
ϵ′′ are two constants for stability consideration. N is the
number of samples in the local analysis window.

1) Estimate the weighting matrix: After the kernel for
one pixel is determined, the filtering weights of its neigh-
boring pixels are determined straightforwardly using
(31). In this paper4, W(n) is a diagonal matrix which
captures the weights for all pair of pixels with spatial
distances xi − x equal to n.

W(n)(i, i) = Ksteer
i (n) (39)

In other words, for pixel i, the weight of its neighboring
pixel, with the spatial distance being n, is defined in the
(i, i)th entry of the weighting matrix W(n), and also in its
steering kernel Ksteer

i (n).
2) Estimate the precision matrix: Precision matrix can

be computed as the inverse of the covariance ma-
trix Σ. However, the matrix inverse operation is very
computation-intensive and may not be numerically sta-
ble if insufficient number of samples are used. Therefore,
instead of estimating Σ and then computing Q = Σ−1,
we approximate the precision matrix directly as follows.
For the sake of simplicity, we assume that the precision
matrix only have diagonal entries together with sparse
non-zero off-diagonal entries. In [28], the relationship

4For clarity of presentation, we derive the equations in 1D. Gener-
alization to 2D signals is presented in the Appendix.

between the entries of Q and Σ is given by:

var(i) = Σ(i, i) ≈ 1
Q(i, i)

(40)

corr(i, j) =
Σ(i, j)√
Σ(i, i)Σ( j, j)

= − Q(i, j)√
Q(i, i)Q( j, j)

(41)

Rearranging (40) and (41), entries in the precision matrix
can be approximated as:

Q(i, i) ≈ 1
Σ(i, i)

(42)

Q(i, j) ≈ − Σ(i, j)
Σ(i, i)Σ( j, j)

(43)

In other words, the diagonal entries are the inverse of
the variance of the samples, and the off-diagonal entries
are scaled sample covariances by the diagonal entries.

Next, we adaptively collect samples to estimate the
sample covariance matrix using the previously intro-
duced steering kernel. Assuming the noises only have
correlations on the same side of the edge, for each
interested pixel, we collect neighboring samples on the
same side of a possibly detected edge for averaging.
Mathematically, a sample with the spatial distance to the
center pixel being n is collected when

Ksteer
i (n)

Ksteer
i (0) ≥ 0.5. After

collecting all the causal samples, the sample covariance
can be computed in a general way as:

Σ(i, j) = E
(
(Xi − E(Xi))(X j − E(X j))

)
(44)

B. Optimization in Details

We now describe our algorithm to solve our for-
mulated optimization problem (25). We first note that
the inter-frame predictors, MVs vt

v and DVs ut
v, and

depth maps dt
v are inter-dependent. To resolve the inter-

dependency, we alternately optimize either depth dt
v

or predictors vt
v and ut

v at a time, until convergence.
Specifically, given dt

v, we optimize vt
v and ut

v via block
search to minimize our objective function. Then, given vt

v
and ut

v, we optimize dt
v to minimize the same objective.

Optimizing depth maps dt
v for fixed vt

v and ut
v is

still difficult, due to the non-convex mapping function
ϕi,k(·) in the consistency term (16). We thus propose an
alternating two-step procedure as follows. The two steps
are: i) align edges in depth maps of consecutive views
to match scene structure across views; and ii) smooth
surfaces within depth edges to match scene texture across
views. We optimize one view a time while fixing the
other views. Note that the variables in the mapping func-
tion ϕi,k(·) become fixed when optimizing one view only,
simplifying our optimization. An overview of this algo-
rithm is described below. (Description of block search,
a common procedure in image / video processing [29]–
[31], is omitted.)
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Algorithm 1 Overview of the Optimization Algorithm
1: Initialize αc = 0, dt

i = yt
i .

2: Estimate the weight matrices W(n) from dt
i .

3: Estimate the precision matrices Qt
v’s from noisy observa-

tions yt
i .

4: repeat
5: repeat
6: Given dt

i , find optimal vt
i and ut

i by motion search.
7: Given vt

i and ut
i , match scene structure by edge realign-

ment. {Step A}
8: Given vt

i and ut
i , match scene texture by surface smooth-

ing. {Step B}
9: until MV and DV converge.

10: Increase αc.
11: until αc sufficiently large.

Fig. 4. Inconsistencies of the distinct edges across views. Left: block
in current view. Right: corresponding blocks in reference view.

1) Step A: Match scene structure by edge realignment:
Typical depth maps are piecewise smooth. Hence large
inconsistency across views usually occurs when a pixel
in a nearer depth region (foreground) in one view is
mapped to a pixel in a farther depth region (background)
in a neighboring view (or vice versa), resulting in a large
increase in the consistency term (16). Fig. 4 illustrates ex-
ample blocks with foreground and background regions
and distinct edges between them.

To correct for these large consistency errors, we at-
tempt to align the boundaries of regions across views;
i.e., we match the scene structure across views. Specifi-
cally, we first detect depth edges in a block using a sim-
ple thresholding method: we declare an edge between
two neighboring pixels if the depth values between them
is larger than a threshold ϵ.

Pixels on either side of a declared edge are labeled
candidate pixels. At each iteration, we test the reassign-
ment of opposite depth values at each candidate pixel
(from foreground to background or vice versa), and note
the potential decrease in objective (25). The candidate
pixel with the largest decrease in objective is chosen for
depth value reassignment. The depth value reassignment
induces a change in the set of detected edges and
candidate pixels, so both are updated correspondingly.
To make the reassignment operation robust to noise, the
depth value of a candidate pixel will be reassigned only
if the resulting consistency Ec decreases by a significant
amount. We repeat this process until there are no more
depth value reassignment of candidate pixels that can
induce a further decrease in objective value.

Note that the above edge realignment procedure is

performed on a target depth map in a single view given
a set of reference depth maps of a neighboring view are
fixed and used for computation of (16). The complete
algorithm is shown below.

Algorithm 2 Step A: edge realignment
1: for i = 1 to V do
2: Detect edges and identify candidate pixels.
3: repeat
4: repeat
5: Test opposite depth assignment on candidates.
6: Pick winner, update edge and candidate pixels.
7: until No objective-decreasing candidates.
8: until All blocks are processed.
9: end for

2) Step B: Match scene texture by surface smoothing: In
this step, we match the interior regions (texture) given
the depth edges (structure) of the neighboring views are
now aligned. To minimize the objective function (25),
we employ the Jacobi algorithm (also known as diagonal
normalized steepest descent (DNSD) [24]). Generally, to
minimize cost ε(d), the locally optimal d can be com-
puted in a single iteration of the Jacobi algorithm given
initialized d0:

d = d0 −M(d0)
∂ε(d)
∂d
|d=d0 (45)

where M(d0) is a diagonal matrix with its diagonal
entries being the locally adaptive step-sizes. M(d0) is
defined as the inverse of the main diagonal of the
Hessian matrix (i.e., the second derivative of the cost
function):

M(d0) =
[
ξI + diag{H(d0)}]−1 (46)

where ξI is a scaled identity matrix to ensure stability.
We first write the partial derivative of objective (25)

with respect to depth map dt
i as:

∂

∂dt
i

= 2Q(dt
i − yt

i) + γ
N∑

n=1

(I − Dn +D−n

2
)W(n)(I − Dn +D−n

2
)dt

i

+ 2αc

∑
j∈N(i)

(
dt

i − ϕ j,i(dt
j)
)
+ 2λαp

{
dt

i − dt−1
i (vt

i) motion mode
dt

i − dt
i−1(ut

i) disparity mode

(47)

For notation simplicity, we next define a temporary
term A =

∑N
n=1(I − Dn+D−n

2 )W(n)(I − Dn+D−n

2 )dt
i . The kth

sample of A can be rewritten as:

A(k) = 2
N∑

n=1

W(n)(k, k)
(
dt

i(k) −
dt

i(k − n) + dt
i(k + n)

2

)
(48)

By taken one more partial derivative of (47) with (48)
inserted, the second derivative (i.e., Hessian matrix) of
the objective (25) is:

H =
∂2

∂(dt
i)

2
= 2Q + γ

N∑
n=−N

W(n) + 2VαcI + 2λαpI (49)
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Combining (46) and (49), (k, k)th entry of M is:

M(k, k) =
1

ξ + 2Q(k, k) + γ
∑N

n=−N W(n)(k, k) + 2Vαc + 2λαp
(50)

If we apply a single iteration of the Jacobi algorithm with
initialized d0, for the kth sample, we can derive dt

i(k) as
a time varying convolution of the form:

dt
i(k) =

N∑
l=−N

f (k, l)d0(l) + Λ(k) (51)

where the filter’s coefficients f (k, l) is given by

f (k, l) =

M(k, k)
(
ξ + γW(0)(k, k)

)
, l = 0

M(k, k)
(
γW(l)(k, k) − 2Q(k, k + l)

)
, l , 0

(52)

Assuming the motion mode is selected, the last term Λ(k)
is expressed as

Λ(k) =M(k, k)
(∑

2Q(k, k + l)yt
i(k + l)

+ 2αc

∑
j∈N(i)

ϕ j,i(dt
j)(k) + 2λαpdt−1

i (k + vt
i(k))

) (53)

Similar form of solution can be derived if the disparity
mode is selected.

Recall that the non-convex problem (due to non-
convex mapping function) relaxes to a convex one by
optimizing one frame at a time. The Jacobi algorithm
described above minimizes our objective in (25) with
neighboring views fixed in each iteration. We observe
that when λ is large, view prediction dt

i−1(k+ut
i(k)) have

strong influence on the current view dt
i(k). In such case,

if there are large errors in dt
i−1(k+ut

i(k)) from the solution
in (51) and (53), they are easily propagated to the current
view. This causes the algorithm to be trapped in a local
minimum.

Intuitively, when λ is large, we know that depth maps
with little textual details have smaller objective values.
Inspired by simulated annealing [32], we attempt to escape
from local minima by smoothing out textural details in
the prediction using a simple box filter hl of size l × l:

hl =
1
l2


1 · · · 1
...
...
...

1 · · · 1


l×l

where the smoothed prediction is the convolution
dt

i−1(k + ut
i(k)) ∗ hl. By attempting a spatial filter in one

of the search paths in simulated annealing, a prominent
local error in a previous view will be averaged out,
resulting in smaller prediction error energy and thus a
smaller rate term. Among l = {3, 5, 7} and no smoothing,
we select the one that minimizes our objective. This sim-
ple procedure provides opportunities for our algorithm
to escape from a local minimum when λ is large.

VII. Experimentation
A. Experimental Setup

To test the performance of our proposed algorithm, we
used texture and depth maps from two 1024×768 MPEG
FTV multiview test sequences, Lovebird1 at camera-
captured views 4, 6, 8 and Balloons at views 1, 2, 3, and
one synthetic sequence Dude added with Gaussian noise
at views 1, 2, 3. The first 15 frames of each sequence were
used in our experiments.

The test sequences were pre-processed using one of
three methods before being compressed with a MVC
codec [6]. In the first method, Averaged, we first applied
an average procedure to the raw acquired depth maps
y, similar to one in [17], which projects all views to
the center view, averages the projected depth values for
each pixel, and then re-projects the center view back to
the other views. In the second method Optimized, our
proposed joint denoising / compression algorithm was
used to produce a surface ŝλ that minimized (25) for
a given value of λ. The surface ŝλ was projected onto
the V views, and the resulting depth maps were fed
into the MVC codec. In the third method, MAP-solution,
our optimization algorithm was executed for λ = 0 to
produce a MAP surface ŝ0. The surface ŝ0 was projected
onto the V views and the resulting depth maps were
fed into the codec. Because we set λ = 0, the most
likely surface was sought with no consideration for the
representation size, hence MAP-solution represents the
separate denoising / compression approach.

In our implementation, we set the range of λ to
be λ ∈ {0, 100, 101, 102, 103, 104, 105}, and the range of
quantization parameter (QP) in MVC to be QP ∈
{15, 20, 25, 27, 30, 32, 35, 37, 40, 42, 45, 50}. We will discuss
the selection of λ and QP pairs shortly.

After encoding and decoding the set of depth maps
using the MVC codec, the decoded depth maps may no
longer be consistent across views. To ensure inter-view
consistency at the decoder, we applied the averaging
procedure again, similar to one in [17]. These post-
processed depth maps represent the decoded surface.
Note that if a lossless codec is used instead, then there
is no need to do any post-processing.

Next, we will first discuss the selection of λ and QP
pairs. Then we evaluate the quality of the decoded sur-
face using two metrics: our observation-surface distortion
metric for the depth maps and the PSNR-bitrate metric
for the intermediate virtual view synthesized using the
decoded depth maps.

B. Selection of λ and QP pairs
We now discuss how to select pairs of λ and QP for

optimal operating points given multiview depth video
is coded using a lossy codec like MVC. The bitrate of a
lossy codec like MVC for coding of multiview video is
determined by the chosen QP value. Large QP generally
leads to high compression ratio but also severe coding
artifacts. In our formulation (25), however, for any value
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of λ we seek a compactly represented surface s assuming
r(s) is the minimum rate that can sufficiently described
surface s (without loss) to the decoder. In other words,
we do not account for lossy compression of the codec
itself after a compactly represented surface s is found.
One straight-forward way to find the optimal pairs of
λ and QP is to examine the performance (rate and
distortion) of all pairs, then trace out the convex hull
as the operational rate-distortion curve. While optimal,
this procedure is computationally expensive, and may
not be suitable for real-time applications.

For faster computation, we propose the following pro-
cedure. We search for the coarsest QP that still enables
a sufficiently good surface reconstruction at decoder, for
a given chosen surface ŝλ, i.e., one that suffers no more
than just-noticeable-difference (JND) [33] as compared to
the original computed surface. To find such QP, for a
given λ we perform binary search for the coarsest QP
that can produce JND. We plot the optimal pairs of λ and
QP in Fig. 5. We can observe from the figure that for large
λ (low rate), a large QP (aggressive compression) can
fulfill JND requirement, which agrees with our intuition.
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Fig. 5. Bitrate for the test sequences with the optimal combination of
QP in the lossy codec and λ in our formulation.

C. Performance of Depth Map Reconstruction
The first metric is our observation-surface distortion

measure − log p(ŝt
QP|yt) defined in (9), where ŝt

QP is the
MVC encoded surface at a certain QP value.
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Fig. 6. Distortion-rate curve of the generated surfaces using the
surface-observation distortion metric for Lovebird1 and Balloons.

Figure 6 and Figure 7 show distortion-rate curves
of Optimized and MAP-solution for the Lovebird1,
Balloons and Dude sequences, respectively. Each curve
for MAP-solution was generated by varying QP in the
MVC codec, while each RD curve for Optimized is the
lower convex hull of all RD pairs generated by varying
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Fig. 7. Distortion-rate curve of the generated surfaces using the
surface-observation distortion metric for Dude.

both QP and λ. We can observe from Figure 6 and
Figure 7 that at lower bit-rate, Optimized outperformed
MAP-solution. We observe also that at higher bit-rate,
Optimized converged to MAP-solution, which is what
we expect as the rate constraint is loosened. Hence the
experimental results demonstrate that the joint denoising
/ compression approach (Optimized) indeed outperforms
the conventional separate denoising / compression ap-
proach (MAP-solution) when the rate constraint is tight.

Figures 8 shows the raw acquired depth maps and
MAP depth maps from different views for Lovebird1,
Balloons and Dude. Compared to the raw acquired
depth maps, the MAP depth maps show a visually
significant improvement in inter-view consistency as
pointed by arrows in Lovebird1 and Balloons, as well
as noise reduction in Dude.

Fig. 9. Cropped regions of Optimized depth map with λ =
0, 1, 102, 104, shown from left to right respectively. Smoothed details
and smeared edges are observed for large λ.

Figure 9 demonstrates the typical example of opti-
mized depth maps in the center view for λ = 0, 1, 102, 104.
As λ increased, the rate term became a heavier penalty,
resulting in a larger distortion. We observe that the depth
map for λ = 100 has less details inside the foreground
and background regions, and smeared edges between
foreground and background. Without sharp edges, a 3D
surface becomes easier to code and therefore a smaller
rate term r(s).

D. Performance of Depth-Image-Based Rendering
The second metric is the PSNR of an intermediate

virtual view (between neighboring camera views) syn-
thesized from decoded texture and depth maps, via
DIBR [2]. For this metric, the ground truth is taken to
be the original texture map provided by the sequence
provider at the virtual viewpoint.
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Fig. 8. Comparing the raw acquired depth maps with MAP depth maps for Lovebird1, Balloons and Dude at three different views (in order
to see differences clearly, all pixel values are doubled). From left to right: Raw acquired depth maps of Lovebird1 at views 4,6,8; MAP depth
maps of Lovebird1 at views 4,6,8; Raw acquired depth maps of Balloons at views 1,3,5; MAP depth maps of Balloons at views 1,3,5; Raw
acquired depth maps of Dude at views 1,2,3; and MAP depth maps of Dude at views 1,2,3.
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Fig. 10. Synthesized view PSNR at decoder vs. coding rate for
Lovebird1 and Balloons.
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Fig. 11. Synthesized view PSNR at decoder vs. coding rate for Dude.

Fig. 10 and 11 show the PSNR-rate curve for two
natural sequences Lovebird1 and Balloons, and the
synthetic sequence Dude respectively. The PSNR-rate
curves for Averaged and MAP-solution were generated
by varying the MVC quantization parameters (QPs),
while the RD curve for Optimized is the convex hull
of all RD pairs generated by varying both QP and
λ. The RD points for Optimized (JND) are generated
using the JND QP selection procedure described in
Section VII-B. One can observe that Optimized (JND) is
very close to the RD-curve Optimized. This verifies that,
when using MVC to compress the optimized surfaces,

one can practically decide the suitable QPs without
trying all λ / QP combinations. At lower bitrate, using
the Bjontegaard metric to compute rate reduction, for
Lovebird1, the average rate for Optimized is 76.90% of
MAP-solution and of 67.94% Averaged, while achieving
the same PSNR. The respective percentages of coding
rate for Balloons are 78.52% and 61.86%, and for Dude
are 68.69% and 62.34%. As rate increased, 3D surfaces
computed by Optimized approached those computed
by MAP-solution, thus achieving the same PNSR-rate
performance, as expected.

Cropped images at virtual views of the three se-
quences are shown in Fig. 12. Improvements indicated
by arrows can be clearly observed.

VIII. Conclusion

Given noise-corrupted depth observations from mul-
tiple viewpoints, in this paper we propose to construct
a rate-constrained 3D surface of a dynamic scene subject
to a representation size constraint. Unlike previous work
that finds the most likely 3D surface given noisy obser-
vations regardless of representation size, our identified
3D surface optimally trades off the posterior probabil-
ity with representation size. We propose an iterative
algorithm that alternately optimizes the scene structure
(depth edges) and the scene texture (depth surfaces)
until convergence. Experimental results show that using
projections of our rate-constrained 3D reconstruction to
multiple depth maps for multiview depth video coding
can reduce coding rate of depth maps by up to 32%
compared to unconstrained estimated surfaces for the
same quality of synthesized virtual views at the decoder.
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Fig. 12. Top Row (Lovebird1): synthesized virtual view 5 us-
ing texture and depth maps at view 4 and 6. Depth maps are of
48kbps: Averaged (left), MAP-solution (center), Optimized (right).
Center Row (Balloons): synthesized virtual view 4 using texture
depth maps at view 3 and 5. Depth maps are of 120kbps: Averaged
(left), MAP-solution (center), Optimized (right). Bottom Row (Dude):
synthesized virtual view 2 using texture depth maps at view 1 and
3. Depth maps are of 50kbps: Averaged (left), MAP-solution (center),
Optimized (right).

Appendix

A. Generalization to 2D signals
In the appendix, we generalize the prior probability

defined in Section IV for a 2D signal. Without loss of
generality, assume d is the column-ordered vector of the
2D signal, the shift operator D and the penalty function
W(n) need to be updated accordingly. Note that as the
signal goes from 1D to 2D, the shift direction n also goes
from 1D to 2D, which is why we use the boldface here.
For example, d is a column ordered vector of a 3 × 3
2D signal, then the one-sample right-down circular shift
operator on this input vector is defined as:

D =



0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0


(54)

The penalty function W(n) keeps as an diagonal matrix,
but the input to this function changes from 1D to 2D.
As it is defined by the steering kernel (31), the 2D input
signals apply directly without any modification.
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